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Preface

In the early 1980s, the idea first took hold that the mechanical response of
a dense granular medium can be understood from a basis of the inter-
particle contact properties. The initial efforts, a mean-field theory, had
very poor results and papers on ‘micro-mechanics’ were usually relegated
to the last section of conference proceedings. Gradually, the insight came
about that a granular medium cannot be captured in a mean-field theory
and that some form of non-homogeneity in the fabric properties has to be
accounted for. The beginnings of this concept were implemented using the
available continuum theories on heterogeneity and a few papers came out
in the early 90s showing that in certain special cases the mechanical
response was captured, but — irritatingly — not all cases. Highly
anisotropic packed beds, for example, could not be accounted for and the
failure of a granular medium at high stress ratio remained a mystery.

While progress since then has been slow, it is now clear that a proper
theory of granular deformation must include a method that deals with
heterogeneity that is particularly applicable to a system of particles. This
turns out to be the theory of ‘connected media’, which captures the physics
of contacting particulates in an appropriate manner. It has also been
extended to anisotropic cases. A rigorous approach to Coulomb friction as
an inter-particle interaction is required as well. Together these
developments can now be implemented with great success.

To preserve analytical insight it is advantageous to use simplified
models with round particles and on occasion do a two-dimensional
calculation, rather than a three-dimensional one. This does not matter for
the understanding of the physics that is at play. The theories have also been
applied successfully to other fields where the inter-particle interaction has
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a more chemical character. Filter cake formation (relevant to chemical
engineering) is an example. Due to the large number of natural
occurrences and applications of dense granular matter there is relevance in
a variety of disciplines.

This book presents a detailed exposition of all the concepts and
mathematical techniques that are necessary to understand the current state
of the subject. The student from a non-mathematical background may
initially have to put in a certain amount of work to grasp the intricacies of
the line of argument. This is a very algebraic subject; there is not much
one can do about that. However, a mathematical appendix and an
introductory chapter on continuum mechanics and Cartesian tensor
calculus are provided to make the journey easier.

Curt Koenders
Canterbury, 2019
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Chapter 1

General Concepts

1.1 Introduction

Granular materials play a role in nearly all human activities. Users of, for
example, sand, from children in sandpits to sophisticated geotechnical
engineers, know that it is a fascinating — and to some extent,
unpredictable — material. Many groups are concerned professionally with
granular materials: chemical engineers, pharmacists, food technologists,
agriculturalists, biologists, geologists, geophysicists, astronomers even,
are obliged to study their behaviour under a wide variety of circumstances.
In addition to sand, which itself may be of many compositions, the types
of materials include gravel, fine-particle aggregates as employed in
cosmetics, pharmaceuticals, dust, crushed rock and granules that occur in
a domestic environment, such as breakfast cereals, sugar, salt and (instant
or ground) coffee granules.

It is important to distinguish between the various states in which these
materials may be encountered. The possible range of regimes is extensive.
The delineation of regimes is accomplished by specifying first the packing
density, second the grain-size, or size distribution and particle shape, then
the type of medium in the interstices between the grains (fluid, gas,
vacuum) and finally the stress and temperature environment. Depending
on any combination of these factors, examples of phenomena that may
take place come in a wide variety. A few celebrated ones are landslides,
blocked silos and sewers, rubble asteroids breaking up, segregation effects
in breakfast cereals, dust-storm propagation after a terrorist attack, the
spreading of sun-cream over skin and the formation of dunes. The list is
by no means exhaustive; not only do people continually invent new



2 The Physics of the Deformation of Densely Packed Granular Materials

applications for granulates, they also discover new processes where these
materials may be deployed. The sheer diversity of effects illustrates the
range of professionals that may be engaged with the subject.

The mechanical behaviour of an assembly of grains depends first and
foremost on the interaction between the particles. For a low packing
density the grains are fairly free to move and interactions may take place
in a similar way to the molecules in a gas: the interactions are short-
duration ‘events’. When, on the other hand, the material is densely packed
the grains are locked in enduring interaction with each other. This does not
preclude relative motion between the particles. In a dense slurry, for
example, the interstitial fluid is the interactive medium. Particles may
move, while the interactive strength varies with motion, but the interaction
continues to be relevant for particles in close proximity. When the medium
is dense and dry, on the other hand, particles must make contact. Their
relative motion may be sliding, or even suffer a very slight indentation
when two particles are being pressed together hard, but there is only a non-
zero interaction while the contact endures.

In order to describe the motion in various states, distinctly different
branches of mechanics are required. For a dilute flow in which collisions
are prevalent, for example, concepts of gas dynamics have to be invoked:
a temperature field is needed to describe the velocity fluctuations while
motion takes place. For dense (but not too dense) slurry flow in which a
fluid mediates the interaction of the grains the relative velocity difference
of the particles needs to be described. For very small particles Brownian
motion will play a role too. For a dense packing, in which the grains are in
enduring contact, the physics of the interaction is quite different. As this
is the field of interest in the publication to hand a small study of the
background of this subject is of use.

It could be argued that the densely packed state is fairly boring, as the
displacements tend to be so insignificant. Essentially, one might say, a
densely packed granular material behaves like a solid. There are, however,
certain features that relate to this régime that are quite unlike traditional
solids. In fact, it is one of the most difficult to describe problems in
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materials science. The reason for this is that the material properties change
dramatically under certain specific loading conditions.
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Figure 1.1. Picture of an assembly of photo-elastic discs. Experiment by
[Konishi, 1978].
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The easiest way to see where the problems arise is by considering an
experiment of dry dense sand on a slope. When the sand is initially
deposited and densified the slope is horizontal. Now imagine an
experiment in which the slope angle is gradually increased. There comes
a point when the angle is so great that the sand can no longer support a
stable configuration and a landslide ensues. The changes in the sand up
until this point are almost imperceptible, yet, internally, changes must have
taken place in order for the sand to go into a state that cannot support a
stable equilibrium. The question is: what physics underlies the internal
change of state and how can its mechanics be captured?

This problem is, of course, the province of soil mechanics. Tribute
must be paid to the tremendous body of useful work that has been
produced by civil engineers, especially in the area of experimentation. One
type of test in particular is very common in soil testing and that is the so-
called triaxial-cell test. In this test a cylindrical sample of soil is subjected
to a stress path in which — after initially building up a compressive
pressure — the stress on the cylinder wall is kept constant while the stress
on the ends of the cylinder is increased (precise definitions of stress and
strain are explored in Chapter 2). The same type of test can be done in two
dimensions on a sample of an assembly of discs. The latter case is
illustrated in a picture of photo-elastic discs in which the contact forces
are made visible by means of polarised light. Figure 1.1 provides an
example.

A typical response of the assembly so stressed is depicted below in
somewhat stylised form (stylised to remove the inevitable experimental
noise). The stress ratio (the ratio of the major and minor principal
stress) goes up with increased principal strain until it appears to remain
more or less constant. Now look at the tangent modulus (ratio of stress
increment to strain increment). While the stress ratio is close to unity the
assembly is quite stiff and behaves just like a solid block of material. As
the stress ratio increases, however, the tangent modulus rapidly decreases
till it reaches zero — a dramatic change in only a few percent of
deformation!
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Figure 1.2. Stress ratio and volume strain as a function of the major
principal strain in a biaxial cell test.

Even more bizarre is the behaviour of the volume strain. Initially, at a
stress ratio close to unity, the sample contracts, as one would expect from
an ordinary solid that is compressed in one direction. At higher stress ratios
a peculiar effect becomes manifest: the sample expands. This is
completely counter-intuitive behaviour. The effect is called dilation. The
reader may carry out a very simple experiment to verify the phenomenon.
Go to a wet beach with well-compacted sand and simply step on it. One
can see the sand go dry underneath one’s feet. The soil expands, causing
there to be more space in the interstices, and in so doing it sucks the water
in from the neighbourhood, making it temporarily drier. The effect was
first described by [Reynolds, 1885].

The amount of motion involved in this development is minimal; the
strain is in the order of a few percent. The mechanical features that occur
here are very important not only for the geotechnical industry, but also for
the understanding of, for example, the motion of burrowing animals — see
for example, [Dorgan et al., 2006]. While a further discussion is only
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possible when grain assemblies are considered that contain an interstitial
fluid, it is obvious that such creatures are adapted to employ the
mechanical properties of granular deposits, such as dilatancy, in their
survival. Another example is the motion of sheared layers of granular
materials in geological settings — see [Petford and Koenders, 2003] — in
which hot magma is sucked up under volcanoes.

Further scrutiny of Fig. 1.1, the photo-elastic assembly of discs, shows
another interesting feature: the force distribution is very heterogeneous.
Some regions are entirely force-free, while other regions experience high
inter-particle forces that frequently — but not exclusively — line up to
form ‘force bridges’. The variability in contact forces points to an
accompanying variability in local deformations. Here is something that
will prove very important in the study of the mechanics of granular media
that are not packed in a regular lattice (which is only possible if there is
only one grain size or for a very particular combination of sizes), which is
the norm in any naturally occurring sample: granular media are
intrinsically heterogeneous. The consequences of this for the mechanics
of a granular assembly will be explored in forthcoming chapters.

When the material reaches the plateau of the stress ratio in Fig. 1.2
another feature may become apparent. As the tangent modulus becomes
poorly defined the material may find, depending on the precise boundary
conditions, a mode of motion that is localised. Such ‘rupture layers’ and
“failure’ are very important for the engineering community, as illustrated
in the example of a landslide occurring as described earlier in this section.

Literature on soil mechanics is plentiful: [Lambe and Whitman, 1969]
is a classic text, as is [Terzaghi, Peck and Mesri, 1996]; [Powrie, 2004] is
a more modern textbook.

1.2 The isostatic state and jamming

A static packed assembly of grains in contact confined by a compressive
stress is equivalent to a network of forces. As it is static, force and
moment equilibrium will hold. The question being addressed in this
section is: how many forces in the network can be specified in such a
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way that force and moment equilibrium alone are sufficient to determine
them, given the detailed geometry of the conformation?

A few conditions need to be laid down to come to a non-trivial answer.
The first is that a regular packing is excluded from the analysis; an
assembly in a regular packing satisfies certain symmetry rules which need
to be imposed in addition to the equilibrium equations. Thus, a medium
that consists of identical spherical particles is not accounted for at this
stage. Rather, a polydisperse grain-size distribution is envisaged, making
for a random packing. Alternatively, rough particles may make up the
assembly. No isotropic condition imposition is necessary, though this is
often (sometimes tacitly) assumed in the literature. Furthermore, it is
assumed that the assembly is very large, so that the number of forces on
the perimeter of the sample is small compared to the number of forces in
the network. Basically, any condition that somehow constrains the forces
in the network is excluded for the moment, implying that the equilibrium
equations alone are sufficient to do the analysis. Specific constraining
assumptions are discussed below.

In a random packing with N interacting particles in d dimensions
there are Nd force equilibrium equations, as each particle that participates
in the network is in equilibrium. The force moment equilibrium for
each particle provides d (d —1)/ 2 equations, so for N particles there
are Nd + Nd (d - 1) /2= Nd (d + l) /2 equations. Each contact force will
have d components and is shared by two particles. Equating the two gives
the result that it is possible to calculate N (d + 1) forces, or an assembly
coordinate number, that is the number of contacts per particle,
of N_,, =d +1 forces on average (the subscript ‘iso’ refers to the isostatic
case). Note that this average pertains to particles that participate in the
force network. It is well possible that a fair percentage of particles have no
contact and these obviously do not contribute to the evaluation of the
isostatic coordinate number.

When there are more force-carrying contacts, the equilibrium
equations alone will not be able to permit the calculation of the forces.
The system is then statically indeterminate. When there are fewer than
d +1 contact forces per particle there are more equations than unknowns
and the system cannot be in static equilibrium. The isostatic state is
therefore a very precarious, marginally stable state. The slightest
disruption that results in the loss of even one contact will make the
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structure change until the number of force-carrying contacts is at least
equal to the required number.

The number 4 +1, which equals 3 in two dimensions and 4 in three
dimensions, compared to any experimental result for a densely packed
material shows that for practical purposes the statically indeterminate state
is much more relevant. However, the analysis changes somewhat when
constraints are imposed. So, the assumption of randomness is still
maintained, but a constraint may follow from the fact that certain contacts
slip. In that case the nature of friction must be considered.

Particles interact via their surfaces and these need not be smooth. As
long as the surfaces are ‘infinitely sticky’ the force component that is
tangential to the surface is free to take any value. In cases where slip is
relevant, a Coulomb-type constraint reigns in which the magnitude of the
tangential force remains equal to 4, times the normal force. Contact forces
must then be classified according to those that stick and those that slip. Let
the ratio of slipping contacts in the assembly be given as a fraction f, of
all the contact forces, then the number of sticking forces populates a
fraction 1— f,. The number of equations and unknowns now stack up as
follows:

Nd force equilibrium equations
Nd(d—1)/2 moment equilibrium equations

J.NN,

NdN,,, /2 unknown contact force components

/2 slipping conditions

Liso

Equating the number of equations with the number of unknowns gives the
result that the coordinate number per particle is

d(d+1)
C,iso = (1 . 1)
d-f,

The implication is that as the fraction of slipping contacts increases,
the number of contacts that need to be accommodated in the assembly will
go up. When all contacts slip (f, =1) in both two and three dimensions
the value of N_,, is 6.

0
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A very special case occurs when there is no friction and the particles
are perfectly spherical or discs. In that case all forces are normal to the
contact surfaces and the moment equations become redundant:
N o = 2d.

Again it is emphasised that these considerations only pertain to the
particles that participate in the force network.

An experiment may be envisaged in which the particle assembly starts
of as very dilute; it is then compacted (say, isotropically). There comes a
point in this process when the particles begin to touch. When the number
of particles that touch is sufficient for the medium to be on the edge of
static equilibrium the assembly is said to ‘jam’. Compressing the assembly
further will involve the compression of enduring contacts and therefore
the development of a stress. The packing density at which the jamming
transition takes place may be determined in numerical simulations. The
outcome depends on assumptions on polydispersity (for spheres and
discs), the details of the simulation method (gravity on or off, for example)
and — indeed — the precise definition of the jamming density. Therefore,
the concept of a ‘jamming transition density’ may only have approximate
meaning.

Moreover, the analysis above shows that the number of contacts that
can be supported in the isostatic state depends strongly on the fraction of
the contacts that slip. In numerical simulations parameters can be tightly
controlled to set the value of inter-particle friction (infinite and zero are
popular choices), as well as the shape of the particles that participate in
the simulation and the strain path that is employed. In any physical
experiment with natural or manufactured particles, however, these
parameters are not so easily controlled. The inter-particle friction
coefficient, for example, may exhibit natural variation and therefore take
a range of values; furthermore, particles tend to be rough and only
approximately spherical.

A further question is whether an assembly of particles can be ‘partly
isostatic’, that is that regions within the assembly can be distinguished
for which the numbers of equilibrium equations equals the number of
forces while there are also regions where there are fewer. Doubtlessly
conditions can be found, involving factors such as closeness to the
jamming condition and nature of the particle interaction (for example
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rough or smooth), where this is the case. In the references the relevant
literature is highlighted. One aspect that comes to the fore in these papers
is the need to distinguish fluctuations in the local geometry. For dense
assemblies, where the intention is to obtain a stress-strain relation, the
most convenient approach is to introduce an inter-particle interaction and
to develop the theory further taking account of the fluctuations in that
context.

An interesting feature of the present discussion is an historical
perspective. The conditions for isostaticity were originally laid out by
[Maxwell, 1864]. In fact, Maxwell’s text employs identical arguments as
the one at the beginning of this section. A fully elaborated theory of
static indeterminacy was produced by Mohr in 1874, see [Mohr, 1906].
Not until a century later did these concepts find their way into the
literature of granular mechanics. In the early 2000s a more rounded view
of the subject became available and the notion that sliding friction may
influence the theory. A great help has been the development of
simulation methods so that the jamming transition may be studied
‘experimentally’. Jamming under non-isotropic conditions has been
included more recently.

An extensive overview of the jamming transition is described by [Liu
and Nagel, 2010]. Stresses in an isostatic assembly are derived by
[Blumenfeld, 2007] and in this paper some other problems regarding the
concept of isostaticity are also highlighted. Non-isotropic compression
and jamming (with physical experiments) is discussed by [Bi et al., 2011].
An exhaustive list of publications relevant to this subject is somewhat
outside the scope of this text, however most relevant ones are in the
references mentioned.

1.3 The statically indeterminate case and computer
simulations

The next problem must be how the contact forces are going to be solved
in the statically indeterminate state. In this case there are more force
variables than force and moment balance equations (and more contacts
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per particle than ~N_, ). A solution is possible when a constitutive
equation is introduced. Such an equation gives the relation between force
and displacement difference between particles (particles may also rotate
and this too needs to be incorporated in the constitutive equations). It
necessarily implies that the particles are deformable. This may be
counterintuitive as particles are frequently thought of as rigid (sand grains,
for example, would appear to be very stiff). More precisely, a rigid limit
can be thought of when the stiffness of the particles is very much greater
than the pressure associated with the stress in the assembly. However,
allowing for small indentations during particle contact resolves the issue
of static indeterminacy. Here is a list of unknowns and equations for all
the particles that participate in the force network.

Unknowns

Nd particle displacements
Nd(d—1)/2 particle rotations
NdN, /2 contact forces

Equations

Nd force equilibrium equations

Nd(d—1)/2 moment equilibrium equations

NdN_/2 contact force — relative particle displacement and rotation
relations (the contact laws)

The number of unknowns (that is, the displacements and rotations) is
equal to the number of equations and (assuming no mathematical
pathologies) a solution may be constructed. The reader may now be
surprised that there is no mention of a torque constitutive equation. There
is an underlying assumption here (which is similar to the rigidity
assumption) that the contacts may be thought of as point contacts. A point
contact cannot transmit a torque. So, unless the particles are very
deformable — and the contact area may acquire an appreciable value —
this aspect may be neglected. A problem would arise when the grains in
the force network are so irregularly shaped that two neighbouring
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particles may share more than one contact. In that case, of course, a torque
may be transmitted. In principle the theory can be easily amended to
account for a complication like that by introducing a particle contact(s)
torque in addition to the contact forces and an extra set of constitutive
equations relating particle rotation to the transmitted torque. This is not
followed up here, where it is assumed that the particles are hard (though
slightly deformable) and share at most one contact.

The set of equations, as outlined above, can be solved using computer
simulations and in that way displacements and rotations of the particles
in an assembly may be determined under suitably chosen boundary
conditions.

In the literature it is only very rarely that a procedure is encountered
in which a quasi-static solution (QS) is constructed. Nonetheless, it is
possible to do this. [Koenders and Stefanovska, 1993] show an
approximation method, based on a least-squares approach of the force
and moment equilibrium equations for an elasto-frictional material in
two dimensions. The result for a biaxial cell test are very similar to the
ones measured by, for example, [Konishi, 1978]. The latter is an
experiment on photo-elastic discs — see Fig. 1.1. The statistics of the
micro-mechanical variables are faithfully reproduced. These include the
mean contact distribution and the distribution of the slipping contacts as
the test progresses. Macroscopic features, such as the stress ratio
reaching a maximum and the occurrence of dilatancy are also found.

Despite the relative success of this method, it has not been pursued by
many other researchers, who have preferred dynamic methods.

These are obviously attractive if, in addition to slow changes to an
assembly in the high contact number régime, faster changes and granular
flow also need to be studied. To accommodate the dynamics, a particle
mass and moment of inertia terms need to be introduced to the
equilibrium equations, so that a full Newtonian set of equations is
processed. To solve Newton’s equations simultaneously with evolving
contact properties, such as detecting new contacts and deleting old ones,
for all particles in a large assembly (say, N >1000) requires a massive
computer effort. In a molecular dynamics method, called the Discrete
Element Method (DEM), a sequential approach is taken, using a small
time step and moving and rotating the particles in the assembly one at a
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time and after that updating the contact properties. If the time step is small
enough, this would be equivalent to a simultaneous solution. The method
was first introduced by [Cundall and Strack, 1979] — a two-dimensional
version of the DEM. Since its inception it has been developed further and
has been expanded to three dimensions, more complicated contact laws
and extensions to include more general boundary conditions, including
periodic ones. More complicated particle shapes with rough boundaries
have been included in an attempt to model realistic, natural conditions.
The method has had a tremendous influence on the development of the
subject, not least because proposed theoretical models in which micro-
mechanical assertions are put forward could be tested against computer
simulations.

Free software and many informative documents are available, so
researchers can run their own simulations [Yade, 2019].

It is fair to say that reporting on the results of the method has not
always been entirely complete. It is also the case that in some instances
the reporters have been arrogant in asserting that the simulation results
are superior to physical experiments, though it is true that in the
computer certain boundary conditions can be simulated that are very
difficult to realise with a laboratory apparatus, see for example
[Thornton, 2000]. Consistent examples of papers on simulations that use
the method (and discuss some of the difficulties with it) are by [Thornton
and Antony, 1998] and a very informative paper by [Thornton and Sun,
1993]. Further useful papers, showing the potential and increased
subtlety of the method, are by [Ferellec and McDowell, 2010], [Macaro
and Utili, 2012] and [McDowell and Li, 2016]. This little list is
illustrative only and does by no means justice to the extent to which
papers on this subject have been published. There must be many
thousands.

A computer method that lies somewhere between QS and the DEM is
the Contact Dynamics (CD) method. The background to this is the
following. The time step in a fully dynamic implementation of the
equations of motion needs to be so small that it is adequate to follow
the changes in the contact laws. The latter allow for a small indentation in
what are essentially rigid particles. The problem with the contact laws is
that they are highly non-linear and therefore a large number of time steps
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is required to model, say, a collision between two particles. In the CD
method the accelerations are not calculated, but the particles are subject to
a velocity field. The latter can change abruptly, both in direction and
magnitude. This is so-called non-smooth motion. For the method to work,
the motion during the encounter between two particles is integrated, taking
into account the non-linear contact laws. The inputs to any collision
encounter are the velocities of the two participating particles, while the
output consists of the velocities after the encounter has taken place. The
actual integration cannot be done exactly, but certain estimates have to be
made. These have been elevated to a high art by the CD community and it
is generally assumed that the method is no less accurate than the DEM
method. More specifically, the propagating error introduced by the
exceedingly small time step in a fully dynamic program may well be of
the same order of magnitude as the error incurred in the approximations in
the integration method in CD. Any computational method is approximate
in some sense. However, CD is much faster than DEM, as rather larger
time steps can responsibly be taken. Relevant references for this method
are by the inventors of the method [Jean and Moreau, 1992] and [Jean,
1999], as well as an informative introductory paper by [Radjai, 2008].
Again, as with the treatment of the DEM before, there are many more
papers that could be quoted, especially as the method has gained in
popularity in recent times.

1.4 Contact laws

When drawing up a suitable constitutive law for contact relating contact
displacement and contact force the first thought should be ‘what is it
meant to achieve?’ In molecular studies and studies of small particles in
liquids very sophisticated interactive relations have been put forward
that account for surface potential effects and quantum mechanical
interactions. These relations are highly non-linear and allow for both
repelling and attractive phenomena. However, in dealing with larger
particles a simple law that just ensures that the particles only overlap by a
very small amount would appear to be sufficient. The difficulty with
increasing sophistication is that it requires more and more parameters,
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which may be difficult to measure. Also, the benefit of more complex laws
is marginal. The need for a contact law arises from the existence of a
statically indeterminate state. The first goal is to fix this problem by simple
means and get some insight in the properties of such systems. Added
complexity can be inserted later as a refinement.

Any two surfaces that touch one another could in a first
approximation be assumed to repel one another as springs. This gives a
relation for the normal force between the surfaces that is characterised by
merely the spring constant k. The latter will generally be a function of
the contact force itself. The non-linearity that is associated with that
gives rise to the need to introduce incremental contact laws (the need for
incremental laws will be discussed in more detail below). So, if the
normal displacement D, is related to the normal force F, via a spring
constant

F, =k(F,)D,

Then the incremental law reads

The function k(F l) may contain a number of features. In addition to the
non-linearity the incremental spring constant may be either assumed to be
entirely elastic or reflect certain plastic effects (that is, have different
values for loading and unloading).

1.5 The frictional interaction

One effect that is without doubt very important in the constitutive contact
law is the effect of friction and to introduce that the normal force alone is
insufficient; a tangential force-displacement rule must be added to the
description.

The friction effect is obviously plastic. When the force ratio (that is
the magnitude of the tangential force to the normal force) reaches a
certain value p_, persistent further motion will not change it; a constraint
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has become active that keeps the force ratio constant. This was
established by [Coulomb, 1785] (based on measurements by [Amontons,
1699], see [Heyman, 1972] for the history of the subject and many more
references). The concern here is essentially with dry friction. [Bowden
and Tabor, 1956] treat the subject from an engineering standpoint
and also extend their treatment to include effects of lubrication. On
unloading the contact may recover its elastic properties, though not
necessarily with the same elastic constant as the loading curve. The
process is illustrated in Fig. 1.3, where F,/F, is shown as a function
of the tangential contact displacement D, . In this figure the spring
constants for loading and unloading are taken as constants; when a
nonlinearity is taken into account the straight loading and unloading lines
become curved.

F/F,

H

DH

Figure 1.3. Illustration of the Coulomb friction principle.

It is clear that when behaviour like this is encountered an incremental
formulation is necessary. The normal and tangential motion become
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coupled, so a general form for the incremental contact response relates the
force increment to a displacement increment

e k)

i TN

The elements of the matrix are the spring constants. Some properties of
these are easily determined.

In the elastic state there 1is an incremental potential,
%(kudi +4(k,, +k,)d d, +k|md”2), from which the force increment is
obtained by partial differentiation. It follows immediately that for this case
the matrix must be symmetric: &, =k, . If, in addition it is assumed that
normal and tangential increments are uncoupled, it follows that the off-
diagonal elements vanish. This does not preclude anisotropy with respect
to the direction of the contact surface, so k,, need not be equal to k. If
they are assumed to be equal then the one-parameter model k =4, 8
follows, which has the pleasant property that it is invariant under rotation,
so the direction of the contact is irrelevant (the Kronecker delta § is
formally introduced in Section 2.2). For contacts that only interact through
the normal force (frictionless) k, =0.

In the frictional sliding state an additional force increment added to the
state (F F /) should leave the ratio F,, / F| constant at the value of .

Taking F, and F, both positive, leads to the following

T
F, EI F E EI Fy F\'\ F,

FL+fL 1
A f
F;\ Fl

~

Hy =

In other words

:0_)ﬁ|_/’lsfl=0

This constrains the elements of the matrix k by the additional relation
kid, +kyd, ~ ”(kudi + kindn) =0

which must hold for arbitrary displacements, hence

by —mk =05k —pk =0
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So, for this case the matrix k takes the form

K _)[ ky, k\||| /;USJ
pky Ky,

In many instances the increase in the tangential force increment for
purely tangential motion is negligible, implying that k = 0. The frictional
state is then entirely described by two parameters, &, and ..

When F, is negative, s, is replaced by —u ; otherwise the relations
remain the same.

Unloading from the frictional state is detected by checking what the
response would have been for an elastic increment (this could in principle
be brought about by an increase in the normal force). If this decreases the
magnitude of the tangential to normal force ratio, the next increment
should be evaluated using the (unloading) elastic law. Therefore, the
frictional interaction is predictive, but must always be followed by a
verification.

Friction in two dimensions is covered in the literature. [Ruina, 1980]
and [Ruina, 1983] discusses the sliding state once the initial friction
criterion is passed. On continued motion the value of falls by a small
amount — the friction is said to change from a static value to a kinetic
value. In addition, an extra stress that is proportional to the speed of
continued tangential motion needs to be introduced (this effect is
sometimes known as the Ruina—Dieterich law: [Dieterich, 1979, 1981]). It
should be emphasised that the measurements that underlie this law are
done on blocks of rock material. In these experiments there are always
many contacts at the same time, while for the present application two
particles share one contact, which is approximately a point-contact, that is,
a very small contact area between two convex surfaces. Direct application
of the Ruina-Dieterich law may therefore not be appropriate.

While the frictional effect has been measured extensively, the actual
mechanism of the contact mechanics that lead to friction is relatively
unexplored. [Villagio, 1979] has put forward some interesting ideas,
though they have so far not been widely followed up.
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1.5.1 Friction in three dimensions

The exposition given above is idealised in that the motion and force
parameters all operate in a plane. To some extent that is a view justified
by the fact that the frictional interaction takes place on the surface of two
bodies in contact. The unit normal of the surface is n and if the force
across the surface is F, the normal component is the inner product
F, =Fen. The tangential force is then F, =F—(F-n)n. The sliding
friction criterion may now be expressed as /K *F, = F . This relation
represents a cone, as illustrated in Fig. 1.4.

K

Figure 1.4. Friction cone. The opening angle is 2tan™" 4, .

The procedure for obtaining the incremental interaction in the sliding
state is the same as before. Basically, the force vector must be constrained
to move on the surface of the cone.

The most convenient way of making progress is now to choose a
coordinate frame that is aligned with the forces. One unit vector — n —
is already in place; of the other two one is chosen to be aligned with
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F, and the other one normal to that (as well as normal to n). The former
is called n, and the latter n, (this vector is sometimes called the
binormal). In this frame the force and the force increment have
components

F, i
F— Fn =>f- fII
0 Jo

The sliding friction criterion becomes

VOB R(F ) = (F o+ 1)
Expanding up to first order in the increments gives

fH = ,u.va

This is exactly the same relation as for the two-dimensional case and the
implications for the incremental force-displacement relation are also
obtained in a similar fashion. The resulting interaction is

fi ky, 0 ﬂ;IkHO d,
= sk 0 Ky d,

1 0 ky, k<>u ky, d,

The question now is whether there is a coupling between the third
direction and other two directions. If the third direction operates entirely
independently then all coefficients with a ¢ vanish other than the diagonal
term k,, which is probably some fraction of the normal diagonal
coefficient & . If, however, the tangential force influences the behaviour
in the third direction then a number of extra parameters need to be taken
into account. For point contacts these parameters are very difficult to
measure.
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1.6 Contact laws in terms of material parameters

A question that is particularly of interest to the simulation community
concerns the matter whether the spring constant can be related to the
material properties of the particles. The prime candidate for such a theory
is the Hertzian contact theory, which deals with two elastic bodies that are
being compressed together — [Hertz, 1882]. The details are in [Landau
and Lifschitz, 1976] and more extensively in the [Johnson, 1985] book on
contact mechanics.

For two spheres pressed together by a force F| the distance between
the centres of two spheres with radii R and R' is reduced by an amount

DL
173
I 1
D =F" o} — 41 ,
-efo(ld

where the parameter O contains the elastic constants (Young’s moduli
E, E' and Poisson’s ratios v, v') of the materials of which the solid

bodies are made:
1-v? 1-v"

An obvious aspect of this force-indentation formula is that the force-
displacement relationship is non-linear. An incremental relationship is
easily obtained

F1/3 1 1 -1/3
fJ_ :%Qé/a |:(E+F):| dL Eku (FL)dJ_

A relationship between the proposed spring constant and the material
parameters of the particles could then be proposed as some assembly
average value of k(F ) For simulation purposes that would be very
unsatisfactory and the vast majority of simulists code for the original
relationship between D, and F|. For analytical modelling, however,
where interactive properties frequently appear as sums over nearby
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particles, an averaging approach may be convenient for theoretical
purposes.

In two dimensions, relating a spring constant to material properties can
be ascertained by looking at the compression of two cylinders along their
axes. The Hertzian relationship is, see [Puttock and Thwaite, 1969] and
[Williams and Dwyer-Joyce, 2001]

3
DL=ii I+In bmt l+i ,
3z /L FO\R R
where /¢ is the length of the axes of the cylinders and R, R’ are the
cylinder radii. Note that the expression essentially depends on the force
per unit length.

This expression is also non-linear, but not easily employed, because

inverting it (to give F, as a function of D ) leads to extra numerical
work.

4e+5

3e*5 71 cylinders

2e+5 A
spheres

1e+5

contact stiffness
(Nm™)

T T T T T T
0 50 100 150 200 250 300 350

Force (N)

Figure 1.5. Contact stiffness as a function of the applied compressive force
for two spheres and two cylinders. The parameters used are as follows:
0=10"m*N""; all radii .0lm and the cylinder length ¢ =.01m.

The expression can be differentiated with respect to D, and then
OF, /0D, as a function of F| may be obtained,
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OF, k= Ry 44
oD, 3(R+R'
N 401 67r€( + )
QRR'Fl

A comparison of the contact stiffnesses for the cases of two spheres
and two cylinders is illustrated in Fig. 1.5. It is seen that there is a very
substantial variation in the result, especially lightly loaded contacts have a
vanishingly small incremental stiffness.

The assumption made here is that the contact areas are immaculately
clean and that the contact is perfectly smooth. For two particles made of a
natural material — sand particles, for example — that assumption is
obviously severely contestable. Further research on two fractal surfaces
pressed together is reported in [Hanaor et al., 2015]. As the only purpose
of the contact stiffness is to hinder two particles from overlapping (and do
so in a controlled manner), it could be argued that any stiffness is fine, as
long as the indentation is such that only a very small overlap (compared to
the typical radius of the particles) is effected at the typical contact force
regime in the assembly. It is also noted that for particles composed of
natural materials a number of plastic effects can be expected (including
breakage). Therefore, frequently, researchers just take a constant value for
the contact stiffness and add friction, for example [Kuhn, 1999]. This is
computationally simple and achieves the purpose of rectifying the
problems of determining the contact forces in the case that the assembly is
not in an isostatic state, at the expense of some physical realism. This is a
perfectly reasonable thing to do.

In some sense the details of the normal interaction are not that critical.
The tangential stiffness, including frictional effects can be added to the
interaction. There are various approaches. A well-known one takes
account of slip in an annulus inside the contact area. The extent of the
annulus depends on the applied force ratio. A fair amount of ink has been
spilt over this problem; quoting [Johnson, 1985]: ‘In a paper of
considerable complexity, [Mindlin, 1949], [Mindlin and Deresiewicz,
1953], have investigated the changes in surface traction and compliance
between spherical bodies in contact arising from the various possible
combinations of incremental change in loads: normal force increasing,
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tangential force increasing; normal force decreasing, tangential force
increasing; normal force increasing, tangential force decreasing; etc.’
The parameters needed are the material stiffness, Poisson’s ratio and a
friction coefficient. Despite the complexity of the calculations the result
in terms of incremental contact law is not dissimilar from the one
obtained from the phenomenological approach as pursued above. All the
notes regarding the idealisation of the problem, and therefore the
question marks that accompany an application to the ‘dirty’ materials of
which the real world is composed, are relevant again. It could also be
argued that an analysis meant to explain friction based on the assumption
of a friction coefficient is tautological, at best adding details to the
mechanism.

1.7 Interaction for small particles in a fluid environment

This section deals with small particles, micron- and sub-micron-sized, in
a fluid environment. The question is how such particles interact when they
come close together. Applications in chemical and environmental
engineering (especially filtration), cosmetics, the mechanics of clay, etc.
are envisaged. In these applications dense cakes of small particles are
created and subsequently manipulated by either sedimentation or filtration
methods.

The particles are solids, implying that the constituent molecules are in
some sort of crystal structure. On the boundary of the particle solid the
crystal structure meets the fluid; the crystal arrangement suddenly ends.
There is then a discontinuity in the electric charge distribution, which is
accommodated by the recruitment of the ions in the fluid near the
boundary into a compensating configuration. The fluid molecules,
however have a far greater mobility than those in the solid. Moreover, their
equilibrium state — far from the solid boundary — is determined by the
type of molecule in the fluid and its temperature.

The mobilisation of the ions in the fluid is achieved by either turning
the dipoles of the fluid molecules in the direction of the solid boundary, or
by attracting or repelling ionic charges. This can only be partially
successful, as the thermal motion tends to make the alignment less
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effective. Also, if in a fluid a layer of molecules has a more or less
aligned dipole moment, the next layer of fluid will respond by turning its
dipoles in the opposite direction in order to achieve charge neutrality.
Thus, a double layer is created. The electrical potential in the fluid as a
function of the distance from the boundary will be a declining function.

Now, if two particles are brought together there are two declining
potentials and the charges inside the fluid will act on that, effectively
causing a repulsive interaction. This is called the double layer interaction
and it is part of a multi-aspected interaction, the so-called DLVO
theory — named after its main contributors Debije, Landau, Verwey and
Overbeek. The analysis of the complete theory involves a large number
of approximations, basically taking account of the repulsive double-layer
interaction and an attractive van der Waals interaction.

The literature on this subject is vast. The classic is [Kruyt and
Overbeek, 1969]. Good textbooks that treat the basics and a plethora of
applications are [Hunter, 1987, 2001].

The theory of the double layer interaction is extremely well-researched
in the colloid literature and all that needs to be done here is to communicate
the results.

A measure for the thickness of the double layer is some chosen multiple
of ¥ and « is approximately

ezn(O)Z2
K= |————,
ek, T

where e is the electron charge, n®) the bulk concentration of ions, Z the
valency of the ions, & the electrical permittivity of the fluid, £,
Boltzmann’s constant and 7' the absolute temperature. If there are more
than one type of ions in the fluid the concentration and valences are simply
summed. Now, the interaction between two particles depends on the
separation of the particles H and the parameter x; the simplest non-
dimensional combination is Hx. Thus, the double layer interaction is a
function of Hk. The actual form of the interaction is exposed in two
approximations involving the particle radius 4. The first approximation
pertains to the case in which xa is large (say, larger than 10). Defining
the surface potential as y, the interactive potential is
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V(H)=2ncay, ln(l + e”‘H)

The second approximation is relevant for xa <5, in which case the
interactive potential takes the form

202
Area’y, _cn
—

y()=222

In these formulas the surface potential as y, depends on the type of
surface and the ionic content of the fluid. The interactive force is obtained
from -0V /oH.

The van der Waals contribution has also been evaluated. Here the
interactive potential for two equal particles is given with 4, a constant
called the Hamaker constant (the analysis is due to [Hamaker, 1937])

2 2£
H(H+2j In a +3£+2
a\a £+2 a
V(H):_Alz - 2
6H(H+2)
al\ a

If the two particles are very close together ( H / a < 1) then this reduces
to

H a
V(H) =—¢4, m(;J_%Alzﬁ

The contributions from the double layer interaction and the van der
Waals interaction can be added to give the main contributors to the
DLVO theory. The total effect depends on the coefficients, which reflect
the exact type of system that is relevant. An example of the sum of the
two contributions is given in Fig. 1.6.
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Figure 1.6. Illustration of the potential V. scaled to 2zecay, for a value of
xka=20 and 4, /(27[&11//3 ) =0.3.

The example in this graph is chosen to highlight some features. Some
numbers are relevant. Suppose the particle radius is 0.2 um, then the
double layer thickness is &' =10mm. For distances less than a few
nanometres the theory is unreliable. In the figure that corresponds to
H /a=0.03. The sum of the two contributory potentials V. is then not
accurately represented for very small H /a. Keeping that in mind, two
features of the combined potential are clearly visible. Firstly, there are two
attractive wells, one very close to the particle (where the theory is not
valid) and one around H /a =0.18. Secondly, moving the particles closer
together from the latter minimum, there is a potential to overcome. It must
be pointed out that these features are specific to the choice of parameters
that has been made.
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For much thicker double layers there are no potential minima in the
relevant range and the interactive force is always repulsive. This is
illustrated in Fig. 1.7 where xa =3. Note that the interaction is highly
non-linear.
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Figure 1.7. Illustration of the potential ¥, scaled to 2zecay, for a value of
xa=3 and 4, /(Zﬂgal//(f) =0.3.

The plethora of behaviours of colloidal substances is largely due to the
variety of possible outcomes for the interactive potential curve and
whether there are minima or maxima in the ambient mechanical (and
thermal) environment.

One consequence of the existence of an interactive potential is that
there is always a force active between neighbouring particles and as a
result considerations relating to the isostatic state are not as acute as in the
case of an interaction that is solely due to contact.
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Chapter 2

Continuum Mechanics and Cartesian
Tensor Calculus

2.1 Initial considerations

In order to describe the deformation of granular materials from a large-scale point
of view it is convenient to be able to employ concepts from continuum mechanics.
In this approach there is no concern for the physical constituents of the medium
and their interactive properties. Continuum mechanics may be applied to all
manner of systems: gases, fluids, solids, crowds, flocks of birds, etc. The
fundamental concept is the material point, which is an element of the material that
contains a large number of physical constituents and which has smooth properties.
In what follows differential (infinitesimal) calculus is used and therefore some
thought has to be given to the manner in which the material point is chosen. In
fact, it cannot be a (mathematical) point at all. This issue is less academic than
one might think. When, for example, a simulation of a granular material is set up,
the number of particles must be large enough to not only capture the majority of
mechanical events that will take place during the deformation process, but also
to capture them in sufficient numbers to be representative of the process. This
is a fraught issue in granular mechanics, as these materials are intrinsically
heterogeneous and questions of spatial correlations are mostly difficult to answer.
Nevertheless, it is useful to have the framework of continuum mechanics in the
background.

The review of the subject given here highlights the essential topics that are
useful for densely packed granular materials. There are very good general books
on continuum mechanics: [Becker and Biirger, 1975], [Spencer, 1980], [Fung,
1977], [Eringen, 1989]. (Cartesian) tensor calculus is treated, for example, in the
classic monograph by [Jeffreys, 1931] and in [Temple, 2004].

33
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The medium that is treated then is assumed to be made up of material points.
The deformation of the medium takes place by the material points moving with
respect to one another. In what follows use will be made of Cartesian tensors.
These are mathematical objects that describe physical quantities, such as location
vectors, stresses, strains and stiffness properties. They are called Cartesian,
because their properties are defined via a Cartesian coordinate system. For
example, a location vector X has three components (xl,x2,x3) in three
dimensions. If a different coordinate system is used, the vector remains physically
the same of course, as it still points to the same location, but the components that
describe it will be different.

2.2 Rotations

One way of making a change to the coordinate system is by a rigid rotation. The
transformation from a coordinate frame is a matrix called Q. The coordinates of
the vector in the rotated frame are called ( VisVas y3) and the transformation is
effected by a matrix multiplication

2 O, On Os)\(x
=10y On Onl X
V3 O, 05 Os)\x

So, while physically the two vectors do the same thing, that is, point to a particular
location, their representation is different, because the reference coordinate frame
has been rotated.

The matrix notation is very cumbersome. It is easier to use the numbers of the
coordinates and also number the subscripts of the matrix Q. Then the
multiplication can be written as

Vi = ZQ,,-Xj

In fact, in most cases, people don’t bother writing the summation either, noting
that when a subscript appears twice, it needs to be summed. This practice is
called Einstein’s summation convention; it is incredibly useful. The matrix
multiplication can then be written as follows:
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Vi = LX)

The rotation is a very important object and its properties need to be
established. To begin with the Kronecker delta & is introduced

S, =lifi=
S5, =0ifi#

If the Kronecker delta is written as a matrix it takes the form of the identity

1 00
5—>/0 1 0
0 01

It is therefore obvious that the inverse of a rotation, Q', can be obtained by
solving

Qi;lek = é‘ik

The transposed of a matrix is denoted by a superscript T this is merely a
matter of notation: in the case of the rotation QJTI =0,

One of the physical properties of a rotation operation is that it leaves the length
of a vector invariant. Therefore, writing out the inner product of the vector y with
itself gives

T
ViV = Qijijikxk = QkiQijxjxk

This must be equal to the inner product of X with itself and as a result it follows
that

So, one property that is established here is that the transposed of a rotation is its
inverse.

A property that can be ascertained along the same lines concerns the
determinant of a rotation. Take any three independent vectors and consider the
volume that these define. Now, on rotation the vectors change representation, but
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their physical meaning remains the same, so the volume remains unchanged.
Immediately it follows that the determinant of a rotation equals 1.

These two properties of a rotation are easily verified when a specific case is
used. Take a rotation that leaves the 3-axis invariant and rotate in the 1-2-plane
over an angle . The matrix describing this takes the form

cosp —sing 0
Q(p)—|sing cosp 0
0 0 1

Indeed, it is seen that transforming back, that is rotating over an angle —¢, gives
the transposed matrix and that the determinant equals unity. For small angles the
rotation takes the form

4
o 1 0
0 0 1

If the rotation consists of three subsequent rotations over small angles around
the three coordinate axes (the so-called Fuler angles), then the result is

1 -p -9
?, 1 -
O, ¢ 1

So that for small angles the rotation is always anti-symmetric.

2.3 The strain tensor

During the deformation of a medium a material point will move from X to X+u,
where u is the displacement vector. It is desirable to have a measure for the
displacement of two nearby points, in other words, what is the behaviour of u in
the vicinity of X. In order to achieve that, the vector u is expanded in a Taylor
series in the point X. Fix a coordinate system with the origin in the point X; call
the coordinates &, and going up to first order leads to



Continuum Mechanics and Cartesian Tensor Calculus 37

0, o

1

U, =u, A
i i P 5; J
The quantity Ou; / O&; is called the displacement gradient.

For the purpose of describing the material behaviour the constant vector u”
is not of interest, as it basically deals with the translation of the material. Imagine
a block of a material, which is carried out of the laboratory. The translation says
nothing about the material behaviour. The displacement gradient is much more
informative, as it describes the motion of two adjacent points in the material as
they are wrenched apart. Part of the displacement gradient will be a rotation.
Again, arigid rotation says nothing about the material behaviour. The same block
can be slowly rotated around and no material points have come closer or moved
further apart. So, in order to arrive at a meaningful object that informs about
particles of the material coming together or moving apart, the rotation has to be
removed from the displacement gradient.

It is now imperative to define small deformations, the so-called geometrical
linearization limit, which is very commonly used in the theory of the
deformation of solids. This limit is valid while the components of the
displacement gradient have a magnitude that is much smaller than unity. In that
case the deformation gradient can be written as the sum of a symmetric and an
anti-symmetric part

ou, 1 ou Ou,| 1( ou Ou,

—L = L+ |+
oc, 2\o¢, og ) 2\0¢, o

The second part here has the form of a rotation over small angles minus the
Kronecker delta. The first part is symmetric and is called the strain E

Lo o
T2 og; 0¢

Consequences for the strain tensor
A number of interesting properties can be determined.

1. Any symmetrical matrix can be diagonalised by choosing a coordinate frame
in which the diagonal components are just the eigenvalues. These are commonly
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known as the principal strains; they are called £ (1), E (2), E® and ordered so
that EV >E® >EC. ED s the major principal strain, E® the minor
principal strain and E @) the intermediate principal strain.

2. If a coordinate frame exists in which the diagonal components vanish, then that
state of strain is called pure shear. If a rotation is added to the pure shear state, so
that the whole deformation can be written as u, = a &, then that state is called
simple shear.

3. The fact that there are eigenvalues means that there must be a characteristic
equation. No matter what the choice of coordinate frame is, these eigenvalues are
always the same; therefore, the coefficients of the characteristic equation are
always the same. It follows that in d dimensions there are d eigenvalues and
hence d rotation-invariant coefficients. These invariants must have physical
meaning. The easiest way to see what they are is by studying a strain in a diagonal

0

state. Calling the eigenvalues E"’, the characteristic equation is

f[(l—E“)):o

1

In two dimensions the invariants are then EV + E®) and EVE (2), that is, the
sum of the diagonal elements (the so-called frace) and the determinant.

The sum of the diagonal elements has a simple meaning. Consider a rectangle
with sides of lengths L, and L,, see Fig. 2.1. A deformation will change the
lengths of the sides to L, {1+ E (1)) and L, (1 +E (2)) . The area of the rectangle
will therefore have changed from L L, to (neglecting products of the strain
components because of geometrical linearization) L, (1 +EYV+E (2)); it is
seen that the ratio of the change in the area to the initial area is just the trace of

the deformation tensor.

Giving physical meaning to the determinant is more difficult, as this is the
product of the components of the strain tensor. These are all assumed to be much
smaller than unity and therefore the product, as compared to something of the
order of magnitude of the trace is negligible. However, the determinant of
the strain plus the Kronecker delta can be given an interpretation. Adding the

Kronecker delta to the strain gives a matrix that spans two vectors [(1 +EY ) , 0}
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and [0,(1+E(2))}. The determinant of this matrix is of course exactly the

relative change in area.

|

[
L, (1+E@) L
|

l

i

& L 5

1

—L(1+£Y) =

Figure 2.1. Deformation of an element of material under a strain tensor.

These results remain intact in three dimensions. The trace E; is equal to the
volume strain. In three dimensions there is a third invariant, which is the sum of
the sub-determinants

Ell E12
E21 E22

E22 E23
E32 E33

Ell E13
E31 E33

:E(I)E(z) +E(2)E(3) +E(1)E(3)

This invariant is used very rarely and the same thing applies to it as before: it

is the product of small quantities and as a result negligible compared to the trace
of the strain.
4. The extension of a line element with direction unit vector N in two
dimensions is 71, EY +n§E(2). When E" and E® both have the same sign
this describes an ellipse. When E ™ and E® have different signs there is a
direction for which the extension vanishes. This is called the zero-extension
direction (sometimes also referred to as the ‘no-extension direction”) and will be
denoted by ¢, .



40 The Physics of the Deformation of Densely Packed Granular Materials

) E(l)
tan" @, = el

In the soil mechanics literature the solution is often represented as

. E(l) +E(2)
E(‘) _E(2)

—Z+lsin
Pre 275

In fact there are four such directions; +¢,, and *¢, + 7.

In this plane two-dimensional deformation the unit normal vector is rotated
over an angle n,n (E(z) - E(l))

1772

5. The volume strain, the trace of the strain tensor, is such an important quantity
that it is often quoted separately. Subtracting the volume strain from the diagonal
elements of the strain, leaves a tensor, which is called the deviatoric part of the
strain.

2.4 The stress tensor

The forces on a body in continuum mechanics are defined via the traction vector
T. The traction is the force per unit area that works on an infinitesimal area dA
of the exterior of a portion of the body under consideration. The outward unit
normal of the area is called N, as illustrated in Fig. 2.2.

The stress is the decomposition of the traction on the unit normal, so that the
traction is obtained; this is necessarily a two-tensor, which is called ¥, in a
formula

The force working on a finite area A4 is then

F, = [2,n,d4
A

The stress may depend on both position and time, of course. The force on an
enclosed region of the medium is

F,=§z,n,dA
A
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I n

Figure 2.2. Illustration of the traction on a continuum element.

The mass of the medium in the enclosed region is the volume integral over the
mass density p; Newton’s second law in continuum terms relates the rate of
change of momentum to the force acting on the medium and therefore (applying
Gauss’ theorem)

D os,
Ec.fpvidV = gEZijnjdA = C.E?CW

J

Here, D/ Dt is the co-moving derivative and V the velocity. If the volume is
held fixed, the integration and differentiation may be interchanged. The formula
is true for arbitrary enclosed portions of the medium, which implies that the
integrands of the volume integrals must be equal. Consequently, the equation of
motion for a material is

D az,.j
— V. =
Dt Y ox.

J

The analysis here has been concerned with forces that are transmitted to the
material point via the surface. Body forces, such as gravity, have not been
considered. They are easily added to the equation of motion. The gravitational
force, for example, will give rise to a term pg, on the right-hand-side (g is the
acceleration due to gravity).
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The equation for the angular momentum requires an outer product; in index
notation this is most easily done with the use of the Levi-Civita tensor €, which
is defined as follows:

&5 = 1; if any two indices are the same, then the result is zero; any
permutation of two (unequal) indices adds a minus sign.

So, for example, &5, =—1; &,;, =1 and &;; =0
Using the Levi-Civita tensor, the outer product of two vectors X and y
becomes

(XXy)[ l]k jyk

The angular momentum balance is now
D
E(ﬁ EpX;pvidV = (j)gykx 2, n,dA+ (j)gij,(xjpgde
Vv 14
Again, differentiation and integration may be interchanged for fixed volumes.
Noting that &, (ij /Dt)vk =&,V,V, =0 leaves
<j)gykx (pv,( )V = (jsgykx .0, dA+gSgykxApgde
vV

The area integral may be written as a volume integral
( oz,
é EpX Zk(l’l dA = Cf) —Cf) ( +x'/a_x/jdV
0z,,
=z, (zk, x4 jdV

vV 4

Inserting the equation of motion cancels everything out, except for

ijk

gSgZdV 0

4



Continuum Mechanics and Cartesian Tensor Calculus 43

This must be true for arbitrary volumes, which implies that the integrand vanishes:

&2y =0. According to the rules of the Levi-Civita tensor it follows that

2, =2 ;. In other words: the stress tensor must be symmetric.

Consequences of the symmetry of the stress tensor

The implications of the symmetry of the stress tensor are similar to those of the
strain tensor.

1. The stress tensor can always be diagonalised, with eigenvalues Z(l), 2(2), 2(3);
these are called the principal stresses. Subtracting the mean principal stress from
the stress tensor leaves the deviatoric stress X, — T} r():)é',.j /d (subtly different
from the deviatoric strain, which does not include the dimension of the problem
d) . The term

defines the pressure p.

2. A graphical representation of the stress tensor is Mohr’s circle [Mohr, 1906].
The basic concept is discussed here. To that end a two-dimensional view is taken.
The stress tensor in diagonal form is

V0
0 2(2)

A unit area with unit normal M will experience a normal force Tn,

and a tangential force 7n, (M is the unit vector normal to N, such that

&,;mn; =1). These two forces are i(Z(l) + 2(2))+%(Z(1) -3® )COS 2¢ and

2

%(Z(l)—Z(z))sin%o. Plotting the tangential force as a function of the

normal force results in a circle with radius %(Z(l) —2(2)) and centred on

(%(Z(l) + 2(2)),0) . This is shown in Fig. 2.3.

From the figure it is derived that the maximum ratio of tangential to normal
force is achieved when the direction of the unit normal satisfies
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$0) _y)

cos2¢ = —2(2) S0

tangential
force

(=V_5@)

=

normal force

1
2()

Figure 2.3. Illustration of Mohr’s circle.
The angle in the plane (that is normal to the unit vector) is called the maximum

obliquity direction. The angle ¢ that describes the maximum value of the ratio
of the tangential to the normal force satisfies

sing,. =

These relations will be useful later on when friction phenomena are treated.

2.5 Tensors

The tensors encountered so far are the following:

e  Tensors of order zero, also known as scalars. These are invariant under
rotation, for example, the pressure.
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e Tensors of order one, also known as vectors. For example, the
displacement.

. Tensors of order two. For example, the Kronecker delta, the stress or the
deformation gradient.

e  Tensors of order three. For example, the Levi-Civita tensor.

The tensors describe physical quantities. When the coordinate frame is
rotated, the components of the tensors change value. The number of rotation
matrices required is equal to the order of the tensor. A vector U transforms to a
rotated co-ordinate frame, denoted by an asterisk, *, as uj= = Qy.uj under the
transformation Q that converts the coordinates from the un-starred to the starred
system. A second order tensor T transforms as 7’ ;q = Qpl.Qq/T,.j and so on.

A scalar is the same in all coordinate frames and is therefore invariant under
transformation. No (non-trivial) first order tensors are invariant, but a second

order tensor that has that property is the Kronecker delta
£ _ _ _ T _
5pq - Qpqu/d'j - Q,,,-QW- - prqu - 5pq

For this reason the Kronecker delta is the identity (tensor). This result still holds
if it is multiplied by a factor. The Levi-Civita tensor is also invariant, but for a
minus sign.

In what follows higher order tensors will be required, especially fourth order
ones. These are discussed in the next section.

2.6 Material response

The mechanical response of a material is described by the relation between stress
and strain. This rather simple statement conceals a multitude of variations and
subtleties, which are obvious when one considers the enormous variety of
materials and substances that exist — even in everyday life. A first order
classification may be achieved by distinguishing between solids and fluids. The
latter are rate-sensitive, which points to a connection between the stress and strain
rate. Purely viscous substances, such as water or petrol, may be described in this
way. However, many everyday materials defy a simple classification. Toothpaste,
for example, has both fluid and solid properties.

Here the concern is with granular materials and while it may be possible to
identify certain stress régimes where rate-dependence may play a role (even dry
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sands can exhibit ‘creep’, for example, and for granular assemblies of very fine
particles the situation is not clear-cut) the approach taken here is that the
materials are not rate-dependent. Does that mean that the relation between
stress and strain is a simple proportionality? Definitely not; the relation is highly
non-linear.

Capturing the non-linearity can be done by a phenomenological approach:
conducting many experiments on a sample of the material and fitting the stress-
strain behaviour so measured to material models, such as some version of
plasticity theory. In this way an intuition, or expertise, can be built up, which can
be deployed by professionals in the relevant subjects: geotechnical engineering,
geophysics, chemical engineering, efc. The important aspect of the
phenomenological approach is that there is a wealth of experimental data in the
literature. It would be stupid not to make use of it. The physics of the deformation
of densely packed granular materials has received not so much attention, possibly
because it targets no particular application.

In a general sense the non-linearity necessitates the introduction of an
approach by increments, as follows. At any time during the deformation the
internal state of the material is noted. A small increment of strain or stress is then
applied and the associated increment of stress or strain respectively is evaluated.

Incremental quantities are denoted by a small-type letter, 6 for a stress
increment and € for a strain increment. The question is whether the smallness of
the latter was not already covered by the assumption of geometrical linearization
and the answer is ‘no’. Even on a range of strain that is only a few percent there
can be enormous variability in the response of the material.

The incremental description enables the expression of the connection between
a stress and strain increment as a linear one. So, from a given state of the material
a response increment is obtained, as if the material is linear. The latter changes
the internal state, leading to a new connection between stress and strain
increments and then the subsequent increment is doled out. The collection of
increments is called a path, so there is a stress path and an associated strain path,
or a strain path and an associated stress path, depending on whether the
experiment is done by stress control or strain control of a sample.

The response of the strain increment to a stress increment is termed a
compliance. The other way round, the response of the stress increment to a strain
increment, is known as a stiffness or modulus. Frequently, the word ‘increment’
is dropped; in the context of stress-strain relations it is always clear from the use
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of the symbols whether increments or total values are being discussed. It is
anyway pointless to talk about the moduli or compliances when total values are
in question; the relationship is, generally speaking, too non-linear for that. The
total value is sometimes denoted by the prefix ‘pre’: pre-stress and pre-strain.

In general the stress-strain relationship is given by the proportionality

O, = )(ijk(ek/ ore; = G,

ikt Ok

The stiffness tensor X and the compliance tensor C are of the fourth-order.
One can be obtained from the other by inverting, providing the inverse exists.
Certain symmetry relations are noted. Both stress and strain are symmetric, so,
for example, it follows that X, =X, =X ;,
number of independent parameters is somewhat limited. However, that still

=X ;. Consequently, the

remains a lot of parameters to describe the full material response. In two
dimensions there are nine parameters that need to be specified, and in three
dimensions no fewer than 36. All this for each increment! The question arises
whether there are any physical principles that limit the number of describing
parameters.

2.7 Isotropic materials

In certain cases it can be argued that the material has no in-built direction. In that
case a rotation of the co-ordinate system would leave the tensor invariant. A
fourth-order tensor that is invariant under rotation has the form

ijk/. = j’é‘z‘jé‘k[ + /Llé‘ik5j/: + ﬂ'é;falq

with three coefficients A, u and 4. As X, =X, = X, = X, , it follows
that ' = u, no matter what the dimension is. So, the important conclusion is that
an isotropic material has two material constants.

The constants 4 and g are called the Lamé constants. Elastic isotropic
materials are frequently described with other sets of pairs of constants, which
have direct meaning for certain applications. Young’s modulus and Poisson’s
ratio (the contraction coefficient), commonly denoted by E and v; the bulk
and the shear modulus K and G are frequently used to characterise the

material. The latter is related to the Lamé constants as G = . The definition of
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the bulk modulus is the ratio of the pressure to the volume strain. All these
parameters can be converted into each other. The relations are given in
Appendix, Section A3. There are a lot of very good textbooks on the subject of
elasticity and its very many (engineering) applications: [Landau and Lifschitz,
1976], [Timoshenko and Goodier, 1970], a very old book is [Love, 1934] and a
more modern one [Barber, 2010].

The inverse of the isotropic moduli, the isotropic compliances are easily
obtained by inversion. The identity of the fourth order tensors is such that

X X_l %(éllié‘bj + 5aj§l

iipa paab ~ bi
first and second pairs of indices). The compliances take the form

) (this definition preserves the symmetry in the

C,py =&8,,8,+w(8,0,+5,0,)

pJq q=Jjp
. 1 . A . . .
with i = — and either { = —————— in two dimensions, or
4u(A+u)
A . . .
E= in three dimensions

2u(32+24)

2.8 Elastic behaviour

Here a quasi-static deformation is considered. First define a function 3 such that

03
o, =

y
6xj

Consider the deformation of the material to change from ‘state 1’ to ‘state 2’,

according to some path. The work done in a small increment of deformation by
the traction t, which is associated with a surface displacement du is

,du,dA
A4

The total work done in going from state 1 to state 2 is
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2
W, = [ §t,du,dA
14

Now characterise the state of the material by a parameter ¢. State 1
corresponds to ¢, and state 2 to «,; the changes in the state are achieved
smoothly, so that the parameter & travels the interval «; < a < a,. The work
done is then

W, = quz ”dAda ngo 7 q[”"il jdVda

where the definition of the stress and Gauss’ theorem were used.
The material is in static equilibrium during the deformation —
00, /08, =0 — so the work done becomes

W, = j 95%

Using the definition of 3 (and assuming that 43 is a total differential) the result

d(ou, /ag ) e

is

4 a5 d(aup/agq) e N
le_iqja(aup/agq) — dVda_c'E[\s(z)—\s(l)]dV

It follows that, if 3 exists, it expresses the amount of energy per unit volume in
the material. This formula also says that no matter how the path is taken the
amount of energy difference between states 1 and 2 is always the same. When this
is the case the material is elastic; returning from state 2 to state 1 involves as much
work done as work returned.

An increment of work per unit volume (along the path traced by the parameter
) is equal to

5W=0}%
jagj
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Using the stiffness tensor
ou,
ow=X_,—"te
ijkt Py 5 1%

J

Because of the symmetry in the indices i and j the only relevant part of the
deformation gradient is the strain

oW =X,.e6,

Summing up, the following is found: if 3 exists the deformation can be
entirely characterised by the work done between two states; conversely, the only
thing that physically changes during a deformation process is the work done; it
follows from 6W = X e,¢,, that the symmetry relation X, = X, holds. For
an isotropic material this is evidently the case and consequently, isotropic
materials, for which the stiffness tensor does not change during the deformation,
are elastic.

2.9 Anisotropic materials

If a material is not isotropic it is anisotropic (sometimes called orthotropic, or
aeolotropic). It can then still be (incrementally) elastic, as long as the symmetry
relation X, = X, is valid. Even if a material is anisotropic there can be certain
restrictive relations. For a crystalline solid, for example, the way the atoms are
arranged in a regular packing (a lattice) gives rise to certain symmetry axes that
are manifest in the stiffness tensor. For granular materials that are not in a regular
packing this type of symmetry is not very interesting. However, the special case
of transverse isotropy is important. To illustrate it, a two-dimensional approach is
taken.
The fourth-order tensor is written in matrix form

O-Il Xllll XlllZ X1122 ell
012 = X1211 X1212 X1222 el2

Op X Xnin KXo )\ &
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The isotropic case has the form

A+2u 0 A
X—>| 0 2u 0
A 0 A+2u

A material is said to be transverse isotropic when there exists a coordinate
frame in which the stiffness tensor takes the form

X 0 X

1111 1122

X 0 24 0
X2211 0 X2222

The symmetry axes are then the coordinate axes; the material need not possess
elastic symmetries to be transverse isotropic.

2.10 Coaxiality

A peculiar property, associated with certain forms of transverse isotropy, is
coaxiality. A material is said to be coaxial when the principal axes of the stress
and strain ellipses coincide. The coordinate rotation that diagonalises the stress
will also diagonalise the strain. When two matrices can be diagonalised
simultaneously they commute, in other words: o,e;, —¢;0, =0. Working this
out for a general stiffness and requiring that the commutation holds for every
combination of strain tensor components leads to the following form

Xim 26 Xy —2u
0 2u 0 ,
X —2u 2 KXo

where y and ¢ are arbitrary moduli.

It is seen that an isotropic material always guarantees coaxiality (as expected).
However, certain anisotropic materials can also exhibit that property, providing
that the off-diagonal elements satisfy the prescribed connection with the diagonals
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and the shear modulus. Such materials are then never elastic, because the stiffness
tensor is not symmetric.

When there is a coordinate frame in which ¢ =0, it is possible for a coaxial
material to be anisotropic.

The context for coaxiality is a number of papers in the soil mechanics
literature in which non-coaxial behaviour is signalled; see, for example [Yu and
Yuan, 2006].

2.11 Objectivity and pre-stressed materials, the Jaumann
derivative

When any of the moduli of the incremental stress-strain relationship are of the
order, or less, than the magnitude of the pre-stress a complication arises, which
is related to very general physical principles. Literature on this subject is [Gurtin
et al.,2010] and [Dienes, 1979].

The formulation of material behaviour should not depend on the choice of co-
ordinate system. Consider then two co-ordinate systems that are connected to one
another by a (time-dependent) rotation Q(l ) . An incremental quantity is
essentially constructed as a time derivative, multiplied by a time increment 7.
The quantity starts from a certain value in a reference configuration and reaches
its subsequent state after the incremental change has taken place. This state can
be reached in two ways, as is demonstrated in the diagram below. The initial state
in the reference configuration is situated in the top left-hand corner. The
subsequent state — after the increment has been applied — is in the bottom right-
hand corner. The latter can be reached either by differentiating first and then
rotating, or by rotating first and then differentiating. The quantity is said to be
objective when the two procedures arrive at the same result.

A case in point is the deformation gradient, which can be written as a
symmetric and an anti-symmetric part

ou, 1 ou, Ou;| 1 ou, Ou,

og, 200g og ) 2008 o

The time derivatives of these are studied under the rotation Q(t) , which
transforms the coordinates of the reference configuration, frame I — denoted by
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& — to frame 11, called X; kinematic variables in this frame are distinguished by
an asterisk. The deformation velocity is called V.

Expressing the two elements of the deformation gradient velocity in frame 11
is done as follows

2(ox;, oOx; ) 2005 ox; 0 ox

1

%, 2, 0 (% %,
(%( §+Q,-waax_ia§( £ + Q,Z(Jax)

J 1

Frame | Frame ||

Time 2

€ is related to X by the rotation: x, =0, and so ax, /0, =0, (also
o0&, / 0x; =Q’1 =(Q,) and the rotation is rigid and therefore position-
1ndependent Using these properties of Q and 0&,/0¢, = J,, then yields

6‘} 6‘); ank ‘ aQ/k %
(ax 6_X,J ({ ot le akaQﬂc i( o +ng akaQikJ

Now, for the case of the plus sign, two terms combine

00, 00, 0
kﬂ+j;ih ot

2(00.)2(0.0))=0
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It follows that

ov, 6\/;
(ax ox, J [Q/le/ é: szQ,/ afk]

This is exactly the transformation for a second order tensor under a rotation, as
expected. Therefore, the strain rate is objective.

For the case of minus sign, however, relating to the rate of change of the
rotational part of the deformation gradient, denoted by R, it is found that

% ov; ov’ 1{ 00, 00, .
R,-f—[ ——’J=5[&Qﬁ— "’fQ,-kJ+Q,-4ijRM

ax Ox, ot ot

1

00

= Qif:ij Ru— Oy

This is not the transformation for a second order tensor; an extra term has
to be added. The rotation part of the deformation gradient is therefore not
objective.

The issue of objectivity acquires a certain poignancy when the Cauchy stress
is investigated. The transformation takes the form in compact notation

2 =02Q'+Q2Q" +QzQ"
From

Q'
ot

b

o* . a ) o* .
R; =00, R“‘_% « of R"=QRQ"' -
it follows that

Q

o R QAR
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This is used to evaluate the Cauchy stress rate, with the result
o (ﬁ* Q- Ql.l]ZQ‘l +Q2Q " + QE[—Q-1 R+ liQ“]
Rearranging leads to the form
iiJ%zﬂqfﬁ*zQ(i—ﬁz+zﬁ)Q*

It is seen that the time derivative

\4 .

>-3-RI+ZR

is objective and it is called the Jaumann derivative, or sometimes the co-
rotational derivative. Note that the Cauchy stress itself has no objective time
derivative.

Material behaviour should not depend on the rate of rotation and therefore
the appropriate way to describe incremental behaviour is to specify a link
between the Jaumann increment and the strain increment, which are both
objective measures. The difference between the Jaumann derivative and the
direct derivative of the Cauchy stress to obtain a stress increment is negligible
while the incremental stiffness moduli are much greater than the pre-stress.
In certain cases, however the difference is important, as will be demonstrated
below.

The Jaumann derivative is symmetric.

2.12 Frictional materials

A material is said to be (pure) frictional when there are no combinations of
incremental strain components that increase the stress ratio. A pre-stress state is

P 0
0 A

put forward in diagonal form
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Added to this is an increment of stress

(1)1 +0y, O ]
O-12 [)2 + 022
The principal stresses of this new stress state are

(Pl’ OJ
!
0 P
The changes in the principal stresses are evaluated up to first order in the
increments

R=R+0, +0(jof ) and =P+, +0ff

/ !

R-F , . |A-B
, the one after a stress increment is |———|.
R+PF, R+F

The initial stress ratio is

The two are required to be equal, so (again up to first order in the increments) it
follows that

on-n — PIO-ZZ _

(R+B)

Here, B, > P, >0 has been chosen. Substituting for the stress increments the
stress-strain relation results in

(P1X2211 _P2X1111)611 +2(P1X2221 _P2X1121)612
+(1?)(2222 _PzXllzz)ezz =0
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This must hold for arbitrary strain increments, leading to a form for the stiffness
tensor as follows

P
X S _1X2222
P,
X 2u Xim
P P
F2X1111 Fzg X

1

The friction criterion makes no statement about the value of the shear modulus
or the coupling between shear stress and diagonal strains. (No insight is lost if the
latter are set to zero: X,;, = X,,,, =¢ =0.) Itis noticed that the stiffness has no
inverse; therefore, a compliance formulation is not available for a frictional
material. A better understanding of that and its implications will be presented in
the next section. The frictional material has a transverse anisotropic form.
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Chapter 3

The Bounds of Static Equilibrium

3.1 Ciriteria for rupture

Forms of the stiffness or compliance tensor may be suggested by physical
principles, such as have been encountered in the previous chapter. For a
stiffness tensor to make sense, however, it must lead to equilibrium
equations that can be solved (given sufficient boundary conditions). The
equilibrium equations are here pursued in the absence of body forces.
Also, the difference between the Jaumann stress increment and the Cauchy
stress increment is not considered in the first instance, though that will be
reintroduced at a later stage.
As seen before, the equilibrium equations take the form

oo, 0
g‘/ =0—> g(XWeM) =0

J J
The situation of primary interest is the one in which a homogeneous
material is stressed uniformly. The solution in that case is simply
U =X, but is that the whole solution, or are there other ones? Here, the
possibility of a strongly localised displacement field is studied. Such fields
are called rupture layers (sometimes, slip bands or failure planes).

The analysis using a stiffness-based approach was first introduced by
[Biot, 1965], see also [Hill and Hutchinson, 1975]. Many authors in the
soil mechanics literature have written papers on localisation that use a
compliance-based model, because that makes a connection with the
plasticity constitutive material description that is frequently used.
Pioneer in this area has been Vardoulakis: [Vardoulakis et al., 1978],
[Vardoulakis, 1979, 1980], [Vardoulakis and Sulem, 1995]. There are

59
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other contributors to the theory, such as [Vermeer, 1990] whose analysis
is an adaptation of the work by [Rudnicki and Rice, 1975]. Experimental
work on rupture layer formation has been a key driver of this subject.
Work by [Arthur et al., 1977], [Arthur and Dunstan, 1982], and [Desrues
and Viggiani, 2004] have shown that there are a number of possibilities
for localised deformation in frictional materials and it is the task of
theoreticians to produce the appropriate modelling to describe it.

The mathematical work leans heavily on the theory of second order
partial differential equations. Now, it is interesting to note that the
theoretical work on rupture layer formation, quoted above, generally takes
the actual equations into account only (frequently, the rupture layer
formation is seen as a way to establish certain aspects of the constitutive
equations); however, boundary conditions should be specified as well and
below that aspect is treated further.

To begin with, a simple analysis with an assumed form of the
constitutive response is carried out. The localised layer has a unit normal
n (the treatment is sufficient in two dimensions). The field is constant
along the straight lines as shown in Fig. 3.1. In equilibrium the requirement
for the rupture layer field g(x.n) is

Xyginn, =0, (3.1
which has a solution when

The tensor P, = X, ,n n, is sometimes called the acoustic tensor.
An incremental transverse isotropic material model is used, see Section
2.9. The determinant may be worked out to give the following equation:

HXyn) +[(X1111X2222 _X1122X2211)_,U(X2211 + X )]nlznj
+,UX2222”; =0

The material will be able to experience a rupture layer when there are
real solutions for n, and n,, or, alternatively dividing through by n!, for
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the tangent of the angle that the normal of the rupture layer makes with the
x, axis, which will be called \/; . The equation for y reads then

ay’ +by+c=0,

with a = puX,,),; b:(leXzzzz _anzXzzn)_,u(Xzzn +X1|22);
c=puX,,

The solution is simply

Figure 3.1. Illustration of the geometry of rupture layer formation.

The solution must be real positive for the rupture phenomenon to exist.
At this point it is helpful to outline a scenario. A sample of granular
material is stressed, increment after increment; as a result the incremental
moduli will change. If the loading is such that — after an initial isotropic
compression — the stress X, increases, while X, is held constant, then
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the sample will come to a point at which peak stress is reached. Rupture
phenomena are usually observed at, or near, this point. A dense sample
will dilate and, taking compressive stresses and strains positive, as is
convention in soil mechanics, e,, > —e,, <0. At peak stress the increment
o,, =0. In a test in which X, is held constant, so that the increment
0, =0, implies that

X 11X 50y — X1 X

2222 112272211 :0

X

1111

2222

In other words, at peak stress the ‘outer determinant’ of the stiffness tensor
vanishes. The values of the major and minor principal stress at this point
will be called P, and P,.

It is important to have an impression of how the outer determinant
approaches zero. At a point just before peak, the major principal stress will
have reached a value that is a small amount smaller than the peak value,
B (1-¢) say. In order to arrive at peak the principal strain must be
increased by a certain amount, Ae,,. Therefore, the ratio ¢P, / Ae,, gives
an impression of the stiffness. The ratio &/Ae;, is a number that
approaches zero at peak, but at some point before peak could easily be of
the order of unity (for example, at 99% of the stress peak it will take
another 1% of strain to reach the actual peak value). Consequently, the
stiffness near peak is of the order of magnitude of the peak stress, say fF,
where the number f may vary from the order of unity to zero (and in
principle it could be negative, when post-peak behaviour is included). For
the purposes of a calculation it is then practical to set

X1111X2222 _X1122X221l
X

2222

-7

In the scenario sketched, where the moduli change continuously as
the stress ratio is pushed up, the point at which the rupture layer
materialises is when b° —4ac becomes zero (while —b/2a is positive).
Now,
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b* —4dac =
2 2
[(X1111X2222 _X1122X2211)_,U(X2211 +X\ 1y )] =4 X X,
2
:[fplezzz _:u(XZZII +X1122):| _4/12X1111X2222
:fzplzXzzzzz —2fR Xy, (Xzzn +X1122)
2
+,U2(X2211+X1122) _4/12X X

1111+ 2222

This becomes zero at the point when the shear modulus reaches the value

— f})lXZZZZ
X1122 +X2211 i\/)(1111)(2222
_ fRX2222

X1122 +X221] i\/f])l)(2222 +X1122 +X2211

The direction of the rupture layer for these solutions are given by

_i -+ \/fP1X2222 + X1122X2211
2a X2222

Some practical input is required to assess the meaning of these
findings. In a test in which the minor principal stress is kept constant the
ratio X,,,,/ X,,,, =—e,, /e,, which is the dilatancy ratio . In the
previous chapter — Section 2.11 — it was shown that for a material in a
frictional state X, ,,, / X,,,, = B, / P,, which is the principal stress ratio R.
Both & and R are of the order of magnitude of unity. The moduli X,
X 122> X5011> X5y, are all very much greater than the principal stresses;
typically X, =1000F,. Using these numbers the shear modulus at the point
of incipient rupture layer formation is of the order of

u=fR

As it was argued that f is of the order of unity, leading to zero for
peak stress conditions, it is observed that a shear modulus of the same
order of magnitude as the pre-stress needs be to taken into account. It was
therefore wrong to ignore the difference between the Jaumann stress



64 The Physics of the Deformation of Densely Packed Granular Materials

increment and the Cauchy stress increment. The analysis needs to be done
again, using the Jaumann derivative.

The Jaumann incremental formulation ensures that the material model
is phrased in a way that it moves with the material. Thus, the stiffness
tensor X connects the Jaumann increment with the strain increment; both
are objective. Equilibrium, however, is phrased using the Cauchy stress
increment. The connection between the Cauchy stress increment and the
Jaumann stress increment has been established in Section 2.11.

. v . . ao-l
L=2+RIZ-ZR—>o0,=X,.e, +1P,~ B and —=0

v Ox;

The system of equations for the disturbance g is then somewhat
modified with terms that contain the pre-stress

n12X1111+n§[/1_%(P1_P2)] nan[X1122+/u+%(Pl_P2):|
n1n2|:X2211+/U_%(P1_P2)] n§X2222+n12[1u+%(P1—Pz)]
The solution becomes possible when the determinant of the matrix

vanishes. As before, write for the tangent of the angle that the normal of
the rupture layer makes with the x, axis \/; , then

ay’ +by+c=0,
with

a :[ﬂ_%([)l _Pz):|X22225
b= (X1111X2222 _X1122X2211)_1U(X2211 +X1122)_%([)1 _Pz)(Xzzu _anz);

c= |:;U+%(P1 _Pz):Ile
The solution for y is

_ ~b+~b* —4ac

Y 2a



The Bounds of Static Equilibrium 65

Onset of the rupture layer occurs at the point when the discriminant
flips from negative to positive, while —b/(2a) is positive. A substantial
amount of algebra is required to obtain the solution. The following
abbreviations are employed (an approximately frictional material is
envisaged)

X

R= 1122 _
X

2222

X2211

;0=
X2222

2o |2

The solution for y is

2u(R+58)-P,(R*+R(2f -5 -1)+0)
2[2u-P,(R-1)]

. \/sz (P'D, —4uP,D, +445°Dy) +4P,Rf (P, (R—1)+2u) (P, (R 1)~ 2)

- 2\/X2222 I:zﬂ_Pz (R _1)]

y:

where
Dy =R'+2R (2f +5-1)+R* (41> —4f (5 +1)+ 5" —45 +1)
+2RS(2f -5+1)+65°
D, =R +R*(2f -1)+RS(2f -6)+5°
D,=(R-5)

Incipient rupture becomes possible when the term under the square root
vanishes, which takes place when the shear modulus equals

:u_i_ XD,
P, 2(X2222(R—5)2—4P2Rf)

2R\/7\/[(X22225 B ) (X (R4 R(f =6 =1)+8)+ B (R-1)’ )}
: X (R=8) —4RRf
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In order to illustrate these values a plot has been made for a choice of
sample values (Fig. 3.2): X,,,, =10’ Nm™?; P,=10"X,,,,; R=5; §=2.
These values correspond roughly to those of a dense sand near peak stress
ratio.

20

Q:(‘l i
=i
l.,l+
10 4
R—=5 ‘/____
(R-1)/29k: iy
e 4\ 2 : 5 : 0
8(R-1)/R f

Figure 3.2. Values for the moduli at transition to rupture.

The region where —b / a is negative is marked by the bold-type arrows.
For f>&(R—-1)/R this region is represented by the sloping straight line;
for /' <&(R—-1)/R itis the flat plateau at z/ P, = (R —1)/2. Transitions
to rupture that lead to positive values of y =—b/a are of interest only. In
the graph the region between the two lines x#° and g represents a
negative discriminant. Transitions can therefore take place at the line "
for />0 and at the line 4~ in the range 0< f <& (R —1)/R. Question is
then: what values of y =—b/a correspond to these two cases. The graph
shown in Fig. 3.3 provides the answer.

It is noted that the values for /P, on transition at the line u*
increase rapidly with increasing values of f. When u/P, is large the
objection against the original analysis, in which the Jaumannian
increment was not considered, becomes invalid. It is then reasonable to
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estimate the value of y that belongs to this case. One obtains in the limit
that the pre-stress is much smaller than the main moduli

_i — \/f})lX2222 +X1]22X2211 N \/ﬁ
261 X2222

The latter value is plotted as the dashed line in the graph of y as a
function of f. It is the bottom curve in this graph and belongs to the
transition to rupture at the line 4" in Fig. 3.2.

20
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Gt
l% 2 4 6 8 10 12

f

3(R-1)/R

Figure 3.3. The direction of the tangent of the rupture layer direction
squared, y, as a function of f.

The transition at = leads to a whole range of values for y, including
very large ones, corresponding to n,/n, —oo. In this case the rupture
layer is aligned with the major principal stress axis.
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3.2 The context of second order, partial differential
equations

The question now is: what will actually happen at the point of transition?
This depends on the boundary conditions that apply. An overview of the
role of boundary conditions in second order linear partial differential
equations is given in [Morse and Feshbach, 1953]. The overview hinges
on the classification of these equations, which is done as follows:

If b* —4ac <0, equation (3.1) is said to be elliptic
If b* —4ac =0 equation (3.1) is said to be parabolic
If b* —4ac >0 equation (3.1) is said to be hyperbolic

The boundary conditions that are applied must be such that the solution
is stable, which — quoting [Jackson, 1962] — implies that ‘A stable
solution is one for which small changes in the boundary conditions cause
appreciable changes in the solution only in the neighbourhood of the
boundary’. [Morse and Feshbach, 1953] summarise in Table 3.1 the
requirements on the boundary conditions for these types of equations.

The transition from elliptical to hyperbolic is called a bifurcation. The
vast majority of tests in which rupture layers are observed are conducted
in such a way that there is a closed boundary. That is certainly the aim of
the experiment, whether it be done under stress control or strain control.
At the point of bifurcation the stable, unique solution is abandoned. If the
medium goes into the hyperbolic mode the apparatus over-specifies the
boundary conditions. Therefore, such tests can only be done in an
imperfect apparatus. Now, every apparatus has imperfections when it
comes to specifying boundary conditions. It is impossible to say, for
example, what exactly is specified near the corners. While the material is
still elliptical that does not matter so much, because the influence of an
anomalous specification is only felt near the corner, see Jackson’s quote,
above. Rupture layers frequently emanate from the corners of an
apparatus.
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Table 3.1. Summary of requirements on the boundary for different types
of linear second order partial differential equations.

Type of
boundary
conditions

Elliptic
equation

Hyperbolic
equation

Parabolic
equation

Dirichlet open
surface
(displacement
specified)

Not enough

Not enough

Unique, stable
solution in one
direction

Dirichlet closed
surface
(displacement
specified)

Unique, stable
solution

Too much

Too much

Neumann open
surface
(displacement
gradient
specified)

Not enough

Not enough

Unique, stable
solution in one
direction

Neumann closed
surface
(displacement
gradient
specified)

Unique, stable
solution

Too much

Too much

Cauchy open
surface (both
displacement and
displacement
gradient specified)

Unphysical
results

Unique, stable
solution

Too much

Cauchy closed
surface (both
displacement and
displacement
gradient
specified)

Too much

Too much

Too much
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The analysis suggests that certain rupture layers are possible, but the
continuum is not compelled to take the rupture route. So, the possibilities
are as follows.

Figure 3.4. The tangent of the direction of the rupture layer squared as a
function of the parameter f for various values of the ratio of the shear
modulus to the minor principal stress.

1. Nothing will happen; this will be the case if the kinematics or stress
does not comply with any boundary conditions. The moduli cross over into
territory where rupture may occur; this territory may be termed the
metastable régime. However, if they do so — for example, if they cross
the line ", two possible directions present themselves, while the
original direction of a rupture layer is lost. This development has been
plotted in Fig. 3.4 for various values of g/ P,. The initial direction of
rupture is to the right (where only one direction is possible), but then as
f is made smaller two directions that satisfy the equations appear. It is
seen that these two directions share a common point, no matter what the
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value of /P is,for y=R (at f=0)and y=9 (at f =—0J); these are
the maximum obliquity and no-extension directions. Note that to reach
y =0 the value of f must be negative, that is, the assembly is in a post-
peak state. The direction y = JRS corresponds approximately to the
intermediate direction, that is the value of the angle halfway between the
maximum obliquity and no-extension directions.

The actual angles are as follows:

. o e
No extension direction: tan’ p,=——L

622

Maximum obliquity direction: tan’ Do =

ST |

Once the medium is in the meta-stable regime the equilibrium
equations are no longer elliptical; the problem becomes hyperbolic and
motion takes place along characteristics.

2. A second possibility on reaching the rupture criterion is that the
continuum is able to make internal changes in such a way that the moduli
perambulate down the transition line 4" until they reach the point at
which they can go no further and reach " =0 at which point the maximum
obliquity direction is invoked. Alternatively, this mechanism becomes
exhausted somewhere along the way and rupture takes place at an angle
between maximum obliquity and intermediate. While this mechanism is
speculative, it is plausible on the basis of the fact that the media considered
are very heterogeneous and it is therefore possible that locally the rupture
criterion is achieved, while the medium as a whole is not yet there. The
mechanism thus implies quite non-uniform motion.

3. On reaching the rupture criterion, the material is covered in a lattice
network — not necessarily regular — of rupture planes along which
deformation takes place. A new continuum is then created, which is
lumpy. Models for post-rupture behaviour have been proposed that
employ this philosophy. They are called double-sliding models. Note that
due to their lumpiness an internal length scale is required. Such materials
permit two types of rupture: one that takes place along the original
rupture directions and one that encompasses many lumps. The directions
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of these two types of rupture may be different (but generally they are the
main directions already identified). Double sliding models introduce
complications. One is that the lumps themselves are usually taken to be
rigid and as a result it is not immediately clear how the internal rotation is
determined during any incremental deformation. Various suggestions have
been put forward, from ‘free’ rotation (within certain limits) to rotation
that follows the rotation of the stress increment, see [De Josselin de Jong,
1977] for the former and [Spencer, 1964] for the latter.

Generally speaking the scenario sketched here of moduli that change
slowly as the material reaches peak stress (ratio) and has
frictional/dilational properties is likely to be correct. Once the
deformation becomes non-uniform, as the moduli cross the rupture
criterion, ‘traditional’ continuum mechanics is probably insufficient to
describe what takes place. Also, treating the continuum as a self-
contained entity is no longer correct; the boundary conditions must be
taken into account.

There has been a lot of effort matching the directions of the rupture
layers to experimental observations. The experimental study has been
most successful using X-rays in which the rupture shows up as a less
materially dense (increased dilatancy) narrow band. The angles of the
layers with respect to the major principal stress direction bunch around the
three main angles obtained in the theory. Using an apparatus with rubber
boundaries, which possibly imposes minimal kinematic restraints to the
formation of rupture layers, confirms the existence of the intermediate
direction, see [Arthur, Chua and Dunstan, 1977] and [Arthur ef al., 1977].
However, such test equipment still needs reinforced corners and — due to
the fact that rupture layers tend to originate in the corner — other
directions are obtained as well.

There is good evidence that the no-extension-direction is frequently
found in situations with one rigid and one open boundary. In this case a
stable hyperbolic equation is established: [Roscoe, 1970], [James and
Bransby, 1970], in which lines of zero extension characteristics occur prior
to rupture layer formation. This work shows that the scenario outlined
under point 1, above, is plausible.

Other analyses to find the direction of rupture have been pursued. For
example, one might consider under what constitutive circumstances
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certain jump conditions in stress or strain are permitted. Invariably these
analyses do not illuminate the existence of the meta-stable régime. Only
an analysis based on quasi-static equilibrium does that.

The fact that all the rupture phenomena take place at, or very near, peak
stress makes this analysis insufficiently subtle. Strictly speaking a higher
order model should be used, which is also able to give the thickness of the
rupture layer (a higher order model includes an extra length scale). The
difficulty with higher order models is that they require a lot of parameters,
which may be near-impossible to measure.

3.3 Wave speeds and strong ellipticity

The analysis may be extended by considering dynamic processes. Instead
of the static equilibrium condition (ignoring Jaumann derivatives for the
moment)

Oe,, _0

J

X..
194
= ox

The equation of motion for a material with mass density p reads

Oe,, o’u,
Sy

J

This equation has a wave-type solution; the amplitude and polarisation of
the wave are described by a vector A, the circular frequency is w, the
wave vector is k and the phase y

u, (x,1) =4 cos(wt +kx+ y)

The wave has a propagating direction n. The wave number k is such that
k = kn; the circular frequency and the wave number are related via the
wave speed ¢, as

w
k=—
Co
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Substituting back into the equation of motion (using the symmetry
relations of X) then results in

(Xnm, = PC38, )4, =0

ipq " J " q ip)*p
Now take the inner product with A
_ 2 02
Xiipqn«inquAp =pcoA

Note that A must be a real vector, so if the wave speeds are real (meaning
that the material can actually transmit a wave) then the following condition
holds
XiipqnjninAp >0

This must be true for all directions and all possible amplitude vectors. The
condition is known as the strong ellipticity condition and, as its name
implies, is somewhat more restrictive than the ellipticity condition
encountered before. It imposes limitations on the values that the stiffness
components can attain. For a transverse anisotropic medium these are
elaborated by [Koenders, 1984]. Static implications of the strong
ellipticity condition are treated by [Hayes, 1969]. Related issues of
uniqueness and infinitesimal stability are discussed by [Knops and Payne,
1971].
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Chapter 4

Heterogeneity

4.1 General considerations

The study of heterogeneity in continuum mechanics is a well-developed
subject. In order to make the insights relevant to densely packed granular
materials it is necessary to go into the details of certain aspects, but it is
not intended to give a full review here. The question as to why
heterogeneity is a necessary element in the understanding of the mechanics
of granular media is easily answered. Just consider a medium consisting
of one particle surrounded by its next-door neighbours. It was already
demonstrated in Chapter 1 that in a granular packing the number of
interacting neighbours and the direction of the branch vectors of each
particle varies considerably. It is therefore reasonable to expect that the
stiffness tensor that is associated with the mini-continuum that represents
the stress-strain response on a small scale is also a fluctuating quantity.
Leaving aside for the moment the question of how exactly the stiffness is
determined on a particle scale, it is surely helpful to determine the effect
of a fluctuating stiffness and to build up an intuition for the impact of
fluctuations in the system. This analysis will assist in determining the
sensitivity of the overall system to the fluctuating content, such as the
variability of stress and strain, the effect on overall stiffness components,
the relevance of correlation lengths and the formation of correlated
structures as the material evolves in a strain path.

Key to the analysis is the use of the quasi-static equilibrium equations
for a stress increment. To simplify the approach the Cauchy increment is
taken, as the use of the Jaumann increment is really only required close
to the formation of rupture layers. So, starting from the equilibrium
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equations 0o, /0x, =0 (not considering body forces) and a local
constitutive relation with stiffness tensor X, which is obviously position-
dependent, the equation in question is

%[Xijk,(x)ek/(x)] 0

J

No boundary conditions are specified; instead an average strain is
imposed. The average strain is the volume average over a volume V,
defined as

_ 1
e, = ;Iek[ (x)dV
Vv

The volume is very, very much larger than the size of the constituents.
The stiffness also has a volume average X. The fluctuations are then
X'(x)=X(x)—X. Substituting these in the equilibrium equations gives

o e . o
gj{[Xw + Xk (X)][ekk +el, (x)}} —0—

v, 2 (X) X ju (x)_ a[Xi}k/ (x)e;(, (X)]
Xijk/ 3 + e, +

J J J

=0

It is seen that the first two terms are ‘first order’ in the fluctuations, while
the third term contains the product of two fluctuations. So, if the
fluctuations are small this term may be neglected — an assumption that
has to be at least looked at afterwards. This approximation was first
introduced by [Kroner, 1967].

The equation

_ e (x) | ()
it axj 8xj

e, =0

is solved by Fourier transformation (see Appendix Section A4). The
Fourier wave number vector is denoted by k and Fourier transforms are
denoted by a ”. The strain fluctuation is
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In the Fourier domain the differential equation takes the form
1
_Ek (k ka/uk +k quu, ) +ik. ka,,e,(,g =0
Making use of the fact that X, = X, this may be written as
—k k, XW,(uC +lk Xe, =0
With solution
=iP; 1k X ,;kcéu ,
where P, =k k, X, , is the 2-tensor known as the acoustic tensor, just as

in Sectlon 3.1.

No solution exists when det(P) =0 and in the previous chapter it was

shown that this is exactly the criterion for rupture formation. Another
interpretation of the rupture criterion is therefore that the continuum is
brought in a state where fluctuations blow up and their effect is felt
throughout the whole medium. When the equations remain elliptical the
effect of a fluctuation is felt in the vicinity of the fluctuation only. These

concepts will be further elucidated.
The Fourier transformed of the strain fluctuation is

AP . 1
é(k,,ua + ki, )=— 2( B,k k, + B,k k,) X2,
The strain fluctuation in the spatial domain is

z]kfek[

€ = _;)"J‘dnkeik‘x (Pa;lkjkb + szlkjka)

2(27r

The Fourier inverse of the term in brackets is the influence function F

aby
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Fy(x)= (271[)n [a"ke™ (P k, + P k,)
Then
’ 1 ny, ikx n —ik. n_ _—ikz yr =
e, :_2(2”);1 Id ke™ Id ve kyFab,.j(y)J‘d ze "X}, (z)e,

Integrate over k and using the definition of the delta function to integrate
over y

! 1 n n ' —
eab(X)Z—EId yF:;bi/' (y)Id ZXijkﬁ(Z)é‘(X_y_Z)eM
1¢,, . _
:_Ejd 2F,,; (x—2) X}, (2)8,

The interpretation of this is that the strain fluctuation in location X is
determined by collecting contributions of the stiffness fluctuations, while
the weight of these contributions is dependent on the value of the influence
function in positions measured from location x. The question is then: what
form does the influence function take. This, of course, depends on the
average stiffness moduli. Special cases will be examined to get a feel for
the outcome.

There are other ways of determining the strain fluctuations in a
heterogeneous medium. A widely researched method is an approach in
which the fluctuation is regarded as an inclusion in the mean medium. This
method was first introduced by [Eshelby, 1957, 1959]. The problem is
choosing the shape of the inclusion, as this choice affects the anisotropy
of the problem, see also [Walton, 1977].

4.2 Isotropic materials

In the isotropic case the average moduli take the form

Ko = /Té:j§k/ + /7(5;1{5/'4 + 5:'65/{/')
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122

P, =k 25,5, + (8,5, +06,5,) |= (2 +1)kk, + BS54

Independent of the dimension the inverse is

And so

o B )

2+ ,u)k4 o

(
+(2;1z)” ket le

In three dimensions the integral can be done (see Appendix, Section A.6.3).

To get a feel for the functional behaviour of the influence function,
the result, as an example F, is integrated over x; (this makes for an
easy two-dimensional visualisation) and then the magnitude is plotted
(Fig. 4.1). The outcome is

bi™ja

(8,4, + 8,k ke )}

|4(x1+6x,x2 3x§) 2(x1+12x1x2 5x§)|
‘ (/I +2,u)r - ar’ ‘

Gllll

= T dxsF, | =

In this way no sign is shown, but it is clear from the picture that there is a
strong peak near the origin.
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Figure 4.1. Magnitude of the influence function for 4 = 71/3.

This behaviour of a strong peak near the origin holds for all
components of the influence function, so much so, that it is a good idea
to count contributions in the vicinity of the origin as the most dominant
ones. It also holds when there is anisotropy — though, naturally, it breaks
down when the material exhibits rupture layer formation. In this region
around the origin X' will have a dominant value: X'(x). Without loss
of generality the point x =0 may be taken (this amounts merely to a
translation of the origin). In this approximation the strain fluctuation in
the origin becomes

’ 1 1 r n n —ik.z — — —
e“b(o):_EWX"f“ (0) [ d'z[d"ke™ (P 'k, + Bk k, )2,

small
region
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which may be abbreviated as

etlzb (0) Rabt/‘Xt’/k/ (O)Ekk
The properties of R, the local response tensor, will be determined more
generally below.

To conclude this section it is recalled that the term with double
fluctuations has been neglected and the consequences of this
approximation should be investigated. The starting point of the analysis
was

([ Fo X () [ el ()]} =0
J
5 O (x) X (x)_ O Xju (x)ei (x)] .
"y, ox, " ox,

By neglecting the last term the fluctuations e’ are estimated, as
demonstrated by the analysis above. Now a fluctuation on top of e’ i
considered, which is called e". Rememberlng that the equation for e’ is
already satisfied. An equation for e” is obtained

K ][ (5 )] =0

J

_ r/ aX' _ ”/
. Oey, (X) ljkf( )Ek( + X, dey, (x)
i o, Ox; " x;
+a|:Xi,/'k/f (x)ei, (x g+XW( el (X)] =0
X

j
_ ae,'{'[ x 5[ W ek/ ] a[X,;k/( )e,&(x)}
Yon ox, ox,; i ox,

J J J

=0
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The last term contains the product of higher order fluctuations,
compared to the previous terms. As before, this is then neglected and the
fascinating result is

e 5e,'{'€(x)+a[X;kf( )el,cé(x)]

ijke
Ox ; Oox ;

=0

This equation has the same form as before, but now the source term
6(XW( )ek,)/éx is replaced by 8[ X (x )e,’d(x)]/axj. The solution
to the subsequent approximation is entirely analogous to the one before

:__.[dn ablj X- Z)Xz;ké( )e,'([(Z)
:_Id” ablj X— Z)Xt;k/ .[dny k/pq( y> f’q"(y)a‘c

It is seen that by this method the higher order strain fluctuation depends
quadratically on the stiffness fluctuations. So, while the magnitude of the
components of the influence function is less than unity (they will be
estimated below) the higher order strain fluctuation is actually quite
modest compared to the first order, as long as the magnitude of the
stiffness fluctuations is not too large.

In passing it is noted that the volume average of the strain fluctuation
is no longer zero when a higher order is considered; € is then a ‘first
estimate’ from which the volume average can be calculated if all the
stiffness fluctuations are known.

4.3 Effective stiffness moduli

The mean stress (the volume average) is

Q

Oy = Xy (X) €, = _[fkffglcﬂ e (X) € _ijk/a ke \ X ) €
X (X)e, = X8, + X, (x)e, + X6, + X, (X)e

g

The volume averages of the single fluctuations are zero and so

v '
O, = y‘kﬁek[+ijk/( )ek[
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In the previous section it was seen that the strain fluctuations for small
stiffness fluctuations are proportional to the mean strain:

ab = __J.d" lelj zjk/ (Z)Eké

Therefore, the first non-vanishing term that corrects the volume average
of the stiffness is

1 n ’
_Wj.d xXl/ab J.d zF, abpq ) pakt (Z)
:-—Id"y abpq J‘d”szab(erz)quH(z)

The second integral, together with the front factor, is easily recognised as
the correlation functions of the stiffness components Syabqu/( )

Parenthetically, it is observed that in the Fourier domain the expression
takes the short form

1 n n, i ., 1
_Wld yJ-d ZetyFabpq J'd kekyS,]abqu/( )
1 Lo .
= — 2(272-),, J‘d kFabpq (_k)Sijabqu[ (k)

It was argued in the previous section that the strain fluctuation in a certain
location is predominantly determined by the stiffness fluctuation in the
immediate vicinity of that location. If that is applied everything simplifies
tremendously

Gy = X = Xjp R pur X i@ »

iipq~ " pgab
where
1 n —IK.Z
R =EH [ a'z[d"ke™ (P Kk, + Py k,k,)

small
region
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The integral depends on the average stiffness moduli only. The small
region may be taken to be a small sphere (3-D) or circle (2-D). In the latter
case there are four integrals to be done, two over the spatial coordinates
and two over the wave vector components. Note that

P 2z P
_fdzzf dye ™ = 27[IdZZJO (kz) :27”/)]1 (kp)
0 0 0

Then P is proportional to k7, so the integral over k takes the form

0

K 1
ZﬁJ‘dkksz] (kp) = 271'_[@’(1{,0)J1 (kp) =2z
0

0

This leaves one integral — the one over the angle in the wave vector
space. For the isotropic case this integral is elementary and, collecting the
front factors, results in

1 8,8,,+6,0 (24 8)(8,48, 46,8, +,,6,)

qa”~ pb ga~ pb

raeb g i 2(2+2a)m

In order to illustrate how this plays out, take — for example — the case
for which the fluctuations are also isotropic. The effective Lamé
coefficients are then

. (u')2 (/T+3/_1)‘
2m(2+2m)
P (/1')2 +2,1'—//)(Z+3/7) . (,u')2 (Z+y)
- A +200 251(Z +27)

It is observed that the shear modulus is reduced compared to the volume
average. The contraction coefficient may be either reduced or increased.
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4.4 Transverse anisotropic material

A refinement of the previous case is to include a measure of transverse
anisotropy in the material.
First the inverse of the acoustic tensor is determined

1 ﬁkf +X2222k22 _(ﬁ+)?1122)k1k2 1
> 272 4 B —2 v 2 72
ak; +bkik; +ck; _(/1+X2211)k1k2 bky + X0k, k

P! P

P contains all angular information in the wave vector space and a, b
and ¢ are defined as before in Section 3.1

azlquzzz; b:(leXzzzz _anzXzzn)_,U(Xzzn +X1122);

c=uX,

1111

Now, consider again

1 n n —IK.Z
quab = 5(27[) Am,[” d Id ke N ( palqu +B]b1kpka)
reglon

The integrals over the spatial variables and the magnitude of the wave
vector k are the same as before, leaving

)
Write k' +bk’k} +aky =a(y'l’ i} ) (vl —k}),  where  y* =

—b++/b* —4ac

5 . The integrals are then easily done
a

ﬁ_Xzzzz . )?1122+ﬁ
R, =22 p —Tl2 7
1111 _bhtc 1122 d—btc

W Xy~ X\~
o= =3 A E QT
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1 X, X, -1
R = s =3 B T

R —XputH, _H- X
2 H 2222 T
a a—-b+c a—-b+c

Making

a=b+c==X; Xy + XX, +/U(X1111 + Xy + X1 +X2211)

The same elements that have been encountered before appear here: the
outer determinant and the shear modulus; if these two are small then the
local influence tensor will be large. Rupture is in this case understood as
the influence of a small heterogeneous element of the continuum
propagating through the whole medium.
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Chapter 5

Fabric Description

5.1 Voronoi tiling

The primary parameter that describes a granular medium is its solids
volume fraction ¢ (sometimes — especially in the chemical engineering
community — called the solidosity). This parameter is defined as the ratio
of the solids volume to the total volume. Closely related is the porosity #,

the ratio of the pore volume to the total volume: n=1-¢. These are of
course macroscopic parameters and they say little about the details of the
packing. (In passing it is noted that the ‘jamming’ transition takes place at
approximately ¢ =0.84 for a two-dimensional assembly and ¢ = 0.64 for
a mono-sized three dimensional one.)

An important parameter is the grain size. Mono-sized assemblies are
of little practical interest and the grain size distribution needs to be
specified. In the civil engineering literature — see for example [Terzaghi,
Peck and Mesri, 1996] — the distribution is specified by weight. In the
physics literature a specification by number is frequently encountered. In
the practice of soil mechanics the grain size distribution is determined by
sieving, giving the cumulative distribution. Characterisation of the grain
size distribution is often done by a few characteristic numbers: the d,, is
that size (diameter) below which 10% of the weight of the sample is
measured. The d,;, dy, and d, are similarly defined as the sizes below
which 15%, 60% and 85% respectively of the weight of the sample have
been determined. The ratio d, /d,, is called the uniformity coefficient.
The translation of a distribution by weight to a distribution by number
involves the cube of the diameter, so a substantial skewing of the curve

89
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may be expected. For most natural samples the d,; corresponds roughly
to the mean size by number.

Figure 5.1. Illustration of Voronoi tiling.

A tiling is introduced via the definition of the Voronoi boundaries —
[Voronoi, 1908]. This definition (which can be used in a far wider
context than just for granular materials) defines a boundary as the
collection of points that have the shortest distance to a set of given points
(called the generators). An illustration shown in Fig. 5.1 may be helpful
to understand the definition. Take an assembly of discs and for the ‘set of
given points’ use the centres of the discs. The Voronoi boundaries then
look as shown in Fig. 5.2. It produces a space-filling tiling. This would be
satisfactory for the purposes of granular media if all the discs were of equal
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size. But because they are not of an equal size the boundaries end up
cutting through the particles. The desire is to employ the Voronoi
boundaries later on and associate them with particle interactions. The
definition of a Voronoi boundary is then changed slightly to ensure that
each particle lies within a tile.

Figure 5.2. Illustration of modified Voronoi tiling ensuring that all
boundaries go through the interaction points.

In the modified definition the Voronoi boundaries are drawn in such a
way that each point inside the tile is at the shortest distance from a
generator greater than, or equal to, the radius associated with that generator
(see Fig. 5.2). For slightly overlapping particles the definition needs to be
refined again to be sure that the boundary goes through the midpoint of
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the overlap region. The resulting Voronoi tiling is shown in the figure
below. This is a very useful tiling in that each boundary corresponds to an
interaction (which may be zero when particles do not touch). The
disadvantage of this tiling is that the regions may vary in size quite
considerably, whereas for the tiling that follows from the strict
mathematical definition above leads to tiles that all have more or less the
same area. All particle pairs that share a boundary are (near) neighbours.

There are other partitioning methods. The best-known is the Delaunay
triangulation, which is obtained from the Voronoi tiling by connecting the
centres of the near neighbours, see [Delaunay, 1932]. This triangulation
contains no information that is not already in the Voronoi tiling: [Liebling
and Pournin, 2012].

5.2 Contact point distribution

For the mechanical behaviour of an assembly the location of contact points
is important. The tessellations say next to nothing about this aspect and
therefore it needs to be treated separately.

When particles are in contact they can transmit a force. The direction
of the contacts is important, both on a particle level and — statistically —
assembly-wide. The particles have a very diverse set of contacts when the
packing is random. To illustrate this, two particles have been selected from
the small assembly pictured above. The particle labelled g has three
contacts (another Voronoi boundary comes close, but the two neighbours
are just a whisker away from touching). These contacts are depicted in the
angular diagram as the straight lines that go to a value of unity. The particle
labelled v has five contacts and these are shown in the second angular
diagram. It is seen that the two are very different.

It is possible to characterise the contact distribution by fitting the
contacts to a function. This function equals unity when there is a
contact in a certain direction and zero when there is no contact. The
contacts are then associated with very sharply-peaked functions, which
have an area equal to unity; these are delta functions. They are fitted
to a particle-specific fabric function of the form (for particle u)
P (@)=q/n(p)+pin.(p)n; (@) (for particle numbers a Greek superscript
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is used). This is a reasonable thing to do. In two dimensions the
number of coefficients is five. The number of Voronoi boundaries for this
particle is six. Each Voronoi boundary is a potential contact and all
boundaries enclose the particle. The vector " informs on how
asymmetric the contacts are arranged, while the tensor p° gives the total
number of contacts and indicates how anisotropically the contacts are
distributed.

.00.20:406081.01.2

3§

Figure 5.3. Particle contact directions and their approximations with a
quadratic polynomial.

The number of contacts of particle x is N*. The coefficients are
obtained from a least-squares fit

2 N 2

.[ 6],»#1’1,-((p)+p;ni((p)nj(go)—Z:;é‘(gg_gDC) d@ = min

0

Differentiating with respect to the components of p and q yields the set
of equations
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2 N/

j{qf‘n,- (¢)+pin, (¢)n.,(¢)—25(¢—¢8)}na (p)dp=0—

0 e=1

w5, -3, (¢°)=0
&=l

ﬂqﬁ’n,-((p)+p,;-‘n,-((/))n,»(<o)—jZ:5 (0-¢° )}na (9)n, (0)dp =0

N#

-

” %pil;f (5&15/'1» + 330, + dy&ab) —2 M ((pg )”h ((pg) =0

&=l

The function p“(¢) is also plotted in the polar plots of Fig. 5.3. At
first sight the fit does not seem to be very good. The fitted curve does not
follow the location of the contacts very well. It does however reproduce
the average number of contacts accurately — 7 p, — and gives an
impression of anisotropy and asymmetry of the distribution. For particle
w1 there is little asymmetry: the three contacts are quite evenly distributed
over the angles, though there is a clearly detectable anisotropy in the East-
West direction. For particle v, on the other hand, the contacts are
somewhat bunched towards the South-East and the anisotropy direction is
also visible.

The particle fabric functions may be averaged over the whole assembly
to give the assembly fabric function. The latter can also be obtained by
making a histogram of the contacts, which is frequently done in
interpreting simulation results. For a statistically uniform assembly, the
asymmetry coefficients tend to average to zero. Thus information is
suppressed that could be useful. The squares of the asymmetry
components could play a role in understanding the behaviour of the
assembly.

The examples given here are all in two dimensions. However, the
whole analysis is just as easily pursued in three dimensions (though this is
more difficult to visualise). The integrals required to evaluate the least
squares minimisation in 3-D are
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4 4
jninde = de and Ininjnkn/dQ = E(é}jé}d + é‘[k5j/ + 51.[5}% )
The term fabric tensor has been introduced in the literature and can be
obtained from the contact distribution tensor by calculating p/ p,, see
[Satake, 1982] for an early reference.

5.3 Correlation

One of the intriguing aspects of granular materials in a random packing is
whether there are correlations in the arrangement of the grains. The
question really is whether random, densely packed granular materials try
to approximate a crystal structure. Is there a tendency for contacts to line
up in a direction, possibly in a small environment, comprising a handful
of particles? In order to ascertain that aspect, a packing is subjected to an
analysis of a correlation function. It has already been seen that two
Voronoi boundaries can come close, but not touch. In order to answer the
questions about ordering of some sort, a correlation function based on
contacts is therefore not adequate. A correlation function based on the
distance from the centre of a particle to the Voronoi boundary in a given
direction is more suitable.

The distance from a particle centre to the nearest Voronoi boundary is
called d, ; a superscript is added to identify the particle. The correlation
function that is evaluated is

1N27z

¢Zdy (p)= ﬁz j di (9+¢)d} (9)d$ normalised to
u=lo

¢d,,, (¢)) = ¢de, ((0) / ¢;dV (0)

The calculation of the correlation function is done for some 4000
particles in two dimensions of a compressed sample and then plotted, as
shown in Fig. 5.4. The result is interesting. The correlation function is
symmetric: ¢, (—¢)=¢dV ((p), so the interval 0<@ <7 needs to be
studied only. As the angle increases a negative correlation is observed
first. That is as expected: if two Voronoi boundaries are very close
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together then the angles directly next to them must be further away. That
is a direct consequence of the convexity of the grains. After the initial
negative correlation, when the angle has reached about x/2, all
correlation appears to be lost, other than some slight negative noise. The
important conclusion is that positional correlations persist as far as near-
neighbours, but no further. A hetero-disperse granular assembly has no
inherent crystal structure. This does not mean to say that the contacts or
particle interactions cannot form a structure. The aligned force chains that
emerge when a granular medium is deviatorically stressed are an example
of this. Generally, any random medium that is subject to a deviatoric load
and evolves locally according to the strain must form structures of some
sort, see [Koenders, 1997]. Also, the rupture layer that forms at or near
peak stress, points to collective behaviour of the motion of the particles,
which is strongly correlated.
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Figure 5.4. Normalised correlation function of the angular Voronoi
boundary distribution.
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5.4 Strain in a granular medium

The continuum definition of the deformation gradient can be extended to
a granular medium by letting it describe the motion of the particle centres
(chosen, for example, as the centre of gravity of the grains). The simplest
manner in which this can be done, introduced by [Koenders, 1994], is by
fitting the displacement u” on the surface of a group of particles to the
average deformation gradient a by requiring

Z(uf‘ —u,(0)- a,x! )2 — minimal
u

Setting the derivatives with respect to the components of @ to zero leads
to the result

-1

a, = {;x”x”] > —u, (0) ]xt

ik H

This does not look like the continuum definition at all. To make a
connection between the discrete definition introduced here and the
continuum definition, the surface is supposed to be populated with
particles with an angular density li(Q) , this could be either an angle in
2-D (number per radian), or a solid angle in 3-D (number per solid angle
area). For a large enough assembly this may be replaced by the average /.
The summations may then be replaced by integrals

in"xf - q‘) ﬁRsz’znin‘,dQ = (Vé;.j
1%

sphere/disc
Z[uf’ —u, (O)] x; — CJ‘) [ul. (Q)—u, (O):| (RR"’n,dQ
u unit
sphereldisc

The term RR?*dQ is just an infinitesimal area (3-D) or line element
(2-D). Using Stokes’s theorem the integral becomes
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¢ [u(Q)-u(0)](RR*n,d2=

unit

sphereldisc
ou,
l (Q)—u (0 dA=1 —LdV
Sphef/disc |:ul ( ) ul ( ):Ink xpheidisc an

The discrete definition is therefore equivalent to

0(”( 2; @ g]"dV

sphereldisc
This is as expected from the volume average of the continuum definition.
However, the discrete definition can be employed on any assembly of
particles; it does not have to be a large assembly; it could be applied to a
single Voronoi cell. At the same time the deformation gradient in the
continuum interpretation is the first term in a Taylor series of the
displacement. This interpretation then remains intact when the discrete
definition is used for a small assembly.

The strain is the symmetric part of @.

5.5 Stress in a granular medium

The stress may also be defined from a continuum definition, while the
medium is in equilibrium. Various contributors have studied this
problem: [Love, 1934], [Dantu, 1968] and [Bagi, 1996], while the
approach taken below closely follows [Drescher and De Josselin de Jong,
1972]. The particles are stressed by contact forces. There is then a — very
complicated — stress field in the system of grains and pores. The stress in
the empty pores is zero. The overall stress is

volume

The volume may be partitioned in Voronoi cells
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503§ :

- volume V*

Now, the equilibrium equations for static equilibrium are known
0X,;/0x;=0; using this the stress can be written as a gradient:
6( x;2, )/ 0x, =0. Stokes’ theorem is again applied to give

53T § newr-py § (B,

A volume V* A volume V*

=—Z<J.> ,k xnde

K area A*

2, (x)n, is precisely the definition of the traction. The Voronoi cell
walls go through the contact points and the integral of the traction over the
(very small) contact area of each contact point is the contact force. The
integral therefore becomes a sum over contacts

518 § swar-ty ¢ A0,

H volume V* H volumeV*

N#

I3

uov=l
where the notation x*" = %(xv - x“) has been introduced.

Various manipulations can be done. Using the fact that each particle
NIJ
must be in equilibrium z F'" =0, aconstant vector (that is, independent

v=1

of particle number v ) y* may be added to the vector x**. The origin of
the coordinate frame inside each Voronoi cell is therefore arbitrary and the
choice is free (the centre of gravity of the particle, the centre of the
Voronoi cell, etc). The double sum can also be cast in the form of a sum
over contacts. Each force (u,v) is encountered twice, once with the
location vector x** and once with location vector x”*. Remembering that
F* =—F" and that x*” —x" =¢*", the branch vector, it follows that
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1 o& 1
HV v uv v
VZZFi x=— Y R
uov=l pairs (1,v)

This can be recast again in the form of a sum over the individual particles,
using F*" =—F" and ¢ =—¢"

N*

Sl 1 v _uv
2= EZZE‘# ¢y

uov=l

For each particle moment equilibrium is expressed as

NH

uv v
Sy ZFi xi =0
v=l

Consequently

N* N*

ZF,uvx;tv _ZF;IVX;IV — 0
i J J i
v=1 v=l

The stress tensor X is therefore guaranteed symmetric. The basis for this
is the same as the one encountered in continuum mechanics.

5.6 Calculating averages in a contacting granular material

Bearing in mind that the formula for the stress only contains as many
equations as there are stress components (four in 2-D and nine in 3-D), a
first approximation of the contact forces from a given overall stress state
can only be quite primitive. A tensor T is introduced (t for increments)
in such a way that a contact force is given by an average plus corrections

uv o _ v 7%
F =T + F,

The tensor T only describes the force across a contacting particle
pair, as opposed to the stress tensor, which describes the force across a
Voronoi boundary. The latter is zero in the absence of a touching contact.
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The contact point distribution tensor p(¢) can be viewed as a mapping
from the Voronoi boundary distribution to the contact distribution.

Substituting this back into the assembly stress formula the following is
obtained

1 n N# N#
LY F ey 3 on
u
(contacts) (contacts)

Introducing then a ‘cell contact radius’ that approximates x** = R“n*",
permits the evaluation of the inner sum using the contact distribution
tensor p*, the mean stress is

N(4d)
zRﬂpm(é‘pnﬁ +5 5 +5 5]()") ZZFWV #V,

o v=l

where X*? = 7 in 2-d and X“*? = 41‘75[ in 3-d, see Appendix, Section A2.

If in first approximation the term that contains F' is neglected, the
tensor T can be found from averaging and inverting,

N( N(4 d)
2= ik ZRﬂ (pmm t 217/;) =

T (Rpmm5 + Zﬁpjk)

e ——\!
Rp, 6+ 2Rp) (5.1)

it

. Voo
T

If this estimate is taken as adequate, then it follows that for an
anisotropic contact distribution the assembly stress ratio is larger than the
force ratio at the particle scale.

All the above for the stress and the deformation gradient remains true
when increments are considered. Simply replace the capital symbols with
small-type symbols.

The averaging in this case is over contacting particles and when
considering a sum over contacts it is permitted to replace the sum by an
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integral, weighed with the contact distribution. For a contact quantity g,
summed over the contacts of a particle the replacement takes the form

2(]‘”—) j 7(Q) p* (Q)dQ

circle or sphere

For an individual particle, noting that the contact point description is
so poor, this procedure does not make a lot of sense. However, for larger-
scale averages it is perfectly acceptable.

Other averages that will be encountered are averages over the
boundaries of the Voronoi cell. The quantities in question will generally
be geometrical in nature. The question is then how an appropriate average
will be defined. Consider particle x# in Fig. 5.2. It has a very short
boundary to the North-East, which is quite far from the centre of the
particle compared to the other boundaries. Surely, the contribution to a
sum over the boundaries of this particular one should carry less weight
than the other ones. Calling the length of the boundaries ¢*°, the average
of a quantity ¢, which is defined on the boundaries, would be weighed
with the length of the boundary. In other words

1 N N}
—u He HE puE
q = q - — H
vz N

=1

where ¢ is the mean length of the Voronoi boundaries.

A case in point is ¢ —¢“¢*, the two-tensor of the branch vectors.
The angular part is quite easily dealt with, assuming that the angles are
more or less isotropically positioned, that is they are distributed according
to a distribution with angular distribution N} /27. Then

1 & HE HE pHE 1 2 He 2 HE UE ) UE
AL ;cl. el _N,ﬁ‘?" ;(c ) n nio 0 —

LS g L NETf ANV
Nﬂn;(cﬂ ) nenger _)N_lﬁljo m(@)n (p)do(e) = =
é‘i' )2 flu./u
=—(e") v

2
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2 [”’ﬂ

The term (c” ) ya is the weighted average of the quadratic lengths

of the branch vectors. It represents another quadratic length scale: ¢’ "

All this is in two dimension, however, the analysis goes in exactly the
same way in three dimensions. Replace the length of the Voronoi
boundary by its area and use the appropriate front factor N3 rather than
N2,
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Chapter 6

Stress-Strain Relations of Granular
Assemblies: A Frictionless Assembly

6.1 General considerations

The purpose of this and the following chapters is to make a link between
the micro-mechanical details and the overall, assembly-averaged
properties. The latter consists of an estimate of the stiffness tensor that
connects incremental strain and incremental stress. The case of an
assembly in which the particles interact solely through normal movement
is considerably simpler than the more general case in which a tangential
interaction also needs to be considered. The theory for frictionless
assemblies is less involved — and therefore much more transparent —
than the one in which a tangential interactive component needs to be
accounted for as well, as the particle spins are not restricted and no
rotational equilibrium equations are needed. This provides an opportunity
to develop the main theoretical concepts, which can later be used to
describe more involved interactive properties.

The case of frictionless particles is not merely a dry mathematical
exercise; it has a number of practical applications as well. For assemblies
in which there are more contacts per particle than the isostatic requirement,
an incremental stiffness exists. This case is relevant to small spherical
particles in a fluid environment, the interaction for which was discussed
in Chapter 1, Section 1.7. In the field of chemical engineering, where this
subject has major relevance, the theory has been employed to describe the
behaviour of cakes composed of micron-sized particles. Such cakes
appear, for example, in filtration processes and in slurries, see [Wakeman
and Tarleton, 1999], [Koenders and Wakeman, 1997] and [Civan, 2007].

105
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The theory presented here was initially developed by [Koenders, 1984,
1987] and further refined by [Jenkins and Koenders, 2004]. Essentially,
the question is what the influence of heterogeneity is on the assembly-
averaged (incremental) stiffness tensor. To answer this question a mean-
field estimate of the stiffness is calculated first and then a subsequent
correction due to fluctuations is introduced. The procedure is similar to,
but subtly different from, the approach put forward in Chapter 4 for
continua. The influence of the heterogeneity is captured in a differential
equation, the solution of which yields a correction to the displacement in
addition to the mean strain displacement. The correction to the
displacement gives a force correction, which feeds into a stress correction.
All quantities are incremental, because of the expected severe non-
linearity of the contact law.

6.2 Kinematics

The displacement in the vicinity of particle x can be expanded in a
Taylor series in the branch vectors ¢“* (defined in Section 5.5). The
branch  vector is related to the particle positions as
¢ =x"" —x" =x" —x". The displacement increment of a neighbouring
particle can be approximated as
Ou, g

u =ul +—-

Ox ;

w1 0
=
T 20x,0x,

MUV 1V
j Tk

It is sensible to ascertain how many terms need to be taken account
of. To that end it is established how many parameters are implied in the
Taylor series. For constitutive purposes the displacement difference is
relevant, that is u” —u”, so the Taylor series is essentially expanding
this quantity. The purpose is to describe the motion of particles in the
vicinity of particle x and therefore those neighbours that share a
Voronoi boundary should be represented. Table 6.1 gathers the number
of independent displacement components for each term in the Taylor
series.
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Table 6.1. Number of displacement components for each term in the
Taylor series.

First Second Total
derivative derivative number
2 dimensions 2 3 5
3 dimensions 3 6 9

Taking the series up to the second derivative permits the specification
of five particles in 2-D and nine particles in 3-D. Fewer terms in the
Taylor series would under-specify the motion of the neighbours, but
taking account of higher orders really gives rise to over-specification.

The second derivative can be obtained from a least squares fit of
neighbouring particles and expressed in terms of the first derivatives by
requiring

2
Vi v U
N* 2
Z Ou, | Ou| Oy

¢ +—L
Vo | Ox;0x; ox;| O,

=min

The sum here is over all particles with which particle u shares a Voronoi
boundary. The sums of the branch vectors are approximated as
integrals over spheres (3-D) or circles (2-D) and the second derivative
is evaluated as

I

ou, | 1 - Ou;
8xj6xk‘ N;’N(z’d)C_Zﬂ o Ox, g

i v

N/U
v
2 =0
v=l
—u

N4

MY Vo uas(2.d)
ch ¢ =N;,NXN"¢c” o,
v=l

In order to respect the symmetry in the subscripts j and & the result is
extended to



108 The Physics of the Deformation of Densely Packed Granular Materials
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a lxll- | uv
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c‘.’v+2—’ c
/ 0
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L fyaf
8x‘/6xk‘ 2N;‘N(2’d)?ﬂ "o Ox,

The connection between an incremental displacement difference
u” —u” and a contact force increment f*” is the interactive 2-tensor K*",
so that

uv o uv VoK
;=K () —uf)

The interactive tensor for a frictionless interaction is composed of a
‘spring constant” k** and two unit vectors, that are normal to the surface
across which the interaction takes place: K/" =k“'n/"n%"; note that
k" =0 when there is no contact between x and v . Force equilibrium for
each particle requires

NH
Z}k”vnf‘vnj’v (ujv —uj‘) =0
The sum is over all neighbours, that is all Voronoi boundaries.
For perfectly circular or spherical particles the moment equilibrium is
satisfied automatically. This is the case studied here; for particles of any

other shape moment equations should be accounted for.

6.3 Mean-field approximation

Regardless of the force equilibrium, an initial estimate of the stiffness
tensor can be made by using the mean strain as an approximation of the
displacement difference between two neighbouring particles. For an
assembly of N particles the mean strain is

_  1{ ou, Ou 1 & oy,
e, =—| —+—L|=—) | —
7o2(ox; oOx, )] 2N ox,

pu=l

H H

ou.

J

ox;

1

The average of the second derivative vanishes for a statistically
uniform assembly. The mean-field imposition then makes the equilibrium
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equations superfluous. This is a general implication of a mean-field
assumption: (some of the) equilibrium equations must be sacrificed.

The mean-field estimate for the stress increment is easily obtained
(see Chapter 5, Section 5.5).

N*

av L uv Vo M\ v
ZZJ’ - ZZKH« (1 —uf')e;
uov=l uov=l
_g ¥
Skt szyvn;tvngvcﬁw av
uov=l

The mean-field stiffness tensor readily follows

mf Hv
X = sz n nielc

u ov=l

It transpires that the mean-field estimate of the components of the
stiffness is generally a very bad estimate of the stiffness tensor, one that
does not stand up to experimental scrutiny. However, it is a useful object
to measure the effect that fluctuations have on the mechanical response of
the medium. As an initial estimate a certain amount of insight can be
derived from it as well.

Another thing to note is that the form of the mean-field stiffness
contains a so-called structural sum. These objects are defined in the List
of Symbols, Section B.2.1; they are called A°. The use of structural sums
makes the notation much more compact, avoiding the need for lengthy
sums. Care must be taken though, with the order of the subscripts. With
the interaction tensor K" =k"“'n/"n’", the structural sum that comes to
the fore is the second order one, and

N* 1 —
uoo_ MV v mf __ mf __ .
At/k/ ZK el —> X] ke = zAlk// or X, = Aik/(; >

v=1

where the volume per particle is v=V/N.

By way of example a two-dimensional medium is considered, which
consists of discs of near equal radius and it is assumed that all the spring
constants k*" are equal: k* =k. The sum over the Voronoi boundaries
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can be converted to a sum over contacts using the fabric tensor p. For the
mean-field estimate the average of this tensor is required only and a
coordinate system may be chosen in which p is diagonal. The mean-field
stiffness tensor takes the explicit form

ﬂkEz Sl_jll+522 0 ]_711+l_722
me_) 16V O ﬁll+ﬁ22 0
ﬁll+l_722 O ﬁll+51_)22

Anisotropy in the packing is observed to lead to anisotropy in the
stiffness tensor (no surprise). In a test in which the minor principal stress
is kept constant a measure for the dilatancy is the ratio of the volume strain
to the major principal strain, which is

e, tey —1- Dit Py
2 D +51522

This ratio will only ever become negative when p,, becomes negative.
So, in order to produce a mean-field theory that exhibits volume
expansion, the rather unphysical requirement of a negative contact
distribution must be introduced. Nonetheless, the mean-field theory shows
that anisotropy certainly helps push the ratio towards a negative value,
even though it is not able to actually reproduce it.

Similarly, failure of the medium as measured by the value of the outer
determinant (here normalised to X;?}, ) cannot be reached for positive p,,.
The normalised determinant is

o (P2/ Pu) +6(7 /D) +1
(721 Pu)+5T

which reaches zero when (p,, / p,, ) = 242 -3~ -.17. Such a value would
again be unphysical, but it does show that increased anisotropy pushes the
assembly further towards the régime identified before as prone to rupture
layer formation.
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6.4 Perturbations to the mean-field theory

By using the single particle equilibrium equations the effects of deviations
from the mean-field theory can be studied. The mean-field will be the first
estimate.

The second-order derivative of the displacement field needs further
investigation. The analysis of heterogeneity in a continuum, as analysed
in Chapter 4 will provide a context. The latter informs on the local
character of the influence of fluctuations. Therefore, an analysis of the
equilibrium in the vicinity of one particle will be done. This particle is
labelled g and its neighbours are labelled v. These particles are all in
mechanical equilibrium and the kinematics must be such that the force
equilibrium equations are satisfied. The second derivative can now of
course not be ignored, so the equilibrium equation for a particle — x4 —
reads
H “
ik“n[’gnj’g %” e 1 a2uj
por T | ox, 2 Ox,0x,

The rudiments of the continuum equilibrium equations are recognised
and it would be good if use can be made of the calculation done for that
case. In the continuum theory in the approximation of small perturbations,
terms that are proportional to the average strain and proportional to the
second displacement derivative are present. The basic equation, which is
an expansion up to first order in the fluctuations of the strain and the
stiffness, is recalled from Chapter 4, Section 4.1.

e ey, (x) . Xy, (X)g o

ijk? ke —
U ox, Ox,

The one-particle equilibrium equation and the corresponding
continuum equation are different, in that the former is valid in points (the
centre of the particles), while the latter deals with fields. Reconciling these
two is the main problem of the analysis.

There is no problem replacing the coefficient in front of the second
derivative by an average, thus
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J k l 2 k 14

Now, in order to arrive at a correspondence with the continuum
analysis, the term proportional to the displacement gradient needs to be
expressed as a derivative. Generally, a derivative in a granular medium is
obtained by a least-squares estimate. So, for a quantity ¢, which is defined
at the centre of each particle, the derivative satisfies

2

N “
Z [%} " —q"+q" | =min
v=I1 i

The sum here is over all the Voronoi boundaries of particle pu.
Differentiating with respect to the components of the derivative gives

NH aq H .
— | " =q"+qg" |c"" =0
;[ax,. g+ gt |t

N#
Mindful of the fact that Zc;‘v =0, the resulting expression for the

v=1l
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a_q _ < MUY UV Nﬂ v yv
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N/
It is not unreasonable to approximate Zc‘”c‘” by an average:

v=l

derivative is

NVN(Z’d)czéw, in which case the derivative becomes

u o
ﬁ ~ qu uv
ox, N, R

Now, applying this, a derivative for the structural sum is approximated
as
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The sums over x are elaborated as follows. One of the contributors is the
(1v) boundary. That one is taken out, the right-hand-side then takes the
form

1 N# y NY
W VUL VI VIL VIV uv VK VK VK VK VK
—N N(z,d)_zz K*n*nlcl el e+ ) kM nnl el ¢
% C v=l K#u
The boundaries in the second sum are all not bordering particle x. For
these the interactive tensor is replaced by its average k. Then another

average contact is added and subtracted again, to give for the sum

s N
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Using Zc_j.” =0, approximately the sum over any odd string of
v=1

coordinate vector components may be neglected. This leaves

N u
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Multiplying with 6,, and summing over p then yields
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The centre of the particle coordinate system is chosen in such a way
N#
that Zcf” =(. While that does not immediately imply that the sum over
v=1
the three string is also zero, the majority of the fluctuation is going to be
due to the variability in contact properties and in the right-hand side of
Equation (5.1) the odd structural sum is recognised. It is then suggested
that the one-particle equilibrium equation is rewritten as

"

N H 2
ou u, 1 ou e
Ck C, =0

2 k,ua ,ug ,us ;za /
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This equation has the same structure as the continuum equilibrium
equation and the solution is readily taken over. For convenience of
notation the fluctuating field is denoted with a prime

’
OK O 0K K OK
Ajue —(Zk MMy G € ]

This notation will enable a compact representation of the solution of
Equation (6.2).

6.5 Solution in two dimensions

In the following the structure of the problem is illustrated in a 2-D
isotropic example. For this case N*?) =1. The solution for the
displacement (as obtained in the continuum theory) is in Fourier
transformed variables
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u, =IiN,F, k /’Az'/'k/ekf ,

where }Zl Z—M —5

ﬁ(/1+2/7)k4 7 S

For the present problem A =z, as can be seen from the mean-field
moduli. (However, the slightly more general problem of A # &z can easily
be treated at the same time.)

In the spatial domain the fluctuation in the displacement field is

u;(x)z;)z [doke™ Pk, [dyydy,, (v)e ™3, (6.3)

(27

The fluctuations A’ appear here as a continuous field, but they are defined
in a granular medium as quantities on points (the centres of the particles).
Reconciling these two notions is done by putting forward a continuous
field and — noting that only the value in the vicinity of particle x is
required — letting this field decay away from the centre of the particle.
Furthermore, the assumption is made that the fluctuations are purely
radial. The integral over the angle is easily done

[y, (v)e™ =2z [ dyys, (k)4 ()
0

Let the radial dependence be of the form A4, (O) exp(— yla’ ) , Where
a is an as yet adjustable parameter with the dimension of a length, then
(see Appendix, Section A.6.1)

'fdy e (¥) [kyZZ”Idnyo(ky)A;kz( )
0

=ra exp(—%azkzj 4;,,(0)
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Consequently,

u; (x) =

These two integrals are worked out in Appendix, Section A.6.1, first the
integral over ¥

laN

jdx//e““ j dkkP' k. exp(—%azszAyk,(O)EM

' | 1 . _
u' (x):—EazNVpOm/ a,jdkexp(—za k’ jJ(kx)A,.jk[(O)ek[
—a N,,pljdkexp(——azk j( [J J(mﬁu/ +m0, +mu§y)

1 , _
_EJ3 (kx)m m.m infk,(O)ek,,

i a

with the following
1 (2+A)

and defining the two functions

S, (gj = &Tdk exp(—ic?zkz )/1 (ke) =7 exp[—;—;jlé [%)
S{;j—aj.dkexp(—ia }J( )= \/_exp( zjlé(;;j’

the integrals over k are evaluated, to give the result

AN mlé‘a +m 50[ +maé" ! -
= [s(2) s (22 feom

aN, _ aN, , _
_4 S (2Jm,mjmaAU,(/(0)ek(—a2 mj5mS( jA,,k/(O)eM

by =

2

This is the fluctuating part of the displacement due to a fluctuation in
the structural sum. The displacement so calculated gives rise to an extra
term in the stress, just like the continuum analysis. The extra stress due to
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the fluctuating field is expressed as a fraction of the mean-field shear
. . . . -1

modulus z (in this way the proportionality factor (2V) does not have

to be included in the calculation). The required S-functions are plotted in

Fig. 6.1.

4S,(2)/z-118,(2)/z

4S,(2)/z-S4(z)/z

S,(2)/z, S,(z)/z
4S.,(2)/z-11S4(2)/z, 4S,(2)/z-S,(2)/z

S,(2)/z \———'

-1 T T T T T T

0.0 0.5 1.0 1.5 20 25 3.0 35

Figure 6.1. The functions S,(z)/z and S,(z)/z.

The mean modulus is

The contribution to the relative stress due to fluctuations is

s 1¥ -
ro_ 2 Mmoo MUV LV TV Y
z —ﬁg(k k)mr m:ul* !
v=l

v

The displacement fluctuation u'*" is identified with the displacement
fluctuation as calculated above with u’ (c”v ) . For disc-shaped particles the
term A'(0) is equal to
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‘[Z k.Kn.Kn.,(n.,{n.KJ :EQ[NZ( . _,;)H.Kn.Kn.Kn.,(j.
K=1

k=1

Therefore, the result depends on the correlation in the fluctuations in the
contact point distribution. In order to get an idea how the latter becomes
manifest, assume a quadratic contact distribution on each individual
particle. This takes the form

p"(9)=pin(@)n;(p)

The fluctuations in the contact distribution are obtained by removing
the average p. In addition the fluctuations are partitioned in an isotropic
part P' (indicating a fluctuation in the number of contacts per particle)
and a remainder, which serves as a measure of anisotropy. Thus (leaving
out the superscript for the moment)

Py =P+P +pl;py=p+P +p,;p, =D, =D

Working out the correlations results in the relative contributions of the
Lamé constants as follows:

A1 118, —48 , o o
L 1S ]
S , , , -
_E[?’(pu)z + 3([722 )2 + 8(p12 )2 + 2p11p22j|
S ' ' ' 7
+ 24;2 |:9(p11 )2 + 9(]922 )2 + 4(]912 )2 + 26p11p22:|
uec 1 S, —48 ] — =
Zan,  op l[(P)2+Pp‘1+Pp”}
S ! ’ ! ! !
_6_1_;2[(1711)2 +(p22 )2 +2(p12 )2 +2p11p22}

S . . . -
+T;_)2|:(p11 )2 +(p22 )2 +12(p12 )2 +2p11p22i|
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The functions S, and S, are evaluated in the point c¢/a; these,
divided by ¢/ a, are plotted in Fig. 6.1.

The question then is what happens to the S-functions? In the graph —
Fig. 6.1. — it is observed that these are quite sensitive functions of the
argument z=c / a, in other words, on the choice of the adjustable length
scale parameter a.

6.6 Connectivity in a granular medium

Insight in the background to this parameter a can be obtained by a little
analysis, involving the heterogeneity of and the connectedness in the
granular assembly.

The analysis is carried out as follows. Consider a contact interactive
parameter, such as the contact stiffness, which is generically called ¢ . It
obviously has the property ¢*" = g' for particle pairs that share a Voronoi
boundary. Now evaluate the cross correlation between the contact
parameter and the fluctuation of the structural sum of the neighbouring
particles, in other words investigate the expression

S

puov=l &=l

The cross correlation is appropriate for the investigation of the
influence function exp(—x2 / &2). If the mean distance between particle
4 and v is represented by X, then in the correlation the fluctuation of
the structural sum is on average represented by

N*

NZq” -N,qg— [Zq”” - Nﬁ}exp(—fz /&2)
e=1 =1

So that the cross correlation takes the form

Zi{qw [gq*’” —N@]exp(—fz /@’ )}

uov=l
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Call the local average of the interactive parameter g*, then this expression
is rewritten as

NiY|(7") -7 [exp(- /@)
u
On the other hand the cross correlation is obtained by direct calculation

uov=l u v=l e+ U

Referring back to the analysis done on the correlation in contact properties
in Chapter 5, Section 5.3 (especially note the spectral intensity function
depicted in Chapter 5, Fig. 5.4), it is not unreasonable to neglect the cross
correlate compared to the auto correlate; this approximation leads to

Zi{q‘” [61‘” + iqﬂ =Z§‘,{q’” [q’” -g+q+ iqv‘g —Nvéﬂ

uov=l E£ N uov=l1 E£U
NH NH 5
ST (¢ —q)]=z[z(qw) -waJ
u v=l 7\ v=l

> Gy

Now, the interactive parameter may be written as a local average plus
fluctuations

So that
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Combining both evaluations yields

Z[NV (@) + (™) - qu—q”J

exp(—)_c2 /&2): -

e

The case of non-zero fluctuations is studied in an example. Let the
contact parameter g be the contact itself.
Two cases are considered:
1. A contact parameter that equals unity when there is a Voronoi boundary
with a contact and zero when it pertains to a Voronoi boundary that does
not correspond to a contact.
2. A contact parameter that pertains to the case where the average contact
value vanishes. This case is of particular interest, as the use of the
exponential influence function was first introduced for fluctuating
structural sums.

The first case is investigated in the following manner. For a particle
with N¥ contacts the value of the contact parameter ¢** equals 1 or 0. If
there are N, Voronoi boundaries the one-particle average is

And the fluctuation at the contact

"
1 ——=(contact)
v Vv

]
c

(nocontact)
14
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Thus the quadratic average of the fluctuations is

LN" mvzzi N”(I—N‘flf N (N‘/'[T
X R (B U

v ov=l 14

Writing the number of contacts as a devizzition of the assembly-average N.:
N#=N,+SN" and define f, =(SN,) /N2, it follows that

((?‘ ) +(a) —ﬂ wx
N, [ﬂ_ﬂ " N,N_f.

The second case is at first sight very different; it assigns to the contact
the values

exp(—)?2 /&z)z

1- N, (contact)
uv _ v

N,
——<(nocontact)
14

Consequently, the one-particle average is

—u

NV

NV NV NV

c c c
NV

_N;'{l NCJ N,-N“N, N“-N

This, of course vanishes when N/ = N_. The fluctuations are

1- Ne _ q" (contact)

ruvo 4

C

NV

—gq" (nocontact)

The answer is the same as before
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N,-N

c

=2 ;=2

exp( x“/a )— NN S

The result of this formula is plotted in Fig. 6.2. for the choice N, =6
and x/c=1.18 for three values of the contact number. The first
conclusion is that if the value of f, is larger, the value of ¢ /a is in the
neighbourhood of unity. For smaller fluctuations the value goes up and
can pretty well double. The consequence of this is that when there are large
fluctuations in the number of contacts, the material is also more sensitive
to fluctuations, as the S-functions decline with increasing ¢ /a. Also,
for larger total numbers of particles the sensitivity to fluctuations goes up,
however when there are larger numbers of particles, the value of f, tends
to be smaller in practice. Overall, the outcome is very reasonable. Note
that while N, # N, there must be fluctuations.

3.0

2.5 1

2.0

dist rat

0.5 1

00 T T T T T
0.05 0.10 0.15 0.20 0.25 0.30 0.35

f

c
Figure 6.2. The distance ratio ¢ /a for N, =6 and N, =3.5, 4.0, 5.0.

The conclusion is that the ‘smearing-out’ as represented by the
exponential influence function is associated with the connectivity in the
medium — manifest via the property ¢*" =¢"* — and the fabric
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heterogeneity. The actual functional form — the e-power — cannot be
ascertained in this way and the choice of an exponential has been made
purely for mathematical convenience.

6.7 Estimates of the correction to the moduli due to
heterogeneity

Looking first at the shear modulus and considering the isotropic part of the
fluctuations only, it is observed that with N, = 6, this quantity is reduced

by a factor
a a

For a fairly dense packing, for example the one demonstrated in Fig. 5.1,

()

p

o)

the ratio (P’)z/ P> has been determined to be approximately 0.35

(]Vc =4.1). For looser packings the ratio tends to become greater. A

plausible value is in the range 0.5 <c¢ /a <1.0. In this range the correction
to the shear modulus due to fluctuations of the average number of contacts

lies in the range 0.9<‘/7— ™ g

due to anisotropic effects may be greater. What this shows is that the
effective shear modulus, that is the mean field value and the reduction due
to packing fluctuations together, collapses to zero.

Referring to the analysis of rupture layer formation, a shear modulus
that approaches a zero value leads to major instability in the assembly as
a whole. So, packings with a mean number of contacts less than, say,
N, =4 cannot stably exist. It must be pointed out that assemblies with
contacting particles with normal interactions only are in reality highly
unlikely. Particles in contact will have a tangential contact stiffness as well
(this case is treated in Chapter 7). It is, however, possible to create such
assemblies in a computer simulation and a very low shear modulus has
indeed been reported: [Magnanimo et al., 2008]. For the cakes in which
small sub-micron particles are packed that experience the normal

) <1.2. The additional correction
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interaction only, high contact numbers and low fluctuations are necessary
for a stable conformation.

It is tempting to compare this estimate with the analysis done on
isostatics. It was found that for perfectly round particles with frictionless
interaction, N, =4 is the minimum number of permissible contacts. The
heterogeneity analysis does not account for numbers of equations and
unknowns and therefore the only way in which it can predict stability of
the assembly is via the rupture layer analysis applied with the
homogenised moduli. Yet, there appears to be a correspondence.

Turning now to the other Lamé constant. Using again the isotropic part
of the fluctuations as a first order estimate the reduction amounts to

(g

In the expected range of ¢/a and using the graph in Fig. 6.1, the
reduction falls in the range 0.4<‘/T - ‘//Tmf <1.0, with the lower
number for the highest value of ¢ /a. Thus this Lamé constant is much
less sensitive to heterogeneity. If ¢ /a should attain lower values, it might
even increase somewhat.

With the effect of the fluctuations so severe, the question is whether it
is useful to study higher orders in the fluctuation terms. For the analogous
continuum case [Kroner, 1967] has shown a method to evaluate these for
a perfectly random medium. However, the first order estimate still gives a
reasonable impression of the order of magnitude of the sensitivity of the
medium to fluctuations. This analysis is not followed up here. For the type
of media considered here, i.e. those with a purely normal particle
interaction, it is concluded that these are very sensitive to the fluctuational
content of the packing properties.

The main practical application of the theory in this chapter is, as
mentioned, small particles in a fluid environment. While the interaction is
complex, as outlined in Chapter 1, Section 1.7, for the cases in which the
interaction is repulsive there is a mechanism that minimises the
heterogeneity. This mechanism relies on the elements described in this
chapter, which shows that the displacement of the particles is such that it,
broadly speaking, opposes the direction of the heterogeneity. In a non-
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linear interaction that becomes steeper the closer the particles are pressed
together the magnitude of the heterogeneity will consequently become
smaller due to the extra displacement u® that caused it. Therefore, in an
assembly that is composed of round particles in which the packing is such
that the particles are always captured in a non-linear interaction, the
heterogeneity will be minimised. That implies that a mean-field analysis
for such cases is not a bad approximation and has been applied
successfully to describe dense filtration cakes: [Koenders and Wakeman,
1997].
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Chapter 7

Stress-Strain Relations of Granular
Assemblies: Normal and Tangential
Interactions

7.1 Particle spin

Spherical particles with a purely normal interaction are the exception.
Especially for assemblies of contacting particles the analysis of assemblies
of grains require the consideration of the particle spins, as well as the
displacements of the particles. The direction of the contact is called n*”
as before. The location of the contact is measured from the centre of
gravity of the particles: x** from the centre of particle # and x* from
the centre of particle v. When an increment of deformation takes place the
contact point moves by an amount d“’. This motion is partly due to the
translation and partly to the rotation of the particles. The latter is denoted
by the spin vector @°. The contact point movement is

d" =u —u-¢

uv 77N %
’ ,.jk(xj o X a)k)

Displacement and spin can be expanded in the neighbourhood of
particle & in a Taylor series

H

ou, 1 ou,
w, (X)=uf +—- x,+— —| X;X;
ox; 2 Ox.0x,
J J
2 “
u , O, 1 0w,
o (x)=0 +— x,+—— xx,
ox; 2 0Ox;0x,

127
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The contact displacement is then approximated as

u“
2
d" = aui uv l 0 U; Y Y g (xuv _xm)w/l
i Ox J 2 Ox.Ox J Tk ijk \ 7" j J k
J Jk
H 2 H
W, o w,
+&, x xjvf’cg'v +—&y k x/v.”c;”'cfn”',
ox, 2 7 ox,0x,| -

where the branch vector ¢ =x"" —x"™.
The displacement gradient can be split in a symmetric and an anti-
symmetric part. Collecting the first and the third terms together shows

u u
ou, v

1| ou,| ou
o) 1
ox;| 7

_ J

2 8_x/ Ox,

_ uv _ L H Y uv
Eiji (xj X; )a)k € Cj ¢

J

_ v u
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1

Any anti-symmetric tensor can be written as

u

- u
=& s

1ol oy
2| ox; ox,

where 89“ is the local displacement gradient rotation vector. The contact
displacement is observed to contain only the difference of the local spin
vector and the local displacement rotation vector. It makes sense,
therefore, to work with the variable n= -39 instead of ®, directly
absorbing the frame rotation term. It follows than that the contact
displacement is insensitive to the local displacement gradient rotation
vector. This is as expected: the rigid body rotation has no influence on
the contact displacement vector, which determines the interactive
properties.

The second displacement derivative is now considered together with
the first spin derivative. The question is what impact the frame rotation
will have on this combination.
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On average x!" =—3c%" for contacting particles, but on a particle scale
(especially for strongly hetero-disperse samples) this is not necessarily the
case. So, as far as the second derivative is concerned, it is an
approximation to absorb the frame rotation in the particle spin. Otherwise,
the only spin variable that needs to be taken into account is ® — 3 and the
only deformation gradient measure is the strain.

It is doubtful if higher order derivatives make a useful contribution,
see again the table comparing the number of particles that can be
described with the number of coefficients from the Taylor series,
Chapter 6, Section 6.2.

7.2 The interaction and the quasi-static equilibrium
equations

A contact force increment is linked to a contact displacement increment.
The relation between these two is called the (contact) interaction. The
interaction takes the form

Hv HV Juv
[ = Ked

The contact direction n*” is perpendicular to the solid surfaces and
therefore the interactive tensor must be sensitive to the anisotropy that is
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associated with the direction of these surfaces. For spheres or discs this is
the only geometrical parameter that enters into the analysis. The tensor
should be decomposed in a normal and tangential part. For typically
frictional interactions the tensor K* will also depend on the contact force

At this point no specifics regarding the interaction are put forward yet.
It is sufficient to note that there is a direction-dependent tensor K**.

The equilibrium equations for each particle require the sum of forces
and the sum of moments to vanish:

N# N#

wv o _ wvili v o avo v v |
Zfl —O—)ZKIJ. [uj u; gj,d(x,( o) —x" v, )]—0
v=1 v=1

N# NH
uvopuv _ wv v v av o v v\
gl.ijfj x; —O—)giijKﬂ,xk [ué‘ u, gémn(xm 08 xma)n)]—O

v=1 v=1

For an assembly of N particles in d dimensions there are dN force
equilibrium equations and (Zd —3)N moment equilibrium equations,
matched by equal numbers of displacement and particle spin increments.
The solution to these equations requires the specification of the mean
strain increment. For a statistically homogeneous (not necessarily
isotropic) assembly this should be the only condition that is imposed.

7.3 Mean-field stiffness estimate

The mean-field approximation is achieved by letting neighbouring
particles move according to the mean strain e, which prescribes the
displacement increments: u; —u;' =¢, c.". However, a spin increment
cannot be imposed as an assembly average. This is one of the complexities
that arises when the analysis is extended to non-normal contact effects.
The moment equation is employed to arrive at an estimate of the particle
spin n°, derived from the mean-field displacement. First a measure of the

local spin is obtained from
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N#
wv v | = v uf v v\ |
gij]( ZKj[ 'xk I:e/mcm g[mnﬁn (xm 'xm ):| - 0 -
v=1
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U Hv ,uv yv _ UV v v
EiComn ZK Co gyke/msz/ X Co
v=l v=l

Here, the spin gradient, which controls the difference in particle spins
between contacting neighbours has been neglected. The idea is that the
imposed mean strain leads to a mean spin and that spin fluctuations are a
higher-order concern. That is reasonable because in the mean-field
approximation the strain fluctuations are ignored. These in themselves
lead to substantial spin fluctuations, as will be shown later on. The issue
is really what exactly is meant by the mean-field approximation. It was
seen in the previous chapter that for non-frictional contacts the fabric
fluctuations average out. In that case the mean strain approximation is
equivalent to a mean fabric approximation. However, in the current
configuration correlations between the components of the structural sums

emerge and these affect the evaluation of the stress increment.
NH
uv ;tv : :
If the inverse of ¢,,¢,,, ZK 5 X ¢, exists, the spin can be expressed

m
v=l

in (and is proportional to) the mean strain. In other words

U#_AH

# e, and the spin fluctuations 7, —77, = (Afjfm /_\Mm)Eém
If the mean stress increment is calculated the spin needs to be inserted
according to the evaluation of the contact forces

N#
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u o v=l
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uv v U uv i v v uv
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The mean-field estimates follows

N#

uv UV AU = av
i‘ ZZK (ek/c/ gk/mC/ Ampq pq)
u o v=l
N*
uv v A U w—  _ y(mf)=
ZZK ( (5 6 +0, 5 ) = EunCl Ampq)cj €pq _Xiqu €pqg
u o v=l

Depending then on one’s view of what the mean-field approximation
represents either A or A may be used. If the latter is employed a
correlation between the components of the structural sums becomes
manifest.

These formulas acquire more transparency when examples are
investigated. As a simple example, consider a problem in two dimensions
with an interaction that is ‘diagonal’ and the same for all contacts. In
addition it has a purely normal and purely tangential form. Particles are
discs, therefore n“” and ¢* are aligned. Defining the tangential contact
unit vector m*” (that is, such that n“” L n“") the interaction tensor takes
the form

uvo_ uv.uv yv yv
K" =knf"n" +k,n

If the tangential interactive strength equals the normal strength, the
interactive tensor becomes a Kronecker delta. This follows from the
algebra of the unit vectors n/"n/" +n/"n" =o,.

Intriguingly, the problem depends entirely on structural sums of the

type
ZK 5umizK et

For the sake of transparency of the result it is assumed that the particles
are more or equal in size, so that

N NH NH

y73% uv ,uv - uv ,uv ,uv - —2 uv ,uv ,uv
2K, ZK =50 LK,

The sum is replaced by an integral, weighed by the contact fabric
function p* ((p) ; the latter is — as was done previously — approximated
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by a quadratic function in the unit normals. All the summations are easily
done. In the calculation — without loss of generality — the coordinate
frame is chosen in such a way that the mean fabric function is diagonal.
The mean-field stiffness (including the correlation due to spin
fluctuations) turns out to be

.2
16V ) — _ P
_2X1(1i/l) =Pu (Slﬁ +k//)+p22 (kL +k//)_2k// Q ;
e Put Py

16V ) 16¥ ) o (rn) |
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e PutPxn
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C C e e

(pl.l )2 +6p1 Py + (p;2 )2
Pt Py

= 2k¢ ([_711 + 1722)+k//

The result contains various interesting aspects. The system is obviously
elastic and the stiffness tensor has the appropriate symmetries. The stress
is symmetric, as it should be.

The dependence on the fabric fluctuations arises — as mentioned —
due to the spin fluctuations. At this stage they should not be taken too
seriously, because there are substantial spin fluctuations that are associated
with strain fluctuations (these will be estimated below). It is useful though
to inspect the order of magnitude of these terms. The largest is

2k//[( 28 )2 / ( Di+ Py )] . Calculating this contribution, from the

simulation data used in Chapter 5, Section 5.1, and comparing it to
D, + D, produces a number in the order of magnitude of 0.1k, . The other
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fluctuational contributions are an order smaller than that, a few percent
maximum.

Note that all the fluctuational terms in this mean-field calculation are
proportional to the tangential spring constant.

A further intriguing possibility introduced by the aspect of the
tangential interparticle interaction is the form taken by the off-diagonal
moduli. Disregarding effects of fluctuations for the moment, these are
proportional to (k =k /) , implying that they become negative when the
tangential interaction is stiffer than the normal interaction. The Poisson
ratio would then be negative, which for instance means that when a
material is uniaxially compressed it becomes thinner, rather than wider.
For contact interactions this will by and large not take place (as generally
k, >k, ), but it is possible to create artificial particles with specially
manufactured interactive features that do have such properties. Materials
consisting of such particles, which possess a negative Poisson ratio are
called auxetic materials (Gk avEn — growth or increase), see [Lakes,
1987], [Koenders, 2009] for k, <k, . They are an example of meta-
materials, a class of substances with counterintuitive properties. Auxetic
foams, that have an internal lever-like structure are non-granular examples
of these materials. These are quite easily manufactured and have found
many applications.

The effects of strain fluctuations will be assessed against the mean-
field estimates produced here.

7.4 Heterogeneity with tangential interactions

The analysis for fabric fluctuations for the case when there are tangential
interactions is similar to the one developed for the normal interactive
case in the Chapter 6. A refinement to handle the spins needs to be
implemented.

The two sets of equations that rule static force and moment incremental
equilibrium are

NH 2 H H
K| et ot 41 U v v u+ia77£ L
i | €€ T2 Co € —&Eue| G T T3 G G [T
= X, 0X, ox,,
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ou, |
§ uv | / uv uv
gyk K// xk efmcm +3 ck cm
Ox,0x,,

V%

on
u v 1 n uv _
_g/,’mn 77n Con + 2 ax Cn cp =0

The approximation x“* =1¢*" is again made and a shorthand notation
is introduced (see also List of Symbols and Notations, Section 2), which
makes the notation tremendously more compact: the structural sums are
called A, so

)
T WA W s

14

Averages and fluctuations are now employed. The latter are denoted by a
prime; the superscript, denoting the particle number, may be omitted; this
will not lead to confusion. The first equation up to first order in the
fluctuations is

- 0 77
147/km L=

m

1 - ; .
EAi/kfw_gjkf ikl = 2 E ks
0%,

Similarly, the second equation takes the form
8ijk (A;lkmg/m + A/lkmelm gfmnAllkmﬁn - ECmnAjlkmnn ) - 0

From this equation the spin fluctuation may be determined. To that end the
inverse of E, = gykgﬁmnz i Must be determined. This is often quite a
simple object. Taking the interaction, for example, as Dbefore
K" =k nf"n?" +k,m"'m:", then in two dimensions the only component
that is non-zero is =, =7k, (p,, + P, ). It simply counts the number of
contacts that have a non-zero tangential interaction.

The spin fluctuation is

77; ( ) 0i (gykA],akbeab +gykA]akb ab yk abnA'akbﬁn) (71)
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The derivative is required to use in the sum of force increments
balance, which is simply

677', —\-1 04 'akb— - 66; aAlakb —
gr::(':)ﬁ [gi/k 8)2 e+ &y A . -

L, =&
! ab ijk “Ljakb me ijk© abn 3 ; n

Finally, the odd structural sum is treated as before to give a spatial
derivative, which takes place in the same manner as was done for the
frictionless case, except that the average interaction now depends on the
direction. In order to make that clear, an extra superscript is added to
the average bar. Thus, K*” is the mean value of the interaction in the
direction of n*". The starting point is

"

62 Kiretel”
ox

p

N
MV VK Vl( VK
N7 Zc > ke

k=1

5, w A
_ Vi VI VL Y uv VK VK VK
= Z Ki'ccc, +c, ZKU. ¢ ¢

=2
NVC V=1 KU
o) N N
~ KV C va yv ;tv KVKnVKcVKcVK Kvycv;tcvycyv
= Y Y t Co
NVC v=1 x=1
2 N“
— (KV” KV”)CZ”CZ#C;;V
N c o
And
u
o ek ek
GZK ¢ c 5 W
~ Z(Kv;z Kvy)
ox, N, 3

It follows that the translation equilibrium equation takes the approximate
form
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r = 1 - azu’ " = 1 ” 677
1/(614/ /k/ a ka /k(A kn( 2 /ké/Az/'km ax”: O_)
N, 04y, (— 1= o
e, —e,0mq,)+=A4, d
2 ox,, ( ot ”am) 2 Ox, 0x,

1 - -1 aA’arb - ae, aA'arb —_

——& A | (B) {5 e +e A —L_g g 2 | |=0
Jkt* Tijkm / pqr ab pqr*Tqarb pqr<abn n

2 [ ? ox,, 0ox,, ox,,
Making use of the definition of the strain and rearranging the subscripts
shows that the structure of the equilibrium equation is — just as in the case
of frictionless contacts — similar to the one obtained in the continuum
treatment of heterogeneity.

(A, -1 &), (4,+4, )]
o, ==&, E = . ( T A, )}

ijkt h ifgk /4 l
ij 2 % fgh® pgr hp “ifg qjr qlrj ka ax[

oA, ,_ _
+NV ame(eab - gabnnn) (72)
G- 04, _
_gjkﬁgpqr (E‘)[IJ A{ikm a:: & (ea gabnnn) = 0

m

Clearly, the same procedure for solving them may be employed as the
one that was used for the frictionless case.

7.5 Solution of the strain fluctuations for a two-dimensional
isotropic medium

For a two-dimensional isotropic medium the first thing to note is that the
. —_1 . . .

terms proportional to (.:) in front of the double gradient vanish. In that

case the inverse of the acoustic tensor is with p = p,, = p,,

-1 _ P Po

S(kL—k//)
zpe’ (k, +3k,)(3k, +k,)

with p, = ;P = (7.3)

zpe’ (k, +3k,)
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The solution for the displacement fluctuation is entirely analogous to
the frictionless case

ul (x)= _%Zi; (0)p, {Sl (%) +3S, %ﬂ(m o, +m;6, +ma§u)
_ (7.4)
%Z"f" (0)p153 (%)mimjma _%Zil/' (0)p0mj5a[S1 (%]

With Z(O) the source term of the differential equation (7.2)
ij (0) N A/chj (0) (_cd - gcdnﬁn ) - geffgpqr (E) AtefA(;cdr (0) (gcd - 8cdn77n )

The extra stress (over and above the mean strain stress) due to the
fluctuations is

.
’

10n
— rey ey !.V oy re Y4 ey ey
ZK &l G 1, +5_ ¢ c

m
m

The term proportional to the spin gradient comprises an odd fluctuating
structural sum and a fluctuating quantity, so it is of third order in the
fluctuations and will average to zero. The fluctuating spin is derived from
expression (7.1)

’ — y =
= (E-),, (gykAjakbeab +5ykAjakh ab ykgabnAjakbnn)

This, in turn, requires the strain fluctuation, which is obtained by
differentiating expression (7.4). It is noted that

X
oS,| =
() sl
ox a  ox

x=0 x=0
Altogether, it is seen that the evaluation of the effect of heterogeneity

is rather more complex in the case of tangential interactions, than for the
frictionless case. A symbolic manipulation program is employed. The
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results are equally complicated due to the rather large number of symbols
that is involved. However, a good impression of the result may be obtained
by studying special cases.

7.6 Considerations for an isotropic contact distribution in
two special cases

The two special cases that will be reported below are: (1) k, =k, and (2)
k, =3k,

The same approach to the evaluation of the correlations is followed as
in the development of the results of frictionless particles. So, the contact
point distribution is set to a quadratic form

p*(@)=pin,(o)n,(9)=D+p/n (9)n,(p)

Using this, the fluctuation in the spin is evaluated

n = p114';p22 77— p114l_?p22 e, +i_;(elfl _ 6;2)

The way is now open to calculate the stress contribution due to
fluctuations in the contact point distribution up to quadratic order. A
slightly more restrictive approach is taken in that it will be assumed that
the fluctuations are isotropically distributed. So, any fluctuation can be
described as

Py =P+ p

The deviatoric part can be written as a rotated trace-free tensor. Call the
rotation Q(«a), then

~ i 5p, X
Py =9 (a)Qj/ (@)dy,, with d _)[ 0 _519’]

Averaging over all possible angles «, gives the following

(131'1)2 = (131'2 )2 2(1352 )2 Z%(5P')2 > (131'11552) = —%(5#)2 ;

all other correlations zero.
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The stress should of course be symmetric and this fact can be used to
express the mean spin 77. In a perfectly isotropic environment 77 =0, so

in order to illustrate how 77 becomes manifest, the difference between

(P 1)2 and (), )2 is allowed to retain a small value (8’)2 .

Case (1): k, =k,
In this case p, =0 and as aresult S; does not enter the calculation. Up

to first order in (8') the mean spin is derived from the imposition of stress

symmetry
2’y (ZNV 4 -9s+ 2)
C C —

" N, 2(4(519’)2 +16(P') + 5(5')2)S, - 4(@ +W)@Sl - 2) v

Although the result is a little contrived because of the isotropy of the
problem, it is seen that the mean spin is proportional to the mean shear

stress and that if absolute isotropy is required (that is, (6')2 — 0) the mean
spin vanishes. The relative shear modulus correction turns out to be simply

e AT 007 )8+ 00225,

/u(mf) N 1 6]_72

The leading term is the one that contains the variability in the mean

number of contacts (P')2 ; it is observed that for the not unreasonable

value of (a/c)S,=0.5and N, =6 the correction is of the order of

—%(P')2 / p*, which — using the same estimate for the variability as in

the previous chapter — is about half the value of the frictionless case.
Thus, the packed bed with a fully frictional interaction is far less sensitive
to fluctuations than the same bed with a frictionless interaction.

The correction to the 4 Lamé constant, here scaled to the mean-field
shear modulus, is
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aq\ien?
2 — ) (2_5‘51)(519 )2

,u(mf) - 32[—,2

This is a small correction, though note that it takes the material into the
auxetic range.

Case (2): k, =1k,

When k, #k, S, enters the calculation. This is immediately clear

when the mean spin is calculated up to first order in (8')2

(¢)’
4

[N

=

12><

NV

ol )

(328, -38,) - 7@5‘, - 5)

Nyf(2(3(5p')2 N 14(}9’)2)51 - 8,(p')) - 14@(2_‘?31 - sj
C C

The shear modulus correction takes the form

oy 6N, g{%stl} +7(5p') (5_23:51)
u 120757
w2 s (27 ory )

35p°

The leading term is now of the order of —1.5(P')2 / p°, so it is more

sensitive to fluctuations than the previous case, but not as susceptible as
the frictionless case.
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It is also found that

A-a" NV::KQ(P')Z +21(5p')2j51 28, (W H
o 705"
(5p')2(5—2islj

120p°

The leading term is of the order —0.37( ')2 / ]_)2, so this is also small and,
again, makes the modulus smaller.

7.7 Anisotropic calculation

A slightly different approach is taken to calculate the effective moduli for
an anisotropic medium due to heterogeneity. The purpose of this
calculation is basically to show the effects of intrinsic directional
properties. The mean field values have already been evaluated in Section
7.3. In order to ascertain the effects of anisotropy in two dimensions the
starting point is again the two equilibrium equations in which the spins are
decomposed into an average and fluctuations

NH 2

1 Ou, 1
uv uouv J uv v uv ru v uv = _
ZKij €C +55 2 C € — &y Eck (77/ +7, )+Ck n, =0
v=l X, 0X,
y
1 d*u
K ,uv et M 4 — 1 uv o uv
ik /m m k m
K Z ' 2 ox,0x,, '
1on |
| ML ST e | =0
2 axp

Using the shorthand notation introduced for the structural sums as
before, the latter equation takes the form
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Eii

2
PR
jLkm ™ ( j hn,
g ox ox:

m

U
A
- glmn A;@km (E nn# + 7771 J

1 X
- WY vV UV oIV
2‘9/mnszl X Cn 777! =0
v=1

An approximation is made: the sum over the neighbouring spins and
the double fluctuations involving the second displacement gradient are
both neglected.

Solve for 7; in two dimensions for the interaction &, =k,

el 1 622

, _ mdp, _  _ ”(1_9 — Py +dp,, —dp )
n'=-277 + N;{lz( )_ 11 22Nf 11 2

+%(dp12 (dell _deZZ)_(ﬁn — Py tdpy, _dpzz)den)

c

el 2

The force equilibrium equation is written up to first order in the
fluctuations

NH 2 H

~
S ke (3, — e ) F L YK T
ij 14 il itk Mk ij —k l -
~ / / 240 Ox, 0x,

This equation may again be solved by replacing the fluctuating structural
sum by a derivative of a higher order structural sum and take the fluctuating
part. Then the whole system is as before, with the difference that the average
second order structural sum is now anisotropic. In other words
’ 2.1
N aAszk (— i Ou Jj
Vv

e,—¢&, 77)+A4. — =
4 Uk Tk kl
ox, TV ax o,

The solution is again found by Fourier transform

0 (x)=

iN,
(27)

Jdke™ Pk [doyd) (v)e™ (2, ~&,u7).
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In the case of &, =k, this acoustic tensor is diagonal and takes the
following form in two dimensions

—2
e
P=

k[ (3P + Pon )i + (D1 +3P20 ) K5 8

The inverse is easily obtained

4

Pl = 8
72k, [ (3P + P )i +(Dy, +3P)K; |

The integrals can be attempted for the case that
4, (y)=4, (O)CXp(— v/ &2) . First the inner integral is evaluated

jdzyA,.j'./;k (y)e™ =za’ exp(—%&zksz,}% (0)

The integral over £ gives rise to a confluent hypergeometric function
(sometimes called a Kummer function), see Appendix, Section A.6.2. The
subsequent integral over v may be done numerically, or by a (high-order)
series expansion. The problem is not getting an answer, the problem is
getting an answer that is transparent, insofar as it illuminates the
anisotropic character of the outcome. The result will be a expansion in the
angle ¢ in terms of the trigonometric functions cos¢ and sing . From
the numerical work it is found that the lowest terms in the expansion
contribute to any significant amount only. Therefore, these low-order
terms are obtained by searching for the lowest terms of a Fourier
expansion. This task is easy enough to perform. Change the integration
over the angle ¢ to a =y — ¢, then
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.2N

ul (x)= j dy P, (v)n (v)

ikx cos(p— 1 ! e ,
X Jdkek" ad exp(_ZQZkz)Aiﬂk (0)(eﬂ a 51“77")

2
_ZaN, Jda (a+o)n (a+9)

x jdk sin[kxcos(a)] exp(—%fﬂ]ﬁ )Ag;'/zk (0)(5/.(/ — &l )
0

The Fourier coefficients are obtained from

L i

. sin(mg)

Writing, p,, = ;_7(1+ap) and p,, = ﬁ(l—ap) , the result is for m=1,
depending on the value of the subscripts

2 (\/a +2—\/2—ap)cosa
7rk c’pa \/a +2 (\/2 a —\/2+ap)
2 (\/ap+2—\/2—ap)

7Z'kc pa \/2 a, (\/ap+2—\/2—ap)cosa

a=ik=

sinx

sin o
a=ik=

The results for even m are all zero and for higher, odd values of m they
are substantially smaller than for m =1.
The integrals that need to be done are now

j da(sinaj [ dksin foxcos( )]exp[—%c?zkzj

The integral with sina is zero. The integral with cosa has already been
encountered (see Appendix, Section A.6.1)
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2z 0 1
f dacos afdk sin[kx cos(a)]exp(—zykzj
0 0

=27 dkJ, (kx)exp(—lﬁzkz j _2 (@J
0 4 a

Altogether, the result is

2aN, S, (’fj
u’(x) - Y

k (ap,(p)Ai;/k (O)(Ejé’ - 5/(%77/«)

" 7k, pe’
with
a + 2 a,
o) 5 L
‘/a +2—./2- a,
( P’(D) 2a \/2 a, smgo

In the limit @, — 0 this reverts back to the isotropic case. The two
functions

,/a +2—.2- a, and € ) \/ap+2—\/2—ap

p 2a \/a +2 2ap\/2—ap

are plotted in Fig. 7.1 in the range —1<a, <1.
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Figure 7.1. The factors Cc" and € as a function of a e

The two diagonal stresses are evaluated. As before, set p/, =P'+ p’
and p,, =P'—p'. Here, only the terms that pertain to the isotropic
variations in contact point distributions are reported. The reason for this is
that this is by far the most significant term and also that in an anisotropic
setting it is not directly obvious what the deviatoric distribution of contacts
may plausibly look like. Furthermore, a presentational point is that
including deviatoric information makes the outcome very opaque due to
the large number of symbols involved.

2v

—2
ek,

o, =

p(2+a,)e, -2N, —Z;Sl (Z;j c(a,)e,  (15)

N2 —
——, 9» 255(2_‘1;7)522 —2N, P—)%Sl (TJCQ)(‘I,;)EM (7.6)

The dependence on the anisotropy in the 22 component is obtained by
making the substitution a, — —a, in the 11 component. From the plot of
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C"?) it is seen that the weaker stiffness direction is more affected by the
effects of anisotropy than the stiffer one.

The higher order terms, that is the contributions that pertain to
m=3,5,7, etc., also play a role, though they are small compared to the
m =1 case (largely due to the fact that they give rise to higher order S,
functions). The approximation presented here is very acceptable and
useable.

7.8 A few remarks on the theory

The approximations that have been made to arrive at these results have
either been idealisations of the geometry, such as replacing the location of
the contact point with half the branch vector, or neglecting double
fluctuations or sums over fluctuating quantities of a ring of neighbours.
Each of these approximations can be investigated further as refinements,
probably at the expense of introducing more parameters. Also note that
introducing extra fluctuating terms in the analysis only makes sense when
they appear quadratically in the end result. However, the main findings of
this chapter relate to the influence of the fabric fluctuations —
predominantly the variability in the number of contacts per particle — and
the effect of anisotropy on the sensitivity of the assembly to fabric
fluctuations. These are the dominant effects that influence the order of
magnitude of the outcome as far as the incremental stiffness components
are concerned.

It must be emphasised that the calculation on anisotropy is only valid
for the simple case k, = k,, which leads to the very convenient form for
the acoustic tensor. Nevertheless, this calculation is a very useful first step
for more complicated cases, as will be seen in Chapter 8.
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Chapter 8

Frictional Granular Materials

8.1 The frictional interaction

In this chapter the incremental stress-strain relation for an assembly in
which the frictional interaction plays a role. The procedure is similar to the
ones outlined in the previous chapters. First a mean-field approximation is
explored and then corrections are introduced to account for heterogeneity
and strain fluctuations.

The frictional interaction has already been introduced in Section 1.5. It
has two states: a sliding state and a sticking state. Those ideas for an
incremental contact law are now applied to an assembly. The sliding
interaction itself is summarised here first.

The frictional interaction for a sliding contact with direction unit
normal n is treated as follows. The force on the contact is F; the normal
force is Fn,, the tangential force F7,. A contact displacement d must
be such that the ratio F;ir, / F;n, remains constant. So, as the increment in
the force is f; = K,d;, invariance of the force ratio as the increment is
applied requires

(Fef)i BB oy i~ fiFn =0
(Fp+fp)n!’ £y

This is the same result as the one obtained in Section 1.5, without the need
for a Taylor expansion. Then, using f, =K, d ,

FnK dn i
Ki'd }71 - = I<ia,7i - Enl K?an da
y—J F;cn]\» F}J’lk pa p

149
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If, for purely tangential deformation, the stiffness is assumed to be zero
then the interaction has the form

Fpﬁp —
K,,j =knl.nj +—kn,nj
Fon,

This is providing that the direction of the displacement is such that no
elastic unloading is invoked, which must be verified afterwards when the
increment has been applied. The tangential to normal force ratio at sliding
is called , = (Fpﬁp)/ (Fin, ). Its numerical value is a material constant,
but its sign depends on the choice of coordinate frame.

The frictional interaction brings with it its own idiosyncracies. In order
to explore the problems the sticking state is represented in a very simple
form as

K, =ko;

All manner of refinements and complexities are possible, some of
which will be discussed below, but first the simplest form in an
assembly with at most one sliding contact per particle is investigated. For
this case the sliding contact is the only perturbation and the point of the
exercise is to figure out how the frictional disturbance influences the
displacement and spin fields in the vicinity of the anomalous contact. At
first sight this is quite simple, as all that needs to be done is to introduce
the perturbation into the analysis that has been done in the previous chapter
and graft it on. There is a complication however and it is this: if there is a
sliding contact of the particle pair (uo), then there is also a sliding
contact as viewed from particle &, that is the pair (ou) (the sliding
contact is denoted by &, while all the other neighbours are, as before,
called v). These two can obviously not be treated independently when
assessing the perturbation field. So, instead of a perturbation due to the
interactions of one particle, the perturbations due to a particle pair have
to be accounted for.
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8.2 Mean-field estimate

In the following everything that has been discussed in Chapter 7 will be
used as an underlying basis for the analysis. Essentially, maximally one
sliding contact per particle is considered only and the theory of the
previous chapter is modified to accommodate that. The particles are discs;
the assembly is two-dimensional. All idealisations and approximations
from the previous chapter are used.

The first task is to ascertain the impact of sliding contacts on the mean-
field estimate of the incremental stiffness. To that end a stress increment
is evaluated while the displacement fluctuations are ignored. What cannot
be ignored, however, is the spin fluctuation, which follows from the
moment equation of each particle

N#

N#
uv v _ wpwv | = uv wvoop vy v )|
giijfi X = 0— gijszjU X I:eﬂmcm gémn (xm 77n X 77)1 )] =0
v=l v=1

All contacts stick, except the (uo) one, so in the moment equation for
particle u one sticking contact is subtracted from the summation and
replaced with a sliding contact. The moment equation then takes the form

N*

wv | = uv M Vi, v
8[]/( Zk5jka |:efmcm - gﬁmn (xm nn - xm nn )i|
v=l

MO UC MO — UO 1T Ho | = uoc HO 1L ou, o _
+gijkk(nj n( +lu nj n/, _5jﬁ)xk |:e/,’mcm _g/,mn (xm ﬂn _xm ﬂn )]_0

The equivalent expression for particle & is

N
oe| = o€ oe, O &0 &
gijkzké‘j@xk |:e[mcm _glmn (xm 7771 _xm 7771 ):|
e=1

ek (nn g TN =8, )5 | @t = 8 (x5 X ) | =0

The unit normals satisfy n“ =—n” and the friction coefficient retains
its sign when the superscripts are interchanged. Thus, it follows that the
second term in the above equations are identical, but only when the
surrounding fabric is equal. In order to illuminate the structure of
the addition of friction to the analysis, it is for the moment assumed that
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there are no fabric variations. For the first terms write the spins as
n“ =n+n'* and n° =+ 1'%, respectively and in the summation over the
neighbours assume that the spin fluctuations of the neighbours average to
zero. It is seen that the two equations are now the same, other than the term
proportional to the spin fluctuations of the central particle. Subtracting the
two equations yields the result that the two spin fluctuations n'# and n'°
are equal.

It helps the insight to do an explicit calculation of the problem. For
reference the case of all-stick is noted; the formulas from Section 7.3 are
applied to the present problem. In this case all spin fluctuations are
obviously zero and the mean spin is

B __Pn—Py
(773 )allstick 2 ([_)11 + ﬁzz ) @

The stress increment becomes

T, _ — —
2V(O_11)allstick = chz (3p11 +p22)€11;

ZV(O'22 )azzsu'ck = %kzz (1_911 +3p,, )Ezz 5

(P, +3P») (3P, + D)
1_711 + 1322

T, _
2v(012)allstick = 2V(021)a11m'ck = gkcz

€,

These formulas are valid when al// particles in the assembly have no-slip
contacts. If, however, some particles possess a slipping contact, then the
mean spin may have a different value. For this case the spin fluctuation of
a particle with all-sticking contacts is

' = ﬁn — 1_722 =
(773 )alls ick = _277 - - - 612
! 2 (pll + Dy )

The one-particle stress contributions are the same as in the case of all
particles sticking. The mean spin simply does not appear in the formulas.
The stress is symmetric (as expected, because moment equilibrium has
been enforced).
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For the case of a particle with one slipping contact (o) the moment
equilibrium is expanded as follows

< 1 1
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The last term in this equation (which includes 7/”) vanishes, because the
sliding interaction does not couple to the spin. Thus, calling the angle of
the sliding contact ¢, the solutions for the spins of the two particles is the
same and equal to

N,-1_ cos2a
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The stress is now easily evaluated
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For the sum over the contacts of the particles with one slip the same
procedure is followed that was used for the calculation of the spin
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The averaging bars are needed because the distribution of slipping angles
needs to be specified. The result of this is more involved. First one term
under the averaging bar (that is, for one particular angle of the slipping
contact, « ) is evaluated. The number of contacts per particle is N, and
the anisotropy index a, is such that (I+a,)/(1-a,)=p, /p,,. The
i=1, j=2 element is equal to the i=2, j=1 element. The i=1, j =1
element in a fabric that is aligned with the coordinate axes comes out as
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The i =2, j =2 element is similarly
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For the i =1, j =2 element the contributions that are proportional to e,
are given only
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The i =2, j =1 element is identical.
The result still contains the mean spin, which is determined by
averaging over the slipping angles. Two special cases are considered.

8.3 Mean-field estimate with randomly distributed slip
angles

The first special case pertains to the situation in which the slips are
distributed randomly. In this scenario the mean value of the slip coefficient
vanishes and an average may be taken over all angles. The result may be
combined with the all-stick result, the fraction of particles that have one
slipping contact is called ¢; the fraction of particles that has no slipping
contacts is (1 - ¢S) . The mean spin is then determined by requiring the
average of the spin fluctuations to vanish. The result is

N, +2(¢,—1)

=—ae,————

T=7%% (N 19 -2)
Thus the mean spin depends on the shear strain increment only and is

proportional to the anisotropic mean packing characteristics. The
combined stresses are
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This result is similar to the mean-field estimate for a medium with a

suitably chosen tangential interaction.

8.4 Mean-field estimate with concentrated slip angles

The second case pertains to the situation in which the slips are
concentrated in certain directions. This case is especially important when
the sign of the friction coefficient is associated with a deviatoric stress;
this case is explored in this section.

8.4.1 A slip angle associated with the deviatoric stress

The principal stress axes are aligned with the coordinate axes (as is the
mean fabric tensor). An illustration is provided in Fig. 8.1.

//
—

Figure 8.1. The stress ellipse and the sign of the friction coefficient
M, Z(Fpﬁp)/(ﬂnk) Z(quﬁpnq)/(qunpnq) (in this case the maximum

value of the stress ratio is at an angle of approx 55 in the first quadrant.
The arrows give an indication of the direction of the tangential force.

So, while only one sliding contact per particle is taken into account,
for every angle « the conjugate angles a+7, - and -« + 7 will
participate with the signs of u,_ of +, +, —, —, respectively. All these are
added to the sums of the stress contributions; averaging over the angles is
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then done in the first quadrant according to a prescribed distribution. Here
the result for a distribution of slipping angles is chosen that represents one
particular angle « in the first quadrant and its three conjugate
counterparts. These four have equal probability and averaging the
expressions for 2v(0')sh_p obtained at the end of Section 8.3 with the
appropriate signs for the inter-particle friction angle yields the following:
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These formulas are not directly very transparent, which is why a
graphical illustration is supplied in Fig. 8.2.

N_=3.5; u=.5
1.1 4 / - N p=0'2

\a

0.9 A

os4a =0.2

(Glz)slip(a)/ (012).a1 stick

0.7 A

/4 o

Figure 8.2. The ratio (0'12) for an assembly of particles

slip(a) / (0-12 )all stick
with one slipping contact each in the mean field approximation.
Parameters as indicated in the graph.

The shear modulus is shown, normalised to the all-stick case. The
parameters — friction coefficient, anisotropy index and number of
contacts — have very little impact on the result; the shear modulus is
relatively unaffected by the slip phenomenon when the slip angle lies in
the vicinity of 7 /4. Outside this region there is a reduction in the shear
modulus.

The normal moduli are most easily studied in terms of the ratio
6=E,, E,, and the non-dimensional determinant A :(2\/)2
(E B —E1122E22“)/(k254). The former gives an indication of the
dilatancy sensitivity (when the ratio exceeds unity the assembly expands
in a biaxial cell test); the latter points to the stability of the assembly (when
A approaches zero the assembly exhibits a possible rupture layer).
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Aslip((>c)’53Iip(()c)

Figure 8.3. The stiffness determinant A
)

slip(a

) (top) and the dilatancy ratio

slip(a

) (bottom) as a function of the slip angle a. The parameters are
indicated in the graph; the solid lines are for N, =4;a, =0.2; 2, = 0.2 ; the
dashed lines for N, =3.5;a, =0.4; 4, =0.5.

Interesting features come to the fore. The isostatic limit for one
slipping contact for all particles in two dimensions is at N, =3.5. Well-
away from this value and moderate values for the anisotropy and the
friction coefficient, the assembly is neither dilatant nor prone to rupture
layer formation. Decreasing the number of contacts and increasing both
the anisotropy and the friction coefficient leads to a more dilatant
assembly and also one that is closer to rupture layer formation. All this
takes place at a certain angle for the slipping contact. This trend is what
may be expected when studying the data from numerical simulations,
although it is emphasised that the mean-field approximation is a very
rough approximation and the assumption that all particles have equal
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numbers of contacts and that only one of them slips is definitely artificial.
Nevertheless, the key physical features show themselves.

8.4.2 Further investigation of the slip angle and fabric
heterogeneity

The question is now whether there is any favoured angle for a direction of
a slipping contact. Insight may come from the application of Equation
(5.1), which may be used to calculate — in an average way — the value
of the force ratio in any direction. Simple algebra permits the expression
of the contact force ratio x_ as a function of the contact angle « for given
fabric anisotropy @, and stress ratio R=%,,/%,,.

R(ap—2)+ap+2

sin ¢ cosa 8.2
ap—2)cosza—(ap+2)sin2a (82)

ﬂc(a):R(

This relationship is plotted below in Fig. 8.4 for two values of a, and
R =4. Now, the value of the force ratio cannot exceed the material
constant x  and therefore the slip angle is just in the maximum of
the graph. It is observed that a higher value of the maximum slip angle
can be achieved at the same stress ratio for smaller values of the fabric
anisotropy.
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Figure 8.4. The force ratio as a function of the angle of the contact
for R =4 and two values for the anisotropy parameter a,.

Conversely, for a given material parameter, the inter-particle friction
ratio y , the anisotropy required can be expressed in the stress ratio. To
find that relationship the maximum of Equation (8.1) is found. This is

easily obtained; the critical angle is
Ja,+2

Jea)

The associated anisotropy parameter is

-1
o, =cot

R —4Ru\Jul +1-1
a =
Plaza, 7 R+ 2R(244 +1)+1

The narrative that describes the progress of the assembly as the stress
ratio is gradually increased is now becoming clear. As deviatoric strain is
applied the assembly becomes more anisotropic, while slipping contacts
develop. These will be increasingly concentrated in the direction of «,.
Then — consulting Fig. 8.3 — the dilatancy ratio will increase (and could
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even reach values greater than unity, implying expansion of the assembly in
a biaxial cell test) and the value of the scaled determinant A will drop to
zero, which results in the overall stress ratio remaining constant.

These features are observed in both physical and numerical
experiments. The remarkable thing is that they follow from a relatively
simple mean-strain theory. The theory is augmented by making allowance
for fabric heterogeneity. Thus, as far as the effects of slipping contacts is
concerned a mean-field theory is still used, but a first-order estimate of the
influence of fabric heterogeneity is readily introduced by incorporating the
formulas of Section 7.7 as an extra perturbation. Essentially, the principal
moduli are affected only, with the result

2
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It is now possible to find the point at which the outer determinant
vanishes (which corresponds to peak stress ratio) and as a function of the
number of contacts and the heterogeneity parameter (P')2 /P> the
associated anisotropy parameter a, , dilatancy ratio ¢ and the stress ratio
R=2%, /%,, follow. All these can be read at the point for which o = «.
It is then assumed that the vast majority of sliding contacts are in the
vicinity of this angle (and its three conjugate counterparts). The results are
plotted in Fig. 8.5.

It is necessary to add a note on the heterogeneity parameter. Firstly, in
the above equations it has been assumed that all particles have one sliding
contact. That is a simplification, because there may well be particles with
no slipping contacts at all. These would affect the result by increasing the
principal moduli. Also, there may be a fraction of particles with no
contacts at all and while this is accounted for in the heterogeneity
parameter, it is difficult to ascertain how exactly these particles affect the
analysis based on an explicit sliding contact. Secondly, it was seen that the
heterogeneity acts in concert with the influence function (E /a )Sl . These
two may as well be taken together into one heterogeneity parameter:

In fact, this parameter acts as an amalgam, incorporating many aspects,
such as particles having no contacts, particles with no slipping contacts, as
well as fabric variations. Therefore, this parameter is a collective
correction parameter, as it is not convenient to add extra variables to the
theory. It must be borne in mind that this is a rather primitive mean-field
theory that essentially has the purpose of elucidating the physics of the
problem.

Despite the simplicity of the theory some main features come to
the fore. When there are few contacts — that is for a loosely packed
material — the stress ratio at peak, the anisotropy parameter and the
dilatancy ratio are smaller than when there are more contacts. When the
material is loosely packed it is plausible that the heterogeneity parameter
is also larger; this regime is represented by the solid lines in the graph and
it is observed that this leads to smaller stress ratios, less anisotropy and
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smaller dilatancies. All these effects, qualitatively at least, have also been
observed in both physical and numerical experiments. It is noted that these
realistic results are obtained by taking into account a small amount of
fabric heterogeneity. A further result is that the dilatancy exhibits a plateau
for small contact numbers.

a,,2/Zy, &

Figure 8.5. The anisotropy parameter, the stress ratio and the dilatancy
parameter as functions of the mean number of contacts per particle. The
solid lines correspond to a heterogeneity parameter of H =0.1 and the
dashed lines to H =0.05. All calculations done at peak stress ratio when
A=0.

8.4.3 Verification of the friction criterion

One aspect that has so far been tacitly circumvented is the peculiar
requirement of the frictional interaction that a verification is carried out to
check that the displacement path of the sliding contact, as applied to the
sticking rather than a sliding state of the interaction, does not lead to a
lower stress ratio (which would make it a sticking contact once again). The
increase in stress ratio is easily obtained, it is
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1
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The compressive force F, 1is always positive. A diagonal sticking
interaction has been used and therefore the increase in terms of
displacement becomes

k
F(dn _/lde)

1

The outcome obviously depends on the mean-strain increment that is
chosen. Here, an illustration is provided for a zero shear strain. The mean
spin is then also zero and the increment of increase in stress ratio is

k N, _ _
FNC/—IE (622 —ell)cos2aS
1 c
k N, _  _ . _
_E{riz(ezz -g, )sin2a, + NflS—Z (e, +ell)}

It is easy to verify that for the choice of parameters for the inter-particle
friction, the number of contacts and the slip angle broadly in the range
given above, this is always strongly positive while e, > 0,e,, <0. This is
largely due to the extra particle spin that is incurred, which is enabled by
the sliding. A similar calculation shows that for contacts that are in the
quadrants that are adjacent to the one in which the slip takes place the
incremental increase in the force ratio is very small and may even be
negative. For contacts in the opposite quadrant the increase in the
tangential displacement is substantially smaller than the one for the sliding
contact.

In this calculation the fabric heterogeneity has been overlooked. The
result for the mean-field calculation is emphatic however: sliding contacts
for a dilatant strain path persist. This is not to say that the mean-field
calculation is particularly accurate; in the next section refinements will be
introduced.
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8.5 Strain fluctuations

An obvious improvement on the mean strain theory is to consider strain
fluctuations. The purpose of this analysis is to investigate the effects of
friction and therefore fabric fluctuations are ignored for the moment.
These will be added later as an extra perturbation.

The calculation is somewhat involved. There are a number of stages.
The first is the determination of the spins while allowing for strain
fluctuations. The second stage is the calculation of the displacement
fluctuations, taking into account the fact that for sliding interactions a
particle pair must be considered, rather than in single particle. The third
stage involves an estimate of the strain fluctuations, derived from the
displacement fluctuations, necessary to evaluate the spin fluctuations.
Then all the elements are in place to work out the assembly-averaged
incremental stiffness components. Finally, fabric heterogeneity is again
added as a refinement. Other possible refinements are also discussed.

8.5.1 Determining the spins

Starting point is the determination of the spins. In the moment equation
(8.1) the mean strain is replaced by the mean strain plus fluctuations. So,
instead of the mean strain, the local strain is inserted
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A concomitant equation for particle ¢ has a similar form. The solution
is entirely analogous to the mean-field case
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The average of this expression must vanish. Inspection of averages and
fluctuations under the two scenarios discussed in Sections 8.3 and 8.4
shows that the terms proportional to g cos2a, sin2a and p  all have
zero mean. As a result the spin fluctuations are
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Therefore, it becomes necessary to obtain an estimate for the shear
strain fluctuations and this aspect is also the one that distinguishes it from
the mean strain approximation.

8.5.2 The displacement fluctuations associated with a sliding
neighbouring particle derived from the force equilibrium
equations

The force equilibrium equations are
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Averages and fluctuations may be distinguished. The double displacement
gradient is a fluctuating quantity and all the odd structural sums ditto, so
the first order fluctuation terms together are
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The fluctuating structural sum can be written as a derivative, that is
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The fluctuational content in this case derives from the slipping contact,
which leads to the form
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The whole set of equations that was used in the previous chapters can
be re-deployed. However, there is now a detail that needs to be addressed.
As was observed in the previous section, the fluctuation that arises from
particle z cannot be viewed independently from the one that is associated
with particle & , with which it shares a sliding contact. Starting point is
once more Equation (6.3). Noting the modifications made in the previous
chapter the term A'(€—€7) is again replaced by Z'. The displacement
fluctuation takes the form

ul (x) = ﬁ [doke™ Pk, [d,yZ}(y)e™ (8.5)

The fluctuations Z' now have two contributions; the first — originating
from particle x and centred on the origin — is treated along the same lines
as before, but the second one stems from the fluctuating field associated
with the neighbour & with which it shares a frictional sliding contact. The
analysis needs to be extended to accommodate the latter. The result for the
displacement difference between the two particles that share a sliding
contact is given in Equation (8.6).

The analysis goes as follows.

The centre of particle ¢ is located at position ¢’ and the fluctuating
field Z' will be assumed to be ‘smeared out’ in radial fashion as

z (c”")exp(—‘c“" — yr /&2) .

MO
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The following integral must now be evaluated
J.dzy (y)e™ =2 c”" J.dzyexp( ‘c” —y‘ /a ) Ty
A coordinate transform z =y — ¢#° leads to
J‘dzyZ,.j'. (y) =z (c”" ! Id Zexp -z*/a’ )

This integral is again quite easily done and the result is

P

So, the contribution of this fabric fluctuation to the fluctuating
displacement field (8.5) turns out to be
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The result of the analysis of the fluctuation at the origin (that is
the fluctuation centered at particle ) may now be taken over —
Section (6.5) — with the substitution x — ‘X —c” “‘ and the vector m the
unit vector that points from the centre of particle o. To distinguish this
vector from the unit vector that points away from the origin at particle
it will be called m'”'; the vector m itself, the one pointing away from the
centre of particle u is — for clarity — denoted as m"

For the form of A"”) the angle of the unit normal is increased by 7,
thereby incurring a minus sign. As the unit normals always appear in pairs
the form is the same as for A"*,

The form for the displacement fluctuation is recalled
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Now, for the case of the normal and tangential interaction being equal
p,=0and p,=1/ (ﬂEzﬁk) ; this is not entirely the case here, as there are
sliding contacts. However, the p, term is dominant and the p, term is
rather smaller, so approximately it follows that

! a X o
ul (x) = Ry mﬁ.”)S1 (E)+m£ s,

‘x —ct?
& Zaj (O)
Importantly, the displacement difference between the two particles g and
o 1S
1c ) &mﬂo- E !
uy —uf =———=—8| = |Z., (0) (8.6)
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The way is now clear to assess the overall stress increment.

8.5.3 The stress contribution associated with the fluctuations
due to sliding; strain fluctuations and spin fluctuations

In order to arrive at the assembly-averaged stress increment, the following
expression needs to be evaluated
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In the first term the sum is again replaced by an integral and the sum over
the fluctuating spins of the neighbours of e are neglected. Note then that
the displacement fluctuations are all proportional to Z’', which average to
zero. The spin fluctuations will be required to average to zero, so these
need not be calculated. Thus, the first term becomes just like the mean-
field approximation
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The third term can also be simplified. As the vectors ¢ and n both

point in the same direction, it follows from the anti-symmetric properties

of the Levi-Civita tensor that the spin terms of the slipping contacts vanish.
The second and third terms term are therefore
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An estimate is needed for the strain fluctuations, which is less simple
in this case because of the contribution of the neighbouring particle that
slips. The displacement fluctuation is expressed in polar coordinates
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The first derivative in x =0 of the second term in the square brackets
takes the form
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An estimate of the strain fluctuation is obtained by means of a least
squares procedure. While in principle it is possible to obtain an estimate
of the strain fluctuation by simply taking the derivative of the
displacement fluctuation in x =0, this does not lead to a satisfactory
procedure for two reasons. Firstly, the strain fluctuation should contain
information about the neighbouring particles and these are all located at
more or less the same distance from the centre of particle x; therefore, a
variation in the distance (as is implied by taking the gradient in x =0)
does not yield any useful information derived from the first term in
square brackets. Obviously, the second term does imply a variation in the
distance, because the origin of this term is not located in the centre of
particle . Secondly, the presence of the second term in the square
brackets contains information that is specific to the angle «. This
information correlates with information in Z' and, whereas the average
of Z' is zero, the average of the product of the contribution to the strain
fluctuation does not necessarily vanish. This would make it not a

fluctuating quantity.
In order to remedy these two objections a least squares procedure is
advocated, which — because of its functional form — enables the

imposition of a stipulation that forces the mean of the gradient to vanish.
The functional that delivers this goal is easily constructed. It takes the form
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which i1s minimised under the condition that —Zeij‘ =0 and the set A
are the appropriate Lagrange multipliers. #

The result of the minimisation is
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el = [ch] Z[ul.'” (c’”)—ui’” (0)]cj” —E/”Ll.j (ch]
v=l v=l

v=1
4

o

G

Replacing the sum over the branch vectors by its average and evaluating
this as an integral gives
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N -l
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[ch] =~ =7%
v=1 NVC '

4

In a similar way the sum over the displacement fluctuations may be
obtained. There are two contributions; the first one is simply

4 g (Ejz’ (0) 2 5 Nzﬂ“cevmﬂu—is (Ejzi(o)
2rctkp \a) "V AN )E 2rckp \a) "
N*

where use was made of the approximation Z ¢ =0.

v=l
For the second contribution — that is the one due to the source at
particle & — the function is approximated by expanding in a Taylor series
up to first order around x =0; this yields a similar term in the unit vector
of the branch as in the first term, but its front factor is the matrix V, as
determined above. Altogether the strain fluctuation takes the form

! Z(0 a c
%z_% V‘/+gSl (%}51 + 4
ox, 2xckp\' " ¢ \a)” ‘

The factors that are needed to evaluate this are plotted in Fig. 8.6.
The Lagrange multipliers are such that the average vanishes and
therefore the outcome is

' Z(0 a_(c
2 Z0r,+25()s,
ox, 2rckp\ © ¢

Lz,
2xc’kp
It is noted that the terms of V that contain the angle of the slipping contact

a are rather smaller than the other terms — see graph — and therefore
the correlation correction constitutes only a minor contribution.
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Figure 8.6. S (z), 2S1(2)+ 225, (2) and ;—(S{(Z)—IZ—SI(Z)j as a
function of z.

With the form for the strain fluctuations available it becomes possible
to make an estimate of the stress increment as a function of the components
of the mean strain increment. Naturally, the outcome depends on input
parameters such as the number of contacts, the anisotropy, etc. The result
is in part the same as the mean-field estimate, so all that needs to be
reported here is the addition due to the displacement fluctuations as
calculated above. There are two parts to this. The first is the part due the
actual displacement fluctuations; this part is labelled A. The second
contribution comes about as a result of the spin fluctuations; these
contributions are labelled B.

The first extra term is as follows (note that averaging over the four
directions has been carried out, so the angle « here refers to the first
quadrant).
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Reporting the extra stress increment due to the spin fluctuation, insofar
as it is proportional to the components of V, it is convenient to introduce

the shorthand 7, = lS,’ [Ej +iS1 (gj,Tz -1 S/ (Ej —ES1 (Ej . The
2 \a) 2 \a 2 a) c a

extra diagonal stress increments then turn out to be entirely proportional
to 7, +7,.
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NVkEZ (T; +T2) 11
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In practice, for a reasonable set of system parameters these B-
contributions are negligible, compared to the A-contributions. For the
shear stress then, it is sufficient to report the result of the A-contributions.

2vN, (éjS [E B o)
Nke*|\c) '\a 2
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+Zsm2a(yS (1+ sin’ 2a)+s1n2a)77

The mean spin, 77, is determined either by requiring the spin
fluctuations to average to zero, or simply by requiring stress symmetry.
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The non-dimensional determinant A and the dilatancy ratio ¢ have
been plotted as a function of the angle of the slipping contact when there
is one of these per particle and an average has been calculated over the
four conjugate directions. It is seen that, with the parameter choice in the
example of the graph that for contacts oriented towards the mean slipping
angle «_, the determinant vanishes and that the dilatancy peaks.

Aslip(a)’ SS”p((l)

Figure 8.7. Determinant A and dilatancy ratio ¢ as a function of the slip
angle; the parameters for this plotare X,, /2, =4, a,=0.76, a, =0.93,

N. =4, 4 =03, N, =6, a/ESl(cjj=O.5.
a

This is very similar to the features of the mean-field theory, only more
pronounced.

The incremental shear stress ratio has also been evaluated and is
depicted in Fig. 8.8. It is seen that, due to the strain increment
fluctuations associated with the slipping contacts, the incremental shear
modulus is substantially reduced, compared with the all-stick case. It is
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also observed that the value is rather smaller than the mean-field case.
All this points to the characteristic features of granular assemblies with
frictional effects and as such gives a refinement of the mean-field theory.

1.4
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Figure 8.8. Shear stress ratio for an assembly with one slipping contact per
particles to an all stick assembly. The same parameters as for Fig. 8.7 have
been used.

8.6 Fabric heterogeneity and other refinements

There are some other refinements that can be considered. Note though that
every refinement requires extra parameters and by introducing them the
complexity of the modelling increases. Nevertheless, it is good to make a
list of relevant mechanisms and show where the current — very simple —
model is deficient.

1. So far it has been assumed that all particles have one slipping
contact. This could be amended, especially taking into account that there
will be a fraction of particles with no slipping contacts at all.
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2. A certain amount of fabric heterogeneity could be introduced (as was
done for the mean-field investigation, Section 8.4). This is a complication,
as of course some fabric heterogeneity already follows from that
associated with the sliding contacts.

3. Not all slipping contacts need to be bunched in the direction of «,.
Rather, a distribution of sliding contacts in the vicinity of «, could be
considered. Noting the sharpness of the peaks in the graphs of the dilatancy
and the determinant, averaging over a region around the mean slip angle
would be appropriate. Below it will be argued that this refinement is
equivalent to the refinement number 2.

These three effects — while they would operate simultaneously — can
be investigated separately to come to an understanding of how each affects
the outcome of the calculation.

Aslip(a)’ 63Iip(a)

Figure 8.9. The same graph as Fig. 8.7, but with the addition of v, =0.1
as dashed lines.
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To investigate the effect of not all particles having one slipping
contact, refinement number 1, simply average the slipping model
calculation above with the no-slide model. If there is a fraction of y_ no-
slide contacts and (1—y,) sliders then the graph of Fig. 8.7 changes.
This is depicted in Fig. 8.9 for a value of y_=0.1, but all other
parameters kept the same as in Fig. 8.7.

It is seen that the determinant is larger; therefore, the assembly so-
described would be further away from peak stress. Alternatively, it could
be reasoned that this state requires a higher stress ratio (resulting in a
higher anisotropy and marginally higher dilatancy).

Refinement 2, looks at the effect of fabric heterogeneity. The simplest
way of doing this is by introducing a small value and thereby ignoring any
interaction between the fabric variations due to sliding. However, it is
noted that by assessing the displacement fluctuations due to sliding a slight
overestimate is achieved, as the average interaction for a contact that slides
is not the full ‘stick’ contact, but a slightly smaller value because one
quarter of contacts in this direction slide. This effect is introduced as well

as introducing a value for the contact point variations (P’)2 / p*. Just to

see what this leads to, this parameter is set to a small value of 0.05 and
the same graph as before can be made.

The result is shown in Fig. 8.10. The effect of the mean value of the
no-slip interaction being somewhat smaller than the no-slip interaction
itself lifts the determinant line slightly, while the effect of fabric
fluctuations in the number of contacts pulls it down. The dilatancy is
affected in the other direction: it is increased by fabric heterogeneity,
though it depends on exactly how the parameters are chosen. It is noted
that the two refinements 1 and 2 have opposite effects. Therefore,
distinguishing between the two may be quite hard and the best thing is to
combine the two in one parameter (a similar thing was done in the mean-
field theory).
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Aslip(a)’ 8slip(oc)

Figure 8.10. Same graph as Fig. 8.7, but added the two effects of fabric
heterogeneity. Solid line: mean value of no-slip interaction 3/4 of the

value in Fig. 8.7. Dashed line: introduction of (P')’ / p* = 0.05.

The third refinement is the result of non-homogeneity in the packing
properties, which result in local stress variations. These may lead to the
direction of slipping angle being different from position to position. In
refinement number 2 fabric heterogeneity has already been accounted for.
However, the deformation fluctuation associated with fabric variations has
not been coupled to variations in the direction of the slipping angle. The
coupling would have only a small effect in the context of an assembly in
which the sliding contacts are not dominant. It was shown in Section 7.6
that the dominant effect associated with fabric heterogeneity is the
variation in the number of contacts. Thus, any other effects, such as contact
point distribution fluctuations that are not aligned with the mean axis of

anisotropy, are of lesser importance. As the parameter (P’)2 /p° already

comprises an amalgam of influences, it is not profitable to do a much more
in-depth analysis.
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a,2/Z,,, 8

44

Figure 8.11. The anisotropy parameter, the stress ratio and the dilatancy
parameter as a function of the mean number of contacts per particle. The
solid lines correspond to a heterogeneity parameter of H =0.1 and the
dashed lines to H =0.05. All calculations done at peak stress ratio when
A=0.

It is now possible to construct a similar graph to Fig. 8.5, taking
account of heterogeneity and the various refinements. This is reported in
Fig. 8.11.

Qualitatively, the results are not all that different from the mean strain
theory. For the lower end of the number of contacts the results are
strikingly similar to experimental findings, for example as reported by
[Konishi, 1978].

8.7 The evolution of an assembly in a biaxial cell test

A narrative for the evolution of an assembly of particles with a frictional
interaction under deviatoric loading has been put forward by various
authors: for example, [Cundall et al., 1982], [Thornton and Antony, 1998].
Taking the biaxial test referred to in Section 1.1 the following scenario is
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plausible. The initial state is densely packed and statistically isotropic.
This state is first isotropically compressed, then stressed further in one
direction while the stress in the other direction is kept constant. As this
deviatoric process progresses more contacts are made in the major
principal stress direction while contacts are lost in the minor principal
stress direction (more generally, the evolution of the contact point
distribution tends to follow the stress ellipse). For geometrical reasons
the number of contacts that can be made has a limited availability and
the number of contacts that can be lost can in principle go on until there
are very few left. Therefore, the total number of contacts is steadily
reduced as the test progresses. At the same time the force ratio at
contacts increases in the directions referred to in Section 8.4.2. In
Section 8.3 the isotropic point of the stress-strain curve was discussed,
while the peak-stress-ratio point was analysed in Section 8.4. Beyond this
point rupture layer formation takes place and the problem will depend
critically on the specification of the boundary conditions. The evolution
from the isotropic point to the peak point could in principle be modelled
with rate equations. However, a large number of parameters would have
to be supplied (all of which amalgams representing various simultaneously
operating effects).

In this section one more effect is considered that is relevant near
peak stress ratio while the number of contacts decreases. This effect relates
to Fig. 6.2. It is seen that when the number of contacts decreases, while
the variability remains constant, the distance ratio ¢ /a also increases,
which results in a decrease in the function S, (¢/a)/(a/c), as follows
from Fig. 6.1. The result is that the effects of heterogeneity, both due
to sliding and to fabric fluctuations become less intense and the value
of the heterogeneity parameter H (which is proportional to the S-
function) goes down. In other words, the medium moves more towards a
mean-field approximation, though some non-homogeneity is always
present of course. This would happen close to the peak stress ratio point,
when the determinant A is already small and the stress ratio will not
change much.

When this occurs — consulting Fig. 8.5 — the dilatancy remains fairly
constant. This has also been observed in experiments. In fact it is one of
the key features of such tests.
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While the analysis has been carried out in two dimensions, the physics
that underlies the experimentally observed effects is adequately
elucidated. The principal elements of the theory are summarised: (1) the
treatment of sliding friction as a constraint, (2) the introduction of
anisotropy as an integral part of the analysis and (3) the necessary
consideration of fabric heterogeneity and a calculus to assess its impact,
including the spatial spreading that gives rise to the S-functions. Insight in
the latter aspect is enhanced by the analysis of connectivity in a granular
medium (Section 6.6). All these aspects need to work together to acquire
an understanding of the mechanisms that take place.
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Appendix A

Mathematical Appendix

A.1 Isotropic tensors

Literature: [Jeffreys, 1931].

A.1.1 Isotropic 2-tensor

The identity is &, ; its inverse is also J;.

A.1.2 Isotropic 4-tensor

The identity of rank-4 tensors is such that a rank-4 tensor 4, , which

connects two symmetric rank-2 tensors has the inverse 4 ,

4, A, = %(501-5@- +3,5,)

ijpg * " pqa
The isotropic tensor of rank 4 is

a8,8,,+ (3,0, + 6.,,5,,)
Its inverse is

. 1 o .
£5,,0, +v (8,8, +8,8,) with Y and {=-—————— in2-d

i p~jg " Zig~jp 4,B(Ol+ﬂ)
— a 9 -
and & = 25 (a+25) in 3-d.
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A.2 Integrals of strings of unit vectors

2r
19=[dg=2n
0

2

17 = [ n,(#)n, (#)d¢ =15,

0

2

I;j(fil = I n; (¢)”, (¢)nk (¢)”/ (¢)d¢ 2%(5,;‘51% + é‘iké‘j/f + é‘iﬂé‘kj)

0

The inveirse of the latter is the solution of the equation
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(1 )k@q-§(5.5 +6,5,) and

ip~jq iq~ jp

@y _1( 1
(I ))](/pq _;(_55%51{6 +5pk5qg +5p[5qkj

In three dimensions the corresponding expressions are

J J‘ dQ=4r: 14'(/‘2) — I nin‘/dQ =4Tﬂ-5t/

unit sphere unit sphere

and 1) = I ninjnkn/dﬁzj—z(é;jﬁk[+5ik§ﬂ+§,/§jk)

ijkt —
unit sphere

@\ _I5( 2
(I )kqu _E(_gé‘pq@d +6pk§‘f€ +§p€6qk

The front factors 27, 7,7 /4 in2-d and 47,47 /3,4~ /15 in 3-d are
easily gathered in a coefficient
2 (d — 1) V4
(n+d-2)1"

where (2m)!!=2.4...(2m); (2m—-1)!'=1.3.5...(2m—1), m an integer.
(see [Abramowitz and Stegun, 1965], Section 6.1.49).
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A very useful coefficient is
1

N =
(n+d-2)!1

A.3 Elastic constants

Conversion of the isotropic elastic constants in two and three dimensions.
Top line: 3-D; bottom line 2-D.

A and u: Lamé constants

E : Young’s modulus, v : contraction coefficient (Poisson’s ratio)

K : bulk modulus, G : shear modulus
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A.4 Fourier transforms and harmonic density

Fourier transforms are a powerful tool to solve differential equations. In
this section the basic theory is explored, which is required for the
characterisation of the fluctuations. To begin with a one-dimensional
approach is taken, in which functions depend on one variable, the time ¢
say. In the development below it makes sense to keep the integral sign with
its boundaries together with the integration variable.

The appropriate tool for describing fluctuating physical phenomena is
the auto-correlation function. For a fluctuating function of time z(r)
(which is zero on average) it is defined as

¢.(t) = lim— jd.»;z £)z(1+¢)

It is seen that the expectation value <zz> is just equal to ¢, (0).
The Fourier transform Z(®) of the function z(¢) is defined as

= Tdt z(t)e™

The inverse transform is

which makes the delta function (the ‘identity’)

5(1)25 dw ™

The latter has meaning only in the context of another function, as follows

~ [az=(£)s(-9)
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In physical processes the infinite integral boundaries do not make sense
and therefore a modified definition is employed, the truncated Fourier
transform

= jdt Z(Z)e”'“”

Now calculate the inverse Fourier transform of the quantity
S.=z (w)z (-w)/

z

5.(1) =2Lm dowe™ [dn z(2)e™ [duz(u)e™
—0 0 0

The order of the integrals may be interchanged and therefore

S.(1)= jd/ljdyjdwe A1) () z(p)

2rt
=;jdijd/¢ S(1—A+u)z(2)z(u)
0 0
Integrating over A (using the properties of the delta function) gives
1 7—t
Sz(t) =; Idﬂ z(t+y)z(,u)
0

For a time record 7 that is much longer than the correlation time the
upper boundary may be replaced by 7 and it is seen that in the limit
7 — oo the inverse Fourier transform S, (t) is just equal to the correlation
function ¢ (7). This is the famous Wiener—Khinchin theorem. The
quantity S‘Z(a)) is called the spectral intensity or harmonic (spectral)
density.

In two or three dimensions the formulas are easily extended, by
taking the integrals over multiple variables. The Fourier frequency o
then becomes a vector. In a spatial setting this vector is called the wave
number k
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A.5 Bessel functions

Literature [Abramowitz and Stegun, 1965].

Bessel functions are very useful in the evaluation of problems that have
cylinder symmetry. There are various types. The best-known is the family
of ‘ordinary’ Bessel functions, or Bessel functions of the first kind. They
can either be defined as a series expansion

LY
( j ki;k( v+k)+1)

Or as an integral

>
EZ
J.(2)=
Jr F(v+ j
2
where v denotes the order of the Bessel function, indicating which
member of the family is meant.

The other type of cylinder functions that are useful are the Modified
Bessel Functions.
1 k
)

( j kzj;‘k'l“ (v+k+1)

)
M) «/_F(v+ )

The Bessel functions have been studied extensively. There are all
manner of interesting relations between them. Many of these can be found
in [Abramowitch and Stegun, 1965].

Special cases of the half- integer Modiﬁed Bessel Functions are

smhz_ ( smhz coshzj

R S

jcos zcos@)sin™ 0d6,

exp(+zcos6) sin® 0d0

O"—okl
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A.6 Various integrals

A.6.1 Integrals involving Bessel functions

Literature [Gradshteyn and Ryzhik, 1965], abbreviated as GR.

2z
I cos(zcos0)dO =2xJ,(z)
0

i'”jexp(izcos 0)cos(nz)dd=nJ,(z) see also GR p 402;3.715.14

0

In particular with n, = cosy; n, =siny; m, = cos@; m, =sing

2Jira’l//sin[kxcos(l/l —(p)]ﬁj =
0

2z 2z
I dasin[kxcosa]cos(a +¢)= cosgoj dasin[kxcosa]cosa
0 0
2 2

Jdasin[kxcosa]sin(a +g0) = singoj dasin[kxcosa]cosa
0 0

~

=2r ;

2z
jdy/sin[loccos(w(p)] an,a, ={111,112,122,222} =
0

3 5 3
Zﬁ{ZJl(loc)cosw—J3(loc)cosgo cos ¢_Zj’
%Jl (kx)sin(p—J3 (kx)singg(c()sz(p_%j’
1 3 5
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© 2 2
nyO (ky)exp(—y—szy =%exp(—%a2k2) see GR p717; 6.631.4
a
0
2 x2
1| —

x T 1 x
S, (Z] = a_[dk exp(—zarzk2 )Jl (fx)= \/;expi— o

N [ZJ_GI dkexp[_i 2}3(/@):& exp(—%};(zx;]

see GR p710; 6.618.1.

These functions are used in Equation (6.4).

A.6.2 Integrals with confluent hypergeometric functions
The confluent hypergeometric function can be defined as®
F b) p -
@ (asb; )— ( Ie”t“ H h 'dt
0

Other definitions (for example, a series expansion) are listed in
[Abramowitz and Stegun, 1965, Chapter 13].
The special case that is needed here is for a=1; b=2

CD[; 3, ] 2gerf(f)

It arises from the integral [Gradshteyn and Ryzhik 3.896.4]
R . 1 2y e
dk sin exp| ——a’k’ |="=exp| —= |®
faint)e ) S22z o

This expression has a series expansion in y/a

“TheGammafunctlonF J.t” “dt F n+1) nr(n)zn!;r(%jzx/;.
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A.6.3 Multiple integrals

kK
The integral 1 . J‘ d"ke™™ ,,21,
27) k

In three dimensions integrate first over the component of k that does not
appear in the subscripts j or b. Assume that that is the third component

1 kK ) % ) 1
d3 ikx b — 2 lkxk-k dk ikyz
(2;:)3I o (2x) ¢ L “ (K +45)
2 27 ikx T 1
= ek k, | dkycos(kyz) <
(2”)3 J b.([ 3 ( 3Z)(k2 +k32)

_ 1 ik.x 1 —kz

= 2T [dke™ ik e

z_—la—zdekeik.x le—kz
2(27;)2 ﬁxﬁxb

©

2
J‘ J‘ ikxcos(p—a) —kz
27[) ; )

0

-1 2 1
kZJ a

?ox ﬁxb;[ ( ) Ox,0x, 3?1 22

Here z>0; there is no problem for negative z, as it is seen
immediately from the cosine that the answer is the same. For the
differentiation and integration to be exchanged all the integrals have to
exist, which is the case if both x and z are positive.

. 1 | . . . .

The integral —n.[d”ke"‘“—4kakikjkb in two dimensions again

(27) k
diverges. In three dimensions a finite result is obtained if first the
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calculation is done for a combination of subscripts that excludes one of the
coordinates. Let this be the third coordinate.

kkkk . < ,

1 . J‘d3ketk.x a b4l J_ 1 . J‘dzkelk.xkgkbkikjJ‘dk3ezksz 1 .
(27) koo (2n) = (K +)
2 ; ° 1
- 32k k k[ dk, cos (kyz)———

(272_)3 J. b ,/.([ 3 ( 3 )(k2 +k32)2
1 ik.x 1 —Kz
- o= [k kakbkikjF(1+kz)e ’

Having established that this integral never diverges while both x and z
are positive, avoiding having to deploy complicated combinations of
Bessel functions, the evaluation is approached again as a derivative of the
simpler integral. However, this one does diverge

1
4(2x)’
4
1 . 0 J‘dzkeik.x1+3kze—kz
4(2;;) Ox,,0,0x,0x ; k

[d*ke™k jo ki, %(1 +hz)e ™

Therefore, before the integral over k£ is performed two differentiations
have to be executed to obtain a finite result.

4
l - a J‘deeik.x 1+3kZ e*kz
4(2;;) axaaxbax,.axj k
1 o o 1+kz

= dk T, (ke
2(27)° Ox,0x,0x0x; 5 K e (k)
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Now,

M_ 0 |:_J1(kx)k6_x:|:

Ox,0x ; _axl. ox;

1 Ox Ox 0’x
— Iy (k) ——J, (kx) |k* ———J, (kx)k——
[0( el )} ox, ox, (k) ox,0x,

So, the integrals that have to be done are

0

1 z?
dk(1+kz)e ™ T, (kx) = +
2')‘ ( ) 0 ( ) \/xz n ZZ (x2 + 22 )3/2
Tdk(1+kz)e-’lejl(kx)= a
0 k \/Xz + 22
It follows that
4 ©
1 . 0 J‘dkl-f-zkze,kzjo(kx)
2(27)" Ox,0x,0x,0x, k

0
1 0> 7 1+kz

- Ak E g (e
2(2r) onox, g K o (i)

X X, X.X

=J1(kx)ﬁ—J1(kx) o+ jZik(J"(kx)_éJ'(kX)J
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—k kkk =
2oy

2z

1 T kx(cos @ cos p+sin arsin )
( ) ox, 8xb6x8 '! I ) )

j 0

27 ox Bxbé‘x ;[ T 6x 6xb '!

e A
2w Ox,0x, 3 k” oOx X

:Li lﬁ zii X - 1 §/b_2xbx/
27 Ox; \ x Ox, 27 Ox; x? 2 x*

J-dk COS(kx ) - (1+k2x1)e_k2x‘ while both k25 X >0
o () Ak

X Xi

Entirely analogous to the previous case one obtains

1 2jd2k L kkk =

(27r K
4 ]? ]°- cos (k,x, )cos(k, xz)
(2;;) ox 6xb6x8 0 k2 +k2)

1 o'

I
9 [akcos(k L4+kx, e
477 O, o, 0,0, 4 I cos(koxy) 5 (14 oxi e

3
2

By inspecting symmetry relations the régime for all values of x,, is
easily determined.

The result is
x; +6x7x; —3x;

6
nr

Subscripts 1111 —

—6xx; + x5
6

Subscripts 1122 —
4rr
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4 2.2 4
3x; —6x,x;, — X,
6

Subscripts 2222
4zr

2 2
|xl ||x2|(x1 —-3x; )

6
nr

2 2
|x1 ||x2|(x2 —3x; )
6
2rxr

Subscripts 1112 —

Subscripts 1222
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Appendix B

List of Symbols and Notations

B.1 List of symbols

PN ) 2

O ol e,

[

U
< .

<
e

K

o e A

Lo

S
RS

=

Particle radius

Length parameter, describing the influence region of a
fluctuation

Contact point anisotropy parameter

Simple shear parameter

Surface area
Wave amplitude (inc polarisation)
Hamaker constant

Coordination vector

Average magnitude of the coordination vector
Compliance tensor

Dimension of the problem (either 2 or 3)

grainsize below which % of the weight of the sample is

measured
Distance from particle centre e to the nearest Voronoi

boundary
Normal contact displacement increment

Tangential contact displacement increment

Intermediate contact displacement increment

Deviatoric part of the contact distribution
Normal contact displacement

Tangential contact displacement

Co-moving derivative
Young’s moduli of two particles in contact

199



200 The Physics of the Deformation of Densely Packed Granular Materials

(kLL kLJ
ki &y

Strain tensor

Strain increment tensor
Electron charge
Fraction

Force increment
Normal contact force increment

Tangential contact force increment
Intermediate contact force increment

Fraction of slipping contacts in an assembly

Factor r in 2-d and 4—” in 3-d
4 15

Force vector
Influence function fourth order tensor
Normal contact force

Tangential contact force

Intermediate contact force

Displacement field of a rupture layer with unit normal n
Acceleration due to gravity

i

Shear modulus
Separation between two particles

Heterogeneity parameter for an assembly with frictionally
sliding contacts (Section 8.4.2)
Bessel function of order n

Contact interaction spring constant
Contact interaction spring constant between particles u

and v
Boltzmann’s constant

Normal and tangential contact stiffness matrix
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kyy 0 p lkuo
uk, 0 k,, | Contact stiffness matrix in three dimensions
k oL

kou k<><>

k Contact interaction tensor

k Fourier wave vector; magnitude k = |k|

K Bulk modulus

L, L Length parameters

4 Length of cylinder

l (Q) Angular density of the population at the assembly

m Unit normal vector

n Porosity

n® Bulk concentration of ions

n Unit normal vector

n Unit normal vector, normal to n

n n, Unit normals in the direction of the tangential and
intermediate force

N Number of particles in an assembly

N Number of contacts of particle o

N, i Number of contacts per particle in the isostatic limit

p Pressure

P’ Isotropic fluctuation in the contact distribution

p'( ) Angular contact distribution of particle e

p’ Two-tensor denoting the symmetrical contact distribution
of particle e

Do D Influence parameters (inverse stiffnesses), Sections 6.5
and 7.4

_ 1, _

p E(pn + Py )

q’ Vector denoting the asymmetry of the contact distribution
of particle e

P, P Principal pre-stresses

P Acoustic tensor
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3(1-v* 1-v"”
== +
Q Q 4( E E' J
Q(t) Time-dependent rigid coordinate rotation
Q(a) Coordinate rotation over an angle «

Rotation increment

Radii of contacting particles

Radius of spherical (circular) assembly
Pre-stress ratio

=

Cell contact radius of particle e
Local response tensor
Functions defined in Section

w

Stiffness cross-correlation function
Time

Traction vector increment
Absolute temperature

Traction vector

Average tensor that gives the contact force increment

e I B B B o B - B> V- VI I~ VRl
th

Average tensor that gives the contact force
DN REREEEC)
2 \a) 2c \a 2 a) ¢ \a

Displacement vector
Velocity vector

Equivalent mean volume of one particle v=V/N
Volume

-~

N < <2

=
=

Interactive potential
Total interactive potential

Matrix form of the positional part of the first displacement
derivative for a sliding contact (Section 8.5.3)
Work

Position vectors; magnitudes x = |X| , V= |y|

¥ <4

<

Stiffness tensor
Mean-field stiffness tensor
Tangent of the rupture layer angle, squared

N < >£><

Non-dimensional parameter
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Valency of the ions

Fluctuation source term of the differential equation (7.2)
Assembly-average displacement gradient

Dilatancy ratio

Kronecker delta tensor

Electrical permittivity of the fluid

Levi-Civita tensor

Solids volume fraction (solidosity)

Angle in the two-dimensional plane

No-extension direction

Correlation function and normalised correlation function
Reciprocal of the double layer thickness

Lamé constants

Set of Lagrange multipliers

Non-dimensional outer determinant of the stiffness tensor
Tensor, giving the proportionality of the spin to the mean
strain

Friction coefficient

Poisson’s ratios of two particles in contact

Phase of a wave

Surface potential

Mass density

Stress increment tensor
Stress tensor

Jaumann stress-rate
Material coordinate vector

Spin control tensor E,, = £;€,,, 4,1,
Material constant

Solid angle
Amount of energy per unit volume
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B.2 List of notations
* Designation of components of a tensor in a rotated coordinated frame

Particles are numbered. The numbers are identified as a Greek superscript.
For example x“ is the position vector of particle . Two Greek
superscripts are used to denote a property of a particle pair. Examples, the
coordination vector is ¢ =x"-x"=—¢", the unit normal
n“’ =c¢” /" =—n" and the contact force exerted by particle v on
particle u is F*" =—F". Generally, pair-vectors change sign when the
superscripts are interchanged. Second order tensors do not change sign,
for example, the interaction tensor K*" = K".

B.2.1 Structural sums

Structural sums take the interaction and sum them over the Voronoi
boundaries of a particle, weighed with components of branch vectors.

They are called A*. The lowest order ones are

N# N#

u _ uv uo_ uv V. u o _ uv v v,
Af =2 K" A ZK Aje = ZK C € €

ik

Other structural sums may be derived from these, for example

A

S =& jlkm

in ijk g/mn

B.2.2 Other notations

(over-bar) assembly-average value of the quantity ¢
(prime) fluctuation of the quantity ¢
(hat) Fourier-transformed of the quantity ¢

(superscript dot) value of ¢ for a generic particle
number

q (over-dot) rate of change (time differentiation)

mean-field value of the quantity ¢



A

acoustic tensor, 60, 79, 87, 137,

144, 148

aeolotropic, 50

all-stick, 177

angular density, 97

angular momentum, 42

anisotropic contact distribution, 101

anisotropic materials, 50-51

anisotropy (see also anisotropic),
17,52, 80, 82,94, 110, 118,
124, 129, 142-144, 147-148,
154-155, 158-159, 161, 163,
174, 180, 182, 184

anti-symmetric, 128

asymmetry, 94

auto-correlation function, 188

auxetic materials, 134, 141

B

beach, 5

Bessel functions, 190, 194
biaxial cell test, 12, 162
biaxial cell, 5, 158
bifurcation, 68

binormal, 20

body forces, 41, 78

Index
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Boltzmann’s constant, 25

boundary conditions, 13, 60,
68-70, 72,78, 183

branch vector, 77, 99, 102,
106-107, 128

Brownian motion, 2

bulk modulus, 4748, 187

burrowing animals, 5

C

cakes, 124, 126

Cartesian coordinate system, 34

Cartesian tensor calculus, 33

Cartesian tensors, 34

Cauchy surface, 69

Cauchy stress, see stress

cell contact radius, 101

characteristic equation, 38

charge neutrality, 25

chemical engineering, 46, 89, 105

civil engineering, 89

coaxial material, 52

coaxiality, 51-52

co-moving derivative, see Jaumann
derivative

compliance, 23, 4648, 57, 59

compression of two cylinders, 22
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compressive force, 165

computer simulations, 10, 12

concentration of ions, 25

confluent hypergeometric function,
144,192

conjugate angles, 156

conjugate directions, 177

connectedness, 119

connectivity, 123, 184

constitutive equation, 11, 60

constitutive law, 14

constraint, 8

contact displacement, 14, 128-129,
149

contact distribution, 12, 102

contact dynamics, 13

contact fabric function, 132

contact force increment, 108, 129

contact force ratio, 160

contact force, 7-8, 11, 14-15, 23,
98, 100, 130

contact law, 13—15, 21

contact parameter, 121

contact point distribution, 92, 118,
139, 147

contact stiffness, 23, 119

contact surface, 17

continuous field, 115

continuum mechanics, 33, 40, 72,
77, 100

contraction coefficient, 47

convex surfaces, 18

coordinate number, 7-8

corners of an apparatus, 68

co-rotational derivative, 55

correlation function, 85, 95

correlation in the fluctuations,
118

correlation time, 189

correlation, 96, 139

Coulomb friction principle, 16

Coulomb, 8

creep, 46

cross correlation, 119
crystal structure, 24, 95-96
crystalline solid, 50
cumulative distribution, 89

D

deformation fluctuation, 181

deformation gradient, 45, 50,
52-54,97-98, 101, 129

deformation tensor, 38

deformation velocity, 53

deformation, 46, 48, 50

Delaunay triangulation, 92

delta function, 80, 188—189

dense cakes of small particles, 24

derivative in a granular medium,
112

determinant of a rotation, 35

determinant, 38

deviatoric loading, 182

deviatoric strain, 40, 43, 156, 161

deviatoric, 139, 147, 183

diagonal stress increments, 175

dilatancy ratio, 63, 159, 161, 163,
177

dilatancy (see also dilation), 56,
12, 110, 158, 164, 177, 180,
182-183

dipole moment, 25

dipoles of the fluid molecules, 24

Dirichlet, 69

Discrete Element Method, 12

displacement fluctuation, 117, 138,
151, 166, 168-169, 171-174,
180

displacement gradient, 37, 69, 112,
128

displacement increment, 17, 106,
130

displacement, 36, 45, 69, 150

DLVO theory, 25-26



double layer interaction, 25
double layer, 25, 27

double sliding models, 71-72
dry friction, 16

dynamic methods, 12

E

effective moduli, 142

effective stiffness moduli, 84

eigenvalues, 38

Einstein’s summation convention,
34

elastic constants, 21

elastic increment, 18

elastic isotropic materials, 47

elastic law, 18

elastic state, 17

elastic symmetries, 51

elastic unloading, 150

elasticity, 48-50, 52, 133

elasto-frictional, 12

electric charge distribution, 24

electrical permittivity, 25

electrical potential, 25

electron charge, 25

elliptic, 68-69, 71

ellipticity condition, 74

enduring contacts, 9

energy per unit volume, 49

equation of motion, 41-42, 73—74

equilibrium equation, 7, 9, 12, 59,
78,99, 109, 111, 114, 130,
136-137, 142

equilibrium, 4, 67

Euler angles, 36

extension of a line element, 39

F

fabric anisotropy, 160

fabric approximation, 131

fabric fluctuations (see also fabric
heterogeneity), 131, 133-134,

Index
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148, 152, 160, 162166, 169,
178-181, 184

fabric functions, 94

fabric tensor, 95, 110

fabric, 92, 151

failure planes, 59

failure, 6, 110

filtration, 24, 105

fluctuating spins, 170

fluctuating structural sum, 121, 143,
168

fluctuation, 10, 77-79, 83-84,
86, 106, 109, 111, 114-118,
122-125, 135, 138-139, 141,
143, 148, 177

fluid molecules, 24

force bridges, 6

force chains, 96

force equilibrium equation, 11, 111,
130, 143, 167

force equilibrium, 7-8, 108

force increment, 17, 20

force network, 9, 11

force ratio, 15, 101, 149, 160-161

force-displacement relationship, 21

Fourier coefficients, 145

Fourier transform, 7879, 114, 143,
188

Fourier, 85

fourth-order tensor, 50

fractal surfaces, 23

frame rotation, 128129

friction, 8-9, 15, 23, 44

friction coefficient, 24, 151, 156,
158-159

friction cone, 19

friction criterion, 57

friction in three dimensions, 19

frictional interaction, 15, 18-19,
130, 140, 149-150, 164, 182

frictional material, 55, 57, 60, 65

frictional sliding contact, 168
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frictional sliding state, 17
frictional state, 18, 63
frictionless assembly, 105
frictionless contacts, 137
frictionless interaction, 108, 125
frictionless particles, 139
frictionless, 138, 140141

G

Gauss’ theorem, 41, 49

generator, 90-91

geometrical linearization, 37-38, 46
geophysics, 46

geotechnical engineering, 46

grain size distribution, 7, 89

grain size, 1, 89

granular material, 33

gravity, 41

H

Hamaker constant, 26

harmonic density, 188

Hertzian contact, 21

hetero-disperse granular assembly,
96

hetero-disperse samples, 129

heterogeneity parameter, 164

heterogeneity with tangential
interactions, 134

heterogeneity, 6, 33, 77, 80, 106,
111, 119, 124-126, 137-138,
142, 149, 163, 182

higher order model, 73

hyperbolic, 68-69, 71-72

|

identity of the fourth order tensors,
48

identity, 35, 45, 185

inclusion, 80

increment, 4648

Index

incremental behaviour, 55

incremental contact law, 15, 24,
149

incremental deformation, 72

incremental displacement, see
displacement increment

incremental force-displacement
relation, 20

incremental interaction, 19

incremental moduli, 61

incremental potential, 17

incremental quantity, 46, 52

incremental relationship, 21

incremental shear modulus, 177

incremental shear stress, 177

incremental stiffness components,
166

incremental stiffness, 23, 55, 148,
151

incremental strain, see strain
increment

incremental strain, see stress
increment

incremental stress-strain relation,
52, 149

indentation, 11, 23

infinitely sticky, 8

influence function, 80-82, 84, 119,
121, 123, 163

inner product, 35

interaction tensor, 109, 132

interaction, 2, 150

interactive force, 26, 28

interactive potential, 28

interactive tensor, 108, 113, 129

intermediate direction, 71-72

intermediate principal strain, 38

internal state, 46

inter-particle friction, 9, 165

inter-particle friction angle, 157

inter-particle friction coefficient, 9



inter-particle friction ratio, 161
inter-particle interaction, 10
invariant, 38-39, 44-45
inverse, 35

inversion, 48

ionic charges, 24

ions, 24

isostatic, 67, 9-10, 23, 28, 125, 159

isotropic compliances, 48

isotropic compression, 61

isotropic contact distribution,
139

isotropic elastic constants, 187

isotropic material, 47, 50-51, 80,
137

isotropic moduli, 48

isotropic tensors, 185

isotropic, 7, 51, 86, 118, 124-125,
140, 146-147, 183

J

jamming, 6, 89

jamming condition, 9

jamming density, 9

jamming transition, 9-10

Jaumann, 77

Jaumann derivative, 52, 55, 64,
73

Jaumann increment, 55

Jaumann stress, 59, 63-64

K

kinematic variables, 53

Kronecker delta, 35, 37-38, 45,
132

L

Lagrange multipliers, 172—173

Lamé coefficients, 86

Lamé constant, 47, 118, 125, 140,
187

landslide, 1, 4

least-squares, 12
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Levi-Civita tensor, 42-43, 45,
171

lightly loaded contacts, 23

loading, 16

local response tensor, 83

localised deformation, 60

location vector, 34, 99

lubrication, 16

M

main moduli, 67

major principal strain, 38, 110

major principal stress, 62, 67, 72,
183

mass density, 41

material behaviour, 52, 55

material point, 33, 41

material properties, 21-22

material response, 45

material stiffness, 24

maximum obliquity, 44, 71

mean fabric function, 133

mean fabric tensor, 156

mean field approximation, 158

mean field, 142

mean shear stress, 140

mean spin, 140-141, 155

mean strain approximation, 167

mean strain increment, 174

mean strain theory, 166, 182

mean strain, 85, 130

mean stress, 84

mean-field approximation, 108,
130-132, 149, 159, 170, 183

mean-field estimate, 106, 156, 174

mean-field stiffness, 133

mean-field theory, 111, 177-178

mean-field, 109-110, 115, 117, 126,
134, 151, 163, 165

mean-strain increment, 165

mean-strain theory, 162

meta-materials, 134
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metastable régime, 70-71, 73

minor principal strain, 38

minor principal stress direction,
183

minor principal stress, 63, 70,
110

modified Bessel functions, 190

moduli, 47, 51, 70

Mohr’s circle, 43—44

molecular dynamics, 12

moment equation, 151

moment equilibrium equations, 11,
130

moment equilibrium, 7-8, 100, 108,
153

N

network of forces, 6

Neuman, 69

Newton’s equations, 12

no-extension direction, 39,
71-72

non-coaxial behaviour, 52

non-linear contact laws, 14

non-smooth motion, 14

normal and tangential interactions,
127

normal displacement, 15

normal force, 8, 15, 18, 23-24

normal interaction, 23, 124

normal moduli, 158

no-slip contacts, 152

no-slip interaction, 180

number of contacts, 140

numerical simulations, 9

o

objective, 52, 54-55, 64

odd structural sum, 136, 138, 167
orthotropic, 50

Index

outer determinant, 62, 88, 110,
163
outer product, 42

P

packing density, 1, 9

packing fluctuations, 124

parabolic, 68—69

particle displacements, 11

particle interactions, 91, 96

particle rotations, 11

particle shape, 1

particle solid, 24

particle spin, 127, 129, 165

path, 48-49, 77

peak stress ratio, 66, 163—-164,
182183

peak stress, 62, 72, 96, 180

perfectly random medium, 125

perturbations due to a particle pair,
150

photo-elastic, 34, 12

plastic effects, 15, 23

plasticity theory, 46

plasticity, 59

point contacts, 11, 18,20

Poisson ratio, 21, 24, 47, 134,
187

polarised light, 4

polydispersity, 7, 9

porosity, 89

pressure, 4344, 48

pre-strain, 47

pre-stress, 47, 52, 55, 63—64,
67

principal axes, 51

principal moduli, 163

principal strain, 38, 62

principal stress, 43, 56, 62

propagating error, 14

pure shear, 38



Q

quasi-static deformation, 48

quasi-static equilibrium equations,
73,717,129

quasi-static solution, 12

R

random medium, 96

random packing, 7

randomly distributed slip angles,
155

rate-dependence, 4546

rate-sensitive, 45

reference configuration, 52

regular packing, 7

repulsive interaction, 25

Reynolds, 5

rigid body rotation, 128

rigid limit, 11

rigid rotation, 34, 37

rotation of the particles, 127

rotation, 35, 37, 44-45, 52-54,
72

rough boundaries, 13

rough particles, 7

rupture, 59, 73

rupture criterion, 71-72, 79

rupture layer formation, 6, 59—65,
67-68, 70, 72,77, 79, 82, 96,
110, 124-125, 158-159, 183

S

scalar, 4445

second order structural sum, 143

second order tensor, 54

S-functions, 117, 119, 123, 184

shear modulus correction, 141

shear modulus, 47, 52, 57, 63, 65,
70, 86, 88, 117, 124, 140, 158,
187

shear strain fluctuations, 167

shear strain increment, 155
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shear strain, 165

shear stress ratio, 178

shear stress, 57

simple shear, 38

size distribution, 1

sliding contact, 149—151, 153, 156,
163-164, 168, 179, 181

sliding friction, 10, 19-20, 184

sliding interaction, 153

sliding state, 18, 149, 164

slip angle, 159-160

slip bands, 59

slip, 8

slipping angles, 155

slipping contact, 8, 12, 152—153,
155, 158-159, 168, 173,
177-178, 180

slope, 4

small particles in a fluid
environment, 24

soil mechanics, 40, 59, 62, 89

solid boundary, 24

solidosity, 89

solids volume fraction, 89

spectral intensity, 120, 189

spherical bodies in contact, 23

spin fluctuation, 131, 133, 135,
151-152, 155, 166-167, 170,
174-176

spin gradient, 131, 138

spin increment, 130

spin vector, 127-128

spring constant, 15, 17, 21-22,
108

static equilibrium, 7, 49, 59, 73, 99

static indeterminacy, 1011

statically indeterminate state, 78,
10, 15

stick, 8

sticking contact, 151, 164

sticking interaction, 165

sticking state, 149—150
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stiffness, 46, 59, 62, 85

stiffness determinant, 159

stiffness fluctuations, 80, 84—85

stiffness moduli, 80, 86

stiffness tensor, 47, 50-52, 57,
64, 77-78, 105-106, 109-110,
133

Stokes’ theorem, 97, 99

strain, 37, 4647, 51, 57, 97-98, 129

strain fluctuation, 78-80, 82,
84-85, 131, 133-134, 137-138,
149, 166, 170-174

strain increment, 46, 55, 64, 105

strain path, 46

strain rate, 45, 54

strain tensor, 38, 43

stress, 40, 45-47, 49, 51, 54, 56,
98-99, 101, 116

stress ellipse, 183

stress in a granular medium, 98

stress increment, 46, 72, 77, 105,
109, 131, 152, 170, 174-175

stress path, 46

stress rate, 55

stress ratio, 4-6, 12, 55-56,
62-63, 160-162, 164—165,
180, 182

stress symmetry, 140, 176

stress tensor, 40, 43, 100

stress-strain behaviour, 46

stress-strain curve, 183

stress-strain relation, 10, 4647,
56

stress-strain response, 77

strong ellipticity condition, 73—74

strongly localised displacement
field, 59

structural sum, 109, 116, 119, 132,
142

structures, 96

sum of force, 136

Index

surface potential, 14, 25-26
surface traction, 23
symmetry, 48, 50
symmetry axes, 51
symmetry relation, 47, 50

T

tangent modulus, 4, 6

tangential contact displacement, 16

tangential contact stiffness, 124

tangential deformation, 150

tangential force, 8, 18, 20, 24, 156

tangential interactions, 138

tangential spring constant, 134

tangential stiffness, 23

tensor calculus, 33

tensor, 44-45

thermal motion, 24

time derivative, 52

time increment, 52

time step, 13

torque constitutive equation, 11

total differential, 49

trace, 38-39

traction vector, 40

traction, 48, 99

transition to rupture, 67

translation, 37, 127

transposed of a matrix, 35

transverse (an)isotropic material,
50-51, 57, 60, 74, 87

triaxial-cell test, 4

truncated Fourier transform, 189

two spheres pressed together, 21

U

uniformity coefficient, 89
unit normal vector, 40

unit normal, 19, 40, 60, 149
unit vector, 39, 169
unloading, 16
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valency, 25

van der Waals interaction, 25

van der Waals, 26

vector, 34, 45

viscous substances, 45

volcanoes, 6

volume average, 78

volume strain, 5, 39-40, 48, 110

Voronoi boundaries, 90-93, 95-96,
100-103, 106-109, 112, 119,
121

Voronoi cell, 98-99, 102

Voronoi tiling, 92
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W

wave number, 78

wave speeds, 73-74

wave vector, 86—87

Wiener—Khinchin theorem,
189

work, 48-50

Y
Young’s modulus, 21, 47, 187

V4
zero-extension direction, see no
extension direction
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