# TIMBER FRANCE

TIMBER FRAMING AND WOODWORKING. A
STEP-BY-STEP GUIDE TO UNDERSTANDING TIPS
AND TECHNIQUES ON THE WOOD WORLD

2 BOOKS IN 1

JASON BARTIROMO

# **Timber Frame**

2 Books In 1 Timber Framing And Woodworking.
A Step-By-Step Guide To Understanding Tips And Techniques
On The Wood World

**JASON BARTIROMO** 

# © Copyright 2020 by Jason Bartiromo All rights reserved.

This document is geared towards providing exact and reliable information with regards to the topic and issue covered. The publication is sold with the idea that the publisher is not required to render accounting, officially permitted, or otherwise, qualified services. If advice is necessary, legal or professional, a practiced individual in the profession should be ordered.

- From a Declaration of Principles which was accepted and approved equally by a Committee of the American Bar Association and a Committee of Publishers and Associations.

In no way is it legal to reproduce, duplicate, or transmit any part of this document in either electronic means or in printed format. Recording of this publication is strictly prohibited and any storage of this document is not allowed unless with written permission from the publisher. All rights reserved.

The information provided herein is stated to be truthful and consistent, in that any liability, in terms of inattention or otherwise, by any usage or abuse of any policies, processes, or directions contained within is the solitary and utter responsibility of the recipient reader. Under no circumstances will any legal responsibility or blame be held against the publisher for any reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

Respective authors own all copyrights not held by the publisher.

The information herein is offered for informational purposes solely, and is universal as so. The presentation of the information is without contract or any type of guarantee assurance.

The trademarks that are used are without any consent, and the publication of the trademark is without permission or backing by the trademark owner. All trademarks and brands within this book are for clarifying purposes only and are the owned by the owners themselves, not affiliated with this document.

### **Table of Contents**

### **Timber Frame**

| <u>Chapter 1 — About Timber Framing</u>             |
|-----------------------------------------------------|
| <u>Chapter 2 – Simple wood frame structure</u>      |
| <u>Chapter 3 - Procuring the Timber</u>             |
| <u>Chapter 4 — Construction techniques</u>          |
| <u>Chapter 5 – Raising the frame</u>                |
| <u>Chapter 6 – Foundation and Enclosure Systems</u> |
| <u>FAQS</u>                                         |
|                                                     |

### Woodworking

<u>Chapter 1 - Looking Deeper into the fundamental elements</u>

Chapter 2 – The correct use of your body

Chapter 3 - Learning to see better

Chapter 4: Knowing your tools

Chapter 5-Measuring & Marking

Chapter 6–The Line

Chapter 7 – Learning as you work

<u>Chapter 8 – Practice</u>

Chapter 9-Putting All Together

# **Timber Frame**

A Beginners Guide to Understand The Timber Framing and Create Handcrafted Constructions

## Introduction

When it comes to timber framing and all that it entails, we can say there is a lot to cover, and for most of the time, it is hard to do justice to all that needs to be covered in terms of the topic at hand. However, one thing is certain, the sections covered in this book would give you an edge when it comes to being a beginner and knowing what you have to do. If you have a bad foundation, it would have a lasting effect on how you work, how fast you can learn, and what it is exactly that you can learn.

All that you would learn here is practical and reliable meaning that you can get it as it is highlighted in this book. Once you get in touch with the basics, you open yourself to a world of possibilities; possibilities which can open a creative side to your game and what it is you have to offer yourself as well as those who you might happen to work for. Join me on this ride of perfection because believe me, it would definitely be worth your time and effort.

# **Chapter One — About Timber Framing**

The origins of good wood framing have been lost in prehistory, but one reasonable assumption is that simple frames could have been built by beams on top of columns that had a natural bend, something we boys from the Boy Scout manuals saw.

Once a horizontal wood is supported by verticals, stability and strength are considered. Earlier constructors would have known the triangle's intrinsic power. Shortly after, the importance of the pitched roof and the designs of the wood-frames became established and working. Test and error, a kind of systemic evolution, would have contributed to both refinement and degree, while failed tests would have faded from tracks and achievements transmitted across the centuries.

Early people had no tools and fixtures for metal, but they had excellent tools for stone, and quality frames for wood could and should have evolved without metal. Archaeological evidence in Neolithic sites-mainly after pit, because little wood has survived shows the shapes of houses in Europe five thousand years ago, indicating the types of rafter systems used to roof the dwellings. Some were impressive, like Stanton Drew's enormous round wooden temple in Somerset, England, which followed the megalithic circle of stone at the same site. It had a diameter of 312 feet and had about 400 very wide oak posts, and the previous structure was identified in the late 1990s by the uses of magnetometers. Experts disagree whether it has ever been or has not been protected, but the radial location of posts suggests a radial reinforcement network.

A project like this was much more ambitious at that time with a much lower population than today than the construction of the London Millennium Dome or a modern American indoor sporting arena, for example. As long, we will never know how long these buildings existed. We now know that a wood structure durability is very closely related to foundation and roof consistency. Wood rot is mainly responsible for the spread of fungi requiring air, water, and nutrients. If perpetual humidity can be avoided, wooden buildings last very long. The ancient builders said that you need "good shoes and a good hat" and that you need "goodies and good ventilation."

### **Timber Framing versus standard stud construction**

The wooden framings and traditional stud construction are usually made with studios in North America, the light "stick structure"—also known as platform frame, modern frame, or western frame. The most residential frame construction in North America today. A "balloon frame," a popular type 100 years ago, is a specific type of frame that has a long time since the first story through the second. The vertical members were now called gouges. This is now rare, with most stories being built with the ubiquitous 8-foot stud separately.

Usually, the conventionally constructed stick-frame consists of framing wood with a thickness of only 3.8 cm. Vertical stubs are either 40 or 61 cm from the middle of a stube to the base of the following perimeter. Frames of complete "two-by" material had been built before 1920. In addition, one of two inches by four measured two inches. A large proportion of the material came out of small local sawmills, which could also differ by up to a quarter-inch in measurements of a double. The local sawmills with which I work today are almost always within an 8th of an inch of the actual dimension.

In fact, today, a nominal "two by four" is 3Y2 inches rY2. All two companies purchased from large wood suppliers such as Lowes and Home Depot are RY2 cm thick. The true depth of a 2 by 6 cm is 8.9 cm, and the width of a 2 by 6 cm is 4.0 cm.

Therefore, the true depth is 3/4 cm less than the nominal length, so that a 2/8 is 7I,4 inches deep, and a 2/10 is deep 9I,4 cm. For large building suppliers like six by six, you can sometimes buy "heavy timbers," but these, too, lose half an inch in a floor and have a true 5Yz square dimension.

It is important to understand more frequently accessible the difference between "rough cut" timber and "finished" lumber. This book is not about the standard design of today's stick-frames, as I can't improve on several excellent guides. Some of them are in the bibliography, but the list scratches only the surface of the available information. Also, in traditional buildings, several local commercial schools and technical colleges offer lessons. Alternatively, timber framing is intended to supplement natural construction methods, which primarily fill between the heavy panels that form the

structural structure of the house–brick, cordwood, straw bale, waddle, and daub, etc.

The methods described below would also be ideal for storing sheds and barns, for use in the siding of rough-cut lumber. Centrally-to-center distance between posts is typically between six and ten feet, unlike traditional stick framing, which is based on the use of four to eight-feet sheets. It is much less boring to infill. Imagine trying to fill small spaces with cordwood masonry or straw bales in standard stud buildings.

In the large national logging chain shops, people building heavy wood frames do not usually buy a lot of timber. They will more generally buy their wood from the local sawmill, make their own woods with the chainsaw mill, or have a nearby sawmill with a portable band-saw visit their wooded property for turning standing trees into full-dimensional timber.

When the only consideration was given to lumber measurements, it could be reasonably argued that a full 2 by8-inch floor or roof rafter would be 47.12 percent greater in shear force than its equivalent of 1,5 inch by 7.25 inches or 10.875 square inches in storages. It sounds pretty good, and it does, however, add to the quality of timber. There are other factors.

### Lumber grading: the good ones, the bad ones and the Ugly

Organic ones, like the big ones on the edge of a log, are capable of decreasing shear and bending power considerably. Controls, breaks, and shake are other defects. Shake greatly weakens the wood. Here the grading of wood becomes essential.

In short, the classification of wood can be a costly idea that, in the first place, ignores the benefit of the use of local rough-cut wood. At present, it is possible for most people in rural areas to make non-graded timber, given the widespread adoption of the International Building Code. When placing a large wooden order at the local sawmill, check this with the town or county building inspector or cuts your own lumber with the chainsaw mill. You might want to obtain the information anonymously if deception is the tactic that you have in mind— I do not support this, you understand.

I think there will be provisions like the one recently adopted by New York

wherever the local forest products industry is large, which allows the use of raw-cut lumber. Apart from economic aspects, you cannot simply buy heavy wood from ordinary building supply yards. The practical and cost-effective alternative is local sawmills, farm sawmills, and personal wood cutting.

### **Timber framing: advantages and drawbacks**

Whether you are using "traditional" timber or "wooden framing" to the rest of us, all methods are often influenced by certain advantages and drawbacks. Energy. Power. All approaches are firmly constructed in wood. It not only exudes a strong feeling of confidence in architecture in real structural terms. A semi-woven house in England is hard to visit and does not impress with its powerful atmosphere and the visual impact of the beautiful exposed timbers, especially the old ones. The building has much of its energy. This is the power of its construction. It is not spectacular.

Heavy-wood frames with or without infilling are more resistant than light-frame constructions to earthquakes, wind, and snow load trauma. For places that are vulnerable to such natural disasters, attention must be paid to following the local Building Code for connecting the base frame and the frame roof.

- 1. **Good for infilling:** As already pointed out, heavy wood framing is more suitable to infill with the different natural building methods that are common today than stick framing. With infilling, it is not important to leave vertical members between studs or posts exactly 14Y2 inches (36,8 centimeters). Masonry can suit any room. Straw bales can be made to fit almost any space width, as defined in different manuals for building straw bales.
- 2. **Esthetic Appeal:** Timber frames are normally left exposed, both on the inside and outside, or often on both sides of the wall, such as the Earthwood guest houses as well as the workshop. With many contemporary timber frame houses professionally constructed, structural insulated panels are added to the outside of the building, leaving beautiful heavy woods onto the inside. Strong timber is shown on the outside, but not

- on the inside, at some 16-sided cobblestones. The exposed timbers all give the architecture character, texture, and an esthetic sense of energy. All this includes spiritual and other comforts.
- 3. **Ease of Construction:** You may consider timber framing simpler than traditional stubling if you've never constructed anything before, which needs very exact tolerances when adding sheet rock, plywood, and so on. There are many fewer pieces to do with wood framing. And tolerance, particularly when the walls are filled with natural materials, need never be so perfect, at least in the post and beam system. It's true that a lot of the work needs two men, but with stick-frames building, this is also true.
- 4. **Economics**: Whether you buy wood from the nearby sawmill or farming business or if you produce wood from your own trees, the frame of wood is almost certain to be more costeffective than finished wood. That advantage is lost when buying heavy wood from a distant source, and wood framing can become more expensive. The secret to economic development by any means is the use of local or indigenous materials.

### **Traditional Timber Framing**

I use the term 'traditional' wood framing to describe the method of joining the wood without the benefit of metal or mechanical fixations. In most cases, one or more individuals are designed on various sides, gable ends, and "bents" on the ground. In other words, the posts are usually connected by time-tested carpets, girders, rafters, royal pins, and queen's pins, for example. The joining of numerous heavy wooden plates through one of the many clever and complex joints built over the centuries is time and effort. Often, with the help of friends, a completed section is brought up, especially with the owner-builder, so that the next part can be created. Instead, the barn or house frame can be built in one day, and this is more popular for professional builders of wood-frames.

Professionals also create all the components in a shop setting, ensuring that

the components fit properly together and then re-assemble the frame on-site. Although traditional wood frames are rarely used with natural infill alternatives, they are more generally designed to support pre-made insulating panels on the outside and later with a wooden sideboard. Perfect joints have a beautiful and remarkable impact on the internal skeleton of heavy wood.

While adding engineered tension skin sheets, vertical spacing members is more important than when using a natural infill between posts. Good, conventional framing of wood can be quite costly due to work and costs of materials, but good wood framers respected every hundred. Owners can also do the job, but the production and use of necessary skills can add a considerable amount of time to the project. I am a professional owner, but I would certainly study in one of the building schools for two weeks before I undertake a traditional wood frame project.

# **Chapter 2 – Simple wood frame structure**

### Load and line of thrush

All the buildings, such as furniture, people, the soil, the snow, and even the wind, must be supported. All these items are within the general load range, but the definition needs to be further broken down. The weight of the building is the dead load or structural load. The live load is the total force that acts as a result of its use, for example, furniture, people, storage objects, etc. Firstly, a building should be able to support itself. Snow loads vary from place to place and are different live loads. It is the weight of your area's average accumulation of snow.

### Compression

Compression—in wood, not the car engine of my dad—can be described as a propensity to collapse or compress under load. In order to be true, the actual crushing or compression must not be observable. If I stand on a 12-inch-high stout, say,2-inch diameter-oak cuts wood, my weight makes this cuts block compression, even if I have no measurable effects.

### **Tension**

Tension is the opposite of stress. Although compression tries to crush a material's molecules, the strain aims to break the molecules. The rope is in tension when I hang lead weights on a thread. When I add more lead weights to surpass the string's tensile strength, we will find a stress failure: the string splits.

### **Compression and stress in beams**

The beam is a good word for describing a horizontal wood whose role it is to move a load through a period of time. Girders and tiles, as well as door lintels and walls, are common examples. Although many roof rafters are pitched to some extent, they often act like beams, even if other factors are involved.

Let's load an imaginary easy beam to see how it works. We are going to make it a rather flimsy beam to show what is going on with its overperformance. Imagine a 12-feet, twice-a-eight plank extending between the two. If every end of the board has to be mounted on a concrete block on a foot wide, the direct length between the supports is 10 meters. Now I'm on setting up with my 17-pound weight to the middle of this "flash."

The plank sags, of course, in the center and quite a bit. Nonetheless, it probably won't break, even if it worried me a little. What happens is that the bottom of the plate stretches below my weight, that is, stress. The molecules on the top surface of the plate are actively trying to crush together.

To permit this to be valid-and to be-a pictorial line along the thickness center of the board is not in compression nor stress. This line is referred to as the middle or neutral axis. An imaginary beam, like a trampoline here mentioned, would be quite springy. Push one of the sides inwards 4 feet, and both the cantilever and the diving board can come into existence. Therefore, the top surface is in tension now, and the bottom surface is under compression when the beam cantilever gates by placing my weight in its free end.

### Bending and bending failure

Indeed, it has a strong beam, but it does not collapse under the load we are asking to move it, but the key feature we look for in a beam. We learned a little about the kinds of errors that could occur. Bending failure tends to be the inability of people to understand more quickly. We place an increasingly strong bending stress on a beam if we load it, especially in the middle of the period. When the bending force of the beam is surpassed, it usually breaks in the middle of the cycle. It is rational and normal, just as it seems reasonable that, if it's put flat, the two-by-eight board mentioned above will split far more often than if it is properly installed on the bottom. But it is useful to know, apart from common sense, why this is so structurally or mathematically.

### **Shear and Shear Failure**

A failure of Shear is much harder to imagine than a failure of bending. Nevertheless, shear failure rarely occurs with light frame structure, whereas for heavy framing of wood, it is important to consider, in particular with very heavy loads such as an earth roof or steam train.

A good way to explain shear is to view it as a mixture of compression and

stress. Remember that a beam's top surface is relaxed, the lower surface is stable, and the middle is neutral. The arrows demonstrate the powers of compression and stress. The arrows point the other direction, and the frequency of the force of stress or friction decreases closer to the neutral axis. Not unexpectedly, annual growth rates are often accompanied by separations. This is why woods that are prone to shake are poor in sheer energy, such as hemlock. If a 2 by 6 hull is thrown too loosely to a table, it will collapse parallel to the surface. It's no accident.

### **Deflection**

Deflection is bending close, but different. Bending is of great concern to us if it leads to a poor bending loss. In certain cases, we can accept certain levels of deflection. A feature of deflection is springiness-or steepness-in a board. The cracking of plaster in a ceiling is a sign of undue deflection or fracturing of sheet rock joints.

### **Post and Beam Frame**

The' beam' part of the construction of the' post and beam' is usually a heavy top plate, also known as a girt or a girder. Girts are often aided later by the penetration of the panels at the perimeter of the house. I use the word 'bar' in this book in order to describe the gaps between posts in the perimeter. The use of intermediate posts between the main posts also gives girts power. When two consecutive girts are not needed to have a joining surface, these intermediate posts can be less material and, therefore, less expensive.

### **Plank and Beam**

The roofing of the plank and beam is a structural device that is often connected to the construction of posts and beams. Through time the word "beam" is used; it is the confusing part here. To date, it was convenient to use the word beam for our widespread discussion, but we must now abandon it for the benefit of more descriptive—and thus less ambiguous—words. The beam part of the structure is a floor joist or a roof raft, not girts or girders.

Just like posts are the natural strength of a frame of a post and a beam, it is also the plank that makes the system stronger. Two-by-six language sides with supporting rafters on four feet (r.2 meters) on centro (47 inches or so)

can give you an idea of how solid planks can be. The sides are able to support a heavy (8-inch or 20,3-cm) earth roof and a 7-pot snow load. The defined earth roof is about 170 pounds a square foot for dead (structural) loads. In order to support 70 pounds per square foot, traditional roofs are important in our region.

In the heavy planking, therefore, technical problems aren't noticed. The situation described in the above paragraph requires that certain extra heavy-duty rafters support this earth's roof if the rafters are 48 inches in the middle. By the way, the word "on top" refers to the difference between one rafter center and one rafter center, with a parallel rafter system. For standard framing, the middle distance between the floor joists is usually I2 cm, 16 mm (40,6 cm) or 24 cm (61 cm). Another center difference may be sufficient for heavy wood construction.

Often known as the height of the rafters, depending on the distance between the cores. The power of the roof structure is a linear function of the frequency (all other things being equal). Think of it by way of a simple example if you throw "direct linear function." In fact, if the number of rafters is doubled (with spans, loads, and rafter quality remaining the same). Through installing rafters at I2-Inch centers instead of 24 "centers, you will be able to handle twice the charge with half the load, which is simple if costly way to increase the shear and bending strength of a roof structure.

# **Chapter 3- Procuring the Timber**

### **Recycling timbers**

Years ago, more old wooden frame barns were used to be available for reuse. Recently, however, a large barn was built. Nevertheless, given the decrease in the number of barns available, recycled wood use is still a good strategy.

We use recycled beams in our house from a large bowling alley, which was demolished six miles from our home. I asked the destructor if I could take the wood from the angled 100-foot trusses that have been removed. I have ten big cabinets, 400 sheets of used 5/s-inch chips, and about 500 bits of I2-inch framing wood. I got 4-inch chips of used 5/s-inch chips. Our expense was 1 million dollars for supplies that I valued at more than 50 000 dollars. It took the best part of a summer to disassemble the trusses, to break the timber and to deroof the plain wood. The curved sections were roof rafters, the straight laminated parts became the eighteen vertical posts in the external wall, and the radial floor joists for the second floor were the four bits. On the first floor, the two by twelve-inch material was radially structured and coated with two layers of recycled flooring.

### **Cultivating Coincidence**

I would list the items I could find using the legal pad or clipboard in all the buildings that I did with an ancient barn timber. I would record the sectional dimensions, the duration, and the condition of each piece. Then the catalogued parts would suit my design so that I could see how I could fit the available parts with what I wanted. Sometimes I would have some wood left-I would save them for the next project or make them available to the other owner-constructor-and sometimes I would have to look up some wood for a deficit.

### **Recycled Timber Evaluation**

Recycled timber should be assessed carefully before buying or deciding to dismantle a building, so you can carry your list of wishes (more accurately called a wood schedule) to the purchase location. Next, the wood must be sectional and long enough to perform the work. Use the actual usable length

to make ends or ends weakened by mortise and tenon articulations.

Once you have discovered that something that is potentially useful is usable, you must carefully examine each part for defects that might hinder its use in your project. Especially with barn beams, no deterioration is always evident: use a sharp knife for testing softwood on all four sides. Reject any "punky" or soft bits. Sometimes from a 12-foot beam, you might get a nice seven-foot post, and that's the best one you can do. As a good seven-footer, record the work. You need 10 posts, seven feet? Okay, one of them is here.

Take care of the die-cut from a wood you want to use as a handle, as the gap will significantly decrease the bending power. Nevertheless, you can use the piece as a post or as a village, which is supported by an intermediate post or a cordwood pill along its length. Old wood covering it, like the fresh ones from a demolition site, is likely to be in good condition. But for one- or two-years timbers have almost certainly begun a deterioration process. It is very painful to see the old wood on the floor, to turn the wood over, and to see a centimeter of rotten wood at the bottom. There's also an exception here, though. My boyfriend Bob has an old timber of virgin heartwood, twelve by one, which is on the field for many years, and which is still in good shape. I actually saw them, and I was shocked. You're just no longer making timbers like this!

In certain code enforcement jurisdictions, the use of reclaimed timber may not be permitted, since the timber is not "licensed" for accordance with the building code-a subject already discussed in Chapter I. You need to know that you can use the timbers before you spend a lot of time and money in them. For estimates of the stress load, it may be difficult to judge the plant, regardless of the quality of a 100-year old timber.

### **Timbers from Your Own Land**

Many owners may grow tall, straight trees on their properties to make their own timbers for their own construction. By general, hardwoods are stronger than softwoods, but distinctions are best made between different species, as the strength characteristics of hardwoods and softwoods overlap significantly. The hardwoods are generally harder to fasten onto. To make connections, you may have to drill hole and twist them. Hardwoods are also more likely than

smooth woods to decline. There are some common forests, starting from so-called hardwoods, or lagoon trees.

### Hardwoods

**Ash:** Really solid and typically straight, without many knots. A favourite for hockey sticks and baseball bats. Could carry out broad controls. The wood is a light fluffy.

**Beech:** Strong, very strong, pretty lovely. Nevertheless, bees have a high decline and are vulnerable to powdered beetles and carpenter ants, so as silling content or posts, it should be avoided. From the first story up, save it for timbers. Before the new beech virus, beech was often the wood of choice in old timber structures in the northern hardwood forest.

White birch (or sheet of paper): Also grained, medium strength. Medium strength. As a forest pioneer, you can hardly get large-diameter trees in good condition, because it is not long-lived. Works quite well, when black, with hand tools or a chainsaw.

**Yellow birch:** Heavy and strong. Soft and heavy. It can be stronger than red oak, but work can be difficult. It has a scent of perfect wintergreen.

**Butternut:** Quite solid because of its lightweight. The wood is straight and has relatively low hardwood shrinkage.

**Black, Cherry:** Strong and Rot-resistant. It is quite common in some parts of the north-east. Black cherry is a beautiful wood, but if you have it, you may wish to make boards rather than beams in furniture, cabinets, or special features.

**Hickory:** The strongest of the forests in North America. When I do megalithic stonework, I use shagbark hickory for the levers. It's getting much shrinker. Mill it to eliminate division fairly soon after cutting.

**Black Locust**: Strong and very heavy. Although this is not a big problem if you are going to build a polar grill building without using pressure-treated posts, you are only really decay-resistant hardwood. Exceptional for sills or for weathering that is continuous. It can be very hard to work.

**Sugar, Maple, and Red:** Straight and non-spiral growth trees for wood framing if green. If the tree grows as it does sometimes in a spiral, expect the timbers to be twisted. There can be quite a lot of deterioration and low red resistance.

**Oak Red:** Massive decline, solid, is working well. Don't remain as resistant to decay as the white oak. It has a lovely seed.

**Oak White:** White oak is sturdy, resilient, and decay-resistant to classical hardwood for framing. It shrinks a lot but shrinking is not really an issue in exposed rafters, joists and girders. Sobon and Schroeder (1984) say it fits well for conventional timber framing, but ten years later, Sobon (1994) claims it is "more difficult to work than red oak or beech." I have only a few chains saw trencher cuttings to connect a white-oak girder ten-by-twelve on a few eight-by-eight pillars of white oak. When the woods are still quite young, this is no problem. Once the hardwoods are fully seasoned, your chain is full of sparks!

### **Softwoods**

**Balsam Fir:** It looks like spruce, but not so heavy. Really sluggish. Balsam companies have a snapshot on our estate as toothpicks during windstorms, so I'm not sure. Nonetheless, balsam fir can perform the task if you carefully select the timbers and have the stress calculations examined.

**Cedar North White:** This is one of my favourites here in northern New York for both log ends and for wood frame stuff. It's ample and inexpensive, easy to cut and work, and strong enough for the heavy Framing applications for which I use it: posts, sills, and plates. Of joists, rafters, and unsustained girders, I don't use it because white pine is stronger and is also abundant. Without being distracting, white cedar has a pleasant aroma.

**Red, Cedar:** Quite red, so good choice for exposed applications and sills. It can be difficult to find trees large enough to get a lot of loud forests. Good for porch posts unmilled (round). And it is flavored.

**Eastern Hemlock:** When green, soft. Soft. Hemlock is not too high on shear though heavy on bending. Make sure that the stress measurements are doubly regulated for shear if you use hemlock for girders. Wake up to "shake," the

term for annual growth rings separation. I assume that this is the cause of low shear strength. Good for posts-and many of these are appropriate for every wood frame-but take care of splits. Somehow, hemlock slivers are particularly painful. "I also relegate it to places where the hands do not touch it," says Sobon (1994).

**Pine, Eastern White:** Weak and lightweight, yet very effective for most applications of wood framing. Joy in working with. For any building purpose, white pine was common among colonists. It can be quite sappy on the exterior layers. If so, a few weeks before the handling, you may have to dry the milled timber in the light.

**Red pines and Norway:** Wood. As white pine, though, the red pine is twisting a lot more than the white in my experience at Earthwood, and that is why I'm now with the White if I have a preference. I confirm with my local sawyer. Whether jokers or jokers, make sure the red pine members are blocked at all ends to prevent twisting. Obviously, construction experience is always perfect.

**Spruce, east:** "For timber frames, it's a good choice for their straightness, tiny knotting, lightweight, power and splitting resistance," said Sobon and Schroeder (1984). I've just used it as a tongue-in-groove flooring and as a log-end of walls of the cordwood, where it served all purposes very well.

**Tamarack (Eastern Larch)**: My favourite log-end, but I have no personal tamarack (also referred to as lark) experience in wooden framing. Sobon (1984) notes that "solid wood with small knots is smooth, resistant to decline and with mild decline." Like red cedar, it can be a problem to find trees big enough. Sobon (1984)

### Timber for small sawmills

The wood above defined is general in type. Wood from Small Sawmills Based on where it grows, a single species may have different characteristics. The advice of a local sawyer is as important as the previous list, particularly one with many years of experience in the field.

The board foot charges nearby sawyers for their timber. Logically, for an eight-by-eight, say 4 two-by-Eight or eight one-by-eight, you would think

you would break the mark. After all, in all cases, the board's footage is the same, and the sawyer is rendered with eight by eight even fewer cuts.

A price break should you have, okay? Okay, I never saw it happen. That never happened — the end of the story you pay for by board foot. The only thing is that if you give your sawyer a complete wood schedule and ask him or her to give you a cost for the entire work, the generic "he" must take account of things like this, particularly if other mills are found in the area.

Leave the timber plan for quality, if possible, with at least three nearby sawmills. But also question how much time the order would take to complete and whether it can be shipped or not. Most of the sawyers are too busy to supply, but often they know someone with a truck who can supply the wood for you. If you are not too far from the sawmill, you could also use your own pickup truck. Many loads are required, and fresh wood is hard, fine. The wooden length for pickup transport is limited to about 10 feet unless the truck has a wood frame.

Both sawyers think—or say—they are right, and most of them are, but take a tape measure with them and quietly check out some woods that are lying around already. Two central sawyers I deal with. The bandsaw of Sawyer I is conventional, and the big circular saw is typical for Sawyer 2. Everybody produces very standard timber sizes-I never protested-but sometimes Sawyer I can move through some shoddy pieces: unnecessary wain, heart red, big knots on the wood line, which creates weakness. That type of thing the other guy doesn't let go.

I usually end up with Sawyer 2, although he's a little bit more expensive, due to the quality of the wood and because he's reliable when he says he is ready for the job. He will also pay me special attention to a few of Earthwood's unique and unusual projects. Once again, I needed a couple of six-by-8 posts from an angle. I appeared with the trees, stopped production, and did a good job. I did a good job. Once again, in one of our megalithic stone workshops, he took five very cylindrical logs out his stack for use as rollers. Service of this kind is priceless.

To this point, we have discussed concern for all the wood framing programs.

# **Chapter 4— Construction techniques**

Nonetheless, now we have reached a juncture where conventional wooden framers go one direction, and the others follow a different path.

### **Foundation options**

Timber framing can happily be married to several simple methods, which can typically be defined in four distinct categories: piers, baseboards, maçonnery walls, and slab-on-grade.

- 1. **Piers:** Piers can also be referred to as walls, columns, or posts, made of wood or concrete poured. Beton jackets can be truncated pyramids, or they can be poured into large carton tubes known as Sona tubes. Whether the piers are wood or concrete, they must stretch to the frost line you construct under the code defined. This is believed to be four feet in northern New York. The loading of the post or pillar is also a good idea, say 12 to 16 inches (30.5 to 40.6 centimeters) in a large flat stone. Six to douce centimeters (15,2 to 30,5 centimeters) should be removed from the top of the pillar in order to protect the wooden posting or plate from being wet. Columns built of reinforced concrete made of Sona tubes will reach three to four feet higher if a crawl space under the building is to be put into use. While I don't have anything against Sona piers, my personal point of view is that the pressurized piers will probably last as long, are cheaper and easier to build with the novice owner and will become easier to replace when this happens.
- 2. **Footings:** In most cases, the foundation can be 12 to 16 "long and 8" (203millimeter) thick, usually made from poured concrete. I "float" on a good paddle of percolating stuff, in small buildings such as a sauna or our little guesthouses. The foundations of the most northern structure are built under ice, whether an under-grade ground sheltered space or simply a "crawling room" is required.

- 3. **Walls of masonry**: these walls can be filled with concrete, brick, or even stone masonry with either footings or a plank grade. Such walls can be at least as wide as the post and the pole frame and any planned filleting, according to the house style (basements, racks, etc.). The wall (and footings) of the structure should be 16 inches high, for example, if the builder chooses a 16-inch wall with beam frames.
- 4. **Slab-on-grade:** It works on the audio system, which causes frost to be heated by the freezing of water and spread under the house. This also applies to the floated sheet or the Alaskan sheet. The two ways of preventing these problems are:
- 1. To descend to the base below the average frost level.
- 2. To stop the accumulation of water under the floor.

The other way is how the dormitory works. On a percolating substance such as rough sand, gravel, or crushed stone, the discarded concrete layer "sprinkles." The pad drains any water down to a spot. Under the base, there is no freeze water, so there is no gross extension (called heaving).

### **Post Height**

The postal height should be shown at the planning stage, and the designs should include an elevation angle, including any gables, of each side of the house. The beams, heavy wooden girts above them (also called the beam girding), and floor joists will be viewed from below if protected by the girt. If you build your own home, you are actually going to design it yourself. (The alternative is to hang your floor joists on the metal joist sheds designed for this purpose.) By working back from the target ceiling height, the post height can be determined. Let us assume, for example, that the plan calls for the ceiling joists to be suspended from the girts with joistens and that the joists, maybe ten inches, are the same depth as the girts. If you want to place 8 feet at the bottom of the ceiling (or exposed floor joists), then the posts are the same height as the exposed joists ' ceiling or bottom. You can shorten the posts by the girth thickness if the joists are mounted directly above the garments to retain the desired headroom. Of example, a seven-foot four-inch post still gives the lower side of the joists eight feet of headroom.

The way I find this now is to create everything on the doorframe at four different houses. Let's say we start with an eight-inch (203 centimeters) regular six-foot door, and the top part of the door is an eight-inch thick gown. Still, we would say we support ceiling joists on the top of the girt, not with joist hangers. (Six feet eight inches plus eight pounds are equalling seven feet four inches, or 224 centimeters.) In this case, the headroom height to the underside of the carriages is seven feet four inches. The visual effect is 8 feet (244 centimeters) from the ceiling boards with exposed eight-inch slatts, quite enough unless you are very high. That's how it is at Earthwood downstairs and upstairs in the new solar room. The main area upstairs is about 8 feet downhill at the edges to about 9 feet at the bottom. All this is personally built, but these specifics are well prepared before you order materials.

### **Fastening the Timber Frame to the Foundation**

Whatever specific method is chosen, local codes may vary depending on the possible existence of hurricanes, tornadoes, and earthquakes according to their requirements to connect the boom frame to the Foundation. In most cases, a heavy wooden frame is not vertically separated from the base so that the main focus is to avoid lateral movements of the sill plate or posts. This can be achieved most simply by attaching the posts and positioning pins to the base. This is what I am doing with our buildings since 1975, as northern New York doesn't suffer from any of the natural disasters.

The relation between posts and the foundation. Only the posts are sometimes fixed to the base, and infilling (such as cob, cable, or stroke) completes the wall between the posts when the frame is finished. Our Earthwood doorways downstairs are also directly connected to the base. I fill the base or the floating plate for two different reasons without inserting positioning pins (anchor bolster) in the concrete: I) the concrete can not be filled in just a few inches of the anchor bolt without leaving the post to stand on an irregular bearing surface, and 2) Murphy Law states that a pin or anchor bolt is not in place when used, particulate matter.

Then, in a different way, I mount my positioning pins. I use a carbide masonry little to drill holes in the concrete specifically wherever they should

be—it's rough and hard after two weeks. My measurements can be calculated from the corners and tested twice. Such gaps are perforated at the same depth as the expansion shield that is eventually pulled into them. Such cylindrical covers, which are made of plumbing and divided into half to obtain a certain size lag screw in any building supplies store. The shield is placed on the lead with all the relevant information.

Drill a smidgen in the hole deeper than the shield's reach. I assume that two-inch shields (5,0 centimeters, in diameter) are handy. Blow the dust with straw from the opening, but wear protection of the eye and nose. With a hammer are forced into the clean opening, the top of the shield is flush with the surface of the concrete. Then insert the hex lag screw into the shield with a clamping socket before you firmly screw. Choose a length that makes approximately two inches above the concrete if the hex head is cut (takes 30 seconds with a hacksaw). You would like to buy four-inch lag screws if you use a two-inch shield.

The repair device will do this a little better and has the value, for the assembly of the angle iron as an attachment aid or for the installation of sill plates. A threaded end is proud of the base. This kind of fastener is called an easy-sets pin drive extension mouthful, so ask the employee to have an extension mouthpiece or strike bolt — Simpson's pin drive anchor. The anchor is staked out, and the anchor is thickly inserted into space when the pin is struck. So, once again, boil a hole, insert the anchor, give a good hammer blow to the ball. Choose an application-specific strike bolt frequency. Keep the top of the anchor shaft proud of the base for most of the purposes. The downside is the fact that the expansion shielding system is nearly three times more costly, so I still use the shields and lag-screws.

There is now a very important step that should not be skipped until installing the post. Cut a content square-called a' damp course' by the British-that is of the same size as the posting footprint. An eight-by-8 post requires an8-inch square of damp material of 20 to 20 centimeters. For this reason, I have successfully used asphalt shingle pieces and roll roofing with 240 pounds. Such fabrics have a thickness of almost an eighth. Place the asphalt square over the anchor pin and press down before positioning the posts. Sometimes you can press the square down to the base over the ball. Sometimes you can

make an impression and cut the small hole with a knife, in fact. In any case, you will now fully cover your footprint to avoid "growing damp." It protects the bottom of your post from damp and red degradation. Trust me, it works. Believe me, it works.

I've been doing this for 25 years in no post or doorframe degradation. I saw others posting directly on the concrete without the asphalt damp proofing square, and those posts have degraded severely (the International Residential Code in Section R323 calls for "an impervious moisture barrier" wherever the wooden poster reaches concrete). Therefore, when the post is in place, the almost eighth-inch thick piece acts as a steady or evening effect.

Because of the positioning pin, a single post is a two-person two-stage operation. The post was put on the pin first. Beton blocks can be used as positioning aids so that you know the post is on the right track. Make sure the post has two strong quadruple ends and is the correct length. Now that one person holds the pin, the other person puts a heavy hammer on a stepper and gives it a hard' thwack,' making a mark on the bottom of the post. The post is then lowered, and at least as deep as the pin is high is boiled into a hole of the same diameter as the threaded lag screw, say two inches in our case. Eventually, the post is again standing, but this time, the pin in the hole is remaining in the correct place even when an earthquake happens.

Every post must be supported by long diagonal scrap timbers, closed in the stakes of board firmly pounded to the ground in two separate directions by the one-post-at-a-time method. (If the post lies in the center of a block, or at some point along the wall, it can be screened at the bottom of the post as a stabilizing aid horizontal bits of flat scraps, such as two-foot (6 centimeters) pieces 2 by 4. Plywood, in the form of a triangle of isosceles, is pleasant to do too.

### Build great gravity and inertia

Note that beams are not reduced in cross-section in all of the joining methods described above so that they are kept entirely shear and bending power. I can't emphasize too much that it is important for a good standard of "building quality" to be preserved. When necessary, the end of a beam on the backing post or plate should be at least 4inches below. Vertically and horizontally, the

timbers should be plumbing. The architecture will ensure that the thrust line is always directly passed from one component to another in compression.

When focusing on building quality, you recruit a major ally, which is the power of gravity. Gravity is very precise: it is always upright (which, naturally, helps a bubble stage to work correctly). And it's reliable: it works for you when you wake up every morning and during the night.

Gravity is very significant in all heavy wood-framed structures with its relative near inertia.

with earth-roofing aid in this respect even more. Based on rain and snow, the Earthwood roof weighs between 60 and 120 tons. The 60-ton load is enormous inertia even at the low end (dry, no snow). The seven eight by eight posts downstairs are not even pinned to the ground; they don't even go anywhere with at least three tons of every post. I don't suggest now that you don't pin the posts on the floor-" Do as I'm doing, not as I do!-but I just "thought you might find it fascinating to have a view. (I know, the outer wall and the middle of the masonry supports the rest).

Seriousness can also work against you. Perhaps other diagrams you've used. Such drawings show standing string walls, which are good at compression and poor at stress. These drawings are Cordwood is a bit overwhelming, but helps to make this case. In a post-beam wall, there is the same type of compression and stress forces. They are perhaps less straightforward, but for the same purposes, they must be attended to.

The roof load wants to follow the direction of gravity, but the angle of the rigid rafters shifts the downwards force toward the outward thrust of the walls. This is an excellent example of unbelievably poor construction quality. The tie beam has ample tensile strength to balance the outward force. Another way of thinking is that the tie beam transforms the framework of the roof into a gigantic rigid triangle, a triangle with a flat floor, which is important. The force of gravity descends directly onto the vertical walls. So, trusses act.

The winding beams are connected to a crank-beam, supported by posts in turn. If they are unable to descend from the top of the rafters-and cannot do

so due to the reactive "R" load given by the posts-it cannot place an inward thrust on the walls.

We have a lovely rigid three-angle truss here, but the lower chord that is inclined to the truss changes the vertical thrust axis. As shown, this resulting force vector imposes unnecessary stresses on the walls. It is always a good idea to work with gravity and not against it. In this case, the thrust would be directly down onto the wall, if the walls were the same height, and the chord was horizontal, and the reactionary load would be high on the strain. Performance, seriousness, and tension building can be important allies... Or dangerous rivals.

### **Roof systems**

Two separate roof support systems are essentially ideal for use with wood framing. Roof systems Most timber framers proceed with additional wood framing, and I have also done this with the methods described in this book at Log End Cottage, Log End Cave, or Earthwood. The second supporting structure which should be carefully considered is the roof, like the Earthwood garage and the one designed by Chris. Is one better than the other system? It doesn't need to be. Everyone has advantages and disadvantages.

- 1. **Metrology**: Trusses are normal professionals designed and built. I don't claim owners never did and thrive, but it doesn't worth the effort to save money, like mixing your own concrete. It is important to design. You must use a standard truss design that is tailored to your building's dimensions and function or has trusses designed professionally. Then a large framework should be built to secure the different chords together with tiles, such as on a floor in a barn. The trusses purchased are not that costly to the roof pitch, and producers know how to design a truss. The construction of a wooden roof is a bit more basic, and the frameworks of a wooden frame are always overbuilt. You may test spaning tables with a rafter system to find the correct size of the wood. Nonetheless, you can have your whole wood frame plan tested by a structural engineer unless you have been following a proven, proven design. And it is important to establish a strong joint at the top and bottom of the rafter.
- 2. **Space upstairs:** The wood frames can make it easier to create space under

the roof, but the truss design, called "attic trusses," is usually a bit less than half the entire area of the ceiling below, which can give you some space upstairs. With its cordwood house in Merrill, Wisconsin, Richard Flatau used attic trusses. They were also placed on the towns by the company that developed, constructed, and supplied them. For this reason, your delivery truck has a boom mounted on it. Within two hours, the contracting companion was employed by Richard, and a few other mates were enlisted as "grunts," and the 20 heavy trunks were mounted. Richard said the trusses have an additional living space of 55 sq.ft. Upstairs with two bedrooms, a playground, large storage areas, and a half-bathroom. Richard describes this.

- 3. **Construction simplicity:** The wooden structure of the tower will be an extension to many of the attic trusses when the girts are in operation. Trusses are a completely different fishbowl, but it's not so difficult to install trusses. With or without the use of a crane, trusses can be mounted. Then a man with a long pole "flick" up a truss from the top of each sidewall, and a third person would then support the team space and put the trusts in the role of a ladder. It is very important to ensure that the trusses are mounted on the girt system in parallel and at standard spacing designed exactly at 16 or 24 cm in the middle. You should mark the top of each garment with a framing square, showing the edge of every truss. Make sure that the distance on both sides is correct. Spacing is critical if you plan to put plate floors at the top or plate ceilings at the bottom of the trusses. Both square and plumb are part of the essential quality of construction. I would tell you that trusses are probably faster and easier than wood-framing if you think that you need someone with experience to help. By the way, traditional wooden chassis often produce what can be described as wooden chassis that they lift as bends on the day the wood is lifted. Conventional wood framers-usually every Member installs individually, normally for the rest of us.
- 4. **Expenditure:** The total cost, delivered and applied to its twenty trusses, in 1979 stood at \$1 > 400. These are wide, heavy trusses that carry upstairs floor loads. I believe the cost of these trusses today is almost triple. Our garage is 24 meters long, has overhangs of 2 feet either side, and in 1998, we each cost \$58. But the trusses of Richard were made of two by six and two by-tens, whereas all sections are two by four of our trusses. The cost of the

binding materials to the cost of the wood-frame is difficult to compare because the cost of the timber itself varies so large, depending on the type of production. Although trusses are less costly than traditional stick-frames (when construction is involved), they definitely are more expensive than home-grown timbers.

# **Chapter 5 – Raising the frame**

You will be rewarded for all your hard work until your carpenter is complete: raising day! The view your frame is paired with great pleasure, but the responsibility for its secure and effective design comes with it.

### **Raising Day Equipment**

A range of methods and equipment for raisings, such as cranes and gin poles are available that we would use on bigger frames or if we only had a few individuals to support. A dozen or so friends can easily build up the keyframe mentioned here, as long as you give people adequate support. This would include at least 12 high-quality boards (2 bis8s or 2 bis10s) long enough to increase the framework length. Such boards may go down on the frame of the floor after assembly so that you can assemble the bends. The planks can be moved up on the tie-beams after bracing and installation of the wall girts to allow people to stand up while the plates are handed over. The rising outer wall should be protected by four planks, and the middle should have another four for the peaks in the rafter. Twelve cut timber ends of the same size should be used to block bents before they are removed so that they can get their hands under them. Do not throw away while you work on your timbers. For Raising Day Equipment for bends, you also want to have at least 4 10foot-long 2/4 fitted with heavy-duty wooden screws or duplex nails. A ladder and at least one pair of sawdusters are also given. A curved section can be easily lifting and supporting it on the horses during the final raise set. While we often do not find them appropriate with proper carpentry and drawing, optional equipment could include cords and come-along or ratchet strap for pulling bents together. It's too close if you have to pull the joinery together.

### Reminders

First of all, a few important points to note in the whole process of raising:

 Make sure that the mortises are free from chips and other debris before installing mortise and tenon joints. It is also a good idea to ensure that tenons are not too large, and deaths are sufficiently low. If you trouble a mortise, you will easily forget

- to add the housing width.
- To securely pull the drawbore, pins should be tapered.
- See the pinhole before moving some pins to make sure it is visible and that the downside is not too big (at least half of the pinhole should be shown inside the tenon).
- Run all pins out of the side of the pattern, and directly strike them to prevent their division.

### **Safety Precautions**

The OSHA recommends failure detection and other policies for paid staff, but it does not require unpaid volunteers. Nonetheless, because of the scale of the building and the duration of the case, you are responsible for providing the growing team with a safe working atmosphere as fairly as possible.

- The loads should be sufficiently long and balanced on top and bottom.
- The family and friends should be prepared enough for heavy objects on the frame.
- Have a pre-raising safety meeting to identify threats and warn all of the events.
- Identify and communicate to the rest of the crew risks, a responsible person who will not be in charge of managing the site, and the proceedings.
- For anyone employed underwood or other individuals, it requires hard hats.
- Don't let a tool lie upon the wood and strike someone underneath it might fall.
- Take the few tools needed aloft when building your roof; all of them have to be secure for their users.
- Boards on which to stand should not have cut or wide knots with a thickness of at least 11/2 cm. It is even better to double it up to make the 3-inch surface thick and to cover the entire area above the tie beams. If your wall and roof sheath boards are already usable, you can use them, as long as they are thick enough.
- Avoid any other things when using a chisel.

• Hear carefully, stop the needless conversation, and be mindful of everything around you.

### **The Raising Script**

Once you collect, you can write a script to help you visualize every step in the process and predict any possible problems. Com-take a sample script to lift the 12 to 16 core frame following instructions.

### Floor Frame Assembly

- 1. Place on the base one of the long sills. Insert the tenons of the two short sills and the pinions and insert the joints to tie the joints together on the other long sill. The joints are slightly snuggled. Place in place the other long sill. Confirm that all joints are joined together (no large or broad tenons or too low mortars), and then push the pins to snug the joints.
- 2. Allow measurements of diagonals— from the corner to the other corner— to square the base of the picture roughly. Then drive the pins home. Do not drive pins in any assembly until you are confident that all parts can fit into them, and the measurements are right.

### **Pin Tips**

- Do not drive pins. It's not uncommon to make a mistake, like a misaligned pinhole or death in the wrong place, that could cause the assembly to operate on a piece apart. It can be difficult to remove pins when one portion of the assembly is firmly locked.
- After completely safe, cut off pin flush with the board. In addition, pins are placed on the outside on other panels, such as the walls and the toilet. Inside they can be used as hooks for a long time unless they are on the eye-level or other threats.
- 3. Shake the ground frame until it is level, if necessary. Do the total squaring of the surface structure with diagonal measurements and frame modification to precisely the same

(1/4 inch). Fall the remainder of the bottles. Place provisional planking or floor frame plywood for safety purposes.

### **Assembling and raising the Bents**

- 1. Assemble Bent 1 with stub tenons on the bottoms of the pole lined over the mortises on the ground structure. All bends have the reference faces attached. Job on the coiled pins on the matching beam while the braces and girts are inserted. Lock the joints, rotating between the shaft and the 1-inch lock. Snug up the joints with the pins. When all joints seem to match properly, push the pins around, always remembering the pins below.
- 2. Bent 1 lift. Place two people at the foot of each post to ensure that the stub tenons start cleanly in their mortises. To change as appropriate, use the commander. Make sure that people keep their hands out of the base; a pry bar can be useful for moving and keeping the post when you place it in the morning sun. Test the bent plumb with a provisional bracing.

### **Timber Tips**

Stick a coin with the current year in stub tenon mortise before raising the first curve.

- 3. Bents 2 and 3 assembled and elevated according to the same procedure as Bent 1. Add bay girts whenever needed.
- 4. Place the planks across the tie beams (or install the plug).

### **Raising the Plates**

- 1. Using ropes, if you have enough visitors, to raise the plates up to the level (padding).
- 2. Place the plates in the posts and keep them with snug pins in the posts. Hew the plates to the pillars in the posts and braces and let them fed into the mortise with people on each brace.

### **Parbuckling**

What do Costa Concordia and timber framing have in common with the ill-fated cruise ship? The capsized ship was raised upright, a traditional way of raising cylindrical objects with rotation lever, along with many other sunken ships during the past. It was often used by loggers to roll logs and move vehicles. The method consists of running a cord from the top of the posts (cross the pinholes), below the plate on the below rods, and back up to the people above from the top of the plate. When necessary, remove the ropes from the places of the carpenter.

The workers upstairs have a mechanical advantage of 2:1 and can turn the wood upside down as the ropes are drawn. When people below have not been removed, they may have to direct the wood around pins or wedges. When the wood is up, the crew must lift it over the post tenons and then rest there or on the planking while removing the ropes from the pinholes. The board, as it was raised in a perfect world, would rotate just how many times the deaths would turn on the tenons, but it would make extracting the cords harder!

#### **The Rafters Lifting**

1. In order to reach the rafter peaks, place planks on the tie beams in the center of the house, or on the plates between rafter sitting at one end of the frame. Assembling the first rafter pair with a necktie on the floor and raising the assembly to the roofing crew, making sure that the rafter tails are not stressed. Set the installed pair with the collar on top of the plinth behind the construction team and hand the two end rafters individually if a pair without a collar has been added to it. Next, mount this end pair before the assembled pair with collars has been installed. Screen the retractor tail with two 20d toe-or4-inch wooden screws in the retractor seats to ensure the retractor is in the plumb. While it was possible for rafters to be held by severity without being secured, the rafters could be raised by any raise on rafters tails (or pulled onto the roof caused by the wind. Screws serve as clamps, and keeping the roof down is better than any wooden bolt, taking more wood out of the rafter than a nail or a screw. The best way to check for a plumb is to use a long floor or plumb bolt to ensure that the faces of the rafters

- are plumbed over the outside faces of the tie beam. Sliding planks are handled individually along with the plates as other rafters are spun at the top. You don't have to plumb these rafters yet, as in the next stage, you will do so by separating them after all.
- 2. Assemble the last rafter pair with the collar tie on the ground and hand it over to the roofing crew. Attach the end rafters to the tie beam and nail spacers on all rafters in order to maintain the proper spacing. These can be the 2 TI4 that you used to fasten the bents at the bottom of the rafters. This stays until the sheathing roof is built, and the rafters are repaired.

#### **Removing pins**

There are different techniques for the removal of pins:

- Punch-bolt(a): Find a long (10 cm or so) 1/2-inch diameter bolt and drill, in the end, a small concave depression opposite the bolt head. Remove pin(s) The depression may then be located at the point of the pin, to pull the pin out from the other side.
- Dent puller: if a puller can be found that takes a 1/8-inch screw in hand, screw it into the end of the pin grain, then pull it off as you remove a dent of a sheet of sheet metal.
- Wood veneer (B): Toss a wood screw into the final pin grain and cover the pin with a wrecking bar. The screw tries to break the pin, and this doesn't work often.
- Claw hammer (C): when a pin is blocked or has to move, the most common causes are when there is too much interference or when the pin is only partially blocked. Place the claw in the pin right on the wood surface, take a straight claw hammer. Hurt the hammerhead over and over again with a bridle and raise the claw as a spike. Restore the claw when the pin leaves. Wear glasses of safe! When you strike the hammer's hardened steel head with another hammered steel unit, any tool will break down and send shrapnel out.

## Chapter 6 – Foundation and Enclosure Systems

The timber frame is only one part of the system, and you must understand how it fits with the other elements. The timber framework is one part of the building method. The basic choices of frames, enclosures, and isolations will be explained; these are the most affected components of the form of framing used, and vice-versa. Regardless of the frame system, all other finish options, such as flooring, trimming, doors, and windows, are the same.

#### **Foundations**

Such frames should be mounted on a permanent basis or on a pier under each spot. A broad foundation underneath the frost line is not needed for auxiliary buildings like storage sheds for many buildings. If no plumbing exists, the building may float on pads, stones, or blocks put in a crushed bed of stone in a shallow bed (a diameter of at least 3/4 inches). If you want to push the structure one day (they are definitely small enough), or add it to a larger structure later, this would be a good base. While contemplating such a floating base, it is helpful to understand the essence of the frost action, as frost can lift everything under it with great pressure. The air space between the broken stone will also allow some cold room for expansion without being heated if the site is drained well. Water will not accumulate in the crushed stone bed. Bring each pad up with the stone to make sure the field is all over. You may want to lift the floor on the base at least 18 inches so you can get below it laters, if possible, if you want to separate your floor between your joists. This will also help prevent crystals and moisture from entering the system, and after the roof is on, you can separate and close the underside.

#### **Concrete Foundations**

You will want to go below the freeze line (if you have one) with piers or a concrete wall and footing to get a building off the ground if you just want to have a "rock-solid" base that can no longer move. Although piers are easy to build, they leave the area exposed to the ground under the structure. This crawl would be covered by a continuous wall and kept warmer. Whilst piers

or continuous walls may be made of red-resistant wood (such as white oak or rust) or concrete blocks; most are made of concrete dumped in shape in our area.

The Pier Plan drawing shows an example of a pier plan with foundations reaching below the frost line. If you are using concrete piers with anchor bolts, the piers should be positioned so that no portion of them reaches beyond the edge of the building to provide a stand that absorbs water. Sure, carry the 2-inch piers in from the outside; this also helps connectors linking the sills in addition. 2 pillar bolts pressurized (P.T.) 2 pillars to bind them together across the tops of the pillars. When the frame is raised, the wood screws up the floor and into the bottoms of the wood sills. Such 2 THE 8S should not extend outside the timber sills; they can be overlaid and covered by the wall for additional stability. Every continuous basis, such as a poured concrete wall or a roof, can also be covered with a framework. In this situation, a wooden-framed floor system is not required as the sills don't have to open. A red-resistant 2 to 6 is generally bolted down, and a traditional stick-framed floor (if it's not a slab foundation) is placed on it. The posts should rest on the locking of the floor below, and stub tenons should be put in dead bodies in the basement, you build them. Place the blocking to reduce the effects of shrinking by vertically positioning the food. Where appropriate, the exterior wall sheathing will overlap in order to hold the structure down. The nature of the framework-to-foundation relation will also depend, if any, on how you isolate the structure.

#### **Insulation and Enclosure**

Similar to the small wood frame, a small gas, wood or electric heater can be heated very easily. You may not need much insulation for heating sometimes, but you would want more than just the boards, sidings, or roofing used in a storage hall for use in full-time winter in cold climates. While you may be tempted to show both the exterior and the interior of the wooden frame as a typical penetrate in Europe, don't look at this in North America in a cold climate. It is necessary to enclose the wood frame in an isolated envelope in cold climates completely. The woods will minimize and open gaps in an infill system that leads to condensation and rot without this separate thermal barrier.

#### Wrap and Strap

A system known as "wrap and Strap" for the insulation and enclosure involves building layers from the inside-outside. A standard profile may include a vertical or horizontal2-digit striping, a house wrap air barrier, a housing cover, and, then, a horizontally or vertically coated sided striping, drywall, or wooden tongue and groove inside. A similar device can be used on the roof, though for better air sealing, you may want to remove the rafter tails. Add a second layer of strapping to render the eaves and also provide ventilation for the roof in this situation. Depending on the kind of roofing you choose, the path for the strapping, and whether to use splinter sheating. The walls and roof have to be clamped 2 to 4 perpendicular to timber. It can extend vertically across the towers or horizontally across the posts in the walls; the rafters are horizontal. The strap is supported by wooden torches that push through the interior finish and into woods at least 11/2 cm. By adding a second isolation and banding sheet, it should run perpendicular to the first. If it makes the rest of the system simpler (for example, you want horizontal boards inside), you can also use vertical bolts in the board frame instead of horizontal girts. On the base of the wall frame, screw an 11/2-inch thick continuous strip to shuts it off from predators such as mouse and agar. If you want a thicker wall structure, use a wider sill below the floor to support the Wall Isolation Structure to separate the edge of the framing of the building. For wood siding, a 3/4 inch air space or a rain screen is also recommended to improve drying behind the siding; ventilation can be supported by screening on the bottom while holding harms out. If you add more to the outside of your frame than just one layer or two of boards, doors and windows would normally be protected rather than by the timber frame by the same frame that is insulated. All of these wall solutions will affect door and window installation and trimming. While working out the detail, it is a good idea to consult a good building book or trained construction professionals. Four pictures of horizontal or vertical facing and different levels of insulation demonstrate in the following wind and strap choices.

#### **SIPS**

The sandwich of foam, separating or directed strand board (OSB), is isolated with structurally separated panels (SIPs) in the walls and roofs of most

modern wooden houses. The SIPs are secured to the frame using long tubing in a variety of thicknesses. On the walls, these panels are shamed on the outside of timbers with five and a half-inch plywood boards. After the SIPs have been mounted, 1/2 "drywall can be fitted on the inside of the SIPs behind the timers. The drywall is usually painted on the roof and put over the rafters before the SIPs are mounted-expect to do so in dry weather. Depending on thickness and production options (pre-cutting, installation of wood on edges, electric chasses, etc.), SIPs will cost between \$5 and \$10 per square foot of the plate. Many individuals are able to mount it, but can be heavy— around one pound per square foot per inch thickness — and it may be daunting to lift it to the area. Due to the fact that a permanent screening is important as any gap can concentrate thermal loss and condensation in one area and can cause redness, a seal on the panels is the essential step during installation. SIPs save a huge amount of work as little extra framing is needed, and siding and interior finishes can directly be screwed or clamped on to the flooring of the frame. Nonetheless, supplies are much more expensive than building your own packaging system, and the labor economy in a small building is not such a big problem. SIPs on the tower where there are few gaps (which must be easily closed and isolated), wrapped in and fastened on the walls, could be a flexible solution. Nevertheless, just a few SIPs for the roof, or even for an extremely small house, may not be costefficient. In addition, some specialist tools to cut and route the edges of the panel are needed. Such devices can be leased or stopped by precutting the panels like door openings. Precutting does, however, increase the cost and eliminate the option of changing door and window sites during building. Many SIP companies offer helpful guides that display the details of installation and the accommodation of doors and windows.

Insulation of the floor before the floors are installed, the floor can be insulated between the carpets. Nail strips on the sides of the joints which support a spreading soffit that can be dropped in and covered with isolation. You can also use cement board or hardware towels for additional protection if you are building upon the piers to cover them with shrinkage to the line. Another solution is to put solid foam insulation of 11/2-inch thickness between two or four sleepers, on top of the concrete, under the finished flooring.

#### Glossary

**Adze:** an angled handled device used to shape or dress timbers with a right angle to the handle.

**Anisotropic**: has a physical property that's different in different directions when tested. The wood that is stronger along with the kernel than through it is a simple example.

**Arris**: the edge where two neighbouring wood surfaces cross.

**Bareface tenon**: one-shoulder tenon flanked.

**Bay:** The region between two curves; the gap between the frames.

**Beam:** every important horizontal component in the structure of a building.

**Bent**: an assembly of woods perpendicular to a ridge; the cross-frame of one building is typically built on the ground and reared up in place, sometimes including roofers.

**Board foot:** wood volume equal to 12 cm square by 1 cm thick. Board foot:

**Boards:** 1 inch or less thick wood members.

**Bow:** deviation in the horizontal direction from the straight length of timber. Clean, too. Sweep. It is called a crown when the difference is vertical.

**Boxed heartwood**: wood that covers the tree heart. Because controls don't go through the middle, these woods can never divide entirely.

**Brace**: any diagonal wood that is resistant to distortion of the frame (permanent or temporary).

**Bridle**: open death and tenon end joint with one end of the mortise open, like a raft peak or sill corner; tongue and fork as well.

**Joint butt**: an outline of two kinds of wood without penetration, kept in place with gravity or other wood or ironwork.

**Cant**: A leftover block of wood after the better pieces are cut off.

**Chamfer:** a bevel cut on the long arrest of a timber that can be run through or

stopped decoratively at the end; a bevel at the head ends of a tenon, so as to encourage its mounting.

**Check**: A break that arises from the drying process, typically from the pith to the nearest side; not in the majority of cases a structural problem.

**Cheek:** the thick tenon surface; the matching mortise surface. Typically, the tenon shoulder is square to the eye.

**Collar**: the horizontal part placed between opposing rafters, used to prevent the rafter from shrinking or spreading, depending on the location.

**Commander**: Usually, a large wooden mallet weighing between 10 and 20 pounds.

**Compression**: The tension condition in which material particles appear to coalesce.

**Control point**: points of and proportions on a log. Control point:

**Crown:** curvature in the length of a tree, set upward in the compressed parts, where the load tends to straighten.

**Dead load**: building weight (tops, pavements, walls, etc.).

**Deflection:** structural movement under load.

**Decreased housing**: a sloping shoulder housing to reduce the material taken from the member.

**Drawbore**: a conventional technique for fixing the snout hole in the tenon from the pinhole in the death to draw the articulation close when assembled and fastened by a tapered screw. Species and size differ with the right offset.

**Eaves**: the bottom of the roof, which often overlaps the wall.

**FOHC**: Heart center free. Wood saved to exclude the heart can be sawn without examination in principle.

**Gable roof**: a two-sloped roof that forms an inverted V. Girt: horizontal wood that connects the wall stations between the sill and flat at a level somewhere. A wall girt extends along the floor, aligned with a twisted girt.

Either the bottom of the ground can be protected.

**Grain**: pattern of tree conversion rings, rays, and other structural elements in wood.

**Greenwood**: freshly chopped wood, not dried or aged.

**Hardwood**: Wood of some leaky trees, including oak, beech, ash, etc.

**Header**: A wall portion that covers a door or window gap.

**Horizontal shear**: Shear along the grain when a beam is bent.

**Housing**: a low mortise or cavity to be filled with the whole section of a timber end. Often but not always, paired with a regular mortise to protect the connection via the tenon and attach a bearing field.

**Timber**: the work of the wood attachment; the joints themselves. Timber contact.

**Junction**: a relatively small wood, normally arranged in sets to support a floor or ceiling.

**Kerf**: The saw cut slot. Kerf:

**Layout**: Drawing an articulation on wood before cutting it; also, putting the wood into a pre-determined marking pattern.

**Level**: horizontal; ground parallel; level or plumb control tool.

**Live**: Load all loads, including people, vehicles, snow, winds, earthquake, etc. other than the permanent mass of structures.

**Loads**: Structural forces imposed.

**Wood**: members in their smaller size, from 2 to 4 inches (nominally).

**Mapping**: a network of templates where carpentry is passed to one another by remotely logging any changes.

**Mill rule**: system of configurations using woods milled to exact proportions and fully square.

**Elasticity modulus**: the material rigidity measurement; the stress relation (force per unit area) to strain (deformation).

**Mortise**: a rectangular space found in a tenon.

**Nominal size**: Saved and cut wood size prior to final sizing; also what wood is referred to (5 items 7, 8 item 10); current sizes can vary in size or size from nominal to nominal.

**Parbuckling**: A loop of seam designed to lift plates to the tops of posts like a sling to provide a mechanical advantage.

**Pier**: A solid base support for a vertical loading system.

**Pin**: A brief shaft of rough, sometimes tapeworm hardwood that is also called a pin or a tunnel, which is used for drawing together and for fastening the conventional death-and-tenon joint.

**Pith**: The tree stem middle. Pith.

**Plate**: the largest longitudinal wood in a frame in the normal position. This links the curves together and, at the same time, supports the rafters ' foundation and binds the wall and the roof planes.

**Plumb**: vertical; on the ground perpendicular.

**Post**: a timber that supports vertically or uprightly.

**Post-and-beam:** Any structure consisting mainly of horizontal and vertical sections.

**Rafter**: Every tilt member in the roof system stretches from eav to peak every portion of the span.

**Reduction**: decrease in a tenoned Member's cross-sectional area where it enters a room.

**Reference face**: On the wood to be laid, the primary surface of the measurement (which normally has the floor or wall and toilet sheathing). Each timber typically has two adjacent and square reference surfaces. The face of form sometimes is named.

**Relish**: For a mortise cut very near the end of the wood, the material is equal, in cross-section, to the width and depth of the mortise that is left between the end of the mortise and the end of the wood, in tenon, the material between the pinhole and the end of the tenon.

**Roof pitch**: horizontal inclination of the roof, usually expressed as 12 inches (1 foot) rise.

**Scantlings**: a set of uniform measurements for sections of a building, also the measuring and cutting of a piece of wood or stone.

**Scarf**: In order to add two equal-section wood for a longer beam, the joints are also used in their length.

**Law of Scribe**: General term for layout systems in which each wood is adapted to its vicinity. The process requires all timber to be put on a framing yard or floor, as they will eventually be installed in the house. Variations between timbers are directly transferred.

**Shear**: the stress condition, in which matter particles are fairly slippery, the power that affects them even. Shear: The vertical shear loads (cross grains) often give rise to horizontal shear stress (long grain).

**Sheathing**: a coating on external walls or roofs of rough boards or sheets usually covered by an extra weatherproof protective coat.

**Shoulder**: In a mortise and tenon joints, there may be as few as one and as many as four shoulders on each of the tenon-mounted joints perpendicular to the tenon-mounted cheek and against the Mortis-mounted member's faces.

**Shrinkage**: decrease in the section and timber length while drying.

**SIP**: A two-layer sandwich of sheet goods that are bonded to a heat insulation core. SIP (structural insulated panels):

**Sill**: A horizontal wood on the base, which links the posts in a frame.

**Size**: preparing, by hand locally, of the seals or by the machine of whole wood, of cut or rough sewn timber to a single section.

Sleepers: large wooden wood on the ground for the protection of wood

stacks.

**Tenon soffit**: a horizontal tenon with a coplanar lower cheek and a lower surface of the wood.

**Softwood**: coniferous or evergreen wood such as oak, spruce, Douglas fir, etc.

**Span**: a horizontal gap in the roof, protected by a rafter. The distance between two adjacent posts or other supporting members is unsupported in a beam. Spain:

**Spokeshave**: A very small plane with wing handles that suit the blade tip. It is used to shape and finish curved surfaces when pushed or pulled.

**Square**: at 90 degrees angle, so angled a method for calculation.

**Square rule**: a construction scheme that shows a smaller ideal wood in a rough outer wood; joints are cut into this inner wood. Many of the woods are interchangeable in a square rule frame.

**Stick frame**: a frame made of relatively close-spaced wooden pieces and basic connections with nails.

**Stickers**: Spacers that provide air circulation between stacked timbers or boards.

**Stub tenon**: A non-pinned tenon abbreviated for locating a wood (usually at the bottom of a post) in a shallow mortise when lifted.

**Stud**: a minor vertical feature, typically only used as a nailer for wall coverings, on a framed wall or partition.

**Subflooring**: a covering of raw board or sheet material that is mounted on the top and underneath the full flooring.

**Table**: The big housing area.

**Taper**: The transverse portion of a tenon, wood, or pin slowly decreases.

**Sample**: Thin material in a full-size form used to lay and inspect joints and for other purposes. Template:

**Tenon**: a rectangular projection that results from the timber being cut down flanked and shaped to match a similar mortise with a corresponding shoulder.

**Tension**: the emotional state in which material particles appear to be lost.

**By tenon**: A tenon moving straight through the wooden part; it can be cut off or extended beyond the external face of the mortised part to be wedged or locked by a multi-medium.

**Tie Beam**: a significant transverse horizontal frame portion that resists the roof's tendency to push the walls outwards. The beam can be placed on the top of the walls where the rafter's thrust can be transmitted directly or several feet further down the walls, which links the main posts at a strain.

**Wood**: a wide piece of wood (5 inches or more in its smallest dimensions) ready to be crafted as one part of a frame, square, or dressed.

**Wood frame**: a frame of large wood attached to the roof, walls, and floors by the structural woodwork joints and supporting small woodwork.

**Twist**: Flat deflection on a wood surface, also called the water. Twist:

**Wetting bush**: the ceremonial branch tree that is clinging to the top when the roof frame is done. It restructures the roots of the longevity building symbolically and gives thanks to the trees that create the foundation.

### **FAQS**

I am designing a studio with wooden doors and window frames. FAQS Question: Instead of painting, we want to achieve a natural wood finish. What is the best garnish for this outcome since it is exposed to the outside weather?

Answer: Most significant is the option of a varnish that has ultraviolet (UV) absorbers for external conditions. Inner lacquers are split and after sun exposure break and peel. The monitoring and maintenance of even exterior lacquers at the first sign of failure is required. Each shade that you can provide by eaves overhangs, trees, etc. helps prolong the finish life. We have not checked a number of companies outside of lacquer, so we cannot recommend the "best" option. Sikkens goods still seem to have a good reputation.

Question: Will I offer weathering on a new spotted gum deck before using decking oil? Do you recommend the best long-term solution for oil or water?

Answer: There are two ways of thinking about having the weather deck before it is covered in oil. Some people say it should weather for a while in order for the oil to penetrate better. This may be based on the idea that freshly planed wood has a glazed surface (mill glaze or glazing), which prevents the oil from absorbing it. Nevertheless, in the workshop, research organizations couldn't replicate mill glaze. Some suggest wood should be painted as quickly as possible and weather to gray before the natural color starts. We are ready to look at the latter, i.e., Cover it immediately. Coat immediately. If it's a hardwood that can leach tannin, a preliminary rubber is useful before using the oil with a deck cleaner. We haven't done this for ourselves, but the finishing companies suggest this. Besides this, we do not feel that it needs to be postponed. We think they are equally suitable for water-based v. oil-based finishes, as long as they offer comparable water repellent. This may be checked when it tests on the surface by analyzing how water "beads up." Obviously, when using a water-based finish, it is easier to clean brushes and rollers.

Question: The outside sitting area has been built with Kapur and painted with

decking Cabots... then the top and the side have been sealed with decking oil. The stain now spreads across the supporting pavers and looks awful. How can I repair this?

Answer: We didn't know whether or not the stain you referred to washes the covering stain or tannin stain from the wood. The coating of dye generally doesn't wash off when it's dry, so it probably's tannin staining. The majority of hardwoods, such as Kapur, contain tannins that wash out of the wood at exposure to rain. Cabot is suggesting a preliminary scrub to extract any tannin from new hardwood with their deck cleaning product, so it can be worth trying. You can call the helpline of Cabot to check if it is recommended at this stage. The only other choices are to paint the wood or just wait for the process to run. Tannin colors, or a patented cleaner containing oxalic acid, may be extracted from masonry.

Question: Would you advise a house built from western red cedar as the color has become black/grey, what should it use to re-sell? Does the cover even need to be re-screened? How should I use on window frames as well?

Answer: There may be a lot of work to preserve the wood's natural color outside. The traditional weatherboard house has always been painted that allows very long intervals of maintenance. Clear oils and paints are longer than pigment because they are more likely to attack the ultraviolet. These are still a convenient option for relatively small areas, but maybe a little difficult if your entire home is covered in wood. If we want a natural look, we believe that a semi-transparent stain is the best compromise. Such finishes last longer than transparent oil and do not fail like a peeling varnish. We recommend that you use a good scrub to remove gray weathering with a color restoration product and then add a semi-transparent stain in a light cedar tint. You may be prepared to keep a clear oil finish depending on how many decks you have. If not, the choices are a pigmented spot or to let the weather go in gray color. In comparison to the finishing of a stain on the cladding, people often use paint as a color. Paint is especially useful if the glass has a masty attached because masty has to protect a coating from drying and cracking. Paint is also useful. On the other side, a satin finish would be appropriate if your glass was built with wood glazed beads. Remember, this is general advice, and we do not know how big your house is, whether it's one or two floors, or what

budget to sustain. Due to the greater difficulty of entry, but this depends on individual choice, long-lasting finishing is typically ideal for two stories in a house.

Question: Hello, for a wooden deck, I'd like a beautiful, weathered, grey look. We've picked a rubber spotted. Does the bottom have anything to cover with? It is put above a concrete foundation.

Answer: Spotted gum, because it is a Class 1 durable wood used outside above the ground, is a good choice. We do not feel that it is necessary to cover the bottom as long as the airflow under the deck is high. The deck must be put over a concrete foundation, you note. We have seen issues with the placement of wood decks without much protection, so make sure that the concrete is cut down, so that rainwater drains away. The water can be collected in the underside of the cover when it can bathe onto the cement allowing it to swell and/or cup. The sides of the deck are not recommended to enclose, but it offers a neat finish, covers the deck to reduces airflow, and allows moisture to build up below the surface.

Question: How much time do you leave the Merbau deck until you oil?

Answer: Decking Merbau will not bleed alone. If people speak of bleeding, they say tannin, which is washed away if rain is released. It does not spill if it does not rain or if the roof is enclosed. The time to wash your tannins depends on how much rain you get in the next months if your deck is open to the sun. In order to speed up the process, decking oil manufacturers recommend pre-scrubbing with a deck cleaner. This usually leads to the surface of the tannin. We have not tried with the use of a deck cleaner to extract tannin, so we are not claiming that this will stop bleeding entirely, but you may want to speak to one of the oil producers. The alternative is to leave the cover for a few months to naturally wash away tannins, but then they start to lose their color and turn brown. So if you want to preserve color, it would seem to be better to scrub with a deck cleaner, allow it to dry, and add oil.

Question: I am building a new deck with a 136x 19 mm spotted rubber. In intergrain natural decking oil, the natural stain has been advised. I prefer the natural finish, but am I going to risk timber stability?

Answer: If your deck is absolutely weather-exposed, it will wet and dry as the weather changes. If the finish removes or repels moisture, this effect should stabilize the wood and reduce the tendency to swell and shrink by reducing humidity absorption. A painting film, because it creates a layer over the wood, is the best coating. Nevertheless, painting a deck is generally not appropriate, except aesthetics, the paint requires footwork. Oil coatings repel humidity and help retain the wood's natural color, which becomes brown without the coating. After a shower, when the water forms globules on the wood surface, the water-repellent properties of oil finishes can be seen, rather than absorbing. The density of spotted gum also means that the skin does not absorb significant levels of short-term wetting but only in the case of long-term exposure to moisture. Therefore, by using an oil finish, you will not risk the stability of your deck, particularly if you are prepared to apply it regularly again.

Question: We are building a school lobby with poles covering 2 m deep in the soil with a thin iron-bark red leaf roof. Question: May the pl. Suggest other than chemical methods of defense for termite?

Answer: Red narrow-blasted bark of iron is a highly durable wood and class 1 toughness for in-ground touch in compliance with Australian Standard 5604-2005. It has thus a high natural resistance without any treatment to wood rot and insect attachment. Concrete wood may or may not have the effect of holding moisture or being dense and excluding moisture, depending on whether the concrete has a porous effect. A "sock" of stainless steel, placed in a ground section of the pole is a non-chemical approach for thermite protection. Alternatives are provided with additional protection against decay and insect attack by inserting boron bolts into the foundation. Although not exclusively "non-chemical," the toxicity of boron is extremely low and is held within the pole by this process. Utilities use this method to operate their service stations.

Question: How can hardwood be properly preserved? What is the merit of clearcoats and oils? Do you not want one or both of them?

Answer: The benefits and disadvantages of both finishes. Oils are simple to add, but can usually not last as long as the lacquer. They can be recoated with

little surface preparation. On the other side, lacquers are harder to apply and can fail if not managed by cracking and peeling. The level of exposure obviously plays a major role. Wood in a veranda or pergola would need much less upkeep than wood, which is fully exposed to weather conditions. Choose one that includes UV absorbers and has a good history in the Australian climate, when you decide on a film-forming coating. If you choose an oil or a varnish, a product that includes any color should be considered as well as a product that is perfectly clear because it also helps protect against UV disease. For a further conversation with an attorney, call 1902 28 2000 at the National Timber Information Line.

Question: For sea surfing, Merbau decking finishes used extremely strong winds after the 12 months.

Answer: There is no deep penetration of the usual range of oils and fleurs into hardwoods such as Merbau. The qualities that make hardwoods perfect for covering (durability and wear resistance) also mean that the coatings are not very absorbed. As such, finishes tend to wear out fairly rapidly in exposed locations, and you may have to resign to an annual maintenance scheme. The coating lasts longer than natural oils and stains, but the cover paint hides the wood's grain entirely. It is also bigger than simply applying more oil or stain when maintenance is needed, particularly if the deck paint gets to the point where it begins to peel. Perhaps the best option is to leave the deck to gray driftwood and overlook maintenance. Merbau has good weathering, and you probably have better things to do if you are five minutes away from the surf beach!

Question: what assurance are you getting on H2 thermal thermite attack (LVL) processing, and you must be able to obtain specifics of your warranty directly from the respective companies and have several LVL suppliers in the Australian markets. For example, under certain circumstances, Hyspan LVL with H2 glue line treatment carries a 25-year warranty against a thermal attack. This does not necessarily mean that after 25 years, the treatment ceases to be successful, but it is the company's prepared maximum liability duration.

## Woodworking

Your Complete Step-By-Step Manual To Understand The Basics Of The Woodwork

# Introduction – Understanding the principles of wood

Woodwork can be extremely worthwhile. If everything goes well, your work can create sensuously soft, touching furniture with a natural warmth that can last for hundreds of years with care. Yet wood can also be a source of unbelievable frustration as bits struggle to crack, warp, curl, expand and contract. While wood often behaves as though it intentionally creates malice, the issue actually stems from a lack of material awareness. Wood is not an inert, stable material. This absorbs and loses humidity, responds over time to temperature and ages. You can seldom take it for granted. Nevertheless, the more you learn about the wood structure and the way it determines its properties, the more difficulties you can cope with.

Neither do fibers necessarily grow directly. Wood fibers can twist, curve, and go in all directions, depending on the tree's growth. This may make it almost impossible to break the wood and definitely is one reason why sifting wood is the standard. Sawmills cut the boards along the tree's circumference, which does not mean that the fibers are pushed in this direction. Trees are also not simple cylinders. Even the straightest trees on the bottom are fatter and taper up. We are also rising in reaction to their changing environment.

## Chapter 1

# Looking Deeper into the fundamental elements

In woodworking, you may find many instances where you end up with a board with the' wrong' fiber. This is most often when you cut out a curved shape. Whatever the explanation for this, if the fibers go through the short distance, they are called short grains, causing a weakness that you need to be conscious of. Most woodworkers seem to believe that wood is normally too strong to ignore these issues. But it doesn't mean it's not significant that some people don't pay attention to fiber. When you watch and take it into account, you will do a lot better.

Woodworking employees use many tools apart from wedges, but most of them are essentially very sharp wedges. The fibrous character of wood and the winging motion play an essential role in the successful working of devices. This interaction can be clarified by the over-model of how this works—the pair of straws.

As described above, wood fibers do not generally grow directly, and fibers are seldom cut out of the tree from one end to another. Such knowledge would, therefore, be included as a better model for the bundle of straws: the straws could waver or curve to the surface. What could happen if you try to slice into the package with a cutting edge is not hard to imagine. If the straws wink to the edge, it is probably that the edge catches the straws, prying them up instead of cutting them smoothly and requiring less effort than it takes to separate them from their neighbors.

On the other hand, if the paints emerge from the angled surface from the cutting edge, they can be divided into the edge. Nothing can hold on or wedge away for the cutting edge. The hands behind and below the surface always support the ones on the top and are cleanly divided by the cutting edge.

You might have to cut a piece of wood before you try to flatten or chisel the grain. There are also some highly specific rabbits designed to cut across the grains, with a new cutting edge (a nicker) to mark the wood fibers at the edge of the break.

When going across the board, there are still other problems. This is also

explained by the bundle of straws. It won't pose a problem when the cut starts; the bulk of the bundle supports the first part of the cut. Nevertheless, as you get to the far end of the bag, the straws you try to cut are becoming fewer and fewer. Eventually, a point will come that is greater than the adhesive force holding the straws together on the back of the bundle in order to push the cutting edge through the straws. The result can be foreseen: Straws just split up and break down when you reach the far end of the bundle. And in fact, as you reach the edge of a board, fibers break off.

The bundle of straws (and fibers on a board) often compress a little when a tool's edge starts to cut. This is valid for all cuts, but the end of the package is most noticeable. The straws are compressed even with the sharpest of the edges a little before the tool begins to cut; sufficient strength must be required to push back against the edge of the cuts to be able to clean. A wider corner, a slower bottom, and a too fast cut may even further compress the strokes before they are actually cut and detach the strokes entirely from their neighbors before any cutting occurs. This results in a much redder cut. The paws can just break off under the surface rather than cut if you try to cut it further.

It is not unusual to find boards with fibers that are wandering around the place when dealing with wood. The fibers start in one direction from the surface of the board and emerge a short distance away, in a different direction. This can be very upsetting, and tear-out is hard to avoid. The alternative is usually to use a steeper angle of cut. The higher corner does not so easily wedge fibers. Depending on the angle, the wood undergoes another cutting effect; the high angle causes the compression failure instead of the lower angle cutting effect, and then the fibers break off. This may cause fibers to drag less, but doesn't leave a surface as good as the surface you planed successfully.

#### **Gluing Wood Together**

When considering how pieces are glued together, the fibrous nature of wood is also important. This is further clarified by the stroke analogy. The long sides of the straws should be stuck together to gather bundles of strokes successfully. The angles are fine, but the sides of the straws must be glued to other sides. Easy to imagine the strokes can cause problems by sticking to the ends. There is less actual surface, and most of the glue is actually absorbed into the straws. A glue joint at the end of the bundle will not be strongly

connected.

The fiber-to-fiber bonds are usually stronger than the wood. In other words, good bonding of glue tends to be stronger than the bonding between the fibers, of course. This is true for almost any glue of wood. If you divide a good fiber-to-fiber joint (a long-grain to-large joint), the wood next to the joint is almost always divided, not the fusion itself.

#### **Wood Movement**

Wood leads to changes in moisture content in significant ways. And the humidity content of the wood is affected by changes in the air humidity content. Wood extracts or retains moisture continuously from the air to achieve balance.

This is a basic property of wood, which has an important impact on numerous aspects of woodworking.

A standard hardwood board with a log freshly cut can have a relative moisture content of 60 to 100%, defined as the relation between the board's weight as freshly cut into an oven's weight. The wood is drizzled to around 6 to 15 percent for most woodworking. It can either by allowing the person to sit exposed to the air for a significant period of time, usually resulting in 10 to 15 percent (depending on the climate) relative moisture content, or by placing him in a special furnace to remove moisture carefully, usually down to 6 to 8 percent, by a combination of heat and dehumidification.

Our more complete straw model bundle can help us understand how this moisture change affects the wood. Strokes are primarily cell structures of the tubular cells. Such cellular structures are rising as the cell walls become dry, but when they recover moisture, they are able to swell. You don't increase significantly by applying humidity, but you get fatter. The radial cells—cells that extend from the center of the tree to the outside—contain a significant amount of this motion. It's as if these cells tie our connection between the rising rings a little tighter. This means that most of the swelling of the cells is perpendicular or tangent to those radial cells. In other words, when the paws dry out, they become more oval. The overall effect is that the bundle changes dimension most radially and hardly in the longitudinal direction in this tangential direction.

A major factor in Woodworking is the difference in the amount of change in different ways. Most of the furniture is not made from the same wood; it is made from many different wood pieces. The fibers run horizontally between the legs of a table in the aprons, and its fibers run vertically. The top is on another plane than all the other pieces. All these pieces expand and contract, but not in others, in certain dimensions. And given this, we want the table to stay intact.

The expansion and contraction of wood is a big problem for us—at least in areas where moisture content changes considerably during the season. Wood movement is actually not a big factor in quite constant climates (desert, tropics, or other similar regions with a small variation in seasonal moisture). Almost always, the air moisture content is equal, and the wood stays largely the same when it is acclimatized to this level. It's at least until the wood or the furniture is moved.

But there are other difficult issues with the transport of wood: timber warps and checks and cracks in various ways. It is difficult to avoid some of these problems. But it is generally due to a failure to understand how wood behaves naturally.

Why is wood moving in this direction? Some factors are involved, but the moisture issue returns most of the time.

Whenever the moisture content on one board surface varies from that on the other, one side is more extended or compressed than the other. And this disparity creates a cup of the board. This occurs in many different situations, some of which are not so obvious.

#### **Environmental Factors**

Trees do not always grow tall and straight. Their growth is affected by what takes place in the forest, the environment they live in, and the atmosphere around them. Sometimes one (or more) of these factors may cause changes that influence the wood's growth and structure. However, the physical stresses of a growing tree, such as constant wind pressures, steep slopes, or changing soil, can also dramatically deform a tree, causing substantial built-up stress in timber. These trees can grow at an angle or bend over time. Trees are also phototropical—they grow toward the light—and because of a falling or rapidly growing tree, a tree will respond to changes in light. This can also cause stress in the wood. It's called reaction wood, this abnormal development.

These stressed areas of wood expand and vary at a very different rate of humidity than' normal' unstressed wood. Dramatic distortion in the wood is usually the result of the internal stress. Try to avoid boards with big knots (rests of large and stressed branches), extraordinarily curved grain (sometimes indicating a distorted tree trunk), and boards with a wooly or pelvic surface. Sadly, some wood reaction is not obvious until you try to cut the board at a point at which the wood can tighten on one side or tightly attach to the blade. You can't do very much with this kind of board, and probably it isn't worth trying. It's very small. Thankfully, not everything is so simple. But you will still probably meet again and again, and you are warned of the mysterious forest.

Even with exceptional growing conditions, parts of a tree may produce wood that is likely to be moving or warped later. Wood from sections of a tree in the vicinity of major branches can be stressed by compression or heat, as can grain in various ways. Similar warping and distortion problems can arise in this wood.

#### **Working with Wood visually and structurally**

The discussion has focused largely on wood fibers to this degree. The concept of grain is reduced to a discussion about the end grain and a brief description of grain patterns of plain seed, rift seed, and fourth seed. Use fiber principles, the basic properties of wood are generally easier to understand. "grain" is a term that has a huge variety of meanings that are important for wood behavior, some of which are not important for the discussion. Of course, one of the grain significance is synonymous with the fibers that we talked about up to now. Grain also explains the pattern of growth rings as we cut boards out of the tree, the overall appearance of the board, the fibers in the board, specific wood flaws, and more. R. Bruce Hoadley lists over 50 different uses of the words grain related to woodworking in his book Understanding Wood, falling into ten various categories! These include long-grain, grain on the side, grain on the bottom, flat seed or plain seed grain, quarter seed grain, curly seed grain, grown grain, grain with high figures.

A fascinating blend of visual design and engineering provides the maximum advantage of the wood grain. The wood grain carefully chosen will improve the overall visual impact of the product. Nevertheless, the structural and behavioral characteristics of each wood piece are also important to consider, since they function in the piece. Luckily, the look and structure of the grain go hand in hand most of the time.

#### **Changes in color**

The majority of wood can change color as it grows older. This may be a good surprise as you may find from cherry ages to a deep, dark reddish-brown color, from the initial pale salmon. It can also be of great disappointment because the purple heart or padauk goes to quite a normal brown from brilliant purple or red. The process of color change combines photosensitivity and oxidation—light and oxygen exposure. In various ways, various forests are evolving. But over time, almost everything shifts. There are many who are black (cherry, mahogany); there are some who are white (walnut); some are yellow (maple, ash). While exposed to light, the majority of the woods eventually lose color and tend to be bleached white. Know how you can adjust when designing wood.

#### Joinery – working with wood

Modern woodworking methods came from a profound knowledge of the wood's actions. And it is thousands of years since the custom of working with wood. Current joints and construction techniques benefit from the strengths of wood and are primarily designed to reduce its limitations. And, while the woodworking industry has made several strides, the only real improvements were the wood cutting methods. Many modern technological advances are in terms of speed alone (think dowel design) and are actually less effective carpentry. There are some cases in which older techniques are not as effective today; the moisturized wood movement was not always as much a factor centuries ago—before central heating—as it is today. But we can learn from the few techniques which ultimately have led to problems and try to avoid them. The fundamental properties of wood we already mentioned are at the root of all traditional wood carpentry factories, namely wood fiber and its tendency to expand and contract with changes in moisture content in the atmosphere. The fundamental principles of wood joining are:

- Join fibers (end not count grain)
- Minimize wood movement effects
- Avoid short grain
- Create the highest possible amount of glue surface (fiber to fiber surfaces)
- If possible, build some kind of mechanical link

Even when using fasteners such as nails and spruces with wood, it is useful to remember these principles. Their mechanical fixation, however, remains valid for all the other values.

It depends on the form of the nail, how the shape relates to the directions of the fiber on the board, and even where the nail is placed on the board. The tip of the nail cuts most of the time through or wraps fiber, then bends over it, and drives it into the wood to make room for the nail.

You should also be aware of the problems of cross-grain wood movement, using more than one nail on both panels at right angles. Nails can tolerate some wood movement by pulled fibers in the area, but as a result, this lodging will also loosen over time.

Screws probably hold boards together a little better, but only if you screw from the side in the fibers. They are also less suitable for the movement of wood because even though they may compress adjacent fibers, they will not easily remove a moving piece. It will be better to build extended pilot troops on the board, taking the tubes heads to make the cross-grain movement when screw boards are joined together.

But it does not mean the screws will not come out over time simply because they will not lose. Screws do not change from season to season (and nails), but wood, naturally. The wood will want to swell if the forest spreads in wetter months. The wood (between threads in particular) will have to compress because the fasteners do not match that. When the wood shrines again, the shrinkage and the compressed fibers free the fixers.

It's a challenge to squeeze into the grain. The truth is that the threads of the screw cut off the final grain fibers. These short sections are subjected to typical short-grain wood problems and can easily be cut off. And that's exactly what they do if the screw is either tightened or forcefully pulled down. And as we usually use screws to withstand that very force, it is not advisable to screw in the end grain. There is an all-around working solution: Drill a hole through the board's face for a dowel; insert the dowel, and screw into the dowel from the bottom of the board.

Any attachment can split a board if it is applied near the end of a board. The "soft grain," more likely than to compress, is beyond the fastener, to make room for the nail.

## Chapter 2

## The correct use of your body

Did you ever consider how you are standing in your workstation? This is more important than the quality of your software for your ability to do precise work. Why? Why? Because your body is primarily among the instruments used in woodworking. Our bodies are complex "machines," full of levers, pulleys, jacks, and hinges, which can either boost or weaken the working with your instruments. Actually, how you use your body is more important than any "external" tools.

How much attention are you giving to the position of your body? It's not that much that your muscles need to be bulked or your stamina improved. Yet stability, performance, harmonization, proper implementation of strength, and control are all necessary if you want to make the most of your body and improve your skills.

Some people appear to be in a position to take up a new tool or a new sport and master it without effort. These things are much harder for others. Someone who finds things faster appears to become much more aware of their body and how it functions. Such knowledge of the body might seem straightforward among those fortunate few, but it can definitely be taught and enhanced no matter how much or how little you begin.

Everything about control is Woodworking "efficiency." To do your best, you must optimize your power over your resources. Besides, almost everything you do when using a wood piece requires using some energy to cut, shape, or smooth it into its final form to either the instrument or the workpiece. The regulated use of force is significant. It is important how the body is positioned with the instrument or workpiece. How you use your body in that position increases or decreases the energy, you can use and enhances or impairs control over your movements.

#### **Balance**

An equilibrated place for the most woodwork activities is the starting point. And this place should be able to keep you happy all the while you need to do your job. Of course, you're not at risk of falling over if you stand upright with your feet together. But this condition is static, and it doesn't work well to maintain balance in a number of movements. So, a slightly more versatile

attitude is the fundamental starting position for woodwork. Set the width of the foot apart and point one foot forward, and the other to the side at 45 ° to 60 °. Put the shoulder straight. Your knees and hips should be bent slightly. For many sports, this is close to the underlying, neutral stance. As an avid instructor of Tae Chi said, this is exactly like his "basic combat position," which is a fundamental Woodworking position that provides a wide range of motions with a good balance in all directions. This is the place that will gain from everything you do in the store.

When a balanced position does not work for a given task, what do you do? If possible, move closer to the work, so that your balance is not reached. You can add a stability point as well. This is common at the workbench, but with stationary power tools, it works well too. Crack against your workbench, and as you do certain kinds of work, you can lean for better alignment or power. Brace the edge of the joint or table saw and keep your balance while using the right force to finish the cut. On those machines, you could otherwise be tempted to stand back. This may seem counterintuitive. In reality, however, it puts you much safer.

It's not always useful, but some circumstances do require you to loop your foot around your workbench leg or foundation. This can help with your balance or the ability to push your body in some directions, hence the control. You should also be mindful that the workpiece's position can and should be changed so that the body stays in a good position. The point appears to be clear, but it is generally ignored. A few seconds after you move, rotate or raise or lower a part can prevent you from twisting your body to be able to do your job. It could save some pain in your lower back. And the accuracy may even be improved. Get used to seeing your body's location on your work. When you begin to pay attention to your workpiece, it will be much easier to make adjustments on your body than to adapt to work with an unsuitable position. Usually, it's also more efficient and precise.

Don't always work beyond your reach. It will lead to grave problems with power and, more importantly, health when you're off balance in the store.

#### **Stability in motion**

You never stay in one place when you work. Movement is an important part of most of our acts. Your movements should be fluid and stable, balanced, and controlled, either with instruments or with wood, as you would expect. This means more than just walking, just as it is more than just standing at

your place to do your work. A smooth transmission of weight, particularly when moving during a panel or tool control, means moving from foot to foot and keeping your weight low (bound knees). This helps to keep the table on the table saw or a hand plane on a table on your bench with consistent pressure.

#### Accounting for the way the body moves

The mechanics of the movement of the body are a factor in the woodworking process as well. Joints only rotate and pivot in a special way, twist or turn. The elbow, for instance, is essentially an advanced hook, which allows the lower arm to move into a single plane and to rotate in a limited way. Rotation and pivoting within their own limits are possible on the shoulder. Each joint affects the way you are able to move very specifically. As you work, you want to consider how these abilities and limitations influence your movement. When you learn that the body works in some ways, you can adjust the motions to mitigate problems or take advantage of specific body-mechanics to ensure more precise work.

You will know, for example, that the natural tendency of your arm to travel into the arc when you sand down a board with a side-to-side motion. This is how the arm is pivoting either from the elbow or from the back. If the sandpaper is pushed this way, some grain scaffolding will stay on the wood as part of the movement of the arc. You can offset it by adjusting the movement and inserting a straightened line (which requires a certain degree of focus and practice) in the elbow and wrist movement or by changing the direction of the part (or yourself) to sand back and forth instead of side after side. This movement is more natural.

However, the movement back and forth doesn't solve all the problems. When you move your hand or hands forward and back onto your surface, there is a tendency to change your hand corner, when your hand gets closer to your body, the wrist joint will flex more and straighten up as you move further. When you sand, that doesn't matter at all, but if you sharpen by the hand, you will probably change the angle of the bevel when you move. There are ways to get around this issue and keep your upper body still and go back and forth from your knees.

You can use a labeling gage to use the normal swivel of your neck. When you move the marking scale to your body, it will be more difficult for your natural inclination to force it against the job near. Take it away, and the

normal rotation of the arm will give the gage away from the work more often.

#### **Strength, control and alignment**

It is almost always correct that you use strength and control independently. The lower body usually uses power and hands and arms control. Nothing is, of course, completely independent if you do that; your core (abdomen), upper body, arms, and hands must pass through to reach your fingers. Focusing on strength and endurance as separate exercises in various parts of the body helps your body make proper changes.

Correct alignment is one of the most important factors that connect strength and control. Alignment helps prevent misuse of force; the correct alignment of your body with the job is more effective. You want to be directly behind the object and drive in the direction that you want the object to go, not to one side and move it to an angle. In the absence of proper alignment, your muscles must perform additional work in making corrections to the corners of the joints.

For accuracy, alignment is also critical. Your joints are a collection of links that give you great versatility in your movement.

Nevertheless, these connections can also introduce other complicated movements. You can certainly learn how to work in this manner, and there are situations you will have to do (cramped areas inside a case, an awkward planning angle, etc.) But it's much easier to achieve accuracy by reducing the number of joint movements you need to control. And -unnecessary work (and therefore more difficult) can also improve accuracy. The more difficult you work in any situation, the more accurate you are.

Inaccurate gestures are caused through misalignment. You have to move the saw back and forth in a very straight line if you are trying to make an accurate cut. If your forearm doesn't match the back of your saw, your shoulder and wrist must constantly change angles to make up for it (even with waste energy). Although this can be achieved, the joints can be positioned much better so that you really just have to move the shoulder and bend the elbow in one direction. For example, the motion is linear. And there is the additional advantage to pass the force directly through the handle, which doesn't have to bend out of line and is able to keep straight.

To hand sawing movement is more critical than just aligned joints. The joiner and table-saw is a key component of research and use of a chisel, manual design, and many other instruments.

#### **Generating Force**

Our determination is that it is necessary to correctly align the limbs to apply force effectively. But what is the power of this force? Everything you seek to do depends on it. But more of the body than you might think should be involved. The general principle is to depend on the application of force on your bigger muscles or muscle groups.

Thanks to the best muscles in your body, your lower body will work a lot of time. This is another reason why a balanced posture and controlled movement are needed. The lower body will generally do the bulk of the work, whether to prepare a hand or move the board above the joiner. And it is even better to sharpen the hand if the lower body is used for the total movement. You need that balanced position to benefit from this.

It isn't always the bottom body, of course. Parking with a chisel usually involves working with the top leg, but it isn't just hand or arm work. It is much more efficient to work from the shoulders or even bend at the waist in order to transfer high body weight.

#### **Increasing Your Control**

Increasing the controls your fingers, hands, and lower arms provide control if the large muscle or muscle groups produce the bulk of the strength needed for most tasks. In most cases, you should not ask both your fingers and hands.

Many different things can mean control. Control of the location of the tool is essential for the placement of chisels. The angle at which a tool is held is controlled, which during sharpening or chiseling can be crucial. Pressure management control is an important part of effective handplane operation. For all this power, there is no secret formula. But the denominators are different. Checking needs to be concentrated. So control includes, not necessarily, the right position in hand and the body.

The closest thing to a simple answer is monitoring the placement. Since early childhood, we have all trained our hands for detailed work. Writing calls for exceptional accuracy, and tapping into this talent is an excellent idea. Use one hand to provide this high-level control (it mustn't be your writing hand). This means holding the tool closer to the business end more or less like holding a pencil. Your other hand may provide the necessary force (usually together with your upper body). If necessary, hold your thorough work-based side. There is no reason to try to manipulate the chisel or other similar instruments in this way. You don't type the paper with your hand. You need to maintain

your position well in order to keep an angle well under control. More than just your head, this involves. Normally, you must "lock" the upper body and keep the elbow and forearm against the chest, or both arms.

Mainly because it isn't something you can see, control over pressure distribution, so critical for use in hand plane is the least evident. This is a thought, a consciousness that must be created. Fortunately, some simple exercises are available that can help. The location of the body remains crucial.

Try to hit one bench dog by a short frame. At the beginning and on the back of the plane at the end of the board, you will quickly discover that you need to move further down the foreground. You must also maintain a good balance side-by-side. Carry on until at the end of the cut; you do not tip over the surface.

The pulling up of a convex board with a smoothing plane is another exercise in good control over hand pressure. As the aircraft grows, it becomes harder. When you control the plane cutting, you must change the tension between your hands constantly. Try to get long, steady cuts.

When you start applying power, where regulation falls apart most often, this is how critical the remainder of your body is. You must depend on body weight or on your lower body to add strength if you want to hold your upper position carefully to preserve precision. It is also very important that you restrict your cut to what you can do without disrupting your power.

Although strength and control are frequently handled by separate parts of the body, they still happen simultaneously and are interdependent. Fortunately, you're pretty well-connected to easily combine different kinds of movements (the old stuff). And if it isn't simple right off the bat, you will get used to it quite quickly. If you find it too much for you to consider at once, first work to put the forced movement in place and go over it several times. You can focus on the thing you really have to pay attention to, the control stuff, once you don't have to think much about it.

There are certain tasks that tend to involve focusing on force and control simultaneously. Feeding troublesome panels by the table saw the table and immediately remember the jointer. Such two need steady feed rates, although the hand positions shift, and the application of force is less ideal. Such scenarios just need to be tested (test a few runs with the computer off) so that you can get used to the uncomfortable set-up.

#### **Proximity/containment**

Command, accuracy, and power all decline when operating farther from the torso. The more you go, the more real it is. Therefore, the bulk of your work should be in a small area around your body, where your strength and control is high. The sweet spot is not close to your chest, but rather near. You should not notice that all of your elbows are so far away from your body, except when you finish some longer moves. Maybe you have to play somewhere to see what works best for you.

Watch the hand-plug carefully, and notice that the elbow of my pushing hand never lies far from my body, despite the large movements. There are exceptions, but much less than you could imagine.

#### Working in the right position working in the right way

It's extremely important that you put a workpiece in the right position, operating at the right level so that you can do everything in comfort and productivity. It is important to overlook it or to ignore it as this advice maybe. For that purpose, you need a suitable workbench or workplace; you need flexibility in arranging and carrying a variety of parts for all kinds of work. It is equally important to think about the height at which you also work, and even more easily overlooked.

It is possible to do various tasks at various heights in the store. For instance, the hobby usually works best when you stand on your side with your arms comfortably at an altitude between your wrist and your knuckle. This allows you to efficiently use your body weight while you plane and lower your body strength. But a good height for planning may be too small to carpentry, which at the height of the stomach to the stomach can be much more relaxed and precise. This height helps you to position your body well in tasks like sawing, weighing, marking, chiseling, and routing without bending over it and stressing your back constantly. Some types of detail work at chest height are even better than that. It certainly saves you the back and neck when working at the right height. You can also see better and also use the correct amount of strength or control for the particular task.

## How can you accommodate these tasks in your shop quickly and easily?

Clear denial is the easiest solution. Go on and do the job. The body of the human being is highly adaptable and well, at least for a while. Yet you eventually begin to feel the consequences of operating at a height that is less

than ideal—and you're going to feel more and more as you grow old.

You can pull a stool that's the right height to better position yourself in connection with your benchwork. Your ability to do work can, however, have an impact that would otherwise have good body alignment or use of force from stronger muscles.

Most workshops have been designed as a compromise, as the size of people varies so greatly between people and in many different heights. It doesn't have a real all-round bench. There is an adjustable workbench that may be raised or lowered when appropriate. As a full workbench or just as a base mechanic, the Norden Adjust-A-Bench is available. The Norden bench on a ratcheting mechanism is hard, easy to elevate, and lower. Many people have sufficient room for more than one workbench. In this scenario, it is a good idea to have separate (relatively low) and menu (relatively high) benches. Perhaps the best solution is to make a benchtop (or buy) solution, either for a mini-workshop or an auxiliary view, to keep the workpiece at a higher level. Whatever solution you choose, you can quickly and easily turn to it. You don't have to do this for any small task you take (denial is certainly working), but it works well if you're with them for some time to avoid things that hurt your back or neck. And you're going to see better and also have more control.

## Chapter 3

### **Learning to see better**

There is a wide variation between what your mind gathers and what you interpret and understand this knowledge. Why is that? Why?

We learn from childhood to take a few visual information that our eyes gather and connect with. In order to understand the visual environment, we learn. We know that certain shapes and patterns indicate the face of a chair, table, dog, or cat. And we learn the least amount of visual data to perform these interpretations. We learn to take shortcuts, in other words. In order to identify a person, we need not pay attention to all freckles or pores on the face, and we probably don't even notice that. This has huge benefits. The brain "processing power" is needless to analyze all the specifics of an object and figure out what it is or how it will affect us.

It implies, however, that we tend to ignore many of the information available. Much of the material, however, is significant as craftsmen. We must, therefore, learn to look at more. We also have to learn to see more in some cases.

In reality, seeing and watching are different, and they are both important to your work. Learning to see better is mainly an issue of technical problems—things like enhanced lighting, improved angles, and, if necessary, some corrective lenses. It's also a matter of what you're looking at. More is to observe not only know what to search for consciously but also appreciate what you see. And this will increase your understanding of a range of issues and your skills.

The more you do it, the easier you understand it because it's a learned skill. This is good news because it's important for woodwork to learn to see and observe more.

#### Lighting

Good lighting is important for good work in the shop. And as you get older, it will become increasingly important. Like it or not, with age, your vision will weaken, and you will need more and more light to help you see your work properly. Strangely enough, the changes in the vision you undergo as you grow older don't seem to mask the issues in the finished bits.

Adequate lighting is becoming increasingly important as you age-but

flexibility in illuminating your work is always important to you. I have also become a big fan of customizable job lighting in addition to the usual battery of fluorescent lamps hanging from the ceiling. These are arm-lamps, which I can switch around and easily adjust. In a number of versatile forms, I have built them. Most of my benches have holes of 1/2 "to put the post at the base of the lamp. I also made some 1/2"-hole bench dogs so that I could mount a light in the bench dog and so into one of the bench dog-hole. I also have a wooden handscrew and a 1/2 "mounting hole in other areas. This can be connected as appropriate to other tables, cabinets, or instruments. It all helps me to put a light so that under almost all conditions, it can reveal the most information.

How important is this flexibility? Low raking light exposes and stresses details which may be totally invisible under the broader overhead light. Favor, irregular lines, and issues with the surface all appear dramatically. A lot of these issues become obvious as soon as the wood finishes; even the smallest problems can easily be seen from reflective surfaces. You should examine your work in the most obvious possible light. It is very important.

You can also control shadows from adjustable light sources. If your pattern lines are hidden under one tool or part of the workpiece, you can easily move the light source. The accuracy and focus also appear to be an immaterial boost when you have the lamp right near the job.

## **Viewing Angle**

One of the easiest ways to see more is to change your view. How much you see will often be controlled by how you look at something. One approach is to be sure that you look at all aspects of your job. It shows the ties and proportions you may not be aware of otherwise. You can also indicate areas where you have not smoothed, finished, or refined. These things may not matter if you never see the piece from another perspective. If your work is visible on all sides, however, you surely should go around and look at it on all sides while you are working. Don't just let it sit down and leave it on your workbench.

Choosing a small viewing angle is a less obvious way to see more. From a low angle, sanding scratches and other surface imperfections will be visible dramatically better. You will also get a much clearer sense if a board is straight or not and how well and reasonably curves are going. Combine a low viewing angle with a low racing light for the best possible view of these data.

You can't hide anything. Nothing.

## The Dominant Eye

Stereo vision has quite obvious advantages. Deep perception is the result of the treatment of slight visual information differences from our two eyes. In the case of vision problems, a backup of information is also available. Almost everything we do is benefited by our ability to combine information from two eyes with a coherent and rich image of our environment. But information from both eyes causes some conflict for certain tasks in woodworking. This is because the two eyes see things in different ways. The brain filters the variations from one eye—the dominant eye—so that the essential part of the picture that you see fills the nuances with the information from one eye and a broader field of vision. You need some information from both eyes if you need to align a tool exactly with a line. But it is more important to focus on the dominant eye information. This is a strange degree of concentration—it doesn't cause your eyes to get out of focus. You are prepared to see more by shutting the other eye, just one eye. This concept is not easy.

#### **Parallax**

Parallax is the displacement of a sight-line-based object. In other words, the angle of view is a shift in what you see. This can lead to many measurement or alignment errors in your work. When you try to read or mark the rule, the most common problem appears, and your eye is not perpendicular to the markings directly. Being 64th or even 32nd is pretty easy. Proper alignment is the simplest solution; just ensure that your dominant eye is directly above the correct measuring line. That's not always possible, however. You might try to tap the rule on the bottom so that the lines really hit the work surface or turn to a more subtle rule that decreases the potential error.

## **Visual Aids**

Glass, lighted lenses, and headlamps will help you expand the scope and interpret it in a more accurate way. But in hand-eye coordination, they also need some adjustment. And while they make it easier to see in more detail, you still need to know where to cut and can cut them in that spot. If you have trouble looking through the details, visual aids can be of enormous help, but they are not an immediate fix for inaccurate work.

#### Where to look

You probably will not see what to see if you do not know where to look. You must know what to look at and learn to focus on it while you are working. What is the most important visual information? This is based partly on experience, but also on common sense. Don't just look at anything because your focus is caught. Look at it because it's a matter of health or precision. There are many cases in which many issues can be tracked. However, you should still be able to prioritize the safety and accuracy issues and pay more attention. For example, it does not really do any good to see the sheet cutting off the wood when riping the wood on the table. It can be darkly fascinating, but you don't actually get any information. Watching the edge of your board is tight against the rip fence is much more important, while making sure your hands are clear of the guard and the saw blade.

These are important for both quality and safety reduction.

The design of the cut and the line is your target when you cut with a handsaw. More specifically, you want to look at the corner of the blade closest to the line, while keeping an eye on the whole blade, which will help you to stay on track.

It's important to know what to look at. It is even more important to keep your focus on these crucial things. This isn't simple. It takes a lot of effort. But the longer you can keep focusing, the more precisely you are cutting.

#### **Observation**

What do you see in a piece of wood? Do you see how milled it was? Can you say whether it was hand planed, sanded or sawn through a thickness planer? How sharp was the gun, can you say? Or how competent was hand planning or sanding? Was the table matched with it? Do you know what it's all about? Would you think you would even look for these things?

Much is possible to the initiator or immediate woodworker who is invisible, but all factors are factors in the overall quality of the work. And as soon as the finish goes on, all of these specifics have been intensified. In a finished portion, it can be obvious clearly what can be invisible within brute wood. All the strategies for seeing better help you to identify problems in your job, but the key factor is to actively find them and to know what you need.

If you look at a piece of furniture, what do you see? What do you want? What do you want? You can certainly see production and manufacturing, but can you say whether certain joints have been cut by hand or machine? Were you sure of the size and proportions? Were you conscious of negative space? Is it

fair the curves? What about the whole piece's balance?

All these are considerably more questions than just what you see. Most of these issues require a certain amount of experience in design, woodworking techniques, equipment, and wood. You need to try visual information and then take the visual information you saw and put it into context.

From previous observations, you build this context. You won't be able to interpret what you see when you don't know what a table sawn edge looks like when compared with a joint, planned, or sanded. This also refers to size, shape, and design issues. You can develop your observer and interpretive skills by just looking closer at what you and others do. You can observe and learn more in every piece you look at.

The more that you do this, the more you both will see and hear (because you're looking for it).

It is a great thing to increase awareness. This is one of the most important steps to improve. This is the most important part of improvement. There is nothing you can do to change it if you don't see anything. This is also a never-ending process. It must be stated. The better you get, the more attention you pay, and the more you see. This is exciting. This is exciting. And it's a bit awkward.

One way to really get your awareness started is to spend some time with someone better than you looking at furniture. You may be more open to criticism if your ego isn't tied to critics. It doesn't even have to be your furniture.

All this is not to diminish your other senses. All of your senses play a part in a better job, as we can see in the feedback chapter. But people are mainly visual, and how and what we see deserves extra attention.

# Chapter 4

# **Knowing your tools**

The best way to see your tools is as an extended body. They give you all sorts of extraordinary strength and expand your creative capacity enormously. However, all this does not occur automatically. It's only true if you know how the tools work and how you should work with them. However, we deal with wood, so you need to learn how the tools communicate with wood. When working with hand tools, this necessity is immediately clearer, but no less true because you add power.

If your skills are to be extended, in fact, you will have to develop your own capabilities. The raw material you need is a new tool—even a nice one—just out of the box. It should, as you could with a hand plane, be sharpened, tweaked, and setup. Or, as you might have to do with a table saw before it can accomplish the different work you need to do, it may need to be raised, balanced, and accessorized with a cross-sliced sleigh, jig, or dado blade. In any case, a new tool out of the box is not all so different from a new computer; the computer may be exciting and fresh, but until the software is installed and the data are imported, it will not do what you have to do.

The topics below cover the fundamentals of some of the most basic tools that you might want. These include how the instruments operate, what they need to function well, protection, and proper usage. Entire books on each one of these resources were written, books full of important information, which goes far beyond the basics here. All these will enhance your understanding, based on these essential elements.

#### Chisels

The chisel is one of the simplest tools; at the end of the handle, essentially, it is just a sharp coin. Furthermore, the simpler the instrument, the wider the variety of potential applications. Chiseling is useful for delicate paring, cutting, shaping, carving, scraping, and even cleaning of stops. The simplicity of the chisel can also lead you to think it is simple to use. But simple tools often require more skilled input for their proper functioning.

#### How chisels work

The chisel cuts wood according to the orientation of the cuts in relation to the

fibers into a piece of wood in various ways. There are three basic grain orientations: cross-fiber—grain end, cross-fiber—grain-cross, and in approximately equal directions to fiber. There are three fundamental grain orientations. The latter, however, is divided into two and includes both the grain and the cereal, which are cut very differently.

The chisel acts as a wedge and is either cut or separated from wood fibers in one of those orientations. Wood is only removed if there is space to go. When the cut or separated fibers are not available, the chisel is also compressed.

On either side of the chisel, this will happen equally.

The chisel is guided to the wood fibers when it cuts across the finishing grain. This cut is directly made from the fibers. Compression is the main problem. Before they can be cuts, the fibers tend to give some. Should the chisel not be sharp enough, or should you try to remove too much wood at a time, fibers may separate (sometimes quite dramatically) from each other before the chisel can be cut, leaving a ragged surface. Moreover, if the end of a board is cut or paréed, the unsupported fibers will be blown off at the far end.

Cutting the grain, the chisel divides the fibers more than it cut by the edge parallel to the wood fibers. The bond between fibers is, therefore, not as deep as the fibers themselves. The chisel will peel the fibers off the board surface. However, because the fibers are stronger than their bonds, you must know that the fibers may peel off beyond the cups. This also means that the resulting fibers may be pulled out below, as the fibers may not be well aligned with the cut. It can split wood well beyond the chisel if you strike or push a chisel aggressively align into the wood. It can even divide the entire board by sufficient force.

The chisel is perpendicular to the fiber and is cut with or against the grain, but moves the fibers along. This is where the path of grain is so critical. When the cut goes towards the growing fibers, the chisel cuts effortlessly through the fibers. The chisel will coil and split the fibers down more easily than it will cut if the fibers are oriented towards the chisel and the direction of the cut. This will cause the fibers to break under the surface, or to tear away. The chisel must be sharp in all these cases. For chisels designed for various tasks, the cutting angle may differ. The sharper the angle is, the easier it is to cut the chisel. But the sharper corners are more delicate. A chisel strictly used for paring works best at an angle of approximately 25°. At close to 35° C (usually as a 5° micro bevel on a 30° primary bevel), a mortification chisel is best designed for cutting only. The all-purpose chisels also do well at 30

degrees (often a micro-bevel of 5 degrees per 25 degrees primary).

The chisel also needs a flat back for most of the furniture work. Carving chisels work differently and generally have a back bevel or a little round at the end. But you have to know where the chisel is going like a par or chop to work with furniture. And that requires a flat back.

## **Chisel Safety**

Chisel Security can usually be summarized in a simple rule: to hold two hands behind the edge. What does that mean? What does it mean? This is easy. It is clear. Don't target yourself with the chisel.

It is surprising to think of holding in one hand a piece of wood and working with a chisel on another hand. Watch out for this. It felt quite natural to do this, is surprisingly common (and often defended when it is highlighted), and a highly dangerous habit. See how long it takes before you realize that you do. So, stop. Stop then. The trip to the local emergency room is very easy and quick.

You have to be careful whenever you work with a raspberry sharp and completely exposed edge. Always be careful and deliberate about the placement of a chisel on the bench. You can hurt your feet by a dropping chisel.

### **Chisel Techniques**

The technique and the specific task of the chisel vary how you use a chisel. And there are so many possibilities with such a wide range of techniques and tasks. It goes far beyond the way you maintain the tool. The entire body needs to be placed well in order to use a chisel.

Hold the chisel in a sort of stabbing grip when holding it for vertical paring by holding the handle. Keep your body's arm tight. For correct positioning, the other hand should be used. The best way to do that is to have a handle similar to a pencil handle with the hand heel on the workpiece. You want the chisel to be pushed only slightly (a 64th of an inch or sometimes even less). With this style of grip, there is phenomenally good control, but something slightly different can be sought for you. Regardless of what you're doing, it is important to keep your hand rooted. You will not try precisely to move a pencil while holding it on to the eraser end; you will not do the same if the chisel needs accurate control.

Typically, in the basic working stance, your body should be both close to the job and well balanced. With the front leg, it often helps to hold the other leg

back against the workbench. The chisel winds usually under your neck or chin, providing good control, downward strength, and the ability to look down on the side of the chisel to see if you are in position and placed at work. Your hands and your weapons are liable and should not move much. The strength is mainly derived from the abdomen and your upper arm and shoulder. It allows you more than just arm strength to use your weight.

You ought not to force the tool if you are paring. It usually means that if you struggle to make the cut, you will try to cuts too much wood. So the accuracy is usually taken out of the window when that happens. The chisel may wobble, or you lose the position in your hand. When you park the grain, you can also cause compression failure. Set your cutting to that effect.

The handle you need to cut with a chisel depends on the exactness. More precise positioning requires a pencil-like grip like you could park. If the chisel is hit harder for rough, less important cuts, the handle (with a hand out of the mail) will become more relaxed. Your body should not be as close to the job as paring: you need space to swing the briefcase. But you still have to put yourself or your work so that you can see what is needed.

A second common handle is to hold the chisel against your hand, extending your forefinger to the bevel with the top of your hand. This lines up the chisel with your forearm and makes it possible for you to push well. It fits well horizontally for parking. Again, control and positioning will be the other hand. However, in vertical parking, the "control hand" grip is usually different from the craft grip.

Try holding the chisel on the bevel side and the forefinger on the flat side of the chisel with your palm facing up and with your thumb. It still helps to tone your hand; it will allow you greater control of your emotions by holding your knuckles to your work.

For a slice cut, you can apply the same handle grip and a similar control hand. It could be used to cut the flush with the surface of a projection. Put the chisel on the workpiece flat side down. Switch the thumb with your palm, either on or beside the chisel, as you move the handle forward. The thumb serves as a center of gravity for the slicing process side by side.

Sometimes you need additional pairing control. To regulate the cut, use your "control hand" to press up the chisel. The friction will help keep the chisel away from cutting. This is a great technique if you try to put some wood alongside a file, but you are worried about parking too far.

## **Scrapers**

Card scrapers still are considered the secret weapon of the specialist. These are probably the cheapest good instruments you can purchase (on almost any budget you can afford top-quality scrapers), and they can smooth a surface without problems regarding the direction of the grain. Why is it considered a secret? It may be due to the mysterious and difficult process of sharpening. But to masters, the formation of a burr and to make a little more, the feeling of the actual cut takes just some know-how and practice.

The name of the scrapers is a mystery; they do not "scrap" the wood. It's the name. The fiber is comprised of failure by a real scraping operation (it only tears them down). That's how a scraper functions actually without a burr (and a sharp rim). The burr on a typical scraper, though, actually is a cutting-edge, cutting like a flat iron. The scraper body doesn't allow this edge to touch much in the lifting of fibers, so it is still a fantastic woods tool that is difficult to plane. It is a microscopically small edge.

You have to "transform" the tool's edge with a burner to build the barrier on the edge of a scraper. This burr is rather delicate and isn't thick, but each scraper holds four edges that can be put on, and by switching your hands onto one side or the other, you can also use the edge rather than only the middle.

## **Sharpening Scrapers**

The sharpening of a scraper is really a sharpening combination and then deforming the metal into a rim, which works for you. This is an unusually complex multi-stage process when you begin. When you know the steps, it's fast and easy to do both.

The starting point is to file or' join' the rim. The best file to do the job is an a6-inch bastard file, which can be found in a good hardware shop. Put a handle in the file to make keeping and security easier (you can get pretty poorly from the tang of a file). The filing is mostly to remove past burrs or hard-worked steel (the burnish at the end of the process often hardens the steel and makes it impossible to shape another burr). Stick the scraper upright, hanging over the top of the bench for about one inch. Keep the file square to the scraper and move it forward with the handle on your left hand. You may notice the file does not cut the steel completely first; the edge was tightened up and resisted somewhat. Continue to file until you feel the whole length of the edge cutting. It's a challenge to keep the file exactly at 90 °, but you can do it directly by hand when registering the back of your hand on your desk, as you go forward. Contain your lower body most of the forward

#### movement.

Certain companies are offering special books or guides to file at 90 degrees to the edge. Even cutting a dice into a block of wood is easy to create a guide of your own. Drag a file right down the edge, which you set up this way.

The next step is "pinning" the edge. The file leaves a rough surface and creates a wrong kind of burr, so you want to finish it on either a diamond stone or on fine sandpaper on a hard and flat surface. The edge of thinner grain functions just like a chisel or plane and lets you have a longer-lasting edge. A wooden board block can be used to keep the box perfectly square when stoning (one decent one is 1 1/2 "cubic by 8"-10" long). Put the guide block on the abrasive and hold the scraper on the side as you run the abrasive back and forth. You're going to want to move the block and scraper around to prevent wear on such a small area.

Then put the scraper flat on the abrasive and rub once or twice, so that any burr is removed and the edge is carved. A narrow, clean corner should be on every side. If the edge is rounded, you can start and replace it; you can not get the scraper to function.

Now is the time to turn the burr into reality. For this, you're going to need a burnisher. The burner is a hard steel rod-with or in a jig, sometimes with a handle-which is necessary to build up the burr on the scraper's edge.

Start with the scraper on a workbench, about 3/2 "from the edge of the bench, if you are working with a simple burner. Put the burner on the scraper flat, and rub it a couple of times across the scraper. Then pour your handle down a little, and then rub it again at this little angle (the bank will keep you from tipping too much). It does not take so much pressure to spread the peanut butter onto the bread (about as much as you can use it), and 4 to 6 passes should be enough.

Many people use some oil in the burning process to lubricate the steel. That's okay, but it's absolutely not needed. You have to rub your thumb on the side of his nose, then (carefully) wipe his thumb along the edge before it is burned. It works, but again, so no oil at all is used.

Displace the scraper over the workbench lip. Hold your burner with your thumb in a vertical position to press (to the burner) against the scraper's narrow edge. Drag the top of a burner at about 5 ° (and just 5 °) towards you for three passes at 90 ° to the scraper side, then make three more passes at this angle. Again: There isn't a lot of pressure involved. On edge, you should feel a very slight burr. Flip the scraper around and burn the remaining three

edges as necessary. You can follow the burnishing jigs with your own instructions.

## Using a scraper

You can push or pull the scraper. The most important thing is to hold the devices in the right angle, pressurize them directly behind the edge, and then rely mainly on the underbody to push or reverse. Like in a manual, there is also some bracelet movement (mostly from your shoulders), but mostly you'll be better off thinking of holding your upper body in a position and pushing from your toes like a plane would be.

The grip on a scraper places your thumbs in the center of the lower edge; when you scrap, they touch wood. The forefingers wrap around the top and the center and ring fingers around the scraper's sides. You leveled spring of the scraper on the edges. Your elbows should start near your body, just before your hips. Add the scraper about 45 °, slightly push it down and move your body. You may need to change the angle slightly, but you should feel the bite of the edge into the wood, and make very fine (not dust) shaving.

Practice with pressure and angle if necessary until you feel like cuts.

The pulling grip may appear more natural. All of the other fingers go back, the forefingers in the center, down the edge. The thumbs are at the front of the scraper. Stretch out your thumbs; your elbows will also move out of your body. If you wish (it provides more precision control), use your thumbs to spring the scraper a little, turn the blade to you 45°, and draw the blade back. The lower movement of your body should be to move your body back to your back foot.

You must be careful with both hands, particularly on narrow edges, to balance the pressure from side to side between your hands. It is easy to push it too harshly on one side of the board's edge and rip it up with a scraper; try it on a board to learn to avoid it.

You will quickly notice that when you scratch, a scraper becomes hot, especially when you move. Some easy solutions are available. A couple of gloves can be cut off from the thumbs and scraped. Some wooden catalogs have little leather and elastic protection fingers (usually with carving instruments, they lack the boat) if you're not interested in making your own. Or a refrigerator magnet can be applied to the scraper. The magnet is a good insulator, keeping your thumbs out of squawking and can be easily sharpened or removed if you switch to another scraper.

## Other scraper options

Scraper Card is not the only scraping option. Some tools are best seen as a cross between the scraper and a manual. There are several instruments. Scraper aircraft and scraper cabinets. You can also use a small-angle, high-angle plane, with a blade at a very high angle that was ground (or microbeveled), creating a scraper plane effectively. The ability to keep the surfaces flatting when washing the surface offers one main advantage. To flatten the board or panel, however, you should not turn to one of these. They are designed to remove a small amount of material and normally need more effort to do so. The sharpening method is different for these instruments and usually requires the bevel to be sharpened at a 45 ° angle. Some add a burr, but most of the time, the scraping occurs only on the sharp edge. You do not want to try sharpened iron at 75 ° to 90 ° in a low-angle bevel-up plane, but commercial jigs will not help. The solution is to make use while sharpening of a block of wood cut to the desired angle. Nor is a burr needed, but you may want to try it if you don't seek results.

The flat with low angles may seem like a strange concept, but it has two advantages. It is much easier to adapt to the scraper than any other tool. And vibration and chatting are better to remove as well. That's because, on the low-angle plane, the effective thickness of the blade is about 4, "but the height only amounts to approximately half an inch. Both measurements are inverted on a scraper plane.

From time to time, you can even use a chisel to scrap. Maintain it about 15 ° vertically straight on the tree. A pencil-like grip with your other hand on the handle near the edge will allow you to stabilize the instrument as the surface is pulled. You'll have to balance down (not much) with pull until the tool is well-cut.

#### **Handsaws**

The root of all woodworking is wood-saving. The process seems obvious enough—the teeth cut the wood off—but the wood is actually more complex due to its fibrous nature. How is a saw cutting wood actually?

### Ripping

The ripping is called ripping parallel to the fiber volume. A screw set up for ripping is designed to remove small sections of the fibers that can easily be separated on the sides from their neighbors.

The teeth of the screw are oriented to the edges of the wood fibers. They are essentially like a line of upright chisels. The teeth look most like scrapers at this steep angle. It can either be ripped (the screw is cut across the end grain, or the grain is cut (with a flat screw on the surface and parallel to the direction of the fibers, not the usual cut). This set-up works well. This is because the relation between the cut fibers and their neighbors is weak, and the separation on the sides of the cut is clean in both these directions.

### **Crosscutting**

Cutting fibers do not perform as they are cut through the grain (perpendicular to the fibers). Cutting fibers do not perform the same way. When used like this, ripsaw teeth easily roll fibers out, but the fibers are extended from the intended cut in either direction.

Since fibers are stronger than their connections, they tear away from the cuts' sides but not necessarily cleanly or where they are needed. Cross-sections have sharp points on the external borders of teeth to solve this problem that act like knives and cleanly slice the fibers, before pushing out small, presliced fibers. These points are alternated from tooth to tooth by the bevels on the teeth so that left-and right-point teeth are followed throughout the saw.

Cross-saws tend to have fewer ripping problems than ripsaws cut through the grain. You're only slower. They're slower. Crosscut saws are typically somewhat more flexible. Ripsaws are not able to be cut crosswise. They're able to leave their rugged walls.

When you add energy into the team, the differences between rip and crosscut saws remain. In tooth configuration to hand sashes, the table saw blades are surprisingly similar. While there are special blades for rip and cross-cutting (as well as many more blades for special materials), blades can easily rip and cross. The blades are similar to cross-section blades. They have pointed edges for the fiber measurement first, and often a third type of tooth designed to clear the waste quickly. It might not be as quick as a rip-cut blade, but it's still extremely efficient.

#### Set

The teeth are offset somewhat on both sides so that the kerf (the path that is crossed by the blade) actually is wider ales the body of the saw, which is to follow into the wood. Most hand sides have another important feature: the teeth are "set." The problem of friction is a practical solution. If the body of the saw (the saw plate) does not have enough space in the kerf, the saw binds

in quickly, which is worse and more as the cut goes deeper and deeper. The quantity (and accuracy) of the set is a major factor in the cutting quality of a screw. However, the friction problem is much less commonly resolved. The cross-sections of the saw plate are changed by high-quality blades so that their blade bottoms (where their teeth are) are thicker than other saws. Some special screws that are specifically designed to cut flush on a surface may not be placed at all (or placed only on the side of the screw that faces a surface). This prevents the shifting teeth, as with a sift with a mounting, from scratching the surface.

### **Using Saws**

It is difficult to saw with poor technique successfully. Accuracy and cut quality are entirely dependent on your input and problems of aligning your body position.

The good technique for sifting begins with the grip, which helps to arrange the alignment of the body. Start with three fingers wrapped around the handle (center finger, ring finger, and rose finger). Your forefinger should directly point and rest next to the scab back. In the handle (on a good scroll), there is usually a little notice designed solely for this. The thumb always needs to point to the end of the sight. A line straight below the forearm should stretch right down the tool, just like many other tools. This is the location of the neutral hand. Please give this special attention. If you don't match your elbow, both your wrist and your shoulder have to be compensated for holding the saw going straight. It's just unlikely. That's not impossible. The rest of your body now has to be created.

Much of the rest of the body should seem familiar at this moment; it is once again the fundamental woodwork stance. The foot opposite your sawing hand, near the workbench, should be forward. The rest should be rear, shoulder-width at least, and angled at approximately 45 °. Hips must also be working at approximately 45 °. Your elbow ought to swing freely over your hip when you are cutting.

It should come from your shoulder most of the strength to move the saws. While pivoting on the elbow, the remainder of your arms will feel like a bond with no external movement. The force will then be transferred directly to the saw by the heel of your hand. Your grip should be relaxed—it only adds stress and not control when gripping harder.

You should be able to move the saw easily if all of your movements are

properly aligned (and you have been able to practice). Practice this motion and be careful to straight the back of the saw. You can think it travels as if it were on rails without wobbling side-by-side.

## Starting the cut

The hardest part of the sawing for a new novice is definitely the beginning of a rip break. It often appears that you can do nothing but pull the saw backward. And this cuts a rutting brain often, causing even more trouble to get started because the teeth in these ruts are more trapped.

The cutting on an angle of the board is generally easier to start, rather than the entire flat side. Use your other hand's finger back as a reference on the side of the scroll to position the saw wherever you want it. Begin the cut with a forward punch without the pressure to downward. It can even motivate you to think of leaving the job at the beginning. When you choose, the saw can be drawn back, but once again, you should consider leaving the wood's surface almost to avoid creating ruts. It also always helps to begin with shorter pulls, although the end objective is long, smooth pull closer to the full length of the saw. You can also control the short strikes as you cross the line on the top of the wood. Once you cross the border, you can focus on cutting down to the front layout line. Allow the saw to make the cut.

Don't be in a rush and exert too much heat. If there's a good overall movement and the screw is smooth, it should feel as if the screw is adequate to cut. You might have to play down the return stroke to keep the scroll from jumping around or jumping out of it. Various saws will need this somewhat in a different way.

Different cutting techniques (starting from the screw flat across the rim, beginning at the far corner, and so on) are only methods that make it much easier. However, they don't change the basics.

Hear the sound of the saw carefully. It should not sound rough, but it should be clear and smooth. It should sound relaxed rather than blunt and rhythmic. Sound is one of the most commonly ignored aspects of tool use, and how much you can learn by listening to more is incredible. The connection between the sounds of the cuts and the overall cuts is strikingly strong.

Once the cuts are smooth, some experiments can still be done to learn how to cut them directly. One thing to check is whether the workpiece is placed in the panel. Your natural tendency should be vertically cut; you should be set to cut at an angle if the wood is not vertical. But the feeling of the saw always

takes time. You may find that you have to learn how it looks like a vertical cut. Will one hand or the other need some more leanness? It's difficult to say it until you feel like sifting, but an unsuitable saw could drift on one side. Make sure you keep all the other fundamental principles strong and relax when playing with them. You will start to cut to one line until you feel like cutting straight away.

# Sandpaper

The sandpaper may seem odd, but this is mainly what sandpaper is. And since it's so popular to remove smooth wood (and wood finishes), it's definitely worth thinking about how it works and how it's used best.

Sandpaper can also be easily understood: sandpaper abrasives easily break the wood. Make sufficient scratches and wear a wood mask. Allow thinner scratches with increasingly finer grate, extract bigger and grosser scratches and finally wind on a flat surface.

This smooth surface differs greatly from a smoothly planed surface. An abraded smooth surface has countless small scratches. A flat surface was neatly cut. If arguments over hand-tool performance are set aside, a sanded surface usually appears even more generally. It will also be somewhat duller because the scratches refract more light than a smoothly sliced surface. A well-planed surface shows the signs of handwork, revealing various passes and a slight deterioration of the edge with the work. The choice between the two is just one of the results that we want; style and design are just as important as quality.

The use of sandpapers is certainly nuanced, and there is a big difference between well sanding and poorly sanding.

First, various sandpapers are available. Woodworkers are not the only ones who use this abrasive form, and various sandpaper types (and sanding films) are designed for the various materials and/or finishes. The types of abrasive particles, the backrests, and the bonding of the particles to the backrest are different. Many sandpapers have incorporated minerals (stearates) to prevent the abrasion from being blocked by scrubber and/or finishing materials. The most useful ones for woodworking are garnets, aluminum oxide, silicon carbide and stearate oxide with a soapy mineral coating which is used to avoid loading paper with saws (which typically is only used with a lubricant and normal only on fine grains, as this mineral is so sharp that the grosser gums stay deep and more difficult to get out deeper grains in the wood).

When sanding finishing, which tends to obstruct the paper more, stearate papers are especially important. The stearates also enjoy finer grits used on raw wood that allow you to sand longer without clogging.

Many systems are also available to measure the grit's coarseness. The three primary schemes are CAMI (US-standard with 120, 150, 220 and 320 numerals), FEPA (European standard with' P' followed by numbers such as P220 and P280) and micron grading (based on the particles ' micron scale, such as 15 microns or—5 microns).

The first and foremost rule is that you never sand the grain. There are several exceptions, as in the case of most good rules, but only if the grain is sanded later will the cross-grain scratches be avoided. This is the reason why you don't want to go through the cereal. Scratches across the grain cut fibers, particularly on a finished piece, in such a way as to be obvious. The grain scratches generally can not be distinguished from that grain itself. However, you need not be concerned about the direction of the grain on the end grain.

Grain, in the end, poses problems of its own. Sand requires a lot more work than long grains, particularly because the equivalent of the end of a pile of tubes is sanded. They do not scratch as easily, and you spend more time cleansing grain than you spend on a corresponding amount of long grain. It is also a good idea to sand grain to a finer level of grain than the rest of the components. This helps to ensure that after applying the finish, the end grain looks significantly darker than the other wood.

Sandboard can be used either alone (sand pads or blocks) or in combination with jigs. Sanding with just the sandpaper gives you a very clear impression of how the paper is cut and can be more vigorous than sanding it with a block that distributes pressure over a broader area. Sanding with just the sandpaper is more likely than the latewood in some species to be unrivaled and to sand deeper in earlywood. A block eliminates these issues completely.

A folded "pad" of sandpaper can be made the best way to sand by hand (without a sanding block). It helps you to grip the paper tighter with only a little more pressure. The best thing is if grit doesn't get in touch with another grit that allows you to fold the paper a few times. Smaller sections can be halved. The best way to fold large parts into thirds is to fold a business letter up. And if you take a break from the middle of the paper around any of the surfaces, the whole sheet can be folded in quarters without graying grit.

The best sanding blocks give the surface a little, which allows the pressure to be dispersed. A cork or hard-felt wooden block fits very well on edge.

Curved sanding blocks can work wonderfully on curved parts that can pose a real challenge for the plane without running through grain direction issues (try a part of the offcut from snowing a curved part to form).

After all, this is sandpaper, so it might seem dumb to ask how to handle this paper or how to use it. While you may never see a project and comment or even note how perfectly sanded it was, an otherwise outstanding project may easily be destroyed by bad sanding. With this inherent injustice in mind, it pays to work through certain corporeal mechanics.

In arcs, due to rotation around the elbow and/or shoulder, there is a natural sand tendency. Work that is stained or completed to a relatively bright finish tends to emphasize these arches which cross the grains a little. So sanding from and back to your body in a straight line makes more sense. One concern is when you sand your hand; fingertips are pressing more down on the sandpaper than the space between the fingers (only with essential sanding).

You will also have difficulty in sanding large tablets where you can stand side by side because the entire length of the table can not be reached far enough to sand. Sanding in this way is a really important skill, even if the less than ideal body mechanics have to be paid for. The benefit in this situation is that there is not much use of force that you need to think about moving a lever. So you can focus on moving the sandpaper straight ahead. After a while you do this, you should hang it, and the motion doesn't look uncomfortable.

Stop sanding with the raw edge (which means a sanding bock or loose sandpaper). Avoid sanding on the bottom. The raw edge will absorb and remove any loose fibers from the wood. You should also be careful not to round the board ends when you wash. (It is close to cutting paper.) Keep straight on the top surface instead. The use of thin sanding blocks and the focus on maintaining pressure on the center of the block will prevent rounding over the borders.

#### **Woodworking machines**

Woodworking machines can be more forgiving occasionally when it comes to woodworking. This means that you may sometimes be oblivious to the specific properties of wood. But wood is most often remarkably fair; you pay the price if you violate the rules. It does not change the way wood behaves, because you cut quicker with a powerful machine. The machine communicates with the wood just as hand tools do, depending on the

instrument and the wood's grain's cutting action. And an understanding of how precisely the tool cut is always better and of the nature of wood.

#### Table Saw

The exact source of the circular screw is not clear. Some people believe that in the 16th or 17th century in Holland, the earliest circular saw was possible, but no concrete evidence exists. Samuel Miller, of Southampton, England, was granted the first patent in respect of a circular saw and dated back to 1777. The invention was also acknowledged in 1813 by Tabitha Babbitt (who lived in Harvard, Mass, Shaker). The idea was brilliant and simple, regardless of its origin. The spinning blade has an infinite stream of the saw teeth with no waste of effort. The cutting effect is similar to that of the handsaw, with similar configurations of the teeth. There are essentially "filtered" rip teeth across and cross-sectional teeth with alternating spots for the thread. There are also numerous refinements, but these are the basic changes.

The switch from a straight line to rotary cutting may not shift the foundations of each tooth, but it does make a huge difference. There are significant advantages: mainly the cutting speed and the ability to feed the board along the blade in many ways. Nonetheless, there are also significant safety-related problems. A rotating blade not only cuts something but also adds significant risks to the rotational forces.

What is the meaning of having a one to five-horsepower engine spin a blade at 3,000 to 4,000 rpm?? This means that there is a lot of capacity to carry you more than 100 miles per hour. And, as it passes through the saw, you are responsible for the bulk of the control. Of course, you can control the workpiece by the rip fence, the miter guide, or other accessories that you can add or make. But you have the primary responsibility for control, and anything that goes wrong with your control can cause a serious move every tooth on the saw blade in an arc, coming out from the table on the back of the blade and going up and up to the highest level, and then proceeds forward and down below the table. The cut should only be carried out on the front of the arch.

It depends precisely on the height of the blade that this cut looks like. With the blade extended just above the wood, the path of the trim arc is towards you and down; more of the energy is directed down the blade upwards. Notice that the type of cut from the grain predominantly to the entire grain changes. The first requires a little less strength (although usually this isn't a table saw factor). The second is closer to riping with a sciave, but it's much more dangerous for the added blade height.

The front of the blade is the only part that touches and cuts the wood. Therefore, if it lines up right, the back half of the pale (come upwards and forward) will simply slide through the already cut jig. The tooths are larger than the other panel of the board, either as on the handsaw or because the carbide teeth are wider than the stainless steel plates. Yet, actually, once the cut is done, the wood will come into contact with any portion of the blade above the edge. At least three things can easily cause problems: the tool's precision, wood, and - most importantly-the human input.

When the back of the blade gets into contact with the timber, all sorts of problems can be caused, from inaccurate cutting down to catastrophic kickbacks. If either the saw or saw table is not in line with the saw blade, then during rip or crossing with the miter guide, the wood can be driven into the back of the blade.

Both closings on the pale or changing the shape in order to keep it against the rip fence and on the table are difficult or impossible; the wood can also distortion in a variety of ways during the cutting. The splitter (or riving knife) is a primary defense against these problems—now required for all new saws, but worth upgrading to any saw. The splitter should also prevent the wood from sticking on the back of the blade or from sticking in, but it is not always effective. It works for the back of the blade, which can cause so much difficulty. Yet the saw blade can take the wood and throw it off the saw with large speed and possibly catastrophic effects, rather than cutting it into pieces in the wrong way.

Anything that is stuck between the rip fence (or any other permanent object on the sight table) and the spinning blade can be returned at an incredible speed—approaching 100 mi / h. And you can also run into trouble if you can't keep a table close to the fence or securely on the saw table. One main way of controlling the board is to lose contact.

All this leads to a random sense that anything can happen at any time, also about the safety at the table. That's not just a scavia: the wood that you cut off contributes to the unpredictability and its tendency to distort it. Unfortunately, there's also the feeling that sometimes you can get away with something. The goal must then be to improve the protection and never get into a situation in which anything else would cause an accident if something out of the ordinary happens.

You can safely operate a saw, but in many areas, it takes constant work. You need to get the most out of sawing security, learn the right working methods, have the right security guards and equipment, and don't stop trying to stay safe.

#### The Jointer

The jointer operates much like a motorized hand plane. Finally, as a small joint, you can use a hand plane clamped upside down. If you think of the connector simply as a motorized version of an aircraft, you can also learn to use the tool. The jointer is not an automatic instrument. You need to think about how to use them and pay attention, if you were to deal with hand tools, to the wood in many ways.

Clearly, the actual operation of the jointer is more complicated than the manual work. Instead of the fixed blade of the plane is the jointer with a revolving cutter head. The knives are placed at a fairly steep cutting angle (or carbide inserts), similar to the plane iron of 60 ° to 80 °. Each cutter or knife takes a small curved chip off the board as the wood passes over the cutter head. The steep angle of the cupping means that the cut is slightly less likely to tear out than the intended cut.

The cuts often leave a surface that is slightly shaken rather than smooth. The elevator's size, the sharpness of the knives, and the speed with which the wood is cut across the cuts depend on the pattern geometry of the knives, whether it is obvious or almost too subtle to see.

Between the feed table and the feed table is the cutter head. The depth of the coupler is determined by the height of an infeed table relative to the highest point of the knives when they rotate. The outfeed table is placed at exactly the same level as the knives on the top of the cut and falls straight into the outfeed table when the wood is off the cutting edge. This is how it flats a board; the just-cut surface records on the output table, and in that same geometric plane, the remainder of the board is cut. It is much more critical that the board is held flat on the feed table than that of the feed table.

The Jointer is not a simple mastering tool, although it looks like you just step over the surface of the board. There are many things to deal with while you are working, especially when dealing with larger boards. Obviously, your main objective is to straighten or flatten the board surface with the jointer. But in order to achieve this, you must be able to feed the board with constant pressure on the dump table and also against the fence in the case of edge

attachment. In order to obtain the necessary information on the directions of grain (to minimize tear-out), as well as on how the board is not flat or real, you need "read." Boards of various sizes also pose various challenges. Naturally, you have to understand how best your body can be used to effectively get the board through the machine.

Check the forest to see what you have to do before you start. Is the grain in a specific direction? The board should be directed to the back of the board (on the bottom) by the grain coming out. If you can not identify the grain, then you may simply have to cut it, and then check the results. Try to connect from the other direction when you see significant tear-outs. Is the wood crushed, twisted, or bowed? You should place the concave side down with a cupped or bowed board. The bow will precede and go concave side down if the board is both cupped and bowed in different directions.

It's another challenge to Twist. You may end up cutting the entire twist off just one corner at the back of the board if you keep the board so that the front end of the board twisted flowing flat on the feed table. That corner can be almost completely diluted. You should try to start the board so that you can join the front half of the twist and the back half. You can do this by testing where you put your hands when you start cutting. Once the first step was made, the remaining cutbacks should be recorded at the correct angle. You might need to switch to another tool to remove the twist if you are not comfortable with this. Flattening can be done with handplans or even a planer selectively, using a sled on which the board is carefully shut, so the machine evenly removes the wood.

The joining of the faces is simpler than the jointing of the edge, as you only have to worry about the table. But, it's a little harder (physically) because there is so much more wood in the cutter. Keeping the wood on the table and going around the unit easily and consistently means keeping the body in the best possible position. If you try to move forward in continuous feeding, you will have to learn to cope with the misalignment of your left hand and arm. You will find your arm angled across your body to make it harder to move forward.

Unfortunately, the place to work with isn't better.

Place yourself alongside the infeed table in the basic woodworking role. Stack yourself against the computer so that your body can lean on the job a little. This helps you get more control over the board. As with the table saw, it may feel dangerous to lean into the machine. But you can control what is

happening in a much better position.

The apparently safer position farther from the instrument can cause the workpiece to lose control and is more dangerous as a result. In the vicinity of your body is more control.

Start on the front board with your left hand. If you have a guard in the American way, use a push block. This hand is initially responsible for keeping the board secure when you start cutting. Your right hand is the main pushing hand and, depending on the length of the board, can be either at the back of the board or in the middle. The fingertips should not be stuck on the bottom. Use your palm's heel or push block instead.

You will try to keep the forearm aligned primarily with the cutting path. The alignment that you see with a hand plane or chisel will not be the same. Your lower arm is turning up, instead. This is consistent with an up and down push. Once the cut begins, the left-hand moves to the feed pad. This is easy, but it requires some bridge maneuver with a European guard, with the guard in American style and a push block in hand. As the board moves, the hand reaches the protector. Lift your fingers and hold on to the board with your hand's heel. As you keep pushing the board ahead, your fingers pass the guard. You should put them back on the board, fingertips first, once they've reached the other side. Then move the pressure to your fingertips as you lift the heel to the guard. Finally, put the heel of your hand on the panel to keep the pressure going.

You will turn your right hand to the outfeed table with your left hand as soon as possible. Then you can move the remaining board by hand. The best way to ensure a flat cut on the joiner is to even exert pressure on the outfeed table. Beyond the cutter head, it's also much safer for your hands. Make sure that the majority of your body is well-positioned to move the feed table equally. Before the edge joint, facet joints (and thickness planes also) usually occur. It is more difficult to put an even rim on a plate that is at least one face, not flat.

### **Edge** jointing

The challenge of edge connection is to tightly hold the face of the board as you cross it. Your left hand will keep the board from the fence. It is secondary to press down at the beginning of the cut (hook your thumb over the top of the board, pressing the board with your other hand fingertips against the clamp). This hand should be transferred as soon as possible to the feed table. When the panel is long enough to hold the panel on the feed table,

place your hand on the table while you move the panel against the fence. The right hand is the hand that pushes, and the forearm should again be approximately aligned with the cut. A pushbutton similar to the one used on a table saw with narrower boards should be used to protect your hand away from harm. Boards wider than the fence allow you to switch the two hands to the output table and push the board hand over.

#### The band saw

The band saw is a flexible shop engine. The purchase is typically circumvented in the hurrying period to get a table saw, often seen as the "heart" of the shop. But it is both safer and more versatile than the table saw in many respects. Many people strictly think of it as a trimming machine at which it stands out. Nevertheless, the band screw is a great tool for tearing wood and re-sawing to create a thinner furnace stock and even cut a wide range of crafts. However, to obtain the best performance, the band saw needs skillful feedback. Cutting the saw often requires additional refining, fastening, and smoothing, even then.

The cutting action of the band saw is very similar to the handsaw action. But the screw of the band has neither a stiff back nor a strong handsaw edge. The band saw blades are straight and on track with tension and the guides that support the blade just above the cut and under the screen table. Band saws are able to adjust this voltage. This is usually a spring with a lead screw. The voltage depends on the type and size of the blade and must be adjusted according to the instructions of the saw and the blade manufacturer. The blade deflects when the board is forced against it if there is not enough tension. As the blade disappears, it twists on either side and finally cuts a curved taper. The re-sawing is most often the case. It results in a separate cut from what you anticipate (which can be risky because you won't expect the blade to appear somewhere), a lot more friction is also involved in the cut, and it'll be a lot more difficult to get wood through. This can even bind enough to avoid the saw in the cut. The same problem often comes with a dull blade, that will require greater pressure when feeding the wood even under appropriate stress.

#### The router

The router is one of the simplest machines and is only a way to hold a spinning cutter (routing bit) at its most basic level. The wide range of router bits combined with the popular router configurations (fixed framework,

plunge basis or trim router) and use methods (handheld, in a router table or with a wide range of gigs) makes it difficult to consider the Router even as a single tool for a certain reason. Indeed, in combination with some sort of jig, there are few things that a router can't do. Routers are suitable for cutting edge profiles, mortise and tennis carpentry work, inlays, dovetails, rabbits, duplicates, etc.

For most router bits, the cutting result is very close to that done on a joiner, the spinning cutter reaches the wood and basically slashes out a small curved wood chip. This leaves a surface that is slightly scalloped, like on the joiner. The feed rate, the geometry of the cutting, the grain direction in the wood and the sharpness of the trimmer all affect the final cutting quality,

The spiral up-or down-cut bits (one example of a side of a type of end-mill) are shortened to their sides and can handle situations where the grain is much harder than a straight bit.

Most of the time, you feed the work into the rotating bit direction just as you feed the work into the joiner against the oncoming cutter head rotation (or saw the table). Another concrete way to look at this is to move the router so that when you push the router away from yourself, the work is to the left of the router bit.

The anticipated effects will be seen as the cutter interacts with the wood. The spinning router bit can raise wooden fibers, which break deeper than the desired cut. Federations can also break out above or below the cutting because the cutter is not always set to cut the whole width of a border. Cutting across the grain at the end of the table is likely to blow the fibers, as with any cross-cutting. The blowing can be stopped by clamping a backboard in place at the end of the turn. The back corner is usually functioning too.

The router appears to be a very aggressive machine, but this is no call to overwork the tool. The larger the cuts, the lower the quality of the cut, like with every tool. Only with each pass can the router bit extract a certain quantity of wood before unnecessary resistance starts. If you try to remove more wood, the wood may be compressed, the fibers tear, and perhaps a router bit gullet filled with chips. The bit begins to bounce off the wood, which causes further vibration. And both the cut consistency and the size or position of the cut are affected. It's the same law that your body works; you don't work hard and accurately.

Try to keep the router "silent" for precise operations and smoother cuts, which may sound absurd; the router is one of the noisiest in the store. But

when it's overworked, it gets louder. Try to control the cuts so that it's not louder than it is.

Since there are so many ways to use the router, there might seem to be more ways of making the best use of your body.

But the same problems arise most of the time; you have to manage the device when pushing it around. It refers to the good position of the body (generally the fundamental position in woodwork), the separation of strength and power, and holding the work close to your body.

A good example is the routing of the board's edges. The router remains strong on the work surface, even though over half of the tool is off the edge. You need to maintain consistent pressure down the left hand.

Your right hand then holds the router tight to work and sends forward movement from your lower body. Sometimes, when you walk along the edge of the job, you have to hold this power over the router. Keep your arms close to your body to maintain control over the top of your body and use your bottom part of the motion. The router can also be equipped with a larger asymmetrical base to support route edges, particularly when router bits are larger in diameter, which throws the router even further off balance.

You'll want to pay attention to the power cord of the router when you drive around or along a workpiece. The way to a smooth cut is simple. You will help keep the cord out of your way by throwing it over your head.

Different differences exist between search and movement. The downward pressure on the dive router is controlled with the shoulders and upper body, and the movement with your lower body regulates the diving controls. The work on the router table is similar to the work on the table saw and needs balance and control as the timber is fed either along the fence or against the guide on the ball.

All the applications for such a flexible tool can hardly be identified.

Nevertheless, it can help to list the most popular applications based on the type or specific configuration of a router.

For edge routing, a fixed-base router is commonly used. This could include ribbing a rim, cutting, or cutting a decorative profile according to the router bit selection. It's also effective when used in combination with an appropriate jig to cut dados or dovetail. Tiny, fixed base routers built for smaller detail work are trim routers. The scale and weight ensure that they are easily used with one hand, although it often leads to stabilization with the other hand.

Only smaller-diameter router bits should be used for trim routers.

A dip router can do all a fixed-base router can do and much more. The immersion function means that the vertical motion is controlled; the router base stays firmly on the working surface during the immersion. It ensures that you can safely move the router bit down (with a fixed-base router, this is not safe).

You will thus cut down deaths or other recesses in a row. It also means that the dados and grooves can be stopped, or grooves or inlays can be routed. However, if installed at a router table, an immersion router is often more difficult to adjust. Some newer immersion routers have additional depth adjustment functions that solve this problem.

A table router makes a router a shaper kind. This allows the research on sections that otherwise would be difficult or dangerous to the road. Router tables are useful for molding, panels raising, carpentry cutting, etc. Adding a fence does not require that you rely on the dictates of guided balls in the selection of profile shapes or rabbet sizes.

There can also be several basic accessories to improve router capabilities. Template guides and the router fence are the most common.

The use of jigs to take advantage of the other simple capabilities of the route will take almost endless effort. Typically, this is only a matter of manipulating the workpiece or the router.

# **Chapter 5**

# **Measuring & Marking**

Once all your planning and preparations have been carried on and you have a clear idea of where you are heading with your project, you need to turn these plans into a real piece. The process begins with the transition from plan to reality. Learning this cycle and how to keep the project on track while you are working is key to success. This process is, however, seldom as simple as it seems.

One of the key elements of this process is that your leaders are not strictly dependent. You can usually not completely avoid the ruler, and "measure twice once" is a great maxim for such situations. But you should be alert to the measurement process and your rule. Assume your chances of erring immediately double when you pick up your ruler.

For so many people, this filthy relationship with the ruler is completely new, but the fact is that most professional timber workers stick to measurements, not slavishly. Woodworking is not just mechanical sketches converted into exact and precise physical renditions. It is a more organic process. There is a portion of the brain on both sides. It is not that there is no accuracy, but that accuracy is very nuanced.

## **Full-size Drawings**

You can use this drawing to create full-size patterns or even compare dimensions directly to the drawing if you have or have created a full-size drawing of a piece.

It usually works better for small pieces, but full-scale sketches of complicated bigger pieces—or detail, at least —can also be extremely helpful. Of course, you will need your ruler as you draw up plans unless you directly copy from an existing piece. The drawing gives you a good way of checking whether measurements are correct (you checked the drawings, right?); the drawing itself reveals problems (as well as feedback on how this work looks when you have finished). Once the plans are drawn up, they can give dimensions and relative positions or check whether your work is on the way by comparing cut parts with drawings.

#### **Alternative Measurement Instruments**

Precise and repeated measurement and marking devices are also available that enable measuring and marking.

Digital dial or calipers are an excellent choice for accurate measurements that are easy to read. They are useful for testing indoors thickness, depth, and height. It may be tenting to use calipers to the maximum extent possible, but bear in mind that it is not needed everywhere.

The marking indicator is an essential woodworking tool, but it can be as good for woodworking machinery. This tool allows you to write accurate layout lines from the edge of a certain distance. There are a number of labeling measurement forms and sizes. The most popular variants are a knife or a disk cutter. Either with a ruler can be set for a marking measurement or explicitly mark measurements. Those models can also act as a depth gage. Some of them even have adjustment mechanisms similar to the micrometer that make it easier to adjust and regulate the gage precisely.

Our reliance on specific governors in woodwork is relatively new. Dividers have been used for traditional layout. The divisors can accurately transmit the dimensions, can be used for geometric constructions (the exact division into half of the line or angle, the construction of perpendicular lines, drawing and splitting of segments, etc.) and natural in the design of a piece for the establishment of proportional relations. A 5:3 ratio rectangle is easily laid out with dividers and only step away from the correct number of intervals on either side. Dividers are perfect for doing exactly what their name means in the layout process: division. This often happens in dovetails, or even pieces spacing is important at all times. But other tools for marking or writing lines are definitely better.

Adjustable squares are highly versatile devices and can assist with not just square searches. They are good for measuring depth, thickness, or reverse measurements and can transfer these dimensions. They also have a certain dimension easy to adjust and can be used to mark or write lines at a certain distance from a rim.

Incra, Pinnacle, and others are also dedicated layout squares, regiments, and even protractors, which are very useful. Most of these are mechanics, which are suitable for precisely sized slots to accept a mechanical handle of.5 mm. Those make the detailed layout of the pencil simple to 1/2 "without squeeze or magnify glass. This is not as exact as a script, but there are many cases in which it is sufficiently accurate.

# **Chapter 6**

# The Line

You need to grasp layout lines if you want to do precise work. Not only do you have to draw specific lines, but you also have to take into account exactly what you want to do with those lines, and you have to understand exactly where you have to cut them. The degree of precision you need for a specific job varies (see the previous section on woodworking tolerances). In general, the more straight the line is, the more likely you are to cut in the right position.

#### **Pencil lines**

In many different situations, Pencil lines can be very useful. Cheap and easy to get pencils. They make lines easily visible in most of the forests. Even on dark forests with almost invisible, a traditional pencil line, a white or yellow pencil can easily be seen and useful. Pencil lines are simple to correct and easy to clean. Except in the coast woods, crayons are not as easily pulled into seed lines as a script or awl.

Nonetheless, pencil lines are usually the least accurate ones. The problem depends on the type of crayon you are using. A simple old stylus No. 2, which is sharpened in a sharpener, leaves a line with a certain indeterminate distance. Therefore, the width can change as the point wears away during the marking of the section. The way the pencil is held can also adjust the line width. And if the point becomes dull, a straight line or pattern is marked out further.

A pencil can be sharpened beyond what a pencil sharpener can do by sanding the dot on #220-grit or finer sandpaper. A "pointer" drafting crystal will also make the 2 mm drafting crystal lead very good. Both will create a very thin, accurate line, but it will not last until the point is worn, and the thicker line is drawn. This might be okay if you are ready to sharpen up often. Sticks with a variety of pipes are also available, and the point of a tougher pencil (e.g., 4H) can be stronger, but also a softer line and can even dental slightly wood.

In the size line, they leave, but mark a certain width–normally 5 mm or 7 mm–mechanical pencils are much more consistent. Pencil plumage is also sold in a diameter of.3 mm, but difficult to find (try a store of art or design), and the plumage is very fragile.

Many situations are present in which pencil lines are more than suitable to do the job, be they ordinary or mechanical. When airtight precision is required, you just need to avoid relying on an ordinary pencil line. Pencil marks are suitable for rough design, curve layout, and layout for all sections that do not have tolerances that are wider than the line width. Pencil marks are also perfect for most of the band saw operations, or for any pattern that is ultimately cut on a machine in which you can check the size or position before making several cuts. When you intend to sneak up beautifully, you can also use pencil lines. This process of cutting, testing, and cutting until you have the right size depends rather than the exact position of the layout mark on careful, incremental cuts. And the pencil lines are easy and quick to place either the pins and the tails onto dovetail joints—whatever you want to cut first. Nonetheless, part of the relationship needs to be defined better.

#### **Scribed Lines**

Many joints and certain techniques involve lines with a script. The clearest advantage of a script is precision. A marking knife that fits well with, and across, the most common instrument of these sides. Various people choose either one bevel (one side and one side beveled) or a double bevel for their labeling knob. Most of the time, the preference is one of convenience. However, there are two different types of knives with double-bevel: those with secondary bevels (most of them) and those without them. You have to wind the knife enough to let the knife cut up against a straightening if there are secondary belts. With the blade similar to a straight line, a double knife without secondary bevels can be placed at a lower corner.

What is less obvious about a knife line often is that the clean edge will transform into the finished edge, particularly if the right side is scribed perpendicular to the surface. Write the tenon shoulder perfectly, and the line will be the finished edge of the shoulder as soon as the rest is cut off. It is very helpful to think about joints in this way. Write the line perfectly and remove the wood from the joint until the written line is complete, whether you are using a marking knife or a knife marking indicator. This is true.

The use of a sharp point tool-either a standalone device like a winding, or amortize, or a marking gauge—is another approach to marking precision. These tools will not work well across the grain, but do offer an alternative to mark hand-cut mortise-and-tenon joints or dovetails where the marks are usually with the grain. They cut over the grain leaves with ragged, ruptured

fibers. Standard mortise gauges have two points which are isolated from one another, corresponding to the expected mortise width and tenon thickness (and to the size of a particular mortise chisel). Both mortise and tenon can be printed, the material omitted from the texts for the mortise, and from the tenon pages. A sharp spike can also be used to mark the tails from the dovetail joints of the pins (or pins from the tails). These instruments tend to leave marks slightly larger than a knife, but this can be an advantage as the wider marks are easier to see.

When you run a pencil over it, the clarity of any script can be enhanced. A "regular" slightly dull crayon works best in a dotted line, while a mechanical crayon tends to work better on an edged line with a knife. Two pencil lines are either left on the paper, where the script line is indented. Based on only one line—one on the waste side-to be removed, and the other line left intact. Most people find this describes the job more clearly than simply' cutting to a line.' What kind of line you want to make does not really matter as long as it helps you understand precisely where you have to cut. This should be viewed as one, extended process for marking and cutting. The layout is successful if you know where to cut based on your marks.

It brings up the main question in all directions: to figure out exactly where to cut. It's not intuitive, though. Bear in mind that a certain wide kerf is present in any saw cut you make. This jacket should never be centered around the layout line. The near edge of the furrow ideally only touches the line. For scribed lines, this is easier to understand, because there is no true width. Lines with pencils are a little harder. Many people speak of separating the pencil; some prefer to cut next to it, but only contact. The rule is mainly that you never have to cross the line. In general, this leads people to leave a little space between the cut and the line. This not only results in more cleaning of the cut but also in less precise cutting. Because it is more difficult to separate a certain distance from the line and keep the distance consistent, you can cut as close as possible to the line. This also helps establish a consistent method of cutting all your lines, so all your cuts are practicable for the cuts that have to be accurate, except for hard cuts where speed is more of a problem than any level of accuracy. And you need to do that; it is actually different to consider where to cut than to cut.

# Chapter 7

# Learning as you work

#### Make mistakes

What's your least favorite? It makes errors, no doubt. Errors, resources, and self-confidence are expensive in time. In addition, our society is frustrated with failure, and most of us have internalized the aversion to molten things for better or worse. Nevertheless, failure can produce the most valuable lessons in woodworking (and most other things). No one wants to make mistakes. Yet important lessons need to be learned. Of course, you want to stop security vulnerabilities—but we are all going to do some of them. The hope is that these errors are small, and the lessons learned are permanent and not costly. Yet ordinary woodworking mistakes, if you learn from them, are useful in many respects.

Error is not an unavoidable part of the work of woodwork. They're a human part that's inevitable. It is all the mistakes. This is something you must accept in order to improve. You shouldn't do something about it, that's not to say. As many errors as possible, you want to avoid it. This includes both the learning and the establishment of error reduction systems. It does not mean to stay away from areas in which errors may occur. Without pushing your limit, you can not get better—which means you will work outside the comfort zone when there is a greater risk of mistakes. But if you don't try new things and risk the failure of the time, you don't push yourself to improve.

Obviously, it doesn't just make useful mistakes. This teaches you about the errors. You want to know how much you can learn from. How are you able to learn from errors? First of all, I want to know what led to the problem. What was wrong? What was wrong? Can you see how your job varies and what you should do? Why does it change? And how are you going to change?

It also helps to know what type of error you have made. This is important, as different strategies can be used to reduce the probability of different errors. For a variety of reasons, we tend to make mistakes. Nonetheless, the errors may typically be categorized by form. Many people certainly seem to have the skill to make truly rare mistakes. But even these strange errors are usually in the same six categories (but not inner—some are the product of real genius).

These categories are concept errors, processes; execution; identity; measurement; and last catch—carelessness or carelessness.

The mistakes that you make because you don't grasp something are assumptions and processes. They are based on a lack of knowledge, even if the knowledge for the two types is different. One conceptual error is that I do not understand the properties and conduct of wood, the way carpentry works, or how tools work (something which I have been trying to cover in previous chapters of this book on a core level). One concept error could be a poor choice of carpentry (a base for a drawer front), failure to take into account the movement of wood (glue and screw a solid-wood tabletop into the tab, or paste a solid-wood panel into the door frame), and it could also be used to split wood instead of cutting where you want. It can also be a misconceptual mistake.

Another way to view concept errors takes us back to the "driving the car" analogy: conception errors are errors because of an understanding of the rules of the road, or a failure to understand the car itself (not knowing you need the emergency brake release, or that the automobile needs to be filled with gas). Probably the easiest mistakes to avoid. Trial. Training. Learning. Enhance the knowledge of wood, carpentry, tools, etc. Write and attend the woodwork classes as much as possible. This is easily accessible from numerous sources. You only have to understand how the information is implemented in real woodwork and then relate to the woodwork you do.

There is also a lack of knowledge to be focused on method errors. However, the main thing is the lack of experience. In other words, it is the lack of a more personal understanding of what must and when happen. These might be sequence errors or misunderstandings about how you should go and why you should go that way. When you cut all the pieces from the coupling for a bedstand, later finding out that the drawer is really too small, it might seem like a measuring mistake, but it's a true process error—it wouldn't be proper to cut the drawer pieces before you open the drawer. Fitting the door (or drawer) into an enclosure without first quadrating the box (or leveling it on the floor) can, once the part is together or in place, lead to the wrong door. The analog of "driving the car" would take wrong turns or get lost.

Some of these mistakes can be avoided simply by seeing or reading the different steps involved in the project. But you'll only have to experience other things for yourself. In cases of driving, the subtleties of a complex route

do not appear on a map or directions; you may have to drive it once or twice to understand successfully or miss important turns.

It's hard to figure out a role before you make mistakes, showing you different patterns that work, some that don't. Their work includes the right sequence of events.

Understanding from process error helps you understand better how (and shouldn't) you should get from step to step. Until you start, you will try to get a better picture of the whole operation. Please consider what you will do, scrutinize your plans carefully, and make an independent list. See how others handle the process, but depending on your own experience. You may miss a turn or two, but you can always double back as you do when driving.

Fulfillment errors are poorly qualified mistakes. You are aware of how to delete dovetails, the layout, and the right sequence of events, but you can not still conduct them. Your level of skill is not sufficiently high for a precise cut or chisel. It may also often require a logical error; you may lack a clear understanding of where the lines should be may.

There is a poor analogy here. You cannot keep the car straight down or avoid accidents. You can't control the car enough. You may need to work on the fundamentals and then practice as much as you can, so you can maintain a good technique while cutting more and more precisely. The needed discipline of practice really isn't a shortcut. But what and how do you do need to understand?

When you had to work with the back-left leg, cut a joint on the wrong part of a leg or taper the front left leg, and you made an identity error. It is best to try to learn every piece you work on, not just a wooden piece of a pile, to reduce this type of mistake. Create a picture of the whole part and place it in its right place in the entire part. Nevertheless, you should be sure to use a simple system to identify every element for identification, place, and path, even with a clear picture of how and where all fits together. Design triangles usually help to keep things focused and found, only if you are used to mentioning things. But every system you develop and take care of should work throughout your project. All links with specific markings (letters, numbers, or their own personal hieroglyphs) should also be labeled.

The measurement error is another very common mistake. This is where you get a part which is an inch away after the measurement on the 1-inch mark to avoid an inexactitude at the end of the tape measurement, and then forget to

remove an inch from your measurement. The most notable of this is the "inch mistake." But as a result of inaccurate measurement, there are countless other problems. Inaccurate measurement transfers and other slight inaccuracies are almost unavoidable. You are growing the chances of making a mistake substantially each time you choose a rule or a tape measure. What is the choice? Do not weigh so much. Do not measure so much. Installing the first to stop on a machine is the first to use rather than measuring one part at 3313/32 "and then trying to cut another dimension. You may also use the original to write a new part of the knife line and cut to it. You are using written lines rather than pencil marks where necessary. You are not trying to determine where a stylus (of some indeterminate thickness) is to be cut with a cleanly scribed line. There are many occasions when a pencil line is accurate enough, but not necessarily when you want absolute accuracy.

Measurement cannot always be avoided. The old "measure twice, cut once" adage is a good rule in those situations where you have to measure. However, this is only one way of verifying measurements. Try to measure from another point to see if the dimension is checked. Which means how far down from the top should a shelf be if it is meant to be 111/2 "high?

You can also begin to think a little differently about measurements. Think of your rule as an easy way of comparing lengths, not always as a way of generating them. Make a pencil mark on your ruler or tape measure to translate from piece to piece. Deploy a verification step from both ends rather than marking centers by determining a length (or width) and then partitioned halfway between them and marking them at the halfway point. The current center will either be verified or, more likely, will be centered between two slightly off marks.

Try to avoid marking the intervals and measure a certain distance from each new point. You will enter a certain alignment error any time you move the ruler. Either the angled control trick or a variety of dividers is much easier to use. You must keep the lines stationary and add each interval carefully to the previous number if you have to explicitly mark intervals with the lens or tape on a surface. It increases the risk of math mistakes, so be sure to check the template in the other direction. Even still, lay two pieces at once and check back again.

Clearly, carelessness and carelessness will contribute to any of the above errors. Perhaps these are the most difficult errors to prevent. They come mainly from a failure to keep the focus on what you do. This is no different

when driving a car; both inner and outer obstacles will cause all sorts of problems.

You don't have to focus much more on what you do, even if this is the case. You have to focus more. However, there are some practical ways of preventing distractions. And there are practical ways to concentrate more on what you do. In the end, how much attention you give to your woodwork and how much mistakes you make will determine how far you can go.

It is easier said than done to avoid distractions. There were obvious distractions—telephone, work, family, catalogs of instruments, etc. Sometimes, you can find ways to keep them in the air (put a sign "Don't Sturge," turn your phone off...). Other disturbances are even more difficult to control. Anger, frustration, and other distractions, exhaustion, and pain are all internal and can make your focus even ruinous. If some of these distractions (or others I've missed) are strong enough to keep you from focusing on your work fully, it's probably better to avoid your shop.

We all have our own strategies to dive into our work. If you lose your focusing skills, try creating a list of very specific tasks. It's also a great help to plan as much as you can before the work begins. Take your head to build the piece until you touch wood. You can often do so by designing the project on your own (or at least some complicated parts of it)—even if the preparation is already open. Whether you only understand your drawing as a chicken scrawl or a 3-dimensional computer rendering, every part or joint can help you to understand where you are. And it's easier to focus on the work in this "road map."

Other practical rules are available to avoid carefree errors. Don't start anything with a great deal of focus (no bonding at 5 p.m.) at the end of your working day. Likewise, try not to interrupt complex lay-out or execution tasks (at the end of the day or otherwise). Take advantage of it once you have a focus. And try to keep focusing every time a little longer.

Fehlers have a nasty way to cascade if you make them. This is particularly true when the plans are worked out. Soon something goes wrong, and then you turn more and more where you wanted to go as you pursue your mistakes.

These chains of errors can be helped by two approaches: fight hard at first to make sure you remain in the right direction or, alternatively, leave the project where it appears to be going. If the strategy is correct as intended, you must be adequately diligent to be sure you are on the target right from the beginning. You have to do this from the beginning if that means re-creating pieces. On the other hand, it is a precious ability to build on what you have. If the drawer is a certain size and, if not, create it irrespective of the size. Try to make it work, even if they differ (like raising children) from what you intended. In other words, wonder if this was a real mistake, or were you doing anything else than the plans?

Despite their inevitability and meaning, we are all driven to avoid errors. And that could pose a challenging incentive. But be careful of the paralysis caused by fear of error. A sign of this paralysis is the procrastination of a store in terms of endless reading, classes, and set-up, followed by careful sharpening and tuning. You will never be perfect with your tools, your shop, and your skills, and this is usually not why your work doesn't work the way you want. You only have to do more research most of the time.

Errors can be irritating. The greatest obstacle to learning from errors can be frustrating. You've got a choice. The next time you can turn this anger to help or get too irritated to do something else. Make sure you have the frustration to look for better working habits, more skills, or anything necessary to learn from your mistakes. Two damaging choices are found: plowing forward with growing irritation and leading to more and more errors, and even more dangerous errors. Rather than succumb to any of these problems, take a few minutes to calm down following an error, then go back to look at the situation, figure out what went wrong, correct the error or replace the part. Then do what you have to do so that you all remember the mistake then learn from it.

It is, of course, difficult to achieve a constructive connection with errors. The easily available (but still very workable) wood is one way of getting a little more acquainted with them. The various parts of the country have numerous forests falling under the category "Cheap but good." Or you might choose a cheaper grade of better timber. This is about the worry that good wood is being messed up. You will find yourself relaxed a little in your job if you don't care about the mess that much. In effect, this encourages training and maximizes learning. If your trust improves to the level that you would rather not waste time on cheap things, it's a good time to switch to wood fixing errors.

#### **Fixing mistakes**

There is an old saying that the pros are better at correcting your errors. This is not the entire story, however. The ability to rebound rapidly results in greater confidence in your daily work, as well as in new and challenging work. And so, you get much better. And so. Master fixing errors (at least those which can be fixed), and you can find a more positive attitude to errors. Once you see fixing errors as another obstacle to solve problems, errors are no longer as stigmatic. You will relax and be freer to move to a new territory where real improvements are made in your woodworking.

The first step in correcting a mistake is to relax. If your emotions are high, you can accomplish nothing effective. Take an interval and go off (except you have to remove the adhesive that has gone wrong, then you have to work before the adhesive sets), come back, and see what your options are when you're calmed down for a little while. Evaluate all possible solutions, even if a big hammer is possible for you to review any "fixes." The replacement of pieces is certainly an option you can take into consideration, but it is often simpler or better.

Here are a couple of simple remedies to begin with.

#### **Patches**

Patches can cover a variety of sins, from incorrect joints or blown-out edges to wood defects. And patches range from small, custom patches to skinning on the whole side of a piece. It depends on the situation and the amount of work you are willing to do in order to save rework.

The correct wood piece for the job will be one of the most important parts of patching an error. Try to avoid tossing cuts or ribs from a project until the job has been completed. These are clearly the best suppliers of the wood fitting. Be careful than with the details of grain. It is necessary to match grain direction and orientation. In both the repair component and the wood for the patch, you should also compare the grain-line density and color. Most of the time, the shaping of the parts is a question of this.

Cutting either beveled and recessed patches (see "Streak Patches" on page 169), or straight (see "Stranded Patches" on the link) is two main strategies to shape and fit the custom patches. All make great patches, though the beveled-patch technique also provides you with a little more room in your cut, and the bevels cover the glue lines better. But for smaller, larger patches, it is also more complicated, unless you have special tooling.

After you have filled an errant joint, you can skin over a part. Do not fill a

mortise with a real tenon; you better make a tenon-shaped piece that matches the grain direction.

## Chapter 8

### **Practice**

By riding a bicycle, you cannot know how to run. When thinking about it, you can't learn woodworking either. Not all information is abstract. Woodworking should be taught, felt, and taught in the muscles (or neurological links). Sadly, woodworking doesn't look like you never forget to ride a bicycle.

You will have to practice more than you could imagine mastering those skills of woodworking. Some things just don't come to the most skilled woodworker naturally. The original woodwork system has largely disappeared, but people think that they can do it without the progress of the basics and without repetition in a traditional training course. Learning appears to be a picturesque, old-fashioned method for transmitting the craft, which we can handle now. While it is true that enormous advances have been seen both in the information proliferation and in some of our tools (most of which are machines), both of which make it easier to gain a basic level of competence. In order to achieve your goals, you need to coordinate your muscles and joints — the master's only practical knowledge.

This is quite a fact that the idea of practice does not appeal to most woodworkers. Very few of us will go to the workbench and only make a saw cut for an or two hours of talk about the quality of the sawing technique. It is also true, most woodworkers do not know what to do, or even how to practice, even advanced woodworkers.

Let's begin with the fundamental elements. Many concepts must be observed repeatedly. Why is this so? Less than one or two new items cannot be learned and mastered at once. Even relatively straightforward new tasks require you to recall and perform items in precise order or in particular relation. You can't assume that by plain will or brainpower, you can do this. Too much is to be focused on, and that's not how we learn very well. This process requires a systematic approach that adds new elements gradually in the mix. And these must only be added once the skills that lead to the new element are mastered. Clearly, the solution is not repetition alone. And if you strengthen and repeat the wrong way of doing anything, you can do as much damage as its benefits.

#### **Experimentation vs. practice**

To harvest the benefits of repetition, you must start with a goal of what you try to do. This goal should not be very specific, surprisingly. What are the particular features of mastering your skills successfully? It should include correcting all fundamental principles: body position and motion problems, a clear idea of line cutting, cutting quality issues or surface findings, etc.

You will stumble around blindly, and no job you do is likely to lead you towards mastery until you have a clear definition of what you need to do. However, you can start—not practice, but test—with a good concept of success. You need the stuff to understand how you actually feel the different elements of what you should do. And you must try to see how things can be done in the correct way. You are then ready to start to practice.

Testing is the process of trying to get where you want to go and test the performance. You're trying out different things. No matter how good a definition you have, it doesn't express what you mean when you do it wrong or if you're doing it correctly. You want to be mindful of good principles throughout this process. The ways in which something is done can be unlimited, but the fundamental principles underpinning them all are almost identical.

Experimentation blends a clear concept with an outstanding feedback loop. You will find out exactly what you have to do and what you want to do. It is perhaps the biggest part of your technical development because you make all the fine modifications needed to improve.

You will have to strengthen that path with practice once you have discovered a successful path to a specific goal. The practice is the repetition of the way something can be done. Or, as the old saying says, "Practice does not make but perfect practice perfect." Since complex tasks cannot be completed at once, practice is the basis for the increased difficulty of a task. You'll likely find your newly learned technique fallen apart when you try to see a line after you've just learned how to see properly with a handsaw. You must provide more support and consolidate the basic technology; set up better "muscle memory" for the task. With enough practice, when you have to concentrate on the next thing, you don't have to worry about that aspect of what you are doing. You have formed a nerve route that is sufficiently powerful to function without treatment.

When you move to new and more nuanced ones, you should be mindful of your propensity to lose track of your more basic skills. It's quite normal, and you should wait for it.

The other thing which happens naturally as you add new demands and thus new thoughts is that tension is beginning to sink in with your moves. In general, without this stress, everything will work better. If you don't feel relaxed, it's time to back up somewhat. Break down what you try to do to work more easily and practice it until it's both confident and relaxed. Then work your way back by adding tension-causing stuff. This is crucial in learning music. However, when applied to woodworking, it looks quite radical.

The combination of experimentation and practice (testing things with a good concept and feedback loop) (reinforcing your progress with consistency and feedback) provides you with a continuous improvement mechanism—especially where both of them are a part of everything you do. That should apply to any method or strategy if you know the difference between good and bad and are willing to improve and achieve better outcomes.

### How to practice?

How can all this be done in a situation of the real world? Let us take the sawing example to one line, a core ability to cut dovetails, tenons, and other joints. This is based on hand saving skills with the additional cutting element in close proximity to a line. This is not all that complex, but there are still a number of things involved. First, the basics of the location of the hand and the body place your forearm right in the right, restful handle and align with the back of the saw and your arm in a free movement around your shoulder. Make sure that you're relaxed. Then add a smooth, relaxed stroke to the sawing motion itself. Starting the cut can often be a difficult task, so it also helps to think about nearly raising the screen as you start cutting and cutting the saw just downwards instead of moving it downward. You will have to practice this until it is easy and comfortable. Then you can talk about creating the shoulder motion, so all of the movement goes straight without wiggle side by side.

It is time to add some lines and see how well you can cut next to them, as it becomes comfortable. What changes must be made? To one side or the other a little more pressure? Make the changes, and then do more. Ultimately, the objective is to make your focus on the technique fade away, letting you focus strictly on where you cut. You cannot even focus on this as a separate job when you realize you don't have a good concept where to cut it. Strangely enough, the band saw can do this. This can minimize all the distracting

physical work, so you just have to think about where you are cutting (which is how it should be once your saw is enough to practice).

Some of this creativity and experience can also be integrated into your designs. For instance, layout and cut six legs if you want to create a table with cabriole legs. Once you hit sixth, the understanding of what you're doing will be much clearer, and numerals one and two are likely to be regarded as the groundbreaking bits they were. Stripping a small dovetailed box might be like a project, but don't make it into a gift—turn it into sandpaper, pencils, or something like it, and don't worry. Better will be the second or third package. Putting this tradition of low stress into the development of real furniture is a great way to improve. The method is not abstract; if the dovetails are in place or the legs match together, it matters. Yet failure or making mistakes are not stressful.

When you are working on these tasks, it is fun to see the progress. Just don't expect progress to be made straight to perfection. Plateaus and failures are always going to take place.

Take a look during any of these setbacks at your fundamental principles.

Practice and testing are not limited to work with hand tools. It may seem strange to practice at the table or at the joiner, but it is certainly a good idea. Boards of various sizes can involve very different approaches, movements, and positioning of the hand. The best approach is to play with the computer off on either of these devices. Seek techniques to feed the material correctly and without resistance, concentrate on the location of your body and foot, and how you move your hands to achieve the smoothest possible feeding. You will find the best way to get the work done and where and how to move. The effective combination of elements with a work pass (with the computer still off) can also be improved. Finally, you can activate and operate your machine, focusing on control, security, and precision of cuts.

#### **Mental Practice**

Woodworking is not just physical exercise but intellectual action. Mental preparation is just as necessary. Two distinct ways to do this are open. Mental rehearsal is the first of these. This is like a skier racing completely in his or her head through a racecourse. The skier pictures the location of the body in every detail and even the subject of his or her attention during every turn and during the slope. This is equivalent to planning the entire construction phase in advance of your launch. You have a much better chance of doing it when

you first can build it in your head, (down to the smallest details). This also refers to small tasks as well as to a whole enterprise.

Your concentration improves the other form of mental practice. One of the biggest differences between pros and amateurs is the willingness to focus over long periods of time. In reality, you can practice maintaining attention throughout a cut or phase. The fundamental idea is to extend the time you can focus a little at a time. It helps to know exactly how you go, so you don't need to pause to discover new facets of the mission (and break down focus). It directly binds the two kinds of mental exercise.

#### Warming up

The concept of warming up should also be aware of. Musicians and athletes almost always do that.

What does heat up? It is both a process for athletes to achieve the best blood flow and to make muscles work out how different movements feel. Even doing exactly the same thing on different days seldom feels exactly the same, the human body is not a machine. The body can respond to cold, warmth, or disease, or even what has just been eaten. Muscles can be sore or tired. In order to function as best as possible, certain biological processes have to be initiated. It all can affect how your body feels, and you need some time to adjust to all these factors. The warming cycle also includes the feedback loop. It enables you to find the right way to do what you are trying to do quickly.

Don't just dive in and start sawing your tenons; first, do some easy snowing, get back the muscles in the right groove, and focus on how you feel. You can do the same with a hand plane and make sure the machine is also perfectly set for the first few minutes. It seldom takes longer than one minute or two, but those few moments pay for better results once the real work is underway.

Sure, there is less need for computer warming, but the practice running off with the machine often can reveal possible problems and help you to figure out how to do it best.

# Chapter 9

## **Putting All Together**

You should become a better woodworker by building your knowledge of wood, tools, and body. But by using this awareness as a base, you can increase your ability to improve even more. Your further growth will determine what you build on above this foundation.

Mastering the fundamental knowledge should make the wealth of information available elsewhere much easier to understand and to assimilate.

This knowledge should help you learn from what you do. Combined with a clear idea of your end results, training yourself is just as a part of learning as someone teaches you. Once you understand fundamental principles and body mechanics behind the use of devices. The universal character of such principles means that new methods and techniques are assimilated. Only your instruments will illustrate what is required.

Why should it be easier to learn now from another person? Learning from others There are several explanations — several reasons. Working with a good teacher is the best and easiest way to get guidance if you have problems with some of the fundamental elements. He or she can recognize problems and make potential corrections. Your greater awareness about the significance and usefulness of this knowledge will promote the application of what you have learned.

Another way to learn new techniques is to follow a class. Your understanding of the importance of fundamental issues will tell you how and why your teacher does something and not only what they do. See the teacher see how the process is based on the fundamental principles. There are all sorts of reasons why you can not follow this precise path, but you want to understand their overall structure.

A good teacher has established ways of working for most students (and will explain to them how and why a method works). But it's special for everybody. You cannot use the methods. Based on your own strengths and failings, you could and should make changes and choices. You may also have preferences for a specific tool or work style (hand tools only, hand tools, etc.) that could boost or make a system worse for you. In other words, you may have to look beyond the teaching approach. Bear in mind that almost

everything in woodworking can be done in countless ways. And if it gets the job done for you, it doesn't matter which bit you choose.

Stay open to everybody and everything. Be curious about the things that you think are wrong.

If someone can use a technique successfully, it's not wrong. It doesn't mean it is wrong just because something seems wrong (in a dogmatic way, particularly) in comparison to what you observed or heard. There can also be something you can use "wrongly." But first of all, both how it works and why it works. What are the reasons for the method or technique? Is it taking all the fundamental principles into account? And how can it help you?

Often you encounter strategies that don't really stick to the fundamentals. You cannot avoid avoiding wood behavior, but you can potentially escape from poor body mechanics. The human body is almost endlessly adaptable, and even a "false way" could work with the dogged pursuit of a target. It also can lead to carpal tunnel syndrome, back pain, or worse.

#### **Enhancing the idea**

The clearer the definition, the more likely it is that you will do just what you want to do. It is not difficult to improve your concept, but work is needed. Even the easiest steps are often overlooked.

Most foresters tend to build from plans. Inherently, there's nothing restrictive. Nonetheless, you have to see plans as a record of how someone else wanted to do something, and then consider why it is so. Only following the directions of someone else generally doesn't mean you understand why. And that will certainly limit you.

Take the time to carry out the plans. Find the errors you make—or find out why you think there is an error, and make the corrections. Then make up your own cut list (even if you already have one available). For an appropriate choice of wood and carpentry, your cut list should be carefully noted. You want to understand and if you've planned the idea. That has to be done. You won't really understand why if you don't understand the designer's choices. And you cannot choose to follow the plan or make your own changes in an informed manner.

This approach to woodworking is not easy for most people. It's far from going to the shop and at least at first to create it. But when you go, it's also a lot more involved. You will have a much more precise idea; therefore, you will work more closely (which is, regardless of how you approach it, one of

the main pleasures of wooden working). Your work will also be much better. Remember that the more you understand about the place you want to go—and get there accurately and effectively.

#### **Learning on Your Own**

Training on your own is an important step forward. It's still your responsibility to assimilate what is offered even when you work with a complete instructor. In the end, you need to discover how best you can do a specific task. It will greatly help people to know how it is achieved by others. But this doesn't tell you what it feels like or how to concentrate on the right things. You need the courage to experiment, strength to practice, and commitment to adhere to it.

You must not be too comfortable, too. Be eager for each project to challenge you a little more. But don't just look for more complicated tasks. Seek stuff that will excite you on your job as well.

Play in the shop around. The ultimate toy room is your store. Seek there once in a while to find the childlike wonder in your work. Do things for fun—for no specific purposes. Find out.

And play. And repeat. Set off some time and some cheap wood for work on dovetails or mortise-and-tenon joints or any other work that is required. Find a way to appreciate it. Make a deal with a friend for each one of you or reward yourself with this new tool you want—only if you get your skills up to speed first.

You will need to be good at solving problems as you study on your own. Woodwork is a mechanism to respond to all kinds of dynamic changes on the fly. Every board is challenged and must be adapted to changes in the direction of the grain, dimensional movements, and even variable moisture levels. Your instruments are constantly changing. As soon as you start to use, a perfectly sharp edge begins to break down, you have to be mindful of that and change it if necessary (and decide when you should sharpen again). For different reasons, devices are also modified. You may slip on an airplane, or do not tighten up a screw tight enough to adjust something. There could be a dull or nicknamed blade in the wood. The machines suffer from wear, tear, and alignment on rollers, brushes, and belts. The vibration can loosen the bolts. You must rely on feedback to tell you when things change and how fast you can react, but you must still figure out exactly what is wrong.

Only because you are paying attention does not mean that when something

changes or starts to go wrong, it will be easy to figure out exactly what happens. For the beginner, who continually faces uncertainty, this issue is particularly acute. Is that me? Is it me? Is it the instrument? Or the wood? Or the wood? These are everybody's good questions if things go wrong. Sometimes you have only to make enough errors to say. However, you have to figure out things to continue, regardless of your experience. And only if things go wrong next time will the experience be valuable.