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Preface 

In the early 1980s, the idea first took hold that the mechanical response of 
a dense granular medium can be understood from a basis of the inter-
particle contact properties. The initial efforts, a mean-field theory, had 
very poor results and papers on ‘micro-mechanics’ were usually relegated 
to the last section of conference proceedings. Gradually, the insight came 
about that a granular medium cannot be captured in a mean-field theory 
and that some form of non-homogeneity in the fabric properties has to be 
accounted for. The beginnings of this concept were implemented using the 
available continuum theories on heterogeneity and a few papers came out 
in the early 90s showing that in certain special cases the mechanical 
response was captured, but — irritatingly — not all cases. Highly 
anisotropic packed beds, for example, could not be accounted for and the 
failure of a granular medium at high stress ratio remained a mystery. 

While progress since then has been slow, it is now clear that a proper 
theory of granular deformation must include a method that deals with 
heterogeneity that is particularly applicable to a system of particles. This 
turns out to be the theory of ‘connected media’, which captures the physics 
of contacting particulates in an appropriate manner. It has also been 
extended to anisotropic cases. A rigorous approach to Coulomb friction as 
an inter-particle interaction is required as well. Together these 
developments can now be implemented with great success. 

To preserve analytical insight it is advantageous to use simplified 
models with round particles and on occasion do a two-dimensional 
calculation, rather than a three-dimensional one. This does not matter for 
the understanding of the physics that is at play. The theories have also been 
applied successfully to other fields where the inter-particle interaction has 
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a more chemical character. Filter cake formation (relevant to chemical 
engineering) is an example. Due to the large number of natural 
occurrences and applications of dense granular matter there is relevance in 
a variety of disciplines. 

This book presents a detailed exposition of all the concepts and 
mathematical techniques that are necessary to understand the current state 
of the subject. The student from a non-mathematical background may 
initially have to put in a certain amount of work to grasp the intricacies of 
the line of argument. This is a very algebraic subject; there is not much 
one can do about that. However, a mathematical appendix and an 
introductory chapter on continuum mechanics and Cartesian tensor 
calculus are provided to make the journey easier. 
 

Curt Koenders 
Canterbury, 2019 
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Chapter 1 

General Concepts 

1.1   Introduction 

Granular materials play a role in nearly all human activities. Users of, for 
example, sand, from children in sandpits to sophisticated geotechnical 
engineers, know that it is a fascinating — and to some extent, 
unpredictable — material. Many groups are concerned professionally with 
granular materials: chemical engineers, pharmacists, food technologists, 
agriculturalists, biologists, geologists, geophysicists, astronomers even, 
are obliged to study their behaviour under a wide variety of circumstances. 
In addition to sand, which itself may be of many compositions, the types 
of materials include gravel, fine-particle aggregates as employed in 
cosmetics, pharmaceuticals, dust, crushed rock and granules that occur in 
a domestic environment, such as breakfast cereals, sugar, salt and (instant 
or ground) coffee granules.  

It is important to distinguish between the various states in which these 
materials may be encountered. The possible range of regimes is extensive. 
The delineation of regimes is accomplished by specifying first the packing 
density, second the grain-size, or size distribution and particle shape, then 
the type of medium in the interstices between the grains (fluid, gas, 
vacuum) and finally the stress and temperature environment. Depending 
on any combination of these factors, examples of phenomena that may 
take place come in a wide variety. A few celebrated ones are landslides, 
blocked silos and sewers, rubble asteroids breaking up, segregation effects 
in breakfast cereals, dust-storm propagation after a terrorist attack, the 
spreading of sun-cream over skin and the formation of dunes. The list is 
by no means exhaustive; not only do people continually invent new 
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applications for granulates, they also discover new processes where these 
materials may be deployed. The sheer diversity of effects illustrates the 
range of professionals that may be engaged with the subject. 

The mechanical behaviour of an assembly of grains depends first and 
foremost on the interaction between the particles. For a low packing 
density the grains are fairly free to move and interactions may take place 
in a similar way to the molecules in a gas: the interactions are short-
duration ‘events’. When, on the other hand, the material is densely packed 
the grains are locked in enduring interaction with each other. This does not 
preclude relative motion between the particles. In a dense slurry, for 
example, the interstitial fluid is the interactive medium. Particles may 
move, while the interactive strength varies with motion, but the interaction 
continues to be relevant for particles in close proximity. When the medium 
is dense and dry, on the other hand, particles must make contact. Their 
relative motion may be sliding, or even suffer a very slight indentation 
when two particles are being pressed together hard, but there is only a non-
zero interaction while the contact endures.  

In order to describe the motion in various states, distinctly different 
branches of mechanics are required. For a dilute flow in which collisions 
are prevalent, for example, concepts of gas dynamics have to be invoked: 
a temperature field is needed to describe the velocity fluctuations while 
motion takes place. For dense (but not too dense) slurry flow in which a 
fluid mediates the interaction of the grains the relative velocity difference 
of the particles needs to be described. For very small particles Brownian 
motion will play a role too. For a dense packing, in which the grains are in 
enduring contact, the physics of the interaction is quite different. As this 
is the field of interest in the publication to hand a small study of the 
background of this subject is of use. 

It could be argued that the densely packed state is fairly boring, as the 
displacements tend to be so insignificant. Essentially, one might say, a 
densely packed granular material behaves like a solid. There are, however, 
certain features that relate to this régime that are quite unlike traditional 
solids. In fact, it is one of the most difficult to describe problems in  
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materials science. The reason for this is that the material properties change 
dramatically under certain specific loading conditions.  
 

 

Figure 1.1. Picture of an assembly of photo-elastic discs. Experiment by 
[Konishi, 1978]. 
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The easiest way to see where the problems arise is by considering an 
experiment of dry dense sand on a slope. When the sand is initially 
deposited and densified the slope is horizontal. Now imagine an 
experiment in which the slope angle is gradually increased. There comes 
a point when the angle is so great that the sand can no longer support a 
stable configuration and a landslide ensues. The changes in the sand up 
until this point are almost imperceptible, yet, internally, changes must have 
taken place in order for the sand to go into a state that cannot support a 
stable equilibrium. The question is: what physics underlies the internal 
change of state and how can its mechanics be captured? 

This problem is, of course, the province of soil mechanics. Tribute 
must be paid to the tremendous body of useful work that has been 
produced by civil engineers, especially in the area of experimentation. One 
type of test in particular is very common in soil testing and that is the so-
called triaxial-cell test. In this test a cylindrical sample of soil is subjected 
to a stress path in which — after initially building up a compressive 
pressure — the stress on the cylinder wall is kept constant while the stress 
on the ends of the cylinder is increased (precise definitions of stress and 
strain are explored in Chapter 2). The same type of test can be done in two 
dimensions on a sample of an assembly of discs. The latter case is 
illustrated in a picture of photo-elastic discs in which the contact forces 
are made visible by means of polarised light. Figure 1.1 provides an 
example. 

A typical response of the assembly so stressed is depicted below in 
somewhat stylised form (stylised to remove the inevitable experimental 
noise). The stress ratio (the ratio of the major and minor principal  
stress) goes up with increased principal strain until it appears to remain 
more or less constant. Now look at the tangent modulus (ratio of stress 
increment to strain increment). While the stress ratio is close to unity the 
assembly is quite stiff and behaves just like a solid block of material. As 
the stress ratio increases, however, the tangent modulus rapidly decreases 
till it reaches zero — a dramatic change in only a few percent of 
deformation! 
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Figure 1.2. Stress ratio and volume strain as a function of the major 
principal strain in a biaxial cell test.  
 
 

Even more bizarre is the behaviour of the volume strain. Initially, at a 
stress ratio close to unity, the sample contracts, as one would expect from 
an ordinary solid that is compressed in one direction. At higher stress ratios 
a peculiar effect becomes manifest: the sample expands. This is 
completely counter-intuitive behaviour. The effect is called dilation. The 
reader may carry out a very simple experiment to verify the phenomenon. 
Go to a wet beach with well-compacted sand and simply step on it. One 
can see the sand go dry underneath one’s feet. The soil expands, causing 
there to be more space in the interstices, and in so doing it sucks the water 
in from the neighbourhood, making it temporarily drier. The effect was 
first described by [Reynolds, 1885]. 

The amount of motion involved in this development is minimal; the 
strain is in the order of a few percent. The mechanical features that occur 
here are very important not only for the geotechnical industry, but also for 
the understanding of, for example, the motion of burrowing animals — see 
for example, [Dorgan et al., 2006]. While a further discussion is only  
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possible when grain assemblies are considered that contain an interstitial 
fluid, it is obvious that such creatures are adapted to employ the 
mechanical properties of granular deposits, such as dilatancy, in their 
survival. Another example is the motion of sheared layers of granular 
materials in geological settings — see [Petford and Koenders, 2003] — in 
which hot magma is sucked up under volcanoes.  

Further scrutiny of Fig. 1.1, the photo-elastic assembly of discs, shows 
another interesting feature: the force distribution is very heterogeneous. 
Some regions are entirely force-free, while other regions experience high 
inter-particle forces that frequently — but not exclusively — line up to 
form ‘force bridges’. The variability in contact forces points to an 
accompanying variability in local deformations. Here is something that 
will prove very important in the study of the mechanics of granular media 
that are not packed in a regular lattice (which is only possible if there is 
only one grain size or for a very particular combination of sizes), which is 
the norm in any naturally occurring sample: granular media are 
intrinsically heterogeneous. The consequences of this for the mechanics 
of a granular assembly will be explored in forthcoming chapters. 

When the material reaches the plateau of the stress ratio in Fig. 1.2 
another feature may become apparent. As the tangent modulus becomes 
poorly defined the material may find, depending on the precise boundary 
conditions, a mode of motion that is localised. Such ‘rupture layers’ and 
‘failure’ are very important for the engineering community, as illustrated 
in the example of a landslide occurring as described earlier in this section.  

Literature on soil mechanics is plentiful: [Lambe and Whitman, 1969] 
is a classic text, as is [Terzaghi, Peck and Mesri, 1996]; [Powrie, 2004] is 
a more modern textbook. 

1.2   The isostatic state and jamming 

A static packed assembly of grains in contact confined by a compressive 
stress is equivalent to a network of forces. As it is static, force and  
moment equilibrium will hold. The question being addressed in this 
section is: how many forces in the network can be specified in such a  
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way that force and moment equilibrium alone are sufficient to determine 
them, given the detailed geometry of the conformation? 

A few conditions need to be laid down to come to a non-trivial answer. 
The first is that a regular packing is excluded from the analysis; an 
assembly in a regular packing satisfies certain symmetry rules which need 
to be imposed in addition to the equilibrium equations. Thus, a medium 
that consists of identical spherical particles is not accounted for at this 
stage. Rather, a polydisperse grain-size distribution is envisaged, making 
for a random packing. Alternatively, rough particles may make up the 
assembly. No isotropic condition imposition is necessary, though this is 
often (sometimes tacitly) assumed in the literature. Furthermore, it is 
assumed that the assembly is very large, so that the number of forces on 
the perimeter of the sample is small compared to the number of forces in 
the network. Basically, any condition that somehow constrains the forces 
in the network is excluded for the moment, implying that the equilibrium 
equations alone are sufficient to do the analysis. Specific constraining 
assumptions are discussed below. 

In a random packing with N  interacting particles in d dimensions 
there are Nd  force equilibrium equations, as each particle that participates 
in the network is in equilibrium. The force moment equilibrium for  
each particle provides  1 / 2d d   equations, so for N  particles there  
are    1 / 2 1 / 2Nd Nd d Nd d     equations. Each contact force will 
have d  components and is shared by two particles. Equating the two gives 
the result that it is possible to calculate  1N d   forces, or an assembly 
coordinate number, that is the number of contacts per particle,  
of , 1c isoN d   forces on average (the subscript ‘iso’ refers to the isostatic 
case). Note that this average pertains to particles that participate in the 
force network. It is well possible that a fair percentage of particles have no 
contact and these obviously do not contribute to the evaluation of the 
isostatic coordinate number. 

When there are more force-carrying contacts, the equilibrium 
equations alone will not be able to permit the calculation of the forces.  
The system is then statically indeterminate. When there are fewer than 

1d   contact forces per particle there are more equations than unknowns 
and the system cannot be in static equilibrium. The isostatic state is 
therefore a very precarious, marginally stable state. The slightest 
disruption that results in the loss of even one contact will make the 
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structure change until the number of force-carrying contacts is at least 
equal to the required number.  

The number 1,d   which equals 3 in two dimensions and 4 in three 
dimensions, compared to any experimental result for a densely packed 
material shows that for practical purposes the statically indeterminate state 
is much more relevant. However, the analysis changes somewhat when 
constraints are imposed. So, the assumption of randomness is still 
maintained, but a constraint may follow from the fact that certain contacts 
slip. In that case the nature of friction must be considered.  

Particles interact via their surfaces and these need not be smooth. As 
long as the surfaces are ‘infinitely sticky’ the force component that is 
tangential to the surface is free to take any value. In cases where slip is 
relevant, a Coulomb-type constraint reigns in which the magnitude of the 
tangential force remains equal to s times the normal force. Contact forces 
must then be classified according to those that stick and those that slip. Let 
the ratio of slipping contacts in the assembly be given as a fraction f  of 
all the contact forces, then the number of sticking forces populates a 
fraction 1 .f  The number of equations and unknowns now stack up as 
follows:  
 
Nd  force equilibrium equations 

 1 / 2Nd d   moment equilibrium equations 

, / 2c isof NN  slipping conditions 

, / 2c isoNdN  unknown contact force components 

 
Equating the number of equations with the number of unknowns gives the 
result that the coordinate number per particle is 

 
 

,

1
c iso

d d
N

d f





 (1.1) 

The implication is that as the fraction of slipping contacts increases, 
the number of contacts that need to be accommodated in the assembly will 
go up. When all contacts slip ( 1)f   in both two and three dimensions 
the value of ,c isoN  is 6.  
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A very special case occurs when there is no friction and the particles 
are perfectly spherical or discs. In that case all forces are normal to the 
contact surfaces and the moment equations become redundant:  

, 2 .c isoN d  
Again it is emphasised that these considerations only pertain to the 

particles that participate in the force network. 
An experiment may be envisaged in which the particle assembly starts 

of as very dilute; it is then compacted (say, isotropically). There comes a 
point in this process when the particles begin to touch. When the number 
of particles that touch is sufficient for the medium to be on the edge of 
static equilibrium the assembly is said to ‘jam’. Compressing the assembly 
further will involve the compression of enduring contacts and therefore 
the development of a stress. The packing density at which the jamming 
transition takes place may be determined in numerical simulations. The 
outcome depends on assumptions on polydispersity (for spheres and 
discs), the details of the simulation method (gravity on or off, for example) 
and — indeed — the precise definition of the jamming density. Therefore, 
the concept of a ‘jamming transition density’ may only have approximate 
meaning.  

Moreover, the analysis above shows that the number of contacts that 
can be supported in the isostatic state depends strongly on the fraction of 
the contacts that slip. In numerical simulations parameters can be tightly 
controlled to set the value of inter-particle friction (infinite and zero are 
popular choices), as well as the shape of the particles that participate in  
the simulation and the strain path that is employed. In any physical 
experiment with natural or manufactured particles, however, these 
parameters are not so easily controlled. The inter-particle friction 
coefficient, for example, may exhibit natural variation and therefore take 
a range of values; furthermore, particles tend to be rough and only 
approximately spherical.  

A further question is whether an assembly of particles can be ‘partly 
isostatic’, that is that regions within the assembly can be distinguished  
for which the numbers of equilibrium equations equals the number of 
forces while there are also regions where there are fewer. Doubtlessly 
conditions can be found, involving factors such as closeness to the 
jamming condition and nature of the particle interaction (for example 
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rough or smooth), where this is the case. In the references the relevant 
literature is highlighted. One aspect that comes to the fore in these papers 
is the need to distinguish fluctuations in the local geometry. For dense 
assemblies, where the intention is to obtain a stress-strain relation, the 
most convenient approach is to introduce an inter-particle interaction and 
to develop the theory further taking account of the fluctuations in that 
context. 

An interesting feature of the present discussion is an historical 
perspective. The conditions for isostaticity were originally laid out by 
[Maxwell, 1864]. In fact, Maxwell’s text employs identical arguments as 
the one at the beginning of this section. A fully elaborated theory of  
static indeterminacy was produced by Mohr in 1874, see [Mohr, 1906]. 
Not until a century later did these concepts find their way into the  
literature of granular mechanics. In the early 2000s a more rounded view 
of the subject became available and the notion that sliding friction may 
influence the theory. A great help has been the development of  
simulation methods so that the jamming transition may be studied 
‘experimentally’. Jamming under non-isotropic conditions has been 
included more recently.  

An extensive overview of the jamming transition is described by [Liu 
and Nagel, 2010]. Stresses in an isostatic assembly are derived by 
[Blumenfeld, 2007] and in this paper some other problems regarding the 
concept of isostaticity are also highlighted. Non-isotropic compression 
and jamming (with physical experiments) is discussed by [Bi et al., 2011]. 
An exhaustive list of publications relevant to this subject is somewhat 
outside the scope of this text, however most relevant ones are in the 
references mentioned. 

 

1.3     The statically indeterminate case and computer 
simulations 

The next problem must be how the contact forces are going to be solved 
in the statically indeterminate state. In this case there are more force 
variables than force and moment balance equations (and more contacts  
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per particle than , ).c isoN  A solution is possible when a constitutive 
equation is introduced. Such an equation gives the relation between force 
and displacement difference between particles (particles may also rotate 
and this too needs to be incorporated in the constitutive equations). It 
necessarily implies that the particles are deformable. This may be 
counterintuitive as particles are frequently thought of as rigid (sand grains, 
for example, would appear to be very stiff). More precisely, a rigid limit 
can be thought of when the stiffness of the particles is very much greater 
than the pressure associated with the stress in the assembly. However, 
allowing for small indentations during particle contact resolves the issue 
of static indeterminacy. Here is a list of unknowns and equations for all 
the particles that participate in the force network. 
 
Unknowns 
 
Nd  particle displacements 

 1 / 2Nd d   particle rotations 
/ 2cNdN  contact forces 

 
Equations 
 
Nd  force equilibrium equations 

 1 / 2Nd d   moment equilibrium equations 
/ 2cNdN  contact force — relative particle displacement and rotation 

relations (the contact laws) 
 

The number of unknowns (that is, the displacements and rotations) is 
equal to the number of equations and (assuming no mathematical 
pathologies) a solution may be constructed. The reader may now be 
surprised that there is no mention of a torque constitutive equation. There 
is an underlying assumption here (which is similar to the rigidity 
assumption) that the contacts may be thought of as point contacts. A point 
contact cannot transmit a torque. So, unless the particles are very 
deformable — and the contact area may acquire an appreciable value — 
this aspect may be neglected. A problem would arise when the grains in 
the force network are so irregularly shaped that two neighbouring  
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particles may share more than one contact. In that case, of course, a torque 
may be transmitted. In principle the theory can be easily amended to 
account for a complication like that by introducing a particle contact(s) 
torque in addition to the contact forces and an extra set of constitutive 
equations relating particle rotation to the transmitted torque. This is not 
followed up here, where it is assumed that the particles are hard (though 
slightly deformable) and share at most one contact. 

The set of equations, as outlined above, can be solved using computer 
simulations and in that way displacements and rotations of the particles  
in an assembly may be determined under suitably chosen boundary 
conditions.  

In the literature it is only very rarely that a procedure is encountered  
in which a quasi-static solution (QS) is constructed. Nonetheless, it is 
possible to do this. [Koenders and Stefanovska, 1993] show an 
approximation method, based on a least-squares approach of the force  
and moment equilibrium equations for an elasto-frictional material in  
two dimensions. The result for a biaxial cell test are very similar to the 
ones measured by, for example, [Konishi, 1978]. The latter is an 
experiment on photo-elastic discs – see Fig. 1.1. The statistics of the 
micro-mechanical variables are faithfully reproduced. These include the 
mean contact distribution and the distribution of the slipping contacts as 
the test progresses. Macroscopic features, such as the stress ratio  
reaching a maximum and the occurrence of dilatancy are also found.  

Despite the relative success of this method, it has not been pursued by 
many other researchers, who have preferred dynamic methods.  

These are obviously attractive if, in addition to slow changes to an 
assembly in the high contact number régime, faster changes and granular 
flow also need to be studied. To accommodate the dynamics, a particle 
mass and moment of inertia terms need to be introduced to the  
equilibrium equations, so that a full Newtonian set of equations is 
processed. To solve Newton’s equations simultaneously with evolving 
contact properties, such as detecting new contacts and deleting old ones, 
for all particles in a large assembly (say, 1000N  ) requires a massive 
computer effort. In a molecular dynamics method, called the Discrete 
Element Method (DEM ) , a sequential approach is taken, using a small  
time step and moving and rotating the particles in the assembly one at a 
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time and after that updating the contact properties. If the time step is small 
enough, this would be equivalent to a simultaneous solution. The method 
was first introduced by [Cundall and Strack, 1979] — a two-dimensional 
version of the DEM. Since its inception it has been developed further and 
has been expanded to three dimensions, more complicated contact laws 
and extensions to include more general boundary conditions, including 
periodic ones. More complicated particle shapes with rough boundaries 
have been included in an attempt to model realistic, natural conditions. 
The method has had a tremendous influence on the development of the 
subject, not least because proposed theoretical models in which micro-
mechanical assertions are put forward could be tested against computer 
simulations.  

Free software and many informative documents are available, so 
researchers can run their own simulations [Yade, 2019]. 

It is fair to say that reporting on the results of the method has not  
always been entirely complete. It is also the case that in some instances 
the reporters have been arrogant in asserting that the simulation results  
are superior to physical experiments, though it is true that in the  
computer certain boundary conditions can be simulated that are very 
difficult to realise with a laboratory apparatus, see for example  
[Thornton, 2000]. Consistent examples of papers on simulations that use 
the method (and discuss some of the difficulties with it) are by [Thornton 
and Antony, 1998] and a very informative paper by [Thornton and Sun, 
1993]. Further useful papers, showing the potential and increased  
subtlety of the method, are by [Ferellec and McDowell, 2010], [Macaro 
and Utili, 2012] and [McDowell and Li, 2016]. This little list is  
illustrative only and does by no means justice to the extent to which  
papers on this subject have been published. There must be many 
thousands. 

A computer method that lies somewhere between QS and the DEM is 
the Contact Dynamics (CD) method. The background to this is the 
following. The time step in a fully dynamic implementation of the 
equations of motion needs to be so small that it is adequate to follow  
the changes in the contact laws. The latter allow for a small indentation in 
what are essentially rigid particles. The problem with the contact laws is 
that they are highly non-linear and therefore a large number of time steps 
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is required to model, say, a collision between two particles. In the CD 
method the accelerations are not calculated, but the particles are subject to 
a velocity field. The latter can change abruptly, both in direction and 
magnitude. This is so-called non-smooth motion. For the method to work, 
the motion during the encounter between two particles is integrated, taking 
into account the non-linear contact laws. The inputs to any collision 
encounter are the velocities of the two participating particles, while the 
output consists of the velocities after the encounter has taken place. The 
actual integration cannot be done exactly, but certain estimates have to be 
made. These have been elevated to a high art by the CD community and it 
is generally assumed that the method is no less accurate than the DEM 
method. More specifically, the propagating error introduced by the 
exceedingly small time step in a fully dynamic program may well be of 
the same order of magnitude as the error incurred in the approximations in 
the integration method in CD. Any computational method is approximate 
in some sense. However, CD is much faster than DEM, as rather larger 
time steps can responsibly be taken. Relevant references for this method 
are by the inventors of the method [Jean and Moreau, 1992] and [Jean, 
1999], as well as an informative introductory paper by [Radjai, 2008]. 
Again, as with the treatment of the DEM before, there are many more 
papers that could be quoted, especially as the method has gained in 
popularity in recent times. 

1.4   Contact laws 

When drawing up a suitable constitutive law for contact relating contact 
displacement and contact force the first thought should be ‘what is it  
meant to achieve?’ In molecular studies and studies of small particles in 
liquids very sophisticated interactive relations have been put forward  
that account for surface potential effects and quantum mechanical 
interactions. These relations are highly non-linear and allow for both 
repelling and attractive phenomena. However, in dealing with larger 
particles a simple law that just ensures that the particles only overlap by a 
very small amount would appear to be sufficient. The difficulty with 
increasing sophistication is that it requires more and more parameters, 
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which may be difficult to measure. Also, the benefit of more complex laws 
is marginal. The need for a contact law arises from the existence of a 
statically indeterminate state. The first goal is to fix this problem by simple 
means and get some insight in the properties of such systems. Added 
complexity can be inserted later as a refinement.  

Any two surfaces that touch one another could in a first  
approximation be assumed to repel one another as springs. This gives a 
relation for the normal force between the surfaces that is characterised by 
merely the spring constant k . The latter will generally be a function of  
the contact force itself. The non-linearity that is associated with that  
gives rise to the need to introduce incremental contact laws (the need for 
incremental laws will be discussed in more detail below). So, if the  
normal displacement D  is related to the normal force F  via a spring 
constant 

 F k F D    

Then the incremental law reads 

 k F
f d

F


 






 

The function  k F  may contain a number of features. In addition to the 
non-linearity the incremental spring constant may be either assumed to be 
entirely elastic or reflect certain plastic effects (that is, have different 
values for loading and unloading).  

1.5   The frictional interaction 

One effect that is without doubt very important in the constitutive contact 
law is the effect of friction and to introduce that the normal force alone is 
insufficient; a tangential force-displacement rule must be added to the 
description.  

The friction effect is obviously plastic. When the force ratio (that is  
the magnitude of the tangential force to the normal force) reaches a  
certain value s , persistent further motion will not change it; a constraint 
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has become active that keeps the force ratio constant. This was  
established by [Coulomb, 1785] (based on measurements by [Amontons, 
1699], see [Heyman, 1972] for the history of the subject and many more 
references). The concern here is essentially with dry friction. [Bowden  
and Tabor, 1956] treat the subject from an engineering standpoint  
and also extend their treatment to include effects of lubrication. On 
unloading the contact may recover its elastic properties, though not 
necessarily with the same elastic constant as the loading curve. The 
process is illustrated in Fig. 1.3, where /F F  is shown as a function  
of the tangential contact displacement D . In this figure the spring 
constants for loading and unloading are taken as constants; when a 
nonlinearity is taken into account the straight loading and unloading lines 
become curved.  
 

D

/F F

s

 
Figure 1.3. Illustration of the Coulomb friction principle. 

 
It is clear that when behaviour like this is encountered an incremental 

formulation is necessary. The normal and tangential motion become  
 
 
 
 



 General Concepts 17 
 

9in x 6in       b3746     Physics of the Deformation of Densely Packed Granular Materials, The        b3746-Ch-01        FA 

coupled, so a general form for the incremental contact response relates the 
force increment to a displacement increment 

f k k d
f k k d
   



    
    

    



   

 

The elements of the matrix are the spring constants. Some properties of 
these are easily determined.  

In the elastic state there is an incremental potential, 

  2 21 1
2 2k d k k d d k d           , from which the force increment is 
obtained by partial differentiation. It follows immediately that for this case 
the matrix must be symmetric: k k   . If, in addition it is assumed that 
normal and tangential increments are uncoupled, it follows that the off-
diagonal elements vanish. This does not preclude anisotropy with respect 
to the direction of the contact surface, so k  need not be equal to k . If 
they are assumed to be equal then the one-parameter model kk   
follows, which has the pleasant property that it is invariant under rotation, 
so the direction of the contact is irrelevant (the Kronecker delta   is 
formally introduced in Section 2.2). For contacts that only interact through 
the normal force (frictionless) / / 0k  .  

In the frictional sliding state an additional force increment added to the 
state  / /,F F  should leave the ratio / / /F F  constant at the value of .s
Taking F  and F  both positive, leads to the following 

1 1 1 1 1s s

F f F f F f ff f f
F f F F F F F F F F

   

      

         
                               

      

  

 

In other words 

0 0s

f f f f
F F






    




 

This constrains the elements of the matrix k  by the additional relation 

  0k d k d k d k d             

which must hold for arbitrary displacements, hence 

0; 0s sk k k k          
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So, for this case the matrix k  takes the form 

/ s

s

k k
k k








 
  

 
k 



 

In many instances the increase in the tangential force increment for 
purely tangential motion is negligible, implying that 0.k   The frictional 
state is then entirely described by two parameters, k  and .s   

When F  is negative, s  is replaced by ;s  otherwise the relations 
remain the same. 

Unloading from the frictional state is detected by checking what the 
response would have been for an elastic increment (this could in principle 
be brought about by an increase in the normal force). If this decreases the 
magnitude of the tangential to normal force ratio, the next increment 
should be evaluated using the (unloading) elastic law. Therefore, the 
frictional interaction is predictive, but must always be followed by a 
verification. 

Friction in two dimensions is covered in the literature. [Ruina, 1980] 
and [Ruina, 1983] discusses the sliding state once the initial friction 
criterion is passed. On continued motion the value of s  falls by a small 
amount — the friction is said to change from a static value to a kinetic 
value. In addition, an extra stress that is proportional to the speed of 
continued tangential motion needs to be introduced (this effect is 
sometimes known as the Ruina–Dieterich law: [Dieterich, 1979, 1981]). It 
should be emphasised that the measurements that underlie this law are 
done on blocks of rock material. In these experiments there are always 
many contacts at the same time, while for the present application two 
particles share one contact, which is approximately a point-contact, that is, 
a very small contact area between two convex surfaces. Direct application 
of the Ruina-Dieterich law may therefore not be appropriate.  

While the frictional effect has been measured extensively, the actual 
mechanism of the contact mechanics that lead to friction is relatively 
unexplored. [Villagio, 1979] has put forward some interesting ideas, 
though they have so far not been widely followed up. 
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1.5.1   Friction in three dimensions 

The exposition given above is idealised in that the motion and force 
parameters all operate in a plane. To some extent that is a view justified 
by the fact that the frictional interaction takes place on the surface of two 
bodies in contact. The unit normal of the surface is n  and if the force 
across the surface is ,F  the normal component is the inner product 

.F = F n  The tangential force is then   . F F F n n   The sliding 
friction criterion may now be expressed as .s F F F   This relation 
represents a cone, as illustrated in Fig. 1.4. 
 
 

 
Figure 1.4. Friction cone. The opening angle is 12 tan s

 . 
 

The procedure for obtaining the incremental interaction in the sliding 
state is the same as before. Basically, the force vector must be constrained 
to move on the surface of the cone. 

The most convenient way of making progress is now to choose a 
coordinate frame that is aligned with the forces. One unit vector — n  — 
is already in place; of the other two one is chosen to be aligned with  
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F  and the other one normal to that (as well as normal to n ). The former 
is called n  and the latter n  (this vector is sometimes called the 
binormal). In this frame the force and the force increment have 
components 

0

F f
F f

f

 



   
        
   
   

F f   

The sliding friction criterion becomes 

     s F f     F f F f     

Expanding up to first order in the increments gives 

sf f   

This is exactly the same relation as for the two-dimensional case and the 
implications for the incremental force-displacement relation are also 
obtained in a similar fashion. The resulting interaction is 

10

0
s

s

f k k d
f k k d
f k k k d





   

 

    

    
         

        



  



 

The question now is whether there is a coupling between the third 
direction and other two directions. If the third direction operates entirely 
independently then all coefficients with a   vanish other than the diagonal 
term ,k  which is probably some fraction of the normal diagonal 
coefficient .k  If, however, the tangential force influences the behaviour 
in the third direction then a number of extra parameters need to be taken 
into account. For point contacts these parameters are very difficult to 
measure.  
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1.6   Contact laws in terms of material parameters 

A question that is particularly of interest to the simulation community 
concerns the matter whether the spring constant can be related to the 
material properties of the particles. The prime candidate for such a theory 
is the Hertzian contact theory, which deals with two elastic bodies that are 
being compressed together — [Hertz, 1882]. The details are in [Landau 
and Lifschitz, 1976] and more extensively in the [Johnson, 1985] book on 
contact mechanics.  

For two spheres pressed together by a force F  the distance between 
the centres of two spheres with radii R  and 'R  is reduced by an amount 
D  

1/3

2/3 2 1 1

'
D F Q

R R 
       

, 

where the parameter Q  contains the elastic constants (Young’s moduli  
,E  'E  and Poisson’s ratios ,  ' ) of the materials of which the solid 

bodies are made: 

2 2
3
4

1 1 '

'
Q

E E
   

  
 

 

An obvious aspect of this force-indentation formula is that the force-
displacement relationship is non-linear. An incremental relationship is 
easily obtained 

 
1/31/3

3
2 2/3

1 1

'

Ff d k F d
Q R R




    

        
 

A relationship between the proposed spring constant and the material 
parameters of the particles could then be proposed as some assembly 
average value of  k F . For simulation purposes that would be very 
unsatisfactory and the vast majority of simulists code for the original 
relationship between D  and .F  For analytical modelling, however, 
where interactive properties frequently appear as sums over nearby 
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particles, an averaging approach may be convenient for theoretical 
purposes.  

In two dimensions, relating a spring constant to material properties can 
be ascertained by looking at the compression of two cylinders along their 
axes. The Hertzian relationship is, see [Puttock and Thwaite, 1969] and 
[Williams and Dwyer-Joyce, 2001] 

34 6 1 1
1 ln

3

FD Q
F Q R R








             




, 

where   is the length of the axes of the cylinders and ,R R  are the 
cylinder radii. Note that the expression essentially depends on the force 
per unit length. 

This expression is also non-linear, but not easily employed, because 
inverting it (to give F  as a function of )D  leads to extra numerical  
work.  
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Figure 1.5. Contact stiffness as a function of the applied compressive force 
for two spheres and two cylinders. The parameters used are as follows: 

8 2 110 ;Q m N   all radii .01m  and the cylinder length .01 .m   
 

The expression can be differentiated with respect to D  and then 
/F D    as a function of F  may be obtained, 
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A comparison of the contact stiffnesses for the cases of two spheres 
and two cylinders is illustrated in Fig. 1.5. It is seen that there is a very 
substantial variation in the result, especially lightly loaded contacts have a 
vanishingly small incremental stiffness.  

The assumption made here is that the contact areas are immaculately 
clean and that the contact is perfectly smooth. For two particles made of a 
natural material — sand particles, for example — that assumption is 
obviously severely contestable. Further research on two fractal surfaces 
pressed together is reported in [Hanaor et al., 2015]. As the only purpose 
of the contact stiffness is to hinder two particles from overlapping (and do 
so in a controlled manner), it could be argued that any stiffness is fine, as 
long as the indentation is such that only a very small overlap (compared to 
the typical radius of the particles) is effected at the typical contact force 
regime in the assembly. It is also noted that for particles composed of 
natural materials a number of plastic effects can be expected (including 
breakage). Therefore, frequently, researchers just take a constant value for 
the contact stiffness and add friction, for example [Kuhn, 1999]. This is 
computationally simple and achieves the purpose of rectifying the 
problems of determining the contact forces in the case that the assembly is 
not in an isostatic state, at the expense of some physical realism. This is a 
perfectly reasonable thing to do.  

In some sense the details of the normal interaction are not that critical. 
The tangential stiffness, including frictional effects can be added to the 
interaction. There are various approaches. A well-known one takes 
account of slip in an annulus inside the contact area. The extent of the 
annulus depends on the applied force ratio. A fair amount of ink has been 
spilt over this problem; quoting [Johnson, 1985]: ‘In a paper of 
considerable complexity, [Mindlin, 1949], [Mindlin and Deresiewicz, 
1953], have investigated the changes in surface traction and compliance 
between spherical bodies in contact arising from the various possible 
combinations of incremental change in loads: normal force increasing, 
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tangential force increasing; normal force decreasing, tangential force 
increasing; normal force increasing, tangential force decreasing; etc.’  
The parameters needed are the material stiffness, Poisson’s ratio and a 
friction coefficient. Despite the complexity of the calculations the result  
in terms of incremental contact law is not dissimilar from the one  
obtained from the phenomenological approach as pursued above. All the 
notes regarding the idealisation of the problem, and therefore the  
question marks that accompany an application to the ‘dirty’ materials of 
which the real world is composed, are relevant again. It could also be 
argued that an analysis meant to explain friction based on the assumption 
of a friction coefficient is tautological, at best adding details to the 
mechanism. 

1.7   Interaction for small particles in a fluid environment 

This section deals with small particles, micron- and sub-micron-sized, in 
a fluid environment. The question is how such particles interact when they 
come close together. Applications in chemical and environmental 
engineering (especially filtration), cosmetics, the mechanics of clay, etc. 
are envisaged. In these applications dense cakes of small particles are 
created and subsequently manipulated by either sedimentation or filtration 
methods.  

The particles are solids, implying that the constituent molecules are in 
some sort of crystal structure. On the boundary of the particle solid the 
crystal structure meets the fluid; the crystal arrangement suddenly ends. 
There is then a discontinuity in the electric charge distribution, which is 
accommodated by the recruitment of the ions in the fluid near the 
boundary into a compensating configuration. The fluid molecules, 
however have a far greater mobility than those in the solid. Moreover, their 
equilibrium state — far from the solid boundary — is determined by the 
type of molecule in the fluid and its temperature.  

The mobilisation of the ions in the fluid is achieved by either turning 
the dipoles of the fluid molecules in the direction of the solid boundary, or 
by attracting or repelling ionic charges. This can only be partially 
successful, as the thermal motion tends to make the alignment less 
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effective. Also, if in a fluid a layer of molecules has a more or less  
aligned dipole moment, the next layer of fluid will respond by turning its 
dipoles in the opposite direction in order to achieve charge neutrality. 
Thus, a double layer is created. The electrical potential in the fluid as a 
function of the distance from the boundary will be a declining function.  

Now, if two particles are brought together there are two declining 
potentials and the charges inside the fluid will act on that, effectively 
causing a repulsive interaction. This is called the double layer interaction 
and it is part of a multi-aspected interaction, the so-called DLVO  
theory — named after its main contributors Debije, Landau, Verwey and 
Overbeek. The analysis of the complete theory involves a large number  
of approximations, basically taking account of the repulsive double-layer 
interaction and an attractive van der Waals interaction.  

The literature on this subject is vast. The classic is [Kruyt and 
Overbeek, 1969]. Good textbooks that treat the basics and a plethora of 
applications are [Hunter, 1987, 2001]. 

The theory of the double layer interaction is extremely well-researched 
in the colloid literature and all that needs to be done here is to communicate 
the results.  

A measure for the thickness of the double layer is some chosen multiple 
of 1  and   is approximately  

 02 2

B

e n Z
k T




 , 

where e  is the electron charge,  0n  the bulk concentration of ions, Z  the 
valency of the ions,   the electrical permittivity of the fluid, Bk  
Boltzmann’s constant and T  the absolute temperature. If there are more 
than one type of ions in the fluid the concentration and valences are simply 
summed. Now, the interaction between two particles depends on the 
separation of the particles H  and the parameter ;  the simplest non-
dimensional combination is .H  Thus, the double layer interaction is a 
function of .H  The actual form of the interaction is exposed in two 
approximations involving the particle radius .a  The first approximation 
pertains to the case in which a  is large (say, larger than 10). Defining 
the surface potential as 0 ,  the interactive potential is 
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   2
02 ln 1 HV H a e      

The second approximation is relevant for 5,a   in which case the 
interactive potential takes the form 

 
2 2

04 HaV H e
H

    

In these formulas the surface potential as 0  depends on the type of 
surface and the ionic content of the fluid. The interactive force is obtained 
from / .V H    

The van der Waals contribution has also been evaluated. Here the 
interactive potential for two equal particles is given with 12A  a constant 
called the Hamaker constant (the analysis is due to [Hamaker, 1937])  

 

2

12 2

2
2 ln 3 2

2

6 2

H
H H Ha

Ha a a
aV H A

H H
a a

  
        

   
   
  
 

 

If the two particles are very close together ( / 1H a  ) then this reduces 
to 

  1 1
12 126 12ln

H aV H A A
a H

    
 

 

The contributions from the double layer interaction and the van der  
Waals interaction can be added to give the main contributors to the  
DLVO theory. The total effect depends on the coefficients, which reflect 
the exact type of system that is relevant. An example of the sum of the  
two contributions is given in Fig. 1.6. 
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Figure 1.6. Illustration of the potential TV  scaled to 2

02 a   for a value of 
20a   and  2

12 0/ 2 0.3.A a    
 
 

The example in this graph is chosen to highlight some features. Some 
numbers are relevant. Suppose the particle radius is 0.2 ,m  then the 
double layer thickness is 1 10 .nm   For distances less than a few 
nanometres the theory is unreliable. In the figure that corresponds to 

/ 0.03H a  . The sum of the two contributory potentials TV  is then not 
accurately represented for very small / .H a  Keeping that in mind, two 
features of the combined potential are clearly visible. Firstly, there are two 
attractive wells, one very close to the particle (where the theory is not 
valid) and one around / 0.18.H a   Secondly, moving the particles closer 
together from the latter minimum, there is a potential to overcome. It must 
be pointed out that these features are specific to the choice of parameters 
that has been made.  
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For much thicker double layers there are no potential minima in the 
relevant range and the interactive force is always repulsive. This is 
illustrated in Fig. 1.7 where 3.a   Note that the interaction is highly  
non-linear. 
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Figure 1.7. Illustration of the potential TV  scaled to 2
02 a   for a value of 

3a   and  2
12 0/ 2 0.3.A a    

 
The plethora of behaviours of colloidal substances is largely due to the 

variety of possible outcomes for the interactive potential curve and 
whether there are minima or maxima in the ambient mechanical (and 
thermal) environment. 

One consequence of the existence of an interactive potential is that 
there is always a force active between neighbouring particles and as a 
result considerations relating to the isostatic state are not as acute as in the 
case of an interaction that is solely due to contact.  
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Chapter 2 

Continuum Mechanics and Cartesian 
Tensor Calculus 

2.1   Initial considerations 

In order to describe the deformation of granular materials from a large-scale point 

of view it is convenient to be able to employ concepts from continuum mechanics. 

In this approach there is no concern for the physical constituents of the medium 

and their interactive properties. Continuum mechanics may be applied to all 

manner of systems: gases, fluids, solids, crowds, flocks of birds, etc. The 

fundamental concept is the material point, which is an element of the material that 

contains a large number of physical constituents and which has smooth properties. 

In what follows differential (infinitesimal) calculus is used and therefore some 

thought has to be given to the manner in which the material point is chosen. In 

fact, it cannot be a (mathematical) point at all. This issue is less academic than 

one might think. When, for example, a simulation of a granular material is set up, 

the number of particles must be large enough to not only capture the majority of 

mechanical events that will take place during the deformation process, but also 

to capture them in sufficient numbers to be representative of the process. This 

is a fraught issue in granular mechanics, as these materials are intrinsically 

heterogeneous and questions of spatial correlations are mostly difficult to answer. 

Nevertheless, it is useful to have the framework of continuum mechanics in the 

background.  

The review of the subject given here highlights the essential topics that are 

useful for densely packed granular materials. There are very good general books 

on continuum mechanics: [Becker and Bürger, 1975], [Spencer, 1980], [Fung, 

1977], [Eringen, 1989]. (Cartesian) tensor calculus is treated, for example, in the 

classic monograph by [Jeffreys, 1931] and in [Temple, 2004]. 
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The medium that is treated then is assumed to be made up of material points. 

The deformation of the medium takes place by the material points moving with 

respect to one another. In what follows use will be made of Cartesian tensors. 

These are mathematical objects that describe physical quantities, such as location 

vectors, stresses, strains and stiffness properties. They are called Cartesian, 

because their properties are defined via a Cartesian coordinate system. For 

example, a location vector x  has three components  1 2 3, ,x x x  in three 

dimensions. If a different coordinate system is used, the vector remains physically 

the same of course, as it still points to the same location, but the components that 

describe it will be different.  

2.2   Rotations 

One way of making a change to the coordinate system is by a rigid rotation. The 

transformation from a coordinate frame is a matrix called .Q  The coordinates of 

the vector in the rotated frame are called  1 2 3, ,y y y  and the transformation is 

effected by a matrix multiplication 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

y Q Q Q x
y Q Q Q x
y Q Q Q x

    
        
    
    

 

So, while physically the two vectors do the same thing, that is, point to a particular 

location, their representation is different, because the reference coordinate frame 

has been rotated.  

The matrix notation is very cumbersome. It is easier to use the numbers of the 

coordinates and also number the subscripts of the matrix .Q  Then the 

multiplication can be written as  

3

1
i ij j

j
y Q x



   

In fact, in most cases, people don’t bother writing the summation either, noting 

that when a subscript appears twice, it needs to be summed. This practice is  

called Einstein’s summation convention; it is incredibly useful. The matrix 

multiplication can then be written as follows: 
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i ij jy Q x  

The rotation is a very important object and its properties need to be 

established. To begin with the Kronecker delta   is introduced 

1 if

0 if

ij

ij

i j
i j





 

 
 

If the Kronecker delta is written as a matrix it takes the form of the identity 

1 0 0

0 1 0

0 0 1

 
   
 
 

  

It is therefore obvious that the inverse of a rotation, 1,Q  can be obtained by 

solving 

1
ij jk ikQ Q    

The transposed of a matrix is denoted by a superscript T; this is merely a 

matter of notation: in the case of the rotation .T
ji ijQ Q  

One of the physical properties of a rotation operation is that it leaves the length 

of a vector invariant. Therefore, writing out the inner product of the vector y  with 

itself gives 

T
i i ij j ik k ki ij j ky y Q x Q x Q Q x x   

This must be equal to the inner product of x  with itself and as a result it follows 

that 

T
ki ij kjQ Q   

So, one property that is established here is that the transposed of a rotation is its 

inverse.  

A property that can be ascertained along the same lines concerns the 

determinant of a rotation. Take any three independent vectors and consider the 

volume that these define. Now, on rotation the vectors change representation, but 
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their physical meaning remains the same, so the volume remains unchanged. 

Immediately it follows that the determinant of a rotation equals 1.  

These two properties of a rotation are easily verified when a specific case is 

used. Take a rotation that leaves the 3-axis invariant and rotate in the 1-2-plane 

over an angle .  The matrix describing this takes the form 

 
cos sin 0

sin cos 0

0 0 1

 
  

 
   
 
 

Q  

Indeed, it is seen that transforming back, that is rotating over an angle ,  gives 

the transposed matrix and that the determinant equals unity. For small angles the 

rotation takes the form 

1 0

1 0

0 0 1




 
 
 
 
 

 

If the rotation consists of three subsequent rotations over small angles around 

the three coordinate axes (the so-called Euler angles), then the result is 

1 2

1 3

2 3

1

1

1

 
 
 

  
  
 
 

 

So that for small angles the rotation is always anti-symmetric. 

2.3   The strain tensor 

During the deformation of a medium a material point will move from x  to ,x u
where u  is the displacement vector. It is desirable to have a measure for the 

displacement of two nearby points, in other words, what is the behaviour of u  in 

the vicinity of .x  In order to achieve that, the vector u  is expanded in a Taylor 

series in the point .x  Fix a coordinate system with the origin in the point ;x  call 

the coordinates i  and going up to first order leads to 
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 0 i
i i j

j

uu u 



 


 

The quantity /i ju    is called the displacement gradient.  
For the purpose of describing the material behaviour the constant vector  0u  

is not of interest, as it basically deals with the translation of the material. Imagine 

a block of a material, which is carried out of the laboratory. The translation says 

nothing about the material behaviour. The displacement gradient is much more 

informative, as it describes the motion of two adjacent points in the material as 

they are wrenched apart. Part of the displacement gradient will be a rotation. 

Again, a rigid rotation says nothing about the material behaviour. The same block 

can be slowly rotated around and no material points have come closer or moved 

further apart. So, in order to arrive at a meaningful object that informs about 

particles of the material coming together or moving apart, the rotation has to be 

removed from the displacement gradient.  

It is now imperative to define small deformations, the so-called geometrical 
linearization limit, which is very commonly used in the theory of the  

deformation of solids. This limit is valid while the components of the 

displacement gradient have a magnitude that is much smaller than unity. In that 

case the deformation gradient can be written as the sum of a symmetric and an 

anti-symmetric part 

1 1

2 2
j ji i i

j j i j i

u uu u u
    

      
                

 

The second part here has the form of a rotation over small angles minus the 

Kronecker delta. The first part is symmetric and is called the strain E  

1

2
ji

ij
j i

uuE
 

 
     

 

Consequences for the strain tensor 

A number of interesting properties can be determined.  

1. Any symmetrical matrix can be diagonalised by choosing a coordinate frame 

in which the diagonal components are just the eigenvalues. These are commonly 
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known as the principal strains; they are called  1 ,E   2 ,E   3E  and ordered so 

that      1 2 3 .E E E    1E  is the major principal strain,  3E  the minor 

principal strain and  2E  the intermediate principal strain.  

2. If a coordinate frame exists in which the diagonal components vanish, then that 

state of strain is called pure shear. If a rotation is added to the pure shear state, so 

that the whole deformation can be written as 1 2su a   then that state is called 

simple shear. 

3. The fact that there are eigenvalues means that there must be a characteristic 

equation. No matter what the choice of coordinate frame is, these eigenvalues are 

always the same; therefore, the coefficients of the characteristic equation are 

always the same. It follows that in d  dimensions there are d  eigenvalues and 

hence d  rotation-invariant coefficients. These invariants must have physical 

meaning. The easiest way to see what they are is by studying a strain in a diagonal 

state. Calling the eigenvalues  ,E   the characteristic equation is  

  
1

1 0
d

E


  


 

In two dimensions the invariants are then    1 2E E  and    1 2 ,E E  that is, the 

sum of the diagonal elements (the so-called trace) and the determinant. 

The sum of the diagonal elements has a simple meaning. Consider a rectangle 

with sides of lengths 1L  and 2L , see Fig. 2.1. A deformation will change the 

lengths of the sides to   1
1 1L E  and   2

2 1L E . The area of the rectangle 

will therefore have changed from 1 2L L  to (neglecting products of the strain 

components because of geometrical linearization)     1 2
1 2 1L L E E  ; it is 

seen that the ratio of the change in the area to the initial area is just the trace of 

the deformation tensor.  
Giving physical meaning to the determinant is more difficult, as this is the 

product of the components of the strain tensor. These are all assumed to be much 
smaller than unity and therefore the product, as compared to something of the 
order of magnitude of the trace is negligible. However, the determinant of  
the strain plus the Kronecker delta can be given an interpretation. Adding the 

Kronecker delta to the strain gives a matrix that spans two vectors   11 ,0E     
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and   20, 1 E   . The determinant of this matrix is of course exactly the 

relative change in area.  

 
Figure 2.1. Deformation of an element of material under a strain tensor. 

 

These results remain intact in three dimensions. The trace iiE  is equal to the 

volume strain. In three dimensions there is a third invariant, which is the sum of 

the sub-determinants 

           1 2 2 3 1 322 23 11 1311 12

32 33 31 3321 22

E E E EE E
E E E E E E

E E E EE E
      

This invariant is used very rarely and the same thing applies to it as before: it 

is the product of small quantities and as a result negligible compared to the trace 

of the strain. 

4. The extension of a line element with direction unit vector n  in two  

dimensions is    1 22 2
1 2 .n E n E  When  1E  and  2E  both have the same sign  

this describes an ellipse. When  1E  and  2E  have different signs there is a 

direction for which the extension vanishes. This is called the zero-extension 
direction (sometimes also referred to as the ‘no-extension direction’) and will be 

denoted by ne .  
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 

 

1
2

2
tan ne

E
E

    

In the soil mechanics literature the solution is often represented as 

   

   

1 2
1

1 2

1
sin

4 2ne
E E
E E

   
     

 

In fact there are four such directions; ne  and .ne     

In this plane two-dimensional deformation the unit normal vector is rotated 

over an angle     2 1
1 2n n E E . 

5. The volume strain, the trace of the strain tensor, is such an important quantity 

that it is often quoted separately. Subtracting the volume strain from the diagonal 

elements of the strain, leaves a tensor, which is called the deviatoric part of the 

strain.  

2.4   The stress tensor 

The forces on a body in continuum mechanics are defined via the traction vector 

.T  The traction is the force per unit area that works on an infinitesimal area dA  

of the exterior of a portion of the body under consideration. The outward unit 

normal of the area is called ,n  as illustrated in Fig. 2.2. 

The stress is the decomposition of the traction on the unit normal, so that the 

traction is obtained; this is necessarily a two-tensor, which is called   in a 

formula 

i ij jT n   

The force working on a finite area A  is then 

i ij j
A

F n dA   

The stress may depend on both position and time, of course. The force on an 

enclosed region of the medium is 

i ij j
A

F n dA   
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Figure 2.2. Illustration of the traction on a continuum element. 

 

 

The mass of the medium in the enclosed region is the volume integral over the 

mass density ;  Newton’s second law in continuum terms relates the rate of 

change of momentum to the force acting on the medium and therefore (applying 

Gauss’ theorem) 

ij
i ij j

jV A V

D v dV n dA dV
Dt x




  
      

Here, /D Dt  is the co-moving derivative and v  the velocity. If the volume is 

held fixed, the integration and differentiation may be interchanged. The formula 

is true for arbitrary enclosed portions of the medium, which implies that the 

integrands of the volume integrals must be equal. Consequently, the equation of 

motion for a material is 

 

ij
i

j

D v
Dt x







 

The analysis here has been concerned with forces that are transmitted to the 

material point via the surface. Body forces, such as gravity, have not been 

considered. They are easily added to the equation of motion. The gravitational 

force, for example, will give rise to a term ig  on the right-hand-side ( g  is the 

acceleration due to gravity).  
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The equation for the angular momentum requires an outer product; in index 

notation this is most easily done with the use of the Levi-Civita tensor ,ε  which 

is defined as follows: 

123 1;  if any two indices are the same, then the result is zero; any 
permutation of two (unequal) indices adds a minus sign. 

So, for example, 132 1   ; 231 1   and 133 0   

Using the Levi-Civita tensor, the outer product of two vectors x  and y  

becomes 

  ijk j ki
x y x y  

The angular momentum balance is now 

ijk j k ijk j k ijk j k
V A V

D x v dV x n dA x g dV
Dt

             

Again, differentiation and integration may be interchanged for fixed volumes. 

Noting that  / 0ijk j k ijk j kDx Dt v v v    leaves  

 ijk j k ijk j k ijk j k
V A V

Dx v dV x n dA x g dV
Dt

             

The area integral may be written as a volume integral 

 j k j k
ijk j k ijk ijk k j

A V V

k
ijk kj j

V

x x
x n dA dV x dV

x x x

x dV
x

  



   
        

 
    

  



 
  

  





  


 

Inserting the equation of motion cancels everything out, except for 

0ijk kj
V

dV    
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This must be true for arbitrary volumes, which implies that the integrand vanishes: 
0ijk kj   . According to the rules of the Levi-Civita tensor it follows that 

.kj jk    In other words: the stress tensor must be symmetric.  

 
Consequences of the symmetry of the stress tensor 

 

The implications of the symmetry of the stress tensor are similar to those of the 

strain tensor.  
 

1. The stress tensor can always be diagonalised, with eigenvalues  1 ,   2 ,   3 ;
these are called the principal stresses. Subtracting the mean principal stress from 

the stress tensor leaves the deviatoric stress   /ij ijTr d  Σ  (subtly different 

from the deviatoric strain, which does not include the dimension of the problem 

)d . The term 

 Tr
p

d
 

Σ
 

defines the pressure .p   

2. A graphical representation of the stress tensor is Mohr’s circle [Mohr, 1906]. 

The basic concept is discussed here. To that end a two-dimensional view is taken. 

The stress tensor in diagonal form is 

 

 

1

2

0

0

 
   

 

A unit area with unit normal n  will experience a normal force i iT n   

and a tangential force i iT n  ( n  is the unit vector normal to ,n  such that 

3 1ij i jn n  ). These two forces are          1 2 1 21 1
2 2 cos 2        and 

    1 21
2 sin 2 .    Plotting the tangential force as a function of the  

normal force results in a circle with radius     1 21
2     and centred on 

     1 21
2 ,0  . This is shown in Fig. 2.3. 

From the figure it is derived that the maximum ratio of tangential to normal 

force is achieved when the direction of the unit normal satisfies 
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   

   

2 1

2 1
cos2  


 

 

 

Figure 2.3. Illustration of Mohr’s circle. 

 

The angle in the plane (that is normal to the unit vector) is called the maximum 
obliquity direction. The angle C  that describes the maximum value of the ratio 

of the tangential to the normal force satisfies 

   

   

1 2

1 2
sin C

 

 

 

These relations will be useful later on when friction phenomena are treated. 

2.5   Tensors 

The tensors encountered so far are the following: 

 

 Tensors of order zero, also known as scalars. These are invariant under 

rotation, for example, the pressure. 

tangential
force

normal force

2

1
2

C

(2) (1)

(1) (2)

1
2

(1) (2)
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 Tensors of order one, also known as vectors. For example, the 

displacement. 

 Tensors of order two. For example, the Kronecker delta, the stress or the 

deformation gradient. 

 Tensors of order three. For example, the Levi-Civita tensor. 
 
The tensors describe physical quantities. When the coordinate frame is 

rotated, the components of the tensors change value. The number of rotation 

matrices required is equal to the order of the tensor. A vector u  transforms to a 

rotated co-ordinate frame, denoted by an asterisk, *, as *
i ij ju Q u  under the 

transformation Q that converts the coordinates from the un-starred to the starred 

system. A second order tensor T  transforms as *
pq pi qj ijT Q Q T  and so on.  

A scalar is the same in all coordinate frames and is therefore invariant under 

transformation. No (non-trivial) first order tensors are invariant, but a second 

order tensor that has that property is the Kronecker delta 

* T
pq pi qj ij pj qj pj jq pqQ Q Q Q Q Q       

For this reason the Kronecker delta is the identity (tensor). This result still holds 

if it is multiplied by a factor. The Levi-Civita tensor is also invariant, but for a 

minus sign.  

In what follows higher order tensors will be required, especially fourth order 

ones. These are discussed in the next section. 

2.6   Material response  

The mechanical response of a material is described by the relation between stress 

and strain. This rather simple statement conceals a multitude of variations and 

subtleties, which are obvious when one considers the enormous variety of 

materials and substances that exist — even in everyday life. A first order 

classification may be achieved by distinguishing between solids and fluids. The 

latter are rate-sensitive, which points to a connection between the stress and strain 

rate. Purely viscous substances, such as water or petrol, may be described in this 

way. However, many everyday materials defy a simple classification. Toothpaste, 

for example, has both fluid and solid properties.  

Here the concern is with granular materials and while it may be possible to 

identify certain stress régimes where rate-dependence may play a role (even dry 
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sands can exhibit ‘creep’, for example, and for granular assemblies of very fine 

particles the situation is not clear-cut) the approach taken here is that the  

materials are not rate-dependent. Does that mean that the relation between  

stress and strain is a simple proportionality? Definitely not; the relation is highly 

non-linear.  

Capturing the non-linearity can be done by a phenomenological approach: 

conducting many experiments on a sample of the material and fitting the stress-

strain behaviour so measured to material models, such as some version of 

plasticity theory. In this way an intuition, or expertise, can be built up, which can 

be deployed by professionals in the relevant subjects: geotechnical engineering, 

geophysics, chemical engineering, etc. The important aspect of the 

phenomenological approach is that there is a wealth of experimental data in the 

literature. It would be stupid not to make use of it. The physics of the deformation 

of densely packed granular materials has received not so much attention, possibly 

because it targets no particular application.  

In a general sense the non-linearity necessitates the introduction of an 

approach by increments, as follows. At any time during the deformation the 

internal state of the material is noted. A small increment of strain or stress is then 

applied and the associated increment of stress or strain respectively is evaluated.  

Incremental quantities are denoted by a small-type letter, σ  for a stress 

increment and e  for a strain increment. The question is whether the smallness of 

the latter was not already covered by the assumption of geometrical linearization 

and the answer is ‘no’. Even on a range of strain that is only a few percent there 

can be enormous variability in the response of the material.  

The incremental description enables the expression of the connection between 

a stress and strain increment as a linear one. So, from a given state of the material 

a response increment is obtained, as if the material is linear. The latter changes 

the internal state, leading to a new connection between stress and strain 

increments and then the subsequent increment is doled out. The collection of 

increments is called a path, so there is a stress path and an associated strain path, 

or a strain path and an associated stress path, depending on whether the 

experiment is done by stress control or strain control of a sample.  

The response of the strain increment to a stress increment is termed a 

compliance. The other way round, the response of the stress increment to a strain 

increment, is known as a stiffness or modulus. Frequently, the word ‘increment’ 

is dropped; in the context of stress-strain relations it is always clear from the use 
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of the symbols whether increments or total values are being discussed. It is 

anyway pointless to talk about the moduli or compliances when total values are 

in question; the relationship is, generally speaking, too non-linear for that. The 

total value is sometimes denoted by the prefix ‘pre’: pre-stress and pre-strain.  

In general the stress-strain relationship is given by the proportionality 

orij ijk k ij ijk kX e e C       

The stiffness tensor X  and the compliance tensor C  are of the fourth-order.  

One can be obtained from the other by inverting, providing the inverse exists. 

Certain symmetry relations are noted. Both stress and strain are symmetric, so, 

for example, it follows that ijk ij k jik ji kX X X X      . Consequently, the 

number of independent parameters is somewhat limited. However, that still 

remains a lot of parameters to describe the full material response. In two 

dimensions there are nine parameters that need to be specified, and in three 

dimensions no fewer than 36. All this for each increment! The question arises 

whether there are any physical principles that limit the number of describing 

parameters.  

2.7   Isotropic materials 

In certain cases it can be argued that the material has no in-built direction. In that 

case a rotation of the co-ordinate system would leave the tensor invariant. A 

fourth-order tensor that is invariant under rotation has the form 

ijk ij k ik j i kjX              

with three coefficients ,    and .  As ijk ij k jik ji kX X X X      , it follows 

that ,    no matter what the dimension is. So, the important conclusion is that 

an isotropic material has two material constants.  

The constants   and   are called the Lamé constants. Elastic isotropic 

materials are frequently described with other sets of pairs of constants, which  

have direct meaning for certain applications. Young’s modulus and Poisson’s 

ratio (the contraction coefficient), commonly denoted by E  and ;  the bulk  

and the shear modulus K  and G  are frequently used to characterise the  

material. The latter is related to the Lamé constants as .G   The definition of 
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the bulk modulus is the ratio of the pressure to the volume strain. All these 

parameters can be converted into each other. The relations are given in  

Appendix, Section A3. There are a lot of very good textbooks on the subject of 

elasticity and its very many (engineering) applications: [Landau and Lifschitz, 

1976], [Timoshenko and Goodier, 1970], a very old book is [Love, 1934] and a 

more modern one [Barber, 2010]. 

The inverse of the isotropic moduli, the isotropic compliances are easily 

obtained by inversion. The identity of the fourth order tensors is such that 

 1 1
2ijpq pqab ai bj aj biX X        (this definition preserves the symmetry in the 

first and second pairs of indices). The compliances take the form 

 pqij pq ij ip jq iq jpC           

with 
1

4



  and either

 4


  

 


 in two dimensions, or  

 2 3 2


  

 


 in three dimensions 

2.8   Elastic behaviour 

Here a quasi-static deformation is considered. First define a function   such that 

ij

i

j

u
x

 


    

 

Consider the deformation of the material to change from ‘state 1’ to ‘state 2’, 

according to some path. The work done in a small increment of deformation by 

the traction ,t  which is associated with a surface displacement du  is 

p p
A

t du dA  

The total work done in going from state 1 to state 2 is 
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2

12

1

p p
A

W t du dA    

Now characterise the state of the material by a parameter .  State 1 

corresponds to 1  and state 2 to 2 ;  the changes in the state are achieved 

smoothly, so that the parameter   travels the interval 1 2 .     The work 

done is then 

2 2 2

1 1 1

12 ,p p p
p pq q pq

qA A V

du du du
W t dAd n dAd dVd

d d d

  

  

    
   

 
    

 
         

where the definition of the stress and Gauss’ theorem were used.  

The material is in static equilibrium during the deformation –—
/ 0pq q     — so the work done becomes 

 2

1

12

/p q
pq

V

d u
W dVd

d






 


 

    

Using the definition of   (and assuming that d  is a total differential) the result 

is 

 
     

2

1

12

/
2 1

/

p q

p qV V

d u
W dVd dV

du










 
            

It follows that, if   exists, it expresses the amount of energy per unit volume in 

the material. This formula also says that no matter how the path is taken the 

amount of energy difference between states 1 and 2 is always the same. When this 

is the case the material is elastic; returning from state 2 to state 1 involves as much 

work done as work returned. 

An increment of work per unit volume (along the path traced by the parameter 

 ) is equal to 

i
ij

j

uW 





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Using the stiffness tensor 

i
ijk k

j

uW X e




   

Because of the symmetry in the indices i  and j  the only relevant part of the 

deformation gradient is the strain 

ijk ij kW X e e     

Summing up, the following is found: if   exists the deformation can be 

entirely characterised by the work done between two states; conversely, the only 

thing that physically changes during a deformation process is the work done; it 

follows from ijk ij kW X e e     that the symmetry relation ijk k ijX X   holds. For 

an isotropic material this is evidently the case and consequently, isotropic 

materials, for which the stiffness tensor does not change during the deformation, 

are elastic.  

 

2.9   Anisotropic materials 

If a material is not isotropic it is anisotropic (sometimes called orthotropic, or 
aeolotropic). It can then still be (incrementally) elastic, as long as the symmetry 

relation ijk k ijX X   is valid. Even if a material is anisotropic there can be certain 

restrictive relations. For a crystalline solid, for example, the way the atoms are 

arranged in a regular packing (a lattice) gives rise to certain symmetry axes that 

are manifest in the stiffness tensor. For granular materials that are not in a regular 

packing this type of symmetry is not very interesting. However, the special case 

of transverse isotropy is important. To illustrate it, a two-dimensional approach is 

taken.  

The fourth-order tensor is written in matrix form 

11 1111 1112 1122 11

12 1211 1212 1222 12

22 2211 2212 2222 22

X X X e
X X X e
X X X e





    
        
    
    
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The isotropic case has the form 

2 0

0 2 0

0 2

  


  

 
   
  

X  

A material is said to be transverse isotropic when there exists a coordinate 

frame in which the stiffness tensor takes the form 

1111 1122

2211 2222

0

0 2 0

0

X X

X X


 
   
 
 

X  

The symmetry axes are then the coordinate axes; the material need not possess 

elastic symmetries to be transverse isotropic.  

 

2.10   Coaxiality 

A peculiar property, associated with certain forms of transverse isotropy, is 

coaxiality. A material is said to be coaxial when the principal axes of the stress 

and strain ellipses coincide. The coordinate rotation that diagonalises the stress 

will also diagonalise the strain. When two matrices can be diagonalised 

simultaneously they commute, in other words: 0.ij jk ij jke e    Working this 

out for a general stiffness and requiring that the commutation holds for every 

combination of strain tensor components leads to the following form  

1111 2222

1111 2222

2 2

0 2 0

2 2

X X

X X

 


 

 
 
 
  

, 

where   and   are arbitrary moduli.  

It is seen that an isotropic material always guarantees coaxiality (as expected). 

However, certain anisotropic materials can also exhibit that property, providing 

that the off-diagonal elements satisfy the prescribed connection with the diagonals 
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and the shear modulus. Such materials are then never elastic, because the stiffness 

tensor is not symmetric.  

When there is a coordinate frame in which 0,   it is possible for a coaxial 

material to be anisotropic. 

The context for coaxiality is a number of papers in the soil mechanics 

literature in which non-coaxial behaviour is signalled; see, for example [Yu and 

Yuan, 2006].  

2.11   Objectivity and pre-stressed materials, the Jaumann 
derivative 

When any of the moduli of the incremental stress-strain relationship are of the 

order, or less, than the magnitude of the pre-stress a complication arises, which  

is related to very general physical principles. Literature on this subject is [Gurtin 

et al., 2010] and [Dienes, 1979]. 

The formulation of material behaviour should not depend on the choice of co-

ordinate system. Consider then two co-ordinate systems that are connected to one 

another by a (time-dependent) rotation  tQ . An incremental quantity is 

essentially constructed as a time derivative, multiplied by a time increment .t  

The quantity starts from a certain value in a reference configuration and reaches 

its subsequent state after the incremental change has taken place. This state can 

be reached in two ways, as is demonstrated in the diagram below. The initial state 

in the reference configuration is situated in the top left-hand corner. The 

subsequent state — after the increment has been applied — is in the bottom right-

hand corner. The latter can be reached either by differentiating first and then 

rotating, or by rotating first and then differentiating. The quantity is said to be 

objective when the two procedures arrive at the same result. 

A case in point is the deformation gradient, which can be written as a 

symmetric and an anti-symmetric part 

1 1

2 2
j ji i i

j j i j i

u uu u u
    

      
                

 

The time derivatives of these are studied under the rotation  tQ , which 

transforms the coordinates of the reference configuration, frame I — denoted by 



 Continuum Mechanics and Cartesian Tensor Calculus 53 
 

9in x 6in       b3746     Physics of the Deformation of Densely Packed Granular Materials, The        b3746-Ch-02        FA 

  — to frame II, called ;x  kinematic variables in this frame are distinguished by 

an asterisk. The deformation velocity is called .v  

Expressing the two elements of the deformation gradient velocity in frame II 

is done as follows 

* ** *1 1

2 2

1

2

j ji i k k

j i k j k i

ji k k
i j

k j k i

v vv v
x x x x

QQ Q v Q v
t x t x

 
 

 
 

 

       
                 

                     


     

 

 

 
 

  is related to x  by the rotation: i ij jx Q   and so /i j ijx Q    (also 
1/ )i j ij jix Q Q      and the rotation is rigid and therefore position-

independent. Using these properties of Q  and / k k       then yields 

**1 1

2 2
j jki ik

i jk j ik
j i k k

v Qv Q v vQ Q Q Q
x x t t 

          
                      

 
   

Now, for the case of the plus sign, two terms combine 

   1 0jkik
jk ik ik jk ik kj

QQ Q Q Q Q Q Q
t t t t

  
  

   
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It follows that  

**1 1

2 2
ji

jk i ik j
j i k k

vv v vQ Q Q Q
x x  

     
           

 
   

This is exactly the transformation for a second order tensor under a rotation, as 

expected. Therefore, the strain rate is objective. 

For the case of minus sign, however, relating to the rate of change of the 

rotational part of the deformation gradient, denoted by ,


R  it is found that 

**
* 1 1

2 2
j jki ik

kij jk ik i jk
j i

jk
ki jk ik

v Qv QR Q Q Q Q R
x x t t

Q
Q Q R Q

t

 



    
             


 







 

This is not the transformation for a second order tensor; an extra term has  

to be added. The rotation part of the deformation gradient is therefore not 

objective. 

The issue of objectivity acquires a certain poignancy when the Cauchy stress 

is investigated. The transformation takes the form in compact notation 

* 1 1 1
  

    Q Q Q Q Q Q     

From  

* jk
kij i jk ik

Q
R Q Q R Q

t

  
 


  or 

1
* 1

t

 
 

 

QR QR Q Q , 

it follows that 

*

t

 



Q R Q QR  
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This is used to evaluate the Cauchy stress rate, with the result 

* * 1 1 1 * 1
    

             
   
R Q - QR Q Q Q Q Q R RQ     

Rearranging leads to the form 

* * * * * 1
     

     
 

R R Q R R Q       

It is seen that the time derivative 

   

 R R      

is objective and it is called the Jaumann derivative, or sometimes the co- 
rotational derivative. Note that the Cauchy stress itself has no objective time 

derivative.  

Material behaviour should not depend on the rate of rotation and therefore  

the appropriate way to describe incremental behaviour is to specify a link  

between the Jaumann increment and the strain increment, which are both 

objective measures. The difference between the Jaumann derivative and the  

direct derivative of the Cauchy stress to obtain a stress increment is negligible 

while the incremental stiffness moduli are much greater than the pre-stress.  

In certain cases, however the difference is important, as will be demonstrated 

below. 

The Jaumann derivative is symmetric. 

2.12   Frictional materials 

A material is said to be (pure) frictional when there are no combinations of 

incremental strain components that increase the stress ratio. A pre-stress state is 

put forward in diagonal form 

1

2

0

0

P
P

 
 
 
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Added to this is an increment of stress 

1 11 12

12 2 22

P
P

 
 
 

  
 

The principal stresses of this new stress state are  

 

 
 

The changes in the principal stresses are evaluated up to first order in the 

increments 

 2

1 1 11P P O   σ  and  2

2 2 22P P O    σ  

The initial stress ratio is 1 2

1 2

P P
P P



, the one after a stress increment is 1 2

1 2

P P
P P
 
 

. 

The two are required to be equal, so (again up to first order in the increments) it 
follows that  

 
2 11 1 22

2

1 2

0
P P

P P
 




 

Here, 1 2 0P P   has been chosen. Substituting for the stress increments the 

stress-strain relation results in 

   
 

1 2211 2 1111 11 1 2221 2 1121 12

1 2222 2 1122 22

2

0

P X P X e P X P X e

P X P X e

  

  
 

 

1

2

0

0

P
P

 
  
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This must hold for arbitrary strain increments, leading to a form for the stiffness 

tensor as follows 

1
1111 2222

2

1211 1222

2 2
1111 2222

1 1

2

PX X
P

X X
P PX X
P P







 
 
 
 
 
  
 

 

The friction criterion makes no statement about the value of the shear modulus 

or the coupling between shear stress and diagonal strains. (No insight is lost if the 

latter are set to zero: 1211 1222 0X X    .) It is noticed that the stiffness has no 

inverse; therefore, a compliance formulation is not available for a frictional 

material. A better understanding of that and its implications will be presented in 

the next section. The frictional material has a transverse anisotropic form.  
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Chapter 3 

The Bounds of Static Equilibrium 

3.1   Criteria for rupture 

Forms of the stiffness or compliance tensor may be suggested by physical 
principles, such as have been encountered in the previous chapter. For a 
stiffness tensor to make sense, however, it must lead to equilibrium 
equations that can be solved (given sufficient boundary conditions). The 
equilibrium equations are here pursued in the absence of body forces. 
Also, the difference between the Jaumann stress increment and the Cauchy 
stress increment is not considered in the first instance, though that will be 
reintroduced at a later stage.  

As seen before, the equilibrium equations take the form 

 0 0ij
ijk k

j j

X e
x x
 

  
   

The situation of primary interest is the one in which a homogeneous 
material is stressed uniformly. The solution in that case is simply 

;i ij ju x  but is that the whole solution, or are there other ones? Here, the
possibility of a strongly localised displacement field is studied. Such fields 
are called rupture layers (sometimes, slip bands or failure planes). 

The analysis using a stiffness-based approach was first introduced by 
[Biot, 1965], see also [Hill and Hutchinson, 1975]. Many authors in the 
soil mechanics literature have written papers on localisation that use a 
compliance-based model, because that makes a connection with the 
plasticity constitutive material description that is frequently used. 
Pioneer in this area has been Vardoulakis: [Vardoulakis et al., 1978], 
[Vardoulakis, 1979, 1980], [Vardoulakis and Sulem, 1995]. There are 
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other contributors to the theory, such as [Vermeer, 1990] whose analysis 
is an adaptation of the work by [Rudnicki and Rice, 1975]. Experimental 
work on rupture layer formation has been a key driver of this subject. 
Work by [Arthur et al., 1977], [Arthur and Dunstan, 1982], and [Desrues 
and Viggiani, 2004] have shown that there are a number of possibilities 
for localised deformation in frictional materials and it is the task of 
theoreticians to produce the appropriate modelling to describe it. 

The mathematical work leans heavily on the theory of second order 
partial differential equations. Now, it is interesting to note that the 
theoretical work on rupture layer formation, quoted above, generally takes 
the actual equations into account only (frequently, the rupture layer 
formation is seen as a way to establish certain aspects of the constitutive 
equations); however, boundary conditions should be specified as well and 
below that aspect is treated further.  

To begin with, a simple analysis with an assumed form of the 
constitutive response is carried out. The localised layer has a unit normal 
n  (the treatment is sufficient in two dimensions). The field is constant 
along the straight lines as shown in Fig. 3.1. In equilibrium the requirement 
for the rupture layer field  g x.n  is  

 0ijk k jX g n n   , (3.1) 

which has a solution when  

 det 0ijk jX n n    

The tensor ik ijk jP X n n    is sometimes called the acoustic tensor.  
An incremental transverse isotropic material model is used, see Section 

2.9. The determinant may be worked out to give the following equation: 

   4 2 2
1111 1 1111 2222 1122 2211 2211 1122 1 2

4
2222 2 0

X n X X X X X X n n

X n

 



     
 

 

The material will be able to experience a rupture layer when there are  
real solutions for 1n  and 2n , or, alternatively dividing through by 4

1n , for 
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the tangent of the angle that the normal of the rupture layer makes with the 

1x  axis, which will be called .y  The equation for y  reads then 

2 0ay by c   , 

with 2222a X ;    1111 2222 1122 2211 2211 1122b X X X X X X    ; 

1111c X  

The solution is simply  

2 4

2

b b acy
a

  
  

 
Figure 3.1. Illustration of the geometry of rupture layer formation. 
 

The solution must be real positive for the rupture phenomenon to exist.  
At this point it is helpful to outline a scenario. A sample of granular 

material is stressed, increment after increment; as a result the incremental 
moduli will change. If the loading is such that — after an initial isotropic 
compression — the stress 11  increases, while 22  is held constant, then 
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the sample will come to a point at which peak stress is reached. Rupture 
phenomena are usually observed at, or near, this point. A dense sample 
will dilate and, taking compressive stresses and strains positive, as is 
convention in soil mechanics, 22 11 0e e   . At peak stress the increment 

11 0.   In a test in which 22  is held constant, so that the increment 

22 0,   implies that  

1111 2222 1122 2211

2222

0
X X X X

X


  

In other words, at peak stress the ‘outer determinant’ of the stiffness tensor 
vanishes. The values of the major and minor principal stress at this point 
will be called 1P  and 2 .P  

It is important to have an impression of how the outer determinant 
approaches zero. At a point just before peak, the major principal stress will 
have reached a value that is a small amount smaller than the peak value, 
 1 1P   say. In order to arrive at peak the principal strain must be 

increased by a certain amount, 11.e  Therefore, the ratio 1 11/P e   gives 
an impression of the stiffness. The ratio 11/ e   is a number that 
approaches zero at peak, but at some point before peak could easily be of 
the order of unity (for example, at 99% of the stress peak it will take 
another 1% of strain to reach the actual peak value). Consequently, the 
stiffness near peak is of the order of magnitude of the peak stress, say 1,fP
where the number f  may vary from the order of unity to zero (and in 
principle it could be negative, when post-peak behaviour is included). For 
the purposes of a calculation it is then practical to set  

1111 2222 1122 2211
1

2222

X X X X fP
X


  

In the scenario sketched, where the moduli change continuously as  
the stress ratio is pushed up, the point at which the rupture layer 
materialises is when 2 4b ac  becomes zero (while / 2b a  is positive). 
Now,  
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   

 
 

 

2

2 2
1111 2222 1122 2211 2211 1122 1111 2222

2 2
1 2222 2211 1122 1111 2222

2 2 2
1 2222 1 2222 2211 1122

22 2
2211 1122 1111 2222

4

4

4

2

4

b ac

X X X X X X X X

fP X X X X X

f P X fP X X X

X X X X

 

 



 

 

      

      
  

  

 

This becomes zero at the point when the shear modulus reaches the value 

1 2222

1122 2211 1111 2222

1 2222

1122 2211 1 2222 1122 2211

fP X
X X X X

fP X
X X fP X X X

 
 


   

 

The direction of the rupture layer for these solutions are given by 

1 2222 1122 2211

22222

fP X X Xb
a X


    

Some practical input is required to assess the meaning of these 
findings. In a test in which the minor principal stress is kept constant the 
ratio 2211 2222 22 11/ / ,X X e e   which is the dilatancy ratio .  In the 
previous chapter — Section 2.11 —  it was shown that for a material in a 
frictional state 1122 2222 1 2/ / ,X X P P  which is the principal stress ratio .R
Both   and R  are of the order of magnitude of unity. The moduli 1111,X  

1122 ,X 2211 ,X 2222X  are all very much greater than the principal stresses; 
typically 11000 .X P   Using these numbers the shear modulus at the point 
of incipient rupture layer formation is of the order of 

1fP   

As it was argued that f  is of the order of unity, leading to zero for 
peak stress conditions, it is observed that a shear modulus of the same 
order of magnitude as the pre-stress needs be to taken into account. It was 
therefore wrong to ignore the difference between the Jaumann stress 
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increment and the Cauchy stress increment. The analysis needs to be done 
again, using the Jaumann derivative.  

The Jaumann incremental formulation ensures that the material model 
is phrased in a way that it moves with the material. Thus, the stiffness 
tensor X  connects the Jaumann increment with the strain increment; both 
are objective. Equilibrium, however, is phrased using the Cauchy stress 
increment. The connection between the Cauchy stress increment and the 
Jaumann stress increment has been established in Section 2.11.  

ij ijk k ik kj ik kjX e r P P r
   

     R R       and 0ij

jx





 

The system of equations for the disturbance g  is then somewhat 
modified with terms that contain the pre-stress 

   
   

2 2 1 1
1 1111 2 1 2 1 2 1122 1 22 2 1

2 21 1
21 2 2211 1 2 2 2222 1 1 22 2

0
n X n P P n n X P P g

gn n X P P n X n P P

 

 

                                 
 

The solution becomes possible when the determinant of the matrix 
vanishes. As before, write for the tangent of the angle that the normal of 
the rupture layer makes with the 1x  axis ,y  then  

2 0,ay by c    

with 

 1
1 2 22222a P P X     ; 

      1
1111 2222 1122 2211 2211 1122 1 2 2211 11222 ;b X X X X X X P P X X      

 1
1 2 11112c P P X      

The solution for y  is 

2 4

2

b b acy
a

  
  
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Onset of the rupture layer occurs at the point when the discriminant 
flips from negative to positive, while  / 2b a  is positive. A substantial 
amount of algebra is required to obtain the solution. The following 
abbreviations are employed (an approximately frictional material is 
envisaged) 

1122 1 2211

2222 2 2222

;
X P XR
X P X

    

The solution for y  is 

    
 

       
 

2
2

2

2 2
2222 2 1 2 2 3 2 2 2

2222 2

2 2 1

2 2 1

4 4 4 1 2 1 2

2 2 1

R P R R f
y

P R

X P D P D D P Rf P R P R

X P R

   


   



     


   

      


   
 

where 

    
 
   

 

4 3 2 2 2
1

2

3 2 2
2

2

3

2 2 1 4 4 1 4 1

2 2 1

2 1 2

D R R f R f f

R f

D R R f R f

D R

   

  

  



         

   

     

 

 

Incipient rupture becomes possible when the term under the square root 
vanishes, which takes place when the shear modulus equals 

  
       

 

2222 2
2

2 2222 2

22
2222 2 2222 2

2

2222 2

2 4

2 1 1

4

X D
P X R P Rf

R f X P f X R R f P R

X R P Rf





  






 

       
 

 
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In order to illustrate these values a plot has been made for a choice of 
sample values (Fig. 3.2): 7 2

2222 10 ;X Nm  3
2 222210 ;P X  5;R   2.   

These values correspond roughly to those of a dense sand near peak stress 
ratio.  

 
Figure 3.2. Values for the moduli at transition to rupture. 

 
The region where /b a  is negative is marked by the bold-type arrows. 

For  1 /f R R   this region is represented by the sloping straight line; 
for  1 /f R R   it is the flat plateau at  2/ 1 / 2.P R    Transitions 
to rupture that lead to positive values of /y b a   are of interest only. In 
the graph the region between the two lines   and   represents a 
negative discriminant. Transitions can therefore take place at the line   
for 0f   and at the line   in the range  0 1 / .f R R    Question is 
then: what values of /y b a   correspond to these two cases. The graph 
shown in Fig. 3.3 provides the answer. 

It is noted that the values for 2/ P  on transition at the line    
increase rapidly with increasing values of .f  When 2/ P  is large the 
objection against the original analysis, in which the Jaumannian  
increment was not considered, becomes invalid. It is then reasonable to 
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estimate the value of y  that belongs to this case. One obtains in the limit 
that the pre-stress is much smaller than the main moduli 

1 2222 1122 2211

22222

fP X X Xb R
a X




    

The latter value is plotted as the dashed line in the graph of y  as a 
function of .f  It is the bottom curve in this graph and belongs to the 
transition to rupture at the line    in Fig. 3.2.  
 

 
Figure 3.3. The direction of the tangent of the rupture layer direction 
squared, ,y  as a function of .f  

 
The transition at    leads to a whole range of values for ,y  including 

very large ones, corresponding to 2 1/ .n n   In this case the rupture 
layer is aligned with the major principal stress axis.  
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3.2   The context of second order, partial differential 
equations 

The question now is: what will actually happen at the point of transition? 
This depends on the boundary conditions that apply. An overview of the 
role of boundary conditions in second order linear partial differential 
equations is given in [Morse and Feshbach, 1953]. The overview hinges 
on the classification of these equations, which is done as follows: 
 
If 2 4 0b ac  , equation (3.1) is said to be elliptic 
 
If 2 4 0b ac   equation (3.1) is said to be parabolic 

 
If 2 4 0b ac   equation (3.1) is said to be hyperbolic 

 
The boundary conditions that are applied must be such that the solution 

is stable, which — quoting [Jackson, 1962] — implies that ‘A stable 
solution is one for which small changes in the boundary conditions cause 
appreciable changes in the solution only in the neighbourhood of the 
boundary’. [Morse and Feshbach, 1953] summarise in Table 3.1 the 
requirements on the boundary conditions for these types of equations. 

The transition from elliptical to hyperbolic is called a bifurcation. The 
vast majority of tests in which rupture layers are observed are conducted 
in such a way that there is a closed boundary. That is certainly the aim of 
the experiment, whether it be done under stress control or strain control. 
At the point of bifurcation the stable, unique solution is abandoned. If the 
medium goes into the hyperbolic mode the apparatus over-specifies the 
boundary conditions. Therefore, such tests can only be done in an 
imperfect apparatus. Now, every apparatus has imperfections when it 
comes to specifying boundary conditions. It is impossible to say, for 
example, what exactly is specified near the corners. While the material is 
still elliptical that does not matter so much, because the influence of an 
anomalous specification is only felt near the corner, see Jackson’s quote, 
above. Rupture layers frequently emanate from the corners of an 
apparatus.  
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Table 3.1. Summary of requirements on the boundary for different types 
of linear second order partial differential equations. 

Type of 
boundary 
conditions 

Elliptic 
equation 

Hyperbolic 
equation 

Parabolic 
equation 

Dirichlet open 
surface 

(displacement 
specified) 

Not enough Not enough Unique, stable 
solution in one 

direction 

Dirichlet closed 
surface 

(displacement 
specified) 

 

Unique, stable 
solution 

Too much Too much 

Neumann open 
surface 

(displacement 
gradient 

specified) 

Not enough Not enough Unique, stable 
solution in one 

direction 

Neumann closed 
surface 

(displacement 
gradient 

specified) 

Unique, stable 
solution 

Too much Too much 

Cauchy open 
surface (both 

displacement and 
displacement 

gradient specified) 

Unphysical 
results 

Unique, stable 
solution 

Too much 

Cauchy closed 
surface (both 

displacement and 
displacement 

gradient 
specified) 

Too much Too much Too much 
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The analysis suggests that certain rupture layers are possible, but the 
continuum is not compelled to take the rupture route. So, the possibilities 
are as follows. 

 
Figure 3.4. The tangent of the direction of the rupture layer squared as a 
function of the parameter f  for various values of the ratio of the shear 
modulus to the minor principal stress. 
 

 
1. Nothing will happen; this will be the case if the kinematics or stress 
does not comply with any boundary conditions. The moduli cross over into 
territory where rupture may occur; this territory may be termed the 
metastable régime. However, if they do so — for example, if they cross 
the line ,   two possible directions present themselves, while the  
original direction of a rupture layer is lost. This development has been 
plotted in Fig. 3.4 for various values of 2/ P . The initial direction of 
rupture is to the right (where only one direction is possible), but then as 
f  is made smaller two directions that satisfy the equations appear. It is 

seen that these two directions share a common point, no matter what the  
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value of 2/ P  is, for y R  (at 0f  ) and y   (at f   ); these are 
the maximum obliquity and no-extension directions. Note that to reach 
y   the value of f  must be negative, that is, the assembly is in a post-

peak state. The direction y R  corresponds approximately to the 
intermediate direction, that is the value of the angle halfway between the 
maximum obliquity and no-extension directions.  

The actual angles are as follows: 

No extension direction: 2 11

22

tan ne
e
e

    

Maximum obliquity direction: 2 1

2

tan mo
P
P

   

Once the medium is in the meta-stable regime the equilibrium 
equations are no longer elliptical; the problem becomes hyperbolic and 
motion takes place along characteristics.  
2. A second possibility on reaching the rupture criterion is that the 
continuum is able to make internal changes in such a way that the moduli 
perambulate down the transition line   until they reach the point at 
which they can go no further and reach 0f   at which point the maximum 
obliquity direction is invoked. Alternatively, this mechanism becomes 
exhausted somewhere along the way and rupture takes place at an angle 
between maximum obliquity and intermediate. While this mechanism is 
speculative, it is plausible on the basis of the fact that the media considered 
are very heterogeneous and it is therefore possible that locally the rupture 
criterion is achieved, while the medium as a whole is not yet there. The 
mechanism thus implies quite non-uniform motion. 
3. On reaching the rupture criterion, the material is covered in a lattice 
network — not necessarily regular — of rupture planes along which 
deformation takes place. A new continuum is then created, which is 
lumpy. Models for post-rupture behaviour have been proposed that 
employ this philosophy. They are called double-sliding models. Note that 
due to their lumpiness an internal length scale is required. Such materials 
permit two types of rupture: one that takes place along the original  
rupture directions and one that encompasses many lumps. The directions 
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of these two types of rupture may be different (but generally they are the 
main directions already identified). Double sliding models introduce 
complications. One is that the lumps themselves are usually taken to be 
rigid and as a result it is not immediately clear how the internal rotation is 
determined during any incremental deformation. Various suggestions have 
been put forward, from ‘free’ rotation (within certain limits) to rotation 
that follows the rotation of the stress increment, see [De Josselin de Jong, 
1977] for the former and [Spencer, 1964] for the latter. 

Generally speaking the scenario sketched here of moduli that change 
slowly as the material reaches peak stress (ratio) and has 
frictional/dilational properties is likely to be correct. Once the  
deformation becomes non-uniform, as the moduli cross the rupture 
criterion, ‘traditional’ continuum mechanics is probably insufficient to 
describe what takes place. Also, treating the continuum as a self- 
contained entity is no longer correct; the boundary conditions must be 
taken into account. 

There has been a lot of effort matching the directions of the rupture 
layers to experimental observations. The experimental study has been 
most successful using X-rays in which the rupture shows up as a less 
materially dense (increased dilatancy) narrow band. The angles of the 
layers with respect to the major principal stress direction bunch around the 
three main angles obtained in the theory. Using an apparatus with rubber 
boundaries, which possibly imposes minimal kinematic restraints to the 
formation of rupture layers, confirms the existence of the intermediate 
direction, see [Arthur, Chua and Dunstan, 1977] and [Arthur et al., 1977]. 
However, such test equipment still needs reinforced corners and — due to 
the fact that rupture layers tend to originate in the corner — other 
directions are obtained as well.  

There is good evidence that the no-extension-direction is frequently 
found in situations with one rigid and one open boundary. In this case a 
stable hyperbolic equation is established: [Roscoe, 1970], [James and 
Bransby, 1970], in which lines of zero extension characteristics occur prior 
to rupture layer formation. This work shows that the scenario outlined 
under point 1, above, is plausible.  

Other analyses to find the direction of rupture have been pursued. For 
example, one might consider under what constitutive circumstances 
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certain jump conditions in stress or strain are permitted. Invariably these 
analyses do not illuminate the existence of the meta-stable régime. Only 
an analysis based on quasi-static equilibrium does that.  

The fact that all the rupture phenomena take place at, or very near, peak 
stress makes this analysis insufficiently subtle. Strictly speaking a higher 
order model should be used, which is also able to give the thickness of the 
rupture layer (a higher order model includes an extra length scale). The 
difficulty with higher order models is that they require a lot of parameters, 
which may be near-impossible to measure.  

3.3   Wave speeds and strong ellipticity 

The analysis may be extended by considering dynamic processes. Instead 
of the static equilibrium condition (ignoring Jaumann derivatives for the 
moment) 

0k
ijk

j

eX
x







  

The equation of motion for a material with mass density   reads 

2

2
k i

ijk
j

e uX
x t

 


 


  

This equation has a wave-type solution; the amplitude and polarisation of 
the wave are described by a vector ,A  the circular frequency is  , the 
wave vector is k  and the phase   

   , cosi iu t A t   x k.x  

The wave has a propagating direction .n  The wave number k  is such that 
;kk n  the circular frequency and the wave number are related via the 

wave speed 0c  as  

0

k
c


  
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Substituting back into the equation of motion (using the symmetry 
relations of X ) then results in 

 2
0 0ijpq j q ip pX n n c A    

Now take the inner product with A  

2 2
0ijpq j q i pX n n A A c A  

Note that A  must be a real vector, so if the wave speeds are real (meaning 
that the material can actually transmit a wave) then the following condition 
holds 

0ijpq j q i pX n n A A   

This must be true for all directions and all possible amplitude vectors. The 
condition is known as the strong ellipticity condition and, as its name 
implies, is somewhat more restrictive than the ellipticity condition 
encountered before. It imposes limitations on the values that the stiffness 
components can attain. For a transverse anisotropic medium these are 
elaborated by [Koenders, 1984]. Static implications of the strong 
ellipticity condition are treated by [Hayes, 1969]. Related issues of 
uniqueness and infinitesimal stability are discussed by [Knops and Payne, 
1971]. 
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Chapter 4 

Heterogeneity 

4.1   General considerations 

The study of heterogeneity in continuum mechanics is a well-developed 
subject. In order to make the insights relevant to densely packed granular 
materials it is necessary to go into the details of certain aspects, but it is 
not intended to give a full review here. The question as to why 
heterogeneity is a necessary element in the understanding of the mechanics 
of granular media is easily answered. Just consider a medium consisting 
of one particle surrounded by its next-door neighbours. It was already 
demonstrated in Chapter 1 that in a granular packing the number of 
interacting neighbours and the direction of the branch vectors of each 
particle varies considerably. It is therefore reasonable to expect that the 
stiffness tensor that is associated with the mini-continuum that represents 
the stress-strain response on a small scale is also a fluctuating quantity. 
Leaving aside for the moment the question of how exactly the stiffness is 
determined on a particle scale, it is surely helpful to determine the effect 
of a fluctuating stiffness and to build up an intuition for the impact of 
fluctuations in the system. This analysis will assist in determining the 
sensitivity of the overall system to the fluctuating content, such as the 
variability of stress and strain, the effect on overall stiffness components, 
the relevance of correlation lengths and the formation of correlated 
structures as the material evolves in a strain path.  

Key to the analysis is the use of the quasi-static equilibrium equations 
for a stress increment. To simplify the approach the Cauchy increment is 
taken, as the use of the Jaumann increment is really only required close 
to the formation of rupture layers. So, starting from the equilibrium 
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equations / 0ij jx    (not considering body forces) and a local 
constitutive relation with stiffness tensor ,X  which is obviously position-
dependent, the equation in question is 

    0ijk k
j

X e
x
    

x x   

No boundary conditions are specified; instead an average strain is 
imposed. The average strain is the volume average over a volume ,V
defined as  

 1
k k

V

e e dV
V

  x   

The volume is very, very much larger than the size of the constituents.  
The stiffness also has a volume average .X  The fluctuations are then 
    .  X x X x X  Substituting these in the equilibrium equations gives 

    
       

0

0

ijk ijk k k
j

ijk kijkk
ijk k

j j j

X X e e
x

X eXe
X e

x x x

         

       
  

x x

x xxx

   

 
 

 

It is seen that the first two terms are ‘first order’ in the fluctuations, while 
the third term contains the product of two fluctuations. So, if the 
fluctuations are small this term may be neglected — an assumption that 
has to be at least looked at afterwards. This approximation was first 
introduced by [Kröner, 1967]. 

The equation  

   
0ijkk

ijk k
j j

Xe
X e

x x
 

 
 

xx 
   

is solved by Fourier transformation (see Appendix Section A4). The 
Fourier wave number vector is denoted by k  and Fourier transforms are 
denoted by a ^. The strain fluctuation is  
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     1

2
k

k
k

u u
e

x x
   

     

x x
x 




 

In the Fourier domain the differential equation takes the form 

 1 ˆˆ ˆ 0
2 j ijk k k ijk j ijk kk k X u k X u ik X e          

Making use of the fact that ijk ij kX X   this may be written as 

ˆˆ 0j k ij k j ijk kk k X u ik X e       

With solution 

1 ˆˆa ai j ijk ku iP k X e    , 

where i j k ij kP k k X  , is the 2-tensor known as the acoustic tensor, just as 
in Section 3.1. 

No solution exists when  det 0P  and in the previous chapter it was 
shown that this is exactly the criterion for rupture formation. Another 
interpretation of the rupture criterion is therefore that the continuum is 
brought in a state where fluctuations blow up and their effect is felt 
throughout the whole medium. When the equations remain elliptical the 
effect of a fluctuation is felt in the vicinity of the fluctuation only. These 
concepts will be further elucidated.  

The Fourier transformed of the strain fluctuation is 

   1 11 ˆˆ ˆ
2 2b a a b ai j b bi j a ijk k
i k u k u P k k P k k X e         

The strain fluctuation in the spatial domain is 

 
 1 11 ˆ

2 2
n i

ab ai j b bi j a ijk kne d ke P k k P k k X e


     k.x
   

The Fourier inverse of the term in brackets is the influence function abijF : 
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 
 

 1 11

2
n i

abij ai j b bi j anF d ke P k k P k k


   k.xx  

Then 

 
   1

2 2
n i n i n i

ab abij ijk kne d ke d ye F d ze X e


      k.x k.y k.zy z   

Integrate over k  and using the definition of the delta function to integrate 
over y  

       

   

1

2
1

2

n n
ab abij ijk k

n
abij ijk k

e d yF d zX e

d zF X e

    

  

 



x y z x y z

x z z

 

 

 

The interpretation of this is that the strain fluctuation in location x  is 
determined by collecting contributions of the stiffness fluctuations, while 
the weight of these contributions is dependent on the value of the influence 
function in positions measured from location .x  The question is then: what 
form does the influence function take. This, of course, depends on the 
average stiffness moduli. Special cases will be examined to get a feel for 
the outcome. 

There are other ways of determining the strain fluctuations in a 
heterogeneous medium. A widely researched method is an approach in 
which the fluctuation is regarded as an inclusion in the mean medium. This 
method was first introduced by [Eshelby, 1957, 1959]. The problem is 
choosing the shape of the inclusion, as this choice affects the anisotropy 
of the problem, see also [Walton, 1977]. 

4.2   Isotropic materials 

In the isotropic case the average moduli take the form 

 ijk ij k ik j i kjX              
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    2
i j k ij k ik j i kj i iP k k k k k                       

Independent of the dimension the inverse is 

 
 

1
24

1

2
ai a i aiP k k

kk
 


  




  


 

And so 

 
 

 
 

 
 

4

2

21

22

1 1

2

n i
abij a i j bn

n i
ai j b bi j an

F d ke k k k k
k

d ke k k k k
k

 

  

 


   
  
 

  
 





k.x

k.x

x
 

In three dimensions the integral can be done (see Appendix, Section A.6.3).  
To get a feel for the functional behaviour of the influence function,  

the result, as an example 1111,F  is integrated over 3x  (this makes for an 
easy two-dimensional visualisation) and then the magnitude is plotted 
(Fig. 4.1). The outcome is 

 
 

 4 2 2 4 4 2 2 4
1 1 2 2 1 1 2 2

1111 3 1111 66

4 6 3 2 12 5
 

2

x x x x x x x x
G dx F

rr  





   
  

  

In this way no sign is shown, but it is clear from the picture that there is a 
strong peak near the origin. 
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Figure 4.1. Magnitude of the influence function for / 3  . 

 
 
This behaviour of a strong peak near the origin holds for all 

components of the influence function, so much so, that it is a good idea  
to count contributions in the vicinity of the origin as the most dominant 
ones. It also holds when there is anisotropy — though, naturally, it breaks 
down when the material exhibits rupture layer formation. In this region 
around the origin X  will have a dominant value:  X x . Without loss  
of generality the point 0x  may be taken (this amounts merely to a 
translation of the origin). In this approximation the strain fluctuation in  
the origin becomes 

 
 

   1 11 1

2 2
n n i

ab ijk ai j b bi j a kn
small
region

e X d z d ke P k k P k k e


       k.z0 0  , 



 Heterogeneity 83 
 

9in x 6in       b3746     Physics of the Deformation of Densely Packed Granular Materials, The        b3746-Ch-04        FA 

 
 

which may be abbreviated as 

   ab abij ijk ke R X e  0 0   

The properties of ,R  the local response tensor, will be determined more 
generally below.  

To conclude this section it is recalled that the term with double 
fluctuations has been neglected and the consequences of this 
approximation should be investigated. The starting point of the analysis 
was 

    
       

0

0

ijk ijk k k
j

ijk kijkk
ijk k

j j j

X X e e
x

X eXe
X e

x x x

         

       
  

x x

x xxx

   

 
 

 

By neglecting the last term the fluctuations e  are estimated, as 
demonstrated by the analysis above. Now a fluctuation on top of e  is 
considered, which is called .e  Remembering that the equation for e  is 
already satisfied. An equation for e  is obtained 

      
     

       

         

0

0

0

ijk ijk k k k
j

ijkk k
ijk k ijk

j j j

ijk k ijk k

j

ijk k ijk kk
ijk

j j j

X X e e e
x

Xe e
X e X

x x x

X e X e
x

X e X ee
X

x x x

            

  
 

  

        


             
  

x x x

xx x

x x x x

x x x xx

    

 
  

   

   

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The last term contains the product of higher order fluctuations, 
compared to the previous terms. As before, this is then neglected and the 
fascinating result is 

     
0

ijk kk
ijk

j j

X ee
X

x x
     

 

x xx  
  

This equation has the same form as before, but now the source term 
   /ijk k jX e x x   is replaced by     / .ijk k jX e x    x x   The solution 

to the subsequent approximation is entirely analogous to the one before 

       

       

1

2
1

4

n
ab abij ijk k

n n
abij ijk k pq pqrs rs

e d zF X e

d zF X d yF X e

    

   



 

x x z z z

x z z z y y

 

 

 

It is seen that by this method the higher order strain fluctuation depends 
quadratically on the stiffness fluctuations. So, while the magnitude of the 
components of the influence function is less than unity (they will be 
estimated below) the higher order strain fluctuation is actually quite 
modest compared to the first order, as long as the magnitude of the 
stiffness fluctuations is not too large.  

In passing it is noted that the volume average of the strain fluctuation 
is no longer zero when a higher order is considered; e  is then a ‘first 
estimate’ from which the volume average can be calculated if all the 
stiffness fluctuations are known.  

4.3   Effective stiffness moduli 

The mean stress (the volume average) is  

     ij ijk k ijk k ijk k ijk k ijk kX e X e X e X e X e        x x x           

The volume averages of the single fluctuations are zero and so 

 ij ijk k ijk kX e X e    x     



 Heterogeneity 85 
 

9in x 6in       b3746     Physics of the Deformation of Densely Packed Granular Materials, The        b3746-Ch-04        FA 

In the previous section it was seen that the strain fluctuations for small 
stiffness fluctuations are proportional to the mean strain: 

     1

2
n

ab abij ijk ke d zF X e   x x z z   

Therefore, the first non-vanishing term that corrects the volume average 
of the stiffness is  

     

     

1

2

1

2

n n
ijab abpq pqk

V

n n
abpq ijab pqk

V

d xX d zF X
V

d yF d zX X
V

  

   

 

 

x x z z

y y z z





 

The second integral, together with the front factor, is easily recognised as 
the correlation functions of the stiffness components  ijabpqkS y .  

Parenthetically, it is observed that in the Fourier domain the expression 
takes the short form 

 
   

 
   

2

1 ˆˆ
2 2

1 ˆˆ -
2 2

n n i n i
abpq ijabpqkn

V

n
abpq ijabpqkn

d y d te F d ke S

d kF S







 

  



t.y k.yt k

k k





 

It was argued in the previous section that the strain fluctuation in a certain 
location is predominantly determined by the stiffness fluctuation in the 
immediate vicinity of that location. If that is applied everything simplifies 
tremendously 

ij ijk k ijpq pqab abk kX e X R X e       , 

where  

 
 1 11 1

2 2
n n i

pqab pa q b qb p an
small
region

R d z d ke P k k P k k


     k.z  
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The integral depends on the average stiffness moduli only. The small 
region may be taken to be a small sphere (3-D) or circle (2-D). In the latter 
case there are four integrals to be done, two over the spatial coordinates 
and two over the wave vector components. Note that 

   
2

0 1

0 0 0

2
2idzz d e dzzJ kz J k

k

         k.z  

Then 1P  is proportional to 2 ,k   so the integral over k  takes the form 

     1 1

0 0

1
2 2 2dkk J k d k J k

k
      

 

    

This leaves one integral — the one over the angle in the wave vector 
space. For the isotropic case this integral is elementary and, collecting the 
front factors, results in  

  
 

1

4 2 2

qb pa qa pb pq abqb pa qa pb
pqabR

          
   

   
   

  
 

In order to illustrate how this plays out, take — for example — the case 
for which the fluctuations are also isotropic. The effective Lamé 
coefficients are then 

   
 

        
 

2

2 2

3
;

2 2

2 3

2 2 2

  
 

  

       
 

    

 
 



     
  

 

 

It is observed that the shear modulus is reduced compared to the volume 
average. The contraction coefficient may be either reduced or increased. 
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4.4   Transverse anisotropic material 

A refinement of the previous case is to include a measure of transverse 
anisotropy in the material. 

First the inverse of the acoustic tensor is determined 

 
 

2 2
1 2222 2 1122 1 21 1

4 2 2 4 22 2
1 1 2 1 2211 1 2 2 1111 1

1 1k X k X k k
ak bk k ck kX k k k X k

 

 
 

   
  

      
P P


 

1P


 contains all angular information in the wave vector space and ,a  b  
and c  are defined as before in Section 3.1 

2222a X ;    1111 2222 1122 2211 2211 1122b X X X X X X    ; 

1111c X  

Now, consider again 

 
 1 11 1

2 2
n n i

pqab pa q b qb p an
small
region

R d z d ke P k k P k k


     k.z  

The integrals over the spatial variables and the magnitude of the wave 
vector k  are the same as before, leaving 

   
2

1 1

0

1 1

2 2pqab pa q b qb p aR d P k k P k k





   
    

 

Write   4 2 2 4 2 2 2 2
1 1 2 2 1 2 1 2ck bk k ak a y k k y k k     
       

, where y 

2 4

2

b b ac
a

  
. The integrals are then easily done 
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1122 2211
1221 2112

1

2

X XR R
a b c a b c

   
       

2211
1122

XR
a b c




 
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2222

XR
a b c
 


 

Making  

 1111 2222 1122 2211 1111 2222 1122 2211a b c X X X X X X X X        

The same elements that have been encountered before appear here: the 
outer determinant and the shear modulus; if these two are small then the 
local influence tensor will be large. Rupture is in this case understood as 
the influence of a small heterogeneous element of the continuum 
propagating through the whole medium.  
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Chapter 5 

Fabric Description 

5.1   Voronoi tiling 

The primary parameter that describes a granular medium is its solids 
volume fraction   (sometimes — especially in the chemical engineering 
community — called the solidosity). This parameter is defined as the ratio 
of the solids volume to the total volume. Closely related is the porosity ,n
the ratio of the pore volume to the total volume: 1n   . These are of 
course macroscopic parameters and they say little about the details of the 
packing. (In passing it is noted that the ‘jamming’ transition takes place at 
approximately 0.84   for a two-dimensional assembly and 0.64   for 
a mono-sized three dimensional one.) 

An important parameter is the grain size. Mono-sized assemblies are 
of little practical interest and the grain size distribution needs to be 
specified. In the civil engineering literature — see for example [Terzaghi, 
Peck and Mesri, 1996] — the distribution is specified by weight. In the 
physics literature a specification by number is frequently encountered. In 
the practice of soil mechanics the grain size distribution is determined by 
sieving, giving the cumulative distribution. Characterisation of the grain 
size distribution is often done by a few characteristic numbers: the 10d  is 
that size (diameter) below which 10% of the weight of the sample is 
measured. The 15 ,d  60d  and 85d  are similarly defined as the sizes below 
which 15%, 60% and 85% respectively of the weight of the sample have 
been determined. The ratio 60 10/d d  is called the uniformity coefficient. 
The translation of a distribution by weight to a distribution by number 
involves the cube of the diameter, so a substantial skewing of the curve 
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may be expected. For most natural samples the 15d  corresponds roughly 
to the mean size by number.  

 
Figure 5.1. Illustration of Voronoi tiling. 

 
A tiling is introduced via the definition of the Voronoi boundaries — 

[Voronoi, 1908]. This definition (which can be used in a far wider  
context than just for granular materials) defines a boundary as the 
collection of points that have the shortest distance to a set of given points 
(called the generators). An illustration shown in Fig. 5.1 may be helpful 
to understand the definition. Take an assembly of discs and for the ‘set of 
given points’ use the centres of the discs. The Voronoi boundaries then 
look as shown in Fig. 5.2. It produces a space-filling tiling. This would be 
satisfactory for the purposes of granular media if all the discs were of equal 
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size. But because they are not of an equal size the boundaries end up 
cutting through the particles. The desire is to employ the Voronoi 
boundaries later on and associate them with particle interactions. The 
definition of a Voronoi boundary is then changed slightly to ensure that 
each particle lies within a tile. 

 

 
Figure 5.2. Illustration of modified Voronoi tiling ensuring that all 
boundaries go through the interaction points. 

 
In the modified definition the Voronoi boundaries are drawn in such a 

way that each point inside the tile is at the shortest distance from a 
generator greater than, or equal to, the radius associated with that generator 
(see Fig. 5.2). For slightly overlapping particles the definition needs to be 
refined again to be sure that the boundary goes through the midpoint of  
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the overlap region. The resulting Voronoi tiling is shown in the figure 
below. This is a very useful tiling in that each boundary corresponds to an 
interaction (which may be zero when particles do not touch). The 
disadvantage of this tiling is that the regions may vary in size quite 
considerably, whereas for the tiling that follows from the strict 
mathematical definition above leads to tiles that all have more or less the 
same area. All particle pairs that share a boundary are (near) neighbours.  

There are other partitioning methods. The best-known is the Delaunay 
triangulation, which is obtained from the Voronoi tiling by connecting the 
centres of the near neighbours, see [Delaunay, 1932]. This triangulation 
contains no information that is not already in the Voronoi tiling: [Liebling 
and Pournin, 2012]. 

5.2   Contact point distribution 

For the mechanical behaviour of an assembly the location of contact points 
is important. The tessellations say next to nothing about this aspect and 
therefore it needs to be treated separately.  

When particles are in contact they can transmit a force. The direction 
of the contacts is important, both on a particle level and — statistically — 
assembly-wide. The particles have a very diverse set of contacts when the 
packing is random. To illustrate this, two particles have been selected from 
the small assembly pictured above. The particle labelled   has three 
contacts (another Voronoi boundary comes close, but the two neighbours 
are just a whisker away from touching). These contacts are depicted in the 
angular diagram as the straight lines that go to a value of unity. The particle 
labelled   has five contacts and these are shown in the second angular 
diagram. It is seen that the two are very different. 

It is possible to characterise the contact distribution by fitting the 
contacts to a function. This function equals unity when there is a  
contact in a certain direction and zero when there is no contact. The 
contacts are then associated with very sharply-peaked functions, which 
have an area equal to unity; these are delta functions. They are fitted  
to a particle-specific fabric function of the form (for particle  ) 

       i i ij i jp q n p n n        (for particle numbers a Greek superscript 
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is used). This is a reasonable thing to do. In two dimensions the  
number of coefficients is five. The number of Voronoi boundaries for this 
particle is six. Each Voronoi boundary is a potential contact and all 
boundaries enclose the particle. The vector q  informs on how  
asymmetric the contacts are arranged, while the tensor p  gives the total 
number of contacts and indicates how anisotropically the contacts are 
distributed. 

       

 

Figure 5.3. Particle contact directions and their approximations with a 
quadratic polynomial. 

 
 
The number of contacts of particle   is cN . The coefficients are 

obtained from a least-squares fit 
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Differentiating with respect to the components of p  and q  yields the set 
of equations 
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The function  p   is also plotted in the polar plots of Fig. 5.3. At 
first sight the fit does not seem to be very good. The fitted curve does not 
follow the location of the contacts very well. It does however reproduce 
the average number of contacts accurately — iip  — and gives an 
impression of anisotropy and asymmetry of the distribution. For particle 
  there is little asymmetry: the three contacts are quite evenly distributed 
over the angles, though there is a clearly detectable anisotropy in the East-
West direction. For particle ,  on the other hand, the contacts are 
somewhat bunched towards the South-East and the anisotropy direction is 
also visible.  

The particle fabric functions may be averaged over the whole assembly 
to give the assembly fabric function. The latter can also be obtained by 
making a histogram of the contacts, which is frequently done in 
interpreting simulation results. For a statistically uniform assembly, the 
asymmetry coefficients tend to average to zero. Thus information is 
suppressed that could be useful. The squares of the asymmetry 
components could play a role in understanding the behaviour of the 
assembly.  

The examples given here are all in two dimensions. However, the 
whole analysis is just as easily pursued in three dimensions (though this is 
more difficult to visualise). The integrals required to evaluate the least 
squares minimisation in 3-D are 
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4

3i j ijn n d     and  4

15i j k ij k ik j i jkn n n n d                

The term fabric tensor has been introduced in the literature and can be 
obtained from the contact distribution tensor by calculating / ,iipp  see 
[Satake, 1982] for an early reference.  

5.3   Correlation 

One of the intriguing aspects of granular materials in a random packing is 
whether there are correlations in the arrangement of the grains. The 
question really is whether random, densely packed granular materials try 
to approximate a crystal structure. Is there a tendency for contacts to line 
up in a direction, possibly in a small environment, comprising a handful 
of particles? In order to ascertain that aspect, a packing is subjected to an 
analysis of a correlation function. It has already been seen that two 
Voronoi boundaries can come close, but not touch. In order to answer the 
questions about ordering of some sort, a correlation function based on 
contacts is therefore not adequate. A correlation function based on the 
distance from the centre of a particle to the Voronoi boundary in a given 
direction is more suitable.  

The distance from a particle centre to the nearest Voronoi boundary is 
called Vd ; a superscript is added to identify the particle. The correlation 
function that is evaluated is 

     
2

1 0
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d V Vd d d
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     / 0
V V Vd d d        

The calculation of the correlation function is done for some 4000  
particles in two dimensions of a compressed sample and then plotted, as 
shown in Fig. 5.4. The result is interesting. The correlation function is 
symmetric:    

V Vd d     , so the interval 0     needs to be 
studied only. As the angle increases a negative correlation is observed  
first. That is as expected: if two Voronoi boundaries are very close  
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together then the angles directly next to them must be further away. That 
is a direct consequence of the convexity of the grains. After the initial 
negative correlation, when the angle has reached about / 2,  all 
correlation appears to be lost, other than some slight negative noise. The 
important conclusion is that positional correlations persist as far as near-
neighbours, but no further. A hetero-disperse granular assembly has no 
inherent crystal structure. This does not mean to say that the contacts or 
particle interactions cannot form a structure. The aligned force chains that 
emerge when a granular medium is deviatorically stressed are an example 
of this. Generally, any random medium that is subject to a deviatoric load 
and evolves locally according to the strain must form structures of some 
sort, see [Koenders, 1997]. Also, the rupture layer that forms at or near 
peak stress, points to collective behaviour of the motion of the particles, 
which is strongly correlated. 

 

 
 

Figure 5.4. Normalised correlation function of the angular Voronoi 
boundary distribution. 
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5.4   Strain in a granular medium 

The continuum definition of the deformation gradient can be extended to 
a granular medium by letting it describe the motion of the particle centres 
(chosen, for example, as the centre of gravity of the grains). The simplest 
manner in which this can be done, introduced by [Koenders, 1994], is by 
fitting the displacement u  on the surface of a group of particles to the 
average deformation gradient α  by requiring  

  2
0 minimali i ij ju u x 



    

Setting the derivatives with respect to the components of α  to zero leads 
to the result 

 
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0ij i i k
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u u x   

 




 
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 
 x x  

This does not look like the continuum definition at all. To make a 
connection between the discrete definition introduced here and the 
continuum definition, the surface is supposed to be populated with 
particles with an angular density   , this could be either an angle in  
2-D (number per radian), or a solid angle in 3-D (number per solid angle 
area). For a large enough assembly this may be replaced by the average .  
The summations may then be replaced by integrals 
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The term 2dRR d   is just an infinitesimal area (3-D) or line element 
(2-D). Using Stokes’s theorem the integral becomes 
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The discrete definition is therefore equivalent to  

/

1 i
ik
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u dV
V x

 


  

This is as expected from the volume average of the continuum definition. 
However, the discrete definition can be employed on any assembly of 
particles; it does not have to be a large assembly; it could be applied to a 
single Voronoi cell. At the same time the deformation gradient in the 
continuum interpretation is the first term in a Taylor series of the 
displacement. This interpretation then remains intact when the discrete 
definition is used for a small assembly.  

The strain is the symmetric part of .α   

5.5   Stress in a granular medium 

The stress may also be defined from a continuum definition, while the 
medium is in equilibrium. Various contributors have studied this  
problem: [Love, 1934], [Dantu, 1968] and [Bagi, 1996], while the 
approach taken below closely follows [Drescher and De Josselin de Jong, 
1972]. The particles are stressed by contact forces. There is then a — very 
complicated — stress field in the system of grains and pores. The stress in 
the empty pores is zero. The overall stress is  

 1
ij ij

volume

dV
V

   x  

The volume may be partitioned in Voronoi cells 
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Now, the equilibrium equations for static equilibrium are known 
/ 0ij jx   ; using this the stress can be written as a gradient: 

  / 0j ik kx x   . Stokes’ theorem is again applied to give 
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 ik kn x  is precisely the definition of the traction. The Voronoi cell 
walls go through the contact points and the integral of the traction over the 
(very small) contact area of each contact point is the contact force. The 
integral therefore becomes a sum over contacts 
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where the notation  1
2 -  x x x  has been introduced. 

Various manipulations can be done. Using the fact that each particle  

must be in equilibrium 
1

0,
N

iF




 

  a constant vector (that is, independent 

of particle number  ) y  may be added to the vector .x  The origin of  

the coordinate frame inside each Voronoi cell is therefore arbitrary and the 
choice is free (the centre of gravity of the particle, the centre of the 
Voronoi cell, etc). The double sum can also be cast in the form of a sum 
over contacts. Each force  ,   is encountered twice, once with the 
location vector x  and once with location vector .x  Remembering that 

  F F  and that ,   x x c  the branch vector, it follows that 
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This can be recast again in the form of a sum over the individual particles, 
using   F F  and   c c  
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For each particle moment equilibrium is expressed as 
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The stress tensor Σ  is therefore guaranteed symmetric. The basis for this 
is the same as the one encountered in continuum mechanics.  

5.6   Calculating averages in a contacting granular material 

Bearing in mind that the formula for the stress only contains as many 
equations as there are stress components (four in 2-D and nine in 3-D), a 
first approximation of the contact forces from a given overall stress state 
can only be quite primitive. A tensor T̂  is introduced ( t̂  for increments) 
in such a way that a contact force is given by an average plus corrections 

ˆ
i ij j iF T n F     

The tensor T̂  only describes the force across a contacting particle  
pair, as opposed to the stress tensor, which describes the force across a 
Voronoi boundary. The latter is zero in the absence of a touching contact. 
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The contact point distribution tensor  p   can be viewed as a mapping 
from the Voronoi boundary distribution to the contact distribution.  

Substituting this back into the assembly stress formula the following is 
obtained 

1 1
( ) ( )

1 1ˆ
N N

ij ik k j i j
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Introducing then a ‘cell contact radius’ that approximates R̂  x n , 
permits the evaluation of the inner sum using the contact distribution 
tensor ,p  the mean stress is 
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where (4,2)

4


   in 2-d and (4,3) 4

15


   in 3-d, see Appendix, Section A2. 

If in first approximation the term that contains F  is neglected, the 
tensor T̂  can be found from averaging and inverting,  
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If this estimate is taken as adequate, then it follows that for an 
anisotropic contact distribution the assembly stress ratio is larger than the 
force ratio at the particle scale.  

All the above for the stress and the deformation gradient remains true 
when increments are considered. Simply replace the capital symbols with 
small-type symbols. 

The averaging in this case is over contacting particles and when 
considering a sum over contacts it is permitted to replace the sum by an 
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integral, weighed with the contact distribution. For a contact quantity ,q  
summed over the contacts of a particle the replacement takes the form 

   
1

N

circle or sphere

q q p d


 

 

      

For an individual particle, noting that the contact point description is 
so poor, this procedure does not make a lot of sense. However, for larger-
scale averages it is perfectly acceptable. 

Other averages that will be encountered are averages over the 
boundaries of the Voronoi cell. The quantities in question will generally 
be geometrical in nature. The question is then how an appropriate average 
will be defined. Consider particle   in Fig. 5.2. It has a very short 
boundary to the North-East, which is quite far from the centre of the 
particle compared to the other boundaries. Surely, the contribution to a 
sum over the boundaries of this particular one should carry less weight 
than the other ones. Calling the length of the boundaries ,  the average 
of a quantity ,q  which is defined on the boundaries, would be weighed 
with the length of the boundary. In other words 

1 1

1 1
,

V VN N

V V

q q q
N N

 

   
  

  

   


 

where   is the mean length of the Voronoi boundaries.  
A case in point is ,q  c c  the two-tensor of the branch vectors. 

The angular part is quite easily dealt with, assuming that the angles are 
more or less isotropically positioned, that is they are distributed according 
to a distribution with angular distribution / 2 .VN   Then 

 

       

 

2

1 1

2
2 2

1 0

2

1 1

1 1

2

2

V V
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i j i j
V V

N
V

i j i j
V V

ij

c c c n n
N N

Nc n n n n d c
N N
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 



      
   

 
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






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
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







 
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

 
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 
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The term  2
c








 


 is the weighted average of the quadratic lengths 

of the branch vectors. It represents another quadratic length scale: 2c


.  
All this is in two dimension, however, the analysis goes in exactly the 

same way in three dimensions. Replace the length of the Voronoi 
boundary by its area and use the appropriate front factor  2,3 ,  rather than 

 2,2 .  
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Chapter 6 

Stress-Strain Relations of Granular 
Assemblies: A Frictionless Assembly 

6.1   General considerations 

The purpose of this and the following chapters is to make a link between 
the micro-mechanical details and the overall, assembly-averaged 
properties. The latter consists of an estimate of the stiffness tensor that 
connects incremental strain and incremental stress. The case of an 
assembly in which the particles interact solely through normal movement 
is considerably simpler than the more general case in which a tangential 
interaction also needs to be considered. The theory for frictionless 
assemblies is less involved — and therefore much more transparent — 
than the one in which a tangential interactive component needs to be 
accounted for as well, as the particle spins are not restricted and no 
rotational equilibrium equations are needed. This provides an opportunity 
to develop the main theoretical concepts, which can later be used to 
describe more involved interactive properties. 

The case of frictionless particles is not merely a dry mathematical 
exercise; it has a number of practical applications as well. For assemblies 
in which there are more contacts per particle than the isostatic requirement, 
an incremental stiffness exists. This case is relevant to small spherical 
particles in a fluid environment, the interaction for which was discussed 
in Chapter 1, Section 1.7. In the field of chemical engineering, where this 
subject has major relevance, the theory has been employed to describe the 
behaviour of cakes composed of micron-sized particles. Such cakes 
appear, for example, in filtration processes and in slurries, see [Wakeman 
and Tarleton, 1999], [Koenders and Wakeman, 1997] and [Civan, 2007].  
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The theory presented here was initially developed by [Koenders, 1984, 
1987] and further refined by [Jenkins and Koenders, 2004]. Essentially, 
the question is what the influence of heterogeneity is on the assembly-
averaged (incremental) stiffness tensor. To answer this question a mean-
field estimate of the stiffness is calculated first and then a subsequent 
correction due to fluctuations is introduced. The procedure is similar to, 
but subtly different from, the approach put forward in Chapter 4 for 
continua. The influence of the heterogeneity is captured in a differential 
equation, the solution of which yields a correction to the displacement in 
addition to the mean strain displacement. The correction to the 
displacement gives a force correction, which feeds into a stress correction. 
All quantities are incremental, because of the expected severe non-
linearity of the contact law.  

6.2   Kinematics 

The displacement in the vicinity of particle   can be expanded in a  
Taylor series in the branch vectors c  (defined in Section 5.5). The 
branch vector is related to the particle positions as 

.       c x x x x  The displacement increment of a neighbouring 
particle can be approximated as  

21

2
i i

i i j j k
j j k

u uu u c c c
x x x

 

     
 
  

  

It is sensible to ascertain how many terms need to be taken account  
of. To that end it is established how many parameters are implied in the 
Taylor series. For constitutive purposes the displacement difference is 
relevant, that is , u u  so the Taylor series is essentially expanding  
this quantity. The purpose is to describe the motion of particles in the 
vicinity of particle   and therefore those neighbours that share a  
Voronoi boundary should be represented. Table 6.1 gathers the number  
of independent displacement components for each term in the Taylor 
series. 
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Table 6.1. Number of displacement components for each term in the 
Taylor series. 

First
derivative 

   Second 
derivative 

Total 
number 

2 dimensions 2 3 5 
3 dimensions 3 6 9 

Taking the series up to the second derivative permits the specification 
of five particles in 2-D and nine particles in 3-D. Fewer terms in the 
Taylor series would under-specify the motion of the neighbours, but 
taking account of higher orders really gives rise to over-specification.  

The second derivative can be obtained from a least squares fit of 
neighbouring particles and expressed in terms of the first derivatives by 
requiring 

2
2

1

min
N

i i i
k

j k j j

u u uc
x x x x

   



 

      
    

 
  

The sum here is over all particles with which particle  shares a Voronoi 
boundary. The sums of the branch vectors are approximated as 
integrals over spheres (3-D) or circles (2-D) and the second derivative 
is evaluated as  

 
 

2
1

2, 2 12, 2

1

0
1

N

k N
i i

kN d
j k jd V

k V k

c
u u c

x x xN cc c N c








 

 


   












      




  






In order to respect the symmetry in the subscripts j  and k  the result is 
extended to  
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 

2

2, 2 1 1

1

2

N N
i i i

j kd
j k k jV

u u uc c
x x x xN c

  
 


   

    
      

   

The connection between an incremental displacement difference 
 u u  and a contact force increment f  is the interactive 2-tensor ,K

so that 

 i ij j jf K u u      

The interactive tensor for a frictionless interaction is composed of a 
‘spring constant’ k  and two unit vectors, that are normal to the surface 
across which the interaction takes place: ij i jK k n n    ; note that 

0k   when there is no contact between   and  . Force equilibrium for 
each particle requires  

 
1

0
N

i j j jk n n u u


    

 

   

The sum is over all neighbours, that is all Voronoi boundaries.  
For perfectly circular or spherical particles the moment equilibrium is 

satisfied automatically. This is the case studied here; for particles of any 
other shape moment equations should be accounted for.  

6.3   Mean-field approximation 

Regardless of the force equilibrium, an initial estimate of the stiffness 
tensor can be made by using the mean strain as an approximation of the 
displacement difference between two neighbouring particles. For an 
assembly of N  particles the mean strain is  

1

1 1

2 2

N
j ji i

ij
j i j i

u uu ue
x x N x x

 



                  
  

The average of the second derivative vanishes for a statistically 
uniform assembly. The mean-field imposition then makes the equilibrium 
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equations superfluous. This is a general implication of a mean-field 
assumption: (some of the) equilibrium equations must be sacrificed. 

The mean-field estimate for the stress increment is easily obtained 
(see Chapter 5, Section 5.5). 

 
1 1

1

1 1

2 2

2

N N

ij i j ik k k j

N
k

i k j

f c K u u c
V V

e k n n c c
V

 



     

   

    

 


 



  



 




The mean-field stiffness tensor readily follows 

1

1

2

N
mf
ijk i k jX k n n c c

V



    

  

    

It transpires that the mean-field estimate of the components of the 
stiffness is generally a very bad estimate of the stiffness tensor, one that 
does not stand up to experimental scrutiny. However, it is a useful object 
to measure the effect that fluctuations have on the mechanical response of 
the medium. As an initial estimate a certain amount of insight can be 
derived from it as well.  

Another thing to note is that the form of the mean-field stiffness 
contains a so-called structural sum. These objects are defined in the List 
of Symbols, Section B.2.1; they are called A . The use of structural sums 
makes the notation much more compact, avoiding the need for lengthy 
sums. Care must be taken though, with the order of the subscripts. With 
the interaction tensor ij i jK k n n    , the structural sum that comes to 
the fore is the second order one, and 

1

1 1
or

2 2

N
mf mf

ijk ij k ijk ikj ijk ikjA K c c X A X A
V v



    

 





          ,

where the volume per particle is / .v V N  
By way of example a two-dimensional medium is considered, which 

consists of discs of near equal radius and it is assumed that all the spring 
constants k  are equal: .k k   The sum over the Voronoi boundaries 
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can be converted to a sum over contacts using the fabric tensor .p  For the 
mean-field estimate the average of this tensor is required only and a 
coordinate system may be chosen in which p  is diagonal. The mean-field 
stiffness tensor takes the explicit form 

11 22 11 222

11 22

11 22 11 22

5 0

0 0
16

0 5

mf

p p p p
kc p p

v
p p p p


  

   
   

X  

Anisotropy in the packing is observed to lead to anisotropy in the 
stiffness tensor (no surprise). In a test in which the minor principal stress 
is kept constant a measure for the dilatancy is the ratio of the volume strain 
to the major principal strain, which is 

11 22 11 22

11 11 22

1
5

e e p p
e p p
 

 


 

This ratio will only ever become negative when 22p  becomes negative. 
So, in order to produce a mean-field theory that exhibits volume 
expansion, the rather unphysical requirement of a negative contact 
distribution must be introduced. Nonetheless, the mean-field theory shows 
that anisotropy certainly helps push the ratio towards a negative value, 
even though it is not able to actually reproduce it.  

Similarly, failure of the medium as measured by the value of the outer 
determinant (here normalised to 1111

mfX ) cannot be reached for positive 22.p
The normalised determinant is 

   
 

2

22 11 22 11
2

22 11

/ 6 / 1
4

/ 5

p p p p

p p

 

  
, 

which reaches zero when  22 11/ 2 2 3 .17.p p      Such a value would 
again be unphysical, but it does show that increased anisotropy pushes the 
assembly further towards the régime identified before as prone to rupture 
layer formation.  
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6.4   Perturbations to the mean-field theory 

By using the single particle equilibrium equations the effects of deviations 
from the mean-field theory can be studied. The mean-field will be the first 
estimate.  

The second-order derivative of the displacement field needs further 
investigation. The analysis of heterogeneity in a continuum, as analysed 
in Chapter 4 will provide a context. The latter informs on the local 
character of the influence of fluctuations. Therefore, an analysis of the 
equilibrium in the vicinity of one particle will be done. This particle is 
labelled   and its neighbours are labelled .  These particles are all in 
mechanical equilibrium and the kinematics must be such that the force 
equilibrium equations are satisfied. The second derivative can now of 
course not be ignored, so the equilibrium equation for a particle —   — 
reads 

2

1

1
0

2

N
j j

i j k k
k k

u u
k n n c c c

x x x

 
     

 

    
   
 

 


 

The rudiments of the continuum equilibrium equations are recognised 
and it would be good if use can be made of the calculation done for that 
case. In the continuum theory in the approximation of small perturbations, 
terms that are proportional to the average strain and proportional to the 
second displacement derivative are present. The basic equation, which is 
an expansion up to first order in the fluctuations of the strain and the 
stiffness, is recalled from Chapter 4, Section 4.1. 

   
0ijkk

ijk k
j j

Xe
X e

x x
 

 
 

xx 
   

The one-particle equilibrium equation and the corresponding 
continuum equation are different, in that the former is valid in points (the 
centre of the particles), while the latter deals with fields. Reconciling these 
two is the main problem of the analysis.  

There is no problem replacing the coefficient in front of the second 
derivative by an average, thus  
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
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 

    

Now, in order to arrive at a correspondence with the continuum 
analysis, the term proportional to the displacement gradient needs to be 
expressed as a derivative. Generally, a derivative in a granular medium is 
obtained by a least-squares estimate. So, for a quantity ,q  which is defined 
at the centre of each particle, the derivative satisfies 

2

1

min
N

i
i

q c q q
x

 
  

 

  
       

  

The sum here is over all the Voronoi boundaries of particle .  
Differentiating with respect to the components of the derivative gives 
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0
N

i j
i

q c q q c
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 
   
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Mindful of the fact that 
1

0,
N

jc




 

  the resulting expression for the 

derivative is 
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p pj

q q c
x

 

   

 



 

   
       
 c c  

It is not unreasonable to approximate 
1

N

j pc c


 

 
  by an average: 

 2, 2 ,d
V kN c    in which case the derivative becomes  

 2, 2
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1 N

pd
p V

q q c
x N c



 

 

 
    

  

Now, applying this, a derivative for the structural sum is approximated 
as  
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The sums over   are elaborated as follows. One of the contributors is the 
   boundary. That one is taken out, the right-hand-side then takes the 
form 

 2, 2
1

1 N N

i j k p p i j kd
V

k n n c c c c k n n c c
N c

 

           

   

 
 

  
    

The boundaries in the second sum are all not bordering particle .  For 
these the interactive tensor is replaced by its average .k  Then another 
average contact is added and subtracted again, to give for the sum 

 
1 1

2, 2

N N

i j k p p i j k i j k p

d
V

k n n c c c c kn n c c kn n c c c

N c

 

               

  

 
  

 


   

 

Using 
1

0,
N

jc




 

  approximately the sum over any odd string of 

coordinate vector components may be neglected. This leaves  

   1
2, 2

1

1

N

i j k N

i j k pd
p V

k n n c c
k k n n c c c

x N c





    

     





    





 
 

  
  

 
 






  

Multiplying with p   and summing over p  then yields  

   1
2,

1

1

N

i j k N

i j kd
V

k n n c c
k k n n c

x N





    

   





    





 
 

  
  

 
 








  (6.1) 
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The centre of the particle coordinate system is chosen in such a way 

that 
1

0.
N

jc




 

  While that does not immediately imply that the sum over

the three string is also zero, the majority of the fluctuation is going to be 
due to the variability in contact properties and in the right-hand side of 
Equation (5.1) the odd structural sum is recognised. It is then suggested 
that the one-particle equilibrium equation is rewritten as  

 

2

1

2, 1

2

1

1
0

2

1
0

2

N
j j

i j k k
k k

N

i j k
jd

V
k

N
j

i j k
k

u u
k n n c c c

x x x

k n n c cu
N

x x

u
k n n c c

x x

 
     





    





    









    



    



     
   
 

 
   

  
 
 




 



















(6.2)

This equation has the same structure as the continuum equilibrium 
equation and the solution is readily taken over. For convenience of 
notation the fluctuating field is denoted with a prime 

1

N

ijk i j kA k n n c c    





    



 
   

 
   

This notation will enable a compact representation of the solution of 
Equation (6.2). 

6.5   Solution in two dimensions 

In the following the structure of the problem is illustrated in a 2-D 
isotropic example. For this case  2,2 1

2  . The solution for the
displacement (as obtained in the continuum theory) is in Fourier 
transformed variables 
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1 ˆˆa V ai j ijk ku iN P k A e    , 

where 
 
 

1
24

1

2
ai a i aiP k k

kk
 


  




  


 

For the present problem   , as can be seen from the mean-field 
moduli. (However, the slightly more general problem of    can easily 
be treated at the same time.) 

In the spatial domain the fluctuation in the displacement field is 

          
 

 1
2 22

2
i i

a ai j ijk k
iu d ke P k d yA e e


    k.x k.yx y       (6.3) 

The fluctuations A  appear here as a continuous field, but they are defined 
in a granular medium as quantities on points (the centres of the particles). 
Reconciling these two notions is done by putting forward a continuous 
field and — noting that only the value in the vicinity of particle   is 
required — letting this field decay away from the centre of the particle. 
Furthermore, the assumption is made that the fluctuations are purely 
radial. The integral over the angle is easily done 

     2 0

0

2i
ijk ijkd yA e dyyJ ky A y



  k.yy   

Let the radial dependence be of the form    2 20 exp /ijkA y a 


, where 
a  is an as yet adjustable parameter with the dimension of a length, then 
(see Appendix, Section A.6.1) 

     

 

2 0

0

2 2 2

2

1
exp 0

4

i
ijk ijk

ijk

d yA e dyyJ ky A y

a a k A







 

    
 

 k.yy 


 
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Consequently, 

   
22

1 2 2

0 0

1
exp 0

4 4
iV

a ai j ijk k
ia Nu d e dkkP k a k A e







     

  k.xx  

 
 

These two integrals are worked out in Appendix, Section A.6.1, first the 
integral over   

     

     

   

2 2 2
0 1

0

2 2 2
1 1 3

0

3

1 1
exp 0

2 4

1 1
exp

4 8

1
0 ,

2

a V j ai ijk k

V i aj j ai a ij

i j a ijk k

u a N p m dk a k J kx A e

a N p dk a k J kx J kx m m m

J kx m m m A e



  





     
 

           

  






x  

 

 

 

 

with the following 

 
 0 1

1
;

2
p p

 
   


  


  

and defining the two functions 

 

 

1
2

3
2

2 2
2 2

1 1 2 2
0

2 2
2 2

3 3 2 2
0

1
exp exp

4 2 2

1
exp exp

4 2 2

x x xS a dk a k J kx I
a a a

x x xS a dk a k J kx I
a a a









               
       

               
       





 
  

 
  

, (6.4) 

the integrals over k  are evaluated, to give the result 

   

   

1 1 3

1 3 0 1

0
2 4

0 0
2 2

i aj j ai a ijV
a ijk k

V V
i j a ijk k j ai ijk k

m m maN x xu p S S A e
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aN aNx xp S m m m A e p m S A e
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  



                       
        
   

x  

   


 

 
 

 

This is the fluctuating part of the displacement due to a fluctuation in 
the structural sum. The displacement so calculated gives rise to an extra 
term in the stress, just like the continuum analysis. The extra stress due to 
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the fluctuating field is expressed as a fraction of the mean-field shear 
modulus   (in this way the proportionality factor   1

2V 
 does not have 

to be included in the calculation). The required S-functions are plotted in 
Fig. 6.1. 
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Figure 6.1. The functions  1 /S z z  and  3 / .S z z  

 
The mean modulus is 

2
2 2 2 2

1 2

0 4
c pk n n d c pk

     

The contribution to the relative stress due to fluctuations is  

 
1

1 N
rs

r a a sk k m m u c


    




  


   

The displacement fluctuation u  is identified with the displacement 
fluctuation as calculated above with  u c . For disc-shaped particles the 
term  0A  is equal to  
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 2 2

1 1

N N

c k c k k         

 

 

         

 

   
   

   
 n n n n n n n n . 

Therefore, the result depends on the correlation in the fluctuations in the 
contact point distribution. In order to get an idea how the latter becomes 
manifest, assume a quadratic contact distribution on each individual 
particle. This takes the form 

     ij i jp p n n     

The fluctuations in the contact distribution are obtained by removing 
the average p . In addition the fluctuations are partitioned in an isotropic 
part P  (indicating a fluctuation in the number of contacts per particle) 
and a remainder, which serves as a measure of anisotropy. Thus (leaving 
out the superscript for the moment) 

11 11 22 22 12 21 12; ;p p P p p p P p p p p             

Working out the correlations results in the relative contributions of the 
Lamé constants as follows: 
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The functions 1S  and 3S  are evaluated in the point / ;c a  these, 
divided by / ,c a  are plotted in Fig. 6.1.  

The question then is what happens to the S-functions? In the graph — 
Fig. 6.1. — it is observed that these are quite sensitive functions of the 
argument / ,z c a 

 in other words, on the choice of the adjustable length 
scale parameter .a   

6.6   Connectivity in a granular medium 

Insight in the background to this parameter a  can be obtained by a little 
analysis, involving the heterogeneity of and the connectedness in the 
granular assembly. 

The analysis is carried out as follows. Consider a contact interactive 
parameter, such as the contact stiffness, which is generically called q . It 
obviously has the property q q   for particle pairs that share a Voronoi 
boundary. Now evaluate the cross correlation between the contact 
parameter and the fluctuation of the structural sum of the neighbouring 
particles, in other words investigate the expression 

1 1

N N

Vq q N q
 

 

   

  
  

   
   

The cross correlation is appropriate for the investigation of the 
influence function  2 2exp /x a 

. If the mean distance between particle 
  and   is represented by x , then in the correlation the fluctuation of 
the structural sum is on average represented by  

 2 2

1 1

exp /
N N

V Vq N q q N q x a
 

 

  

 
    

 
  

 

So that the cross correlation takes the form 

 2 2

1 1

exp /
N N

Vq q N q x a
 

 

   
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Call the local average of the interactive parameter ,q   then this expression 
is rewritten as 

   22 2 2exp /VN q qq x a 



     
 

On the other hand the cross correlation is obtained by direct calculation 

1 1 1

N N N N

V Vq q N q q q q N q
   
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         
     

Referring back to the analysis done on the correlation in contact properties 
in Chapter 5, Section 5.3 (especially note the spectral intensity function 
depicted in Chapter 5, Fig. 5.4), it is not unreasonable to neglect the cross 
correlate compared to the auto correlate; this approximation leads to 
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  

Now, the interactive parameter may be written as a local average plus 
fluctuations 

q q q     

So that 
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Combining both evaluations yields 
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The case of non-zero fluctuations is studied in an example. Let the 
contact parameter q  be the contact itself.  
Two cases are considered:  
1. A contact parameter that equals unity when there is a Voronoi boundary 
with a contact and zero when it pertains to a Voronoi boundary that does 
not correspond to a contact.  
2. A contact parameter that pertains to the case where the average contact 
value vanishes. This case is of particular interest, as the use of the 
exponential influence function was first introduced for fluctuating 
structural sums. 

The first case is investigated in the following manner. For a particle   
with cN   contacts the value of the contact parameter q  equals 1 or 0. If 
there are VN  Voronoi boundaries the one-particle average is 

c

V

Nq
N
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And the fluctuation at the contact 
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Thus the quadratic average of the fluctuations is  
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Writing the number of contacts as a deviation of the assembly-average :cN  

c c cN N N    and define  2 2/c c cf N N , it follows that  
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The second case is at first sight very different; it assigns to the contact 
the values 
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Consequently, the one-particle average is  

1c c V c c c c

V V V V V

N N N N N N Nq
N N N N N

  
    
    

 
 

This, of course vanishes when .c cN N   The fluctuations are 
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The answer is the same as before 
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 2 2exp / V c

V c c

N Nx a
N N f


    

The result of this formula is plotted in Fig. 6.2. for the choice 6VN   
and / 1.18x c   for three values of the contact number. The first 
conclusion is that if the value of cf  is larger, the value of /c a  is in the 
neighbourhood of unity. For smaller fluctuations the value goes up and 
can pretty well double. The consequence of this is that when there are large 
fluctuations in the number of contacts, the material is also more sensitive 
to fluctuations, as the S -functions decline with increasing / .c a  Also,  
for larger total numbers of particles the sensitivity to fluctuations goes up, 
however when there are larger numbers of particles, the value of cf  tends 
to be smaller in practice. Overall, the outcome is very reasonable. Note 
that while c VN N  there must be fluctuations.  
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Figure 6.2. The distance ratio /c a  for 6VN   and 3.5, 4.0, 5.0.cN   

 
The conclusion is that the ‘smearing-out’ as represented by the 

exponential influence function is associated with the connectivity in the 
medium — manifest via the property q q   — and the fabric 
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heterogeneity. The actual functional form — the e-power — cannot be 
ascertained in this way and the choice of an exponential has been made 
purely for mathematical convenience.  

6.7   Estimates of the correction to the moduli due to 
heterogeneity 

Looking first at the shear modulus and considering the isotropic part of the 
fluctuations only, it is observed that with 6VN  , this quantity is reduced 
by a factor  

 2

1 3 2
4

Pc c aS S
a a c p

            


   

For a fairly dense packing, for example the one demonstrated in Fig. 5.1, 

the ratio  2 2/P p  has been determined to be approximately 0.35 

( 4.1).cN   For looser packings the ratio tends to become greater. A 

plausible value is in the range 0.5 / 1.0c a  . In this range the correction 
to the shear modulus due to fluctuations of the average number of contacts 

lies in the range    0.9 / 1.2.mf mf      The additional correction 

due to anisotropic effects may be greater. What this shows is that the 
effective shear modulus, that is the mean field value and the reduction due 
to packing fluctuations together, collapses to zero. 

Referring to the analysis of rupture layer formation, a shear modulus 
that approaches a zero value leads to major instability in the assembly as 
a whole. So, packings with a mean number of contacts less than, say, 

4cN   cannot stably exist. It must be pointed out that assemblies with 
contacting particles with normal interactions only are in reality highly 
unlikely. Particles in contact will have a tangential contact stiffness as well 
(this case is treated in Chapter 7). It is, however, possible to create such 
assemblies in a computer simulation and a very low shear modulus has 
indeed been reported: [Magnanimo et al., 2008]. For the cakes in which 
small sub-micron particles are packed that experience the normal 
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interaction only, high contact numbers and low fluctuations are necessary 
for a stable conformation. 

It is tempting to compare this estimate with the analysis done on 
isostatics. It was found that for perfectly round particles with frictionless 
interaction, 4cN   is the minimum number of permissible contacts. The 
heterogeneity analysis does not account for numbers of equations and 
unknowns and therefore the only way in which it can predict stability of 
the assembly is via the rupture layer analysis applied with the 
homogenised moduli. Yet, there appears to be a correspondence.  

Turning now to the other Lamé constant. Using again the isotropic part 
of the fluctuations as a first order estimate the reduction amounts to 

 2

1 3 2
4 11

Pc c aS S
a a c p

            


   

In the expected range of /c a  and using the graph in Fig. 6.1, the 
reduction falls in the range 0.4 / 1.0mf mf     , with the lower 
number for the highest value of / .c a  Thus this Lamé constant is much 
less sensitive to heterogeneity. If /c a  should attain lower values, it might 
even increase somewhat.  

With the effect of the fluctuations so severe, the question is whether it 
is useful to study higher orders in the fluctuation terms. For the analogous 
continuum case [Kröner, 1967] has shown a method to evaluate these for 
a perfectly random medium. However, the first order estimate still gives a 
reasonable impression of the order of magnitude of the sensitivity of the 
medium to fluctuations. This analysis is not followed up here. For the type 
of media considered here, i.e. those with a purely normal particle 
interaction, it is concluded that these are very sensitive to the fluctuational 
content of the packing properties.  

The main practical application of the theory in this chapter is, as 
mentioned, small particles in a fluid environment. While the interaction is 
complex, as outlined in Chapter 1, Section 1.7, for the cases in which the 
interaction is repulsive there is a mechanism that minimises the 
heterogeneity. This mechanism relies on the elements described in this 
chapter, which shows that the displacement of the particles is such that it, 
broadly speaking, opposes the direction of the heterogeneity. In a non-
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linear interaction that becomes steeper the closer the particles are pressed 
together the magnitude of the heterogeneity will consequently become 
smaller due to the extra displacement u  that caused it. Therefore, in an 
assembly that is composed of round particles in which the packing is such 
that the particles are always captured in a non-linear interaction, the 
heterogeneity will be minimised. That implies that a mean-field analysis 
for such cases is not a bad approximation and has been applied 
successfully to describe dense filtration cakes: [Koenders and Wakeman, 
1997]. 
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Chapter 7 

Stress-Strain Relations of Granular 
Assemblies: Normal and Tangential 

Interactions 

7.1   Particle spin 

Spherical particles with a purely normal interaction are the exception. 
Especially for assemblies of contacting particles the analysis of assemblies 
of grains require the consideration of the particle spins, as well as the 
displacements of the particles. The direction of the contact is called n  
as before. The location of the contact is measured from the centre of 
gravity of the particles: x  from the centre of particle   and x  from 
the centre of particle .  When an increment of deformation takes place the 
contact point moves by an amount .d  This motion is partly due to the 
translation and partly to the rotation of the particles. The latter is denoted 
by the spin vector .ω  The contact point movement is 

 i i i ijk j k j kd u u x x             

Displacement and spin can be expanded in the neighbourhood of 
particle   in a Taylor series 
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The contact displacement is then approximated as 
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where the branch vector .   c x x  
The displacement gradient can be split in a symmetric and an anti-

symmetric part. Collecting the first and the third terms together shows 
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Any anti-symmetric tensor can be written as  
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, 

where   is the local displacement gradient rotation vector. The contact 
displacement is observed to contain only the difference of the local spin 
vector and the local displacement rotation vector. It makes sense, 
therefore, to work with the variable  ω   instead of ,ω  directly 
absorbing the frame rotation term. It follows than that the contact 
displacement is insensitive to the local displacement gradient rotation 
vector. This is as expected: the rigid body rotation has no influence on  
the contact displacement vector, which determines the interactive 
properties. 

The second displacement derivative is now considered together with 
the first spin derivative. The question is what impact the frame rotation 
will have on this combination. 
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On average 1
2j jx c    for contacting particles, but on a particle scale 

(especially for strongly hetero-disperse samples) this is not necessarily the 
case. So, as far as the second derivative is concerned, it is an 
approximation to absorb the frame rotation in the particle spin. Otherwise, 
the only spin variable that needs to be taken into account is ω   and the 
only deformation gradient measure is the strain. 

It is doubtful if higher order derivatives make a useful contribution,  
see again the table comparing the number of particles that can be  
described with the number of coefficients from the Taylor series,  
Chapter 6, Section 6.2. 

7.2   The interaction and the quasi-static equilibrium 
equations 

A contact force increment is linked to a contact displacement increment. 
The relation between these two is called the (contact) interaction. The 
interaction takes the form 

i ij jf K d    

The contact direction n  is perpendicular to the solid surfaces and 
therefore the interactive tensor must be sensitive to the anisotropy that is 
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associated with the direction of these surfaces. For spheres or discs this is 
the only geometrical parameter that enters into the analysis. The tensor 
should be decomposed in a normal and tangential part. For typically 
frictional interactions the tensor K  will also depend on the contact force 

F .  
At this point no specifics regarding the interaction are put forward yet. 

It is sufficient to note that there is a direction-dependent tensor K .  
The equilibrium equations for each particle require the sum of forces 

and the sum of moments to vanish: 
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For an assembly of N  particles in d  dimensions there are dN  force 
equilibrium equations and  2 3d N  moment equilibrium equations, 
matched by equal numbers of displacement and particle spin increments. 
The solution to these equations requires the specification of the mean 
strain increment. For a statistically homogeneous (not necessarily 
isotropic) assembly this should be the only condition that is imposed. 

7.3   Mean-field stiffness estimate 

The mean-field approximation is achieved by letting neighbouring 
particles move according to the mean strain e , which prescribes the 
displacement increments: .m mu u e c       However, a spin increment 
cannot be imposed as an assembly average. This is one of the complexities 
that arises when the analysis is extended to non-normal contact effects. 
The moment equation is employed to arrive at an estimate of the particle 
spin  , derived from the mean-field displacement. First a measure of the 
local spin is obtained from 
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Here, the spin gradient, which controls the difference in particle spins 
between contacting neighbours has been neglected. The idea is that the 
imposed mean strain leads to a mean spin and that spin fluctuations are a 
higher-order concern. That is reasonable because in the mean-field 
approximation the strain fluctuations are ignored. These in themselves 
lead to substantial spin fluctuations, as will be shown later on. The issue 
is really what exactly is meant by the mean-field approximation. It was 
seen in the previous chapter that for non-frictional contacts the fabric 
fluctuations average out. In that case the mean strain approximation is 
equivalent to a mean fabric approximation. However, in the current 
configuration correlations between the components of the structural sums 
emerge and these affect the evaluation of the stress increment.  

If the inverse of 
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in (and is proportional to) the mean strain. In other words 
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If the mean stress increment is calculated the spin needs to be inserted 
according to the evaluation of the contact forces 
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The mean-field estimates follows 

 

   
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K c c c e X e
V





    

 

    

 

 

    





  

      
 





   

    

 
Depending then on one’s view of what the mean-field approximation 

represents either   or   may be used. If the latter is employed a 
correlation between the components of the structural sums becomes 
manifest.  

These formulas acquire more transparency when examples are 
investigated. As a simple example, consider a problem in two dimensions 
with an interaction that is ‘diagonal’ and the same for all contacts. In 
addition it has a purely normal and purely tangential form. Particles are 
discs, therefore n  and c  are aligned. Defining the tangential contact 
unit vector n  (that is, such that ) n n  the interaction tensor takes 
the form 

//ij i j i jK k n n k n n    
   

If the tangential interactive strength equals the normal strength, the 
interactive tensor becomes a Kronecker delta. This follows from the 
algebra of the unit vectors .i j i j ijn n n n       

Intriguingly, the problem depends entirely on structural sums of the 
type 

1

N

j k mK x c


  

 
   and 

1

N

j k mK c c


  

 
   

For the sake of transparency of the result it is assumed that the particles 
are more or equal in size, so that 

2

1 1 1

1 1

2 2

N N N

j k m j k m j k mK x c K c c c K n n
  

        

    
       

The sum is replaced by an integral, weighed by the contact fabric  
function  p  ; the latter is — as was done previously — approximated 
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by a quadratic function in the unit normals. All the summations are easily 
done. In the calculation — without loss of generality — the coordinate 
frame is chosen in such a way that the mean fabric function is diagonal. 
The mean-field stiffness (including the correlation due to spin 
fluctuations) turns out to be 

       2

12

1111 11 // 22 // / /2
11 22

16
5 2mf pv X p k k p k k k

c p p



   

 
     

 
 

; 

        2
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11 22

16 16
2mf mf pv vX X k k p p k

c c p p 



  

 
     

 
 

; 

       2
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11 22

16
5 2mf pv X p k k p k k k

c p p



   

 
     
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; 
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c c c c
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k p p k

p p

   
   

  

  

  
   
 
 

 

The result contains various interesting aspects. The system is obviously 
elastic and the stiffness tensor has the appropriate symmetries. The stress 
is symmetric, as it should be.  

The dependence on the fabric fluctuations arises — as mentioned — 
due to the spin fluctuations. At this stage they should not be taken too 
seriously, because there are substantial spin fluctuations that are associated 
with strain fluctuations (these will be estimated below). It is useful though 
to inspect the order of magnitude of these terms. The largest is 

   2

// 12 11 222 /k p p p     
. Calculating this contribution, from the 

simulation data used in Chapter 5, Section 5.1, and comparing it to 

11 22p p  produces a number in the order of magnitude of //0.1k . The other 
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fluctuational contributions are an order smaller than that, a few percent 
maximum.  

Note that all the fluctuational terms in this mean-field calculation are 
proportional to the tangential spring constant. 

A further intriguing possibility introduced by the aspect of the 
tangential interparticle interaction is the form taken by the off-diagonal 
moduli. Disregarding effects of fluctuations for the moment, these are 
proportional to  / /k k  , implying that they become negative when the 
tangential interaction is stiffer than the normal interaction. The Poisson 
ratio would then be negative, which for instance means that when a 
material is uniaxially compressed it becomes thinner, rather than wider. 
For contact interactions this will by and large not take place (as generally 

//k k  ), but it is possible to create artificial particles with specially 
manufactured interactive features that do have such properties. Materials 
consisting of such particles, which possess a negative Poisson ratio are 
called auxetic materials (Gk  — growth or increase), see [Lakes, 
1987], [Koenders, 2009] for / /k k  . They are an example of meta-
materials, a class of substances with counterintuitive properties. Auxetic 
foams, that have an internal lever-like structure are non-granular examples 
of these materials. These are quite easily manufactured and have found 
many applications. 

The effects of strain fluctuations will be assessed against the mean-
field estimates produced here.  

7.4   Heterogeneity with tangential interactions 

The analysis for fabric fluctuations for the case when there are tangential 
interactions is similar to the one developed for the normal interactive  
case in the Chapter 6. A refinement to handle the spins needs to be 
implemented.  

The two sets of equations that rule static force and moment incremental 
equilibrium are 

2

1 1
2 2

1

0
N

j
ij j k jk k k m

k m

u
K e c c c c c c

x x x

  
        



 


        
      

 
    


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mn n m m p
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x x

c c c
x

 
     





   




 



  
 

     
 

 

 
 



 

The approximation 1
2

 x c  is again made and a shorthand notation 
is introduced (see also List of Symbols and Notations, Section 2), which 
makes the notation tremendously more compact: the structural sums are 
called ,A  so  

1 1

; ;
N N

ijk ij k ijk ij kA K c A K c c    

 

 

      

 

     etc 

Averages and fluctuations are now employed. The latter are denoted by a 
prime; the superscript, denoting the particle number, may be omitted; this 
will not lead to confusion. The first equation up to first order in the 
fluctuations is 

2
1 1

0
2 2

j
ij j ijk jk ijk jk ijkm

k m

u
A e A A A

x x x
  

     
  


     



 

Similarly, the second equation takes the form 

  0ijk jlkm m jlkm m mn jlkm n mn jlkm nA e A e A A               

From this equation the spin fluctuation may be determined. To that end the 
inverse of in ijk mn jlkmA     must be determined. This is often quite a 
simple object. Taking the interaction, for example, as before 

//ij i j i jK k n n k m m    
  , then in two dimensions the only component 

that is non-zero is  33 / / 11 22 .k p p    It simply counts the number of 
contacts that have a non-zero tangential interaction.  

The spin fluctuation is 

   1

ijk jakb ab ijk jakb ab ijk abn jakb ni A e A e A              (7.1) 
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The derivative is required to use in the sum of force increments 
balance, which is simply 

  1 jakb jakbab
ijk ab ijk jakb ijk abn ni

m m m m

A Aee A
x x x x
           

       


  

Finally, the odd structural sum is treated as before to give a spatial 
derivative, which takes place in the same manner as was done for the 
frictionless case, except that the average interaction now depends on the 
direction. In order to make that clear, an extra superscript is added to  
the average bar. Thus, K  is the mean value of the interaction in the 
direction of n . The starting point is 
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And  
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

  
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
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  

It follows that the translation equilibrium equation takes the approximate 
form 
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Making use of the definition of the strain and rearranging the subscripts 
shows that the structure of the equilibrium equation is — just as in the case 
of frictionless contacts — similar to the one obtained in the continuum 
treatment of heterogeneity.  
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 





       (7.2) 

Clearly, the same procedure for solving them may be employed as the 
one that was used for the frictionless case.  

7.5   Solution of the strain fluctuations for a two-dimensional 
isotropic medium 

For a two-dimensional isotropic medium the first thing to note is that the 
terms proportional to   1  in front of the double gradient vanish. In that 
case the inverse of the acoustic tensor is with 11 22p p p   

1 1 0
4 2ij i j ij
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 (7.3) 
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The solution for the displacement fluctuation is entirely analogous to 
the frictionless case  

     

   

1 1 3

1 3 0 1
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x
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 
 

 

 (7.4) 

With  0Z  the source term of the differential equation (7.2) 

         1
0 0 0ij V icdj cd cdn n ef pqr iefj qcdr cd cdn npZ N A e A A e             

The extra stress (over and above the mean strain stress) due to the 
fluctuations is  
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 
   

The term proportional to the spin gradient comprises an odd fluctuating 
structural sum and a fluctuating quantity, so it is of third order in the 
fluctuations and will average to zero. The fluctuating spin is derived from 
expression (7.1) 
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ijk jakb ab ijk jakb ab ijk abn jakb ni A e A e A             

This, in turn, requires the strain fluctuation, which is obtained by 
differentiating expression (7.4). It is noted that  
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Altogether, it is seen that the evaluation of the effect of heterogeneity 
is rather more complex in the case of tangential interactions, than for the 
frictionless case. A symbolic manipulation program is employed. The 
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results are equally complicated due to the rather large number of symbols 
that is involved. However, a good impression of the result may be obtained 
by studying special cases.  

7.6   Considerations for an isotropic contact distribution in 
two special cases 

The two special cases that will be reported below are: (1) / /k k  and (2) 
1

/ / 2 .k k  
The same approach to the evaluation of the correlations is followed as 

in the development of the results of frictionless particles. So, the contact 
point distribution is set to a quadratic form 

         ij i j ij i jp p n n p p n n          

Using this, the fluctuation in the spin is evaluated 
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The way is now open to calculate the stress contribution due to 
fluctuations in the contact point distribution up to quadratic order. A 
slightly more restrictive approach is taken in that it will be assumed that 
the fluctuations are isotropically distributed. So, any fluctuation can be 
described as  

ij ij ijp P p      

The deviatoric part can be written as a rotated trace-free tensor. Call the 
rotation  Q , then  

   ij ik j kp Q Q d     , with 
0

0

p
p




 
   

d  

Averaging over all possible angles  , gives the following 

           2 2 2 2 2

11 12 22 11 22

1 1
;

2 2
p p p p p p p                ; 

all other correlations zero. 
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The stress should of course be symmetric and this fact can be used to 
express the mean spin .  In a perfectly isotropic environment 0  , so 

in order to illustrate how   becomes manifest, the difference between 

 2

11p  and  2

22p  is allowed to retain a small value  2  .  

Case (1): / /k k  
In this case 1 0p   and as a result 3S  does not enter the calculation. Up 

to first order in  2   the mean spin is derived from the imposition of stress 

symmetry 

 

           

2

1 1

12
2 2 2 2 2

1 1

2 2 2

4 16 5 4 2

V

V

a aN S S
c c e

a aN p P S P S
c c




  

    
 

          
 

 

    

Although the result is a little contrived because of the isotropy of the 
problem, it is seen that the mean spin is proportional to the mean shear 

stress and that if absolute isotropy is required (that is,  2
0   ) the mean 

spin vanishes. The relative shear modulus correction turns out to be simply 

 

 

      2 2 2

1 1

2

2 4 2

16

mf V

mf

a aN P p S p S
c c

p

 
 


         

 

 

The leading term is the one that contains the variability in the mean 

number of contacts  2P ; it is observed that for the not unreasonable 

value of   1/ 0.5a c S 
and 6VN   the correction is of the order of 

 2 23
2 / ,P p  which — using the same estimate for the variability as in 

the previous chapter — is about half the value of the frictionless case. 
Thus, the packed bed with a fully frictional interaction is far less sensitive 
to fluctuations than the same bed with a frictionless interaction.  

The correction to the   Lamé constant, here scaled to the mean-field 
shear modulus, is 
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 

 

 2

1

2

2

32

mf

mf

a S p
c

p


 


      



 

This is a small correction, though note that it takes the material into the 
auxetic range. 

Case (2): 1
/ / 2k k  

When //k k  3S  enters the calculation. This is immediately clear 

when the mean spin is calculated up to first order in  2   

 

 

        

2

12

1 3 1

2 2 2 2

1 3 1

4

32 3 7 5

2
(2 3  + 14   )  14   5

V

V

e

a aN S S S
c c

a aN p P S S p P S
c c




 




    
 

       
 


 

 

 

The shear modulus correction takes the form  

 

 

     

   

2 2 2

1 1

2

2 2

3

2

6 9 4 7 5 2

420

2  

35

Vmf

mf

V

a aN P p S p S
c c

p

aN S P p
c

p

 
 




                

     
  

 

  

The leading term is now of the order of  2 21.5 / ,P p  so it is more 

sensitive to fluctuations than the previous case, but not as susceptible as 
the frictionless case.  
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It is also found that 

         

 

2 2 2 2

1 3

2

2

1

2

52 21 2 18  

70

5 2

120

Vmf
aN P p S S P p
c

p
ap S
c

p

 
 





                   

   
 



  

The leading term is of the order  2 20.37 / ,P p  so this is also small and, 
again, makes the modulus smaller.  

7.7   Anisotropic calculation 

A slightly different approach is taken to calculate the effective moduli for 
an anisotropic medium due to heterogeneity. The purpose of this 
calculation is basically to show the effects of intrinsic directional 
properties. The mean field values have already been evaluated in Section 
7.3. In order to ascertain the effects of anisotropy in two dimensions the 
starting point is again the two equilibrium equations in which the spins are 
decomposed into an average and fluctuations 

 
2

1

1 1
0

2 2

N
j

ij j k jk k k
k

u
K e c c c c c

x x

 

        



   


              
       



 

2

1

1

2

1
0

2

N

ijk j k m m k m
k m

n
mn n m m p

p

uK x e c c c
x x

c c c
x

 
     





   




 



  
 

     
 

 

 
 



 

Using the shorthand notation introduced for the structural sums as 
before, the latter equation takes the form 
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2

1

1 1

2 2

1
0

2

ijk j km m j knm mn j km n n
n m

N

mn j k m n

uA e A A
x x

K x c



    

   



   

 


            

 


    

 

 

An approximation is made: the sum over the neighbouring spins and 
the double fluctuations involving the second displacement gradient are 
both neglected.  

Solve for 3  in two dimensions for the interaction //k k  

   

    

11 22 11 2212
11 22 12

12 11 22 11 22 11 22 12

2
c c

c

p p dp dpdp e e e
N N

dp de de p p dp dp de
N

 



 



  
     

     
 

The force equilibrium equation is written up to first order in the 
fluctuations 

 
2

1 1

1
0

2

N N
j

ij j j k k ij k
k

u
K c e K c c

x x

 

    

 

 


  

 


  

     


 

This equation may again be solved by replacing the fluctuating structural 
sum by a derivative of a higher order structural sum and take the fluctuating 
part. Then the whole system is as before, with the difference that the average 
second order structural sum is now anisotropic. In other words 

 
2

0ij k j
V j j k k ijk

k k

A u
N e A

x x x
 

  
  

  


  


 

The solution is again found by Fourier transform 

 
 

   1
2 22

2
i iV

a ai k ij k j j k k
iNu d ke P k d yA e e  


    k.x k.yx y   , 

where .ij ijk kP A k k    
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In the case of //k k , this acoustic tensor is diagonal and takes the 
following form in two dimensions 

   
2

2 2
11 22 1 11 22 23 3

4

c k p p k p p k
     P =   

The inverse is easily obtained 

   
1

2 2 2
11 22 1 11 22 2

4

3 3c k p p k p p k


     
P =   

The integrals can be attempted for the case that 
     2 20 exp /ij k ij kA A y a  y 


. First the inner integral is evaluated 

   2 2 2
2

1
exp 0

4
i

ij k ij kd yA e a a k A     
  k.yy 

 
 

The integral over k  gives rise to a confluent hypergeometric function 
(sometimes called a Kummer function), see Appendix, Section A.6.2. The 
subsequent integral over   may be done numerically, or by a (high-order) 
series expansion. The problem is not getting an answer, the problem is 
getting an answer that is transparent, insofar as it illuminates the 
anisotropic character of the outcome. The result will be a expansion in the 
angle   in terms of the trigonometric functions cos  and sin . From 
the numerical work it is found that the lowest terms in the expansion 
contribute to any significant amount only. Therefore, these low-order 
terms are obtained by searching for the lowest terms of a Fourier 
expansion. This task is easy enough to perform. Change the integration 
over the angle   to     , then 
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     
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  
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x
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The Fourier coefficients are obtained from 

     
 

2
1

0

cos1
sinai k

m
P n d

m

 
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
  

   
 


 

 

Writing,  11 1 pp p a   and  22 1 pp p a  , the result is for 1m  , 
depending on the value of the subscripts  

 
 2

2 2 cos2
; 1:

2 2 2 sin

p p

p p p p
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a i k

k c pa a a a
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  
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 
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2 2 sin2
; 2 :

2 2 2 cos

p p

p p p p

a a
a i k

k c pa a a a



 

   
  
     

 

The results for even m  are all zero and for higher, odd values of m  they 
are substantially smaller than for 1.m   

The integrals that need to be done are now 

 
2

2 2

0 0

cos 1
sin cos exp

sin 4
d dk kx a k

 
 



            
 


 

The integral with sin  is zero. The integral with cos  has already been 
encountered (see Appendix, Section A.6.1) 
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Altogether, the result is 
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with 

 1

2 2
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In the limit 0pa   this reverts back to the isotropic case. The two 
functions  

   1 2 2

2 2

p p
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p p

a a
C a

a a

  



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  
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
 

are plotted in Fig. 7.1 in the range 1 1pa   . 
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Figure 7.1. The factors  1C  and  2C  as a function of .pa  

 
The two diagonal stresses are evaluated. As before, set 11p P p     

and 22 .p P p     Here, only the terms that pertain to the isotropic 
variations in contact point distributions are reported. The reason for this is 
that this is by far the most significant term and also that in an anisotropic 
setting it is not directly obvious what the deviatoric distribution of contacts 
may plausibly look like. Furthermore, a presentational point is that 
including deviatoric information makes the outcome very opaque due to 
the large number of symbols involved.  
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c k p a a


 

      
 

   (7.5) 

       
2

2
22 22 1 222

2 1
2 2

2 p V p

Pv c cp a e N S C a e
c k p a a


 

      
 

   (7.6) 

The dependence on the anisotropy in the 22 component is obtained by 
making the substitution p pa a  in the 11 component. From the plot of 
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 1,2C  it is seen that the weaker stiffness direction is more affected by the 
effects of anisotropy than the stiffer one. 

The higher order terms, that is the contributions that pertain to 
3,5,7, etc.,m   also play a role, though they are small compared to the 
1m   case (largely due to the fact that they give rise to higher order S  

functions). The approximation presented here is very acceptable and 
useable. 

7.8   A few remarks on the theory 

The approximations that have been made to arrive at these results have 
either been idealisations of the geometry, such as replacing the location of 
the contact point with half the branch vector, or neglecting double 
fluctuations or sums over fluctuating quantities of a ring of neighbours. 
Each of these approximations can be investigated further as refinements, 
probably at the expense of introducing more parameters. Also note that 
introducing extra fluctuating terms in the analysis only makes sense when 
they appear quadratically in the end result. However, the main findings of 
this chapter relate to the influence of the fabric fluctuations — 
predominantly the variability in the number of contacts per particle — and 
the effect of anisotropy on the sensitivity of the assembly to fabric 
fluctuations. These are the dominant effects that influence the order of 
magnitude of the outcome as far as the incremental stiffness components 
are concerned.  

It must be emphasised that the calculation on anisotropy is only valid 
for the simple case k k   , which leads to the very convenient form for 
the acoustic tensor. Nevertheless, this calculation is a very useful first step
for more complicated cases, as will be seen in Chapter 8.
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Chapter 8 

Frictional Granular Materials 

8.1   The frictional interaction 

In this chapter the incremental stress-strain relation for an assembly in 
which the frictional interaction plays a role. The procedure is similar to the 
ones outlined in the previous chapters. First a mean-field approximation is 
explored and then corrections are introduced to account for heterogeneity 
and strain fluctuations. 

The frictional interaction has already been introduced in Section 1.5. It 
has two states: a sliding state and a sticking state. Those ideas for an 
incremental contact law are now applied to an assembly. The sliding 
interaction itself is summarised here first. 

The frictional interaction for a sliding contact with direction unit 
normal n  is treated as follows. The force on the contact is ;F  the normal 
force is ,i iF n  the tangential force i iF n . A contact displacement d  must 
be such that the ratio /i i i iF n F n  remains constant. So, as the increment in 
the force is ,i ij jf K d  invariance of the force ratio as the increment is 
applied requires 

 
  0i i i i i

p p i i i i p p
p pp p p

F f n Fn f n F n f n F n
F nF f n


   



This is the same result as the one obtained in Section 1.5, without the need 
for a Taylor expansion. Then, using i ij jf K d , 

i i pq q p i i
ij j i ia i pa p a

k k k k

Fn K d n FnK d n K n K n d
F n F n

 
   

 
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If, for purely tangential deformation, the stiffness is assumed to be zero 
then the interaction has the form 

p p
ij i j i j

k k

F n
K kn n kn n

F n
   

This is providing that the direction of the displacement is such that no 
elastic unloading is invoked, which must be verified afterwards when the 
increment has been applied. The tangential to normal force ratio at sliding 
is called    /s p p k kF n F n  . Its numerical value is a material constant, 
but its sign depends on the choice of coordinate frame.  

The frictional interaction brings with it its own idiosyncracies. In order 
to explore the problems the sticking state is represented in a very simple 
form as 

ij ijK k  

All manner of refinements and complexities are possible, some of  
which will be discussed below, but first the simplest form in an  
assembly with at most one sliding contact per particle is investigated. For 
this case the sliding contact is the only perturbation and the point of the 
exercise is to figure out how the frictional disturbance influences the 
displacement and spin fields in the vicinity of the anomalous contact. At 
first sight this is quite simple, as all that needs to be done is to introduce 
the perturbation into the analysis that has been done in the previous chapter 
and graft it on. There is a complication however and it is this: if there is a 
sliding contact of the particle pair   , then there is also a sliding 
contact as viewed from particle ,  that is the pair    (the sliding 
contact is denoted by ,  while all the other neighbours are, as before, 
called  ). These two can obviously not be treated independently when 
assessing the perturbation field. So, instead of a perturbation due to the 
interactions of one particle, the perturbations due to a particle pair have  
to be accounted for.  
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8.2   Mean-field estimate 

In the following everything that has been discussed in Chapter 7 will be 
used as an underlying basis for the analysis. Essentially, maximally one 
sliding contact per particle is considered only and the theory of the 
previous chapter is modified to accommodate that. The particles are discs; 
the assembly is two-dimensional. All idealisations and approximations 
from the previous chapter are used. 

The first task is to ascertain the impact of sliding contacts on the mean-
field estimate of the incremental stiffness. To that end a stress increment 
is evaluated while the displacement fluctuations are ignored. What cannot 
be ignored, however, is the spin fluctuation, which follows from the 
moment equation of each particle 

 
1 1

0 0
N N

ijk j k ijk j k m m mn m n m nf x K x e c x x
 

        

 

    
 

            

All contacts stick, except the    one, so in the moment equation for 
particle   one sticking contact is subtracted from the summation and 
replaced with a sliding contact. The moment equation then takes the form 

 

   
1

0

N

ijk j k m m mn m n m n

ijk j j j k m m mn m n m n

k x e c x x

k n n n n x e c x x



     



          

    

     


   

       

   

    

 

The equivalent expression for particle   is 

 

   
1

0

N

ijk j k m m mn m n m n

ijk j j j k m m mn m n m n

k x e c x x

k n n n n x e c x x



     



          

    

     


   

       

   

    

 

The unit normals satisfy   n n  and the friction coefficient retains 
its sign when the superscripts are interchanged. Thus, it follows that the 
second term in the above equations are identical, but only when the 
surrounding fabric is equal. In order to illuminate the structure of  
the addition of friction to the analysis, it is for the moment assumed that 
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there are no fabric variations. For the first terms write the spins as 
      and ,      respectively and in the summation over the 

neighbours assume that the spin fluctuations of the neighbours average to 
zero. It is seen that the two equations are now the same, other than the term 
proportional to the spin fluctuations of the central particle. Subtracting the 
two equations yields the result that the two spin fluctuations   and   
are equal.  

It helps the insight to do an explicit calculation of the problem. For 
reference the case of all-stick is noted; the formulas from Section 7.3 are 
applied to the present problem. In this case all spin fluctuations are 
obviously zero and the mean spin is 

   
22 11

3 12
11 222all stick

p p e
p p

 



 

The stress increment becomes 

   2
11 11 22 112 3

4all stickv kc p p e   ; 

   2
22 11 22 222 3

4all stickv kc p p e   ; 

      2 11 22 11 22
12 21 12

11 22

3 3
2 2

8all stick all stick

p p p p
v v kc e

p p
 

 
 


 

These formulas are valid when all particles in the assembly have no-slip 
contacts. If, however, some particles possess a slipping contact, then the 
mean spin may have a different value. For this case the spin fluctuation of 
a particle with all-sticking contacts is  

   
11 22

3 12
11 22

2
2all stick

p p e
p p

     


 

The one-particle stress contributions are the same as in the case of all 
particles sticking. The mean spin simply does not appear in the formulas. 
The stress is symmetric (as expected, because moment equilibrium has 
been enforced). 
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For the case of a particle with one slipping contact    the moment 
equilibrium is expanded as follows 

   

1

1 1

2 2

0

1

2

N

ijk j k m m mn m n n n

ijk j j k m m mn m n m n

N

ijk j k m m mn m n n

ijk j k m m

k x e c c

k n n n n x e c x x

k x e c c

k x e c





    

 

          

   



 

     

    

    

 





          
     

        







  

   

  

 

 

1 1

2 2

1 1
0

2 2

mn m n n n

ijk j j k m m mn m n n n

c

k n n n n x e c c

   

         

   

     

         
            



   

       (8.1) 

The last term in this equation (which includes n
 ) vanishes, because the 

sliding interaction does not couple to the spin. Thus, calling the angle of 
the sliding contact ,  the solutions for the spins of the two particles is the 
same and equal to  

  

     

3 3 3 11 22 12

11 22
11 22 12 12 11 22

1 cos 2
2 2

2 2

sin 2
2

2 2 2

c
s

c c

s
s

c c c

N e e e
N N

p p
e e e e e e

N N N

     

  

      
 


     

  

 

The stress is now easily evaluated 

1

1

1

2

1 1 1

2 2 2

N

ij i j

N

ik k k m m m m j

f c
V

K e c c c c c
V





 

 

       

 



   







          



      

 

For the sum over the contacts of the particles with one slip the same 
procedure is followed that was used for the calculation of the spin 



154 The Physics of the Deformation of Densely Packed Granular Materials 
 

9in x 6in       b3746     Physics of the Deformation of Densely Packed Granular Materials, The        b3746-Ch-08        FA 

 

 

1

1
2

2

1 1

2 2

N

ij i j m m mn m n nslip

i i i j m m mn m n n n

v k c e c c

k n n n n c e c c



   



         

    

     



        

            

   

    

 

The averaging bars are needed because the distribution of slipping angles 
needs to be specified. The result of this is more involved. First one term 
under the averaging bar (that is, for one particular angle of the slipping 
contact,  ) is evaluated. The number of contacts per particle is cN  and 
the anisotropy index pa  is such that 11 22(1 ) / (1 ) /p pa a p p   . The 

1, 2i j   element is equal to the 2, 1i j   element. The 1, 1i j   
element in a fabric that is aligned with the coordinate axes comes out as 

    

   

2
11

2
2

22 11 12 12

2
2

11 22 11 22 12

1 1
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2 2

1
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4 2

1 1
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4 2 2

c

c

c

s c

c

kN c a e

kN c e e a ae e
N

k N c e e e e e
N

   


  

  
 

    


        

 

The 2, 2i j   element is similarly 

    
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2
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2
2
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2
2
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s c

c
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kN c e e ae e
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k N c e e e e e
N

   


  

  
 

    


        

 

For the 1, 2i j   element the contributions that are proportional to 12e  
are given only 
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  


 

  


      

 


 

The 2, 1i j   element is identical.  
The result still contains the mean spin, which is determined by 

averaging over the slipping angles. Two special cases are considered.  

8.3   Mean-field estimate with randomly distributed slip 
angles 

The first special case pertains to the situation in which the slips are 
distributed randomly. In this scenario the mean value of the slip coefficient 
vanishes and an average may be taken over all angles. The result may be 
combined with the all-stick result, the fraction of particles that have one 
slipping contact is called ;s  the fraction of particles that has no slipping 
contacts is  1 s . The mean spin is then determined by requiring the 
average of the spin fluctuations to vanish. The result is 

 
 12

2 1

2 2
c s

p
c s

N
a e

N





 
 

 
 

Thus the mean spin depends on the shear strain increment only and is 
proportional to the anisotropic mean packing characteristics. The 
combined stresses are 

      
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This result is similar to the mean-field estimate for a medium with a 
suitably chosen tangential interaction. 

8.4   Mean-field estimate with concentrated slip angles 

The second case pertains to the situation in which the slips are 
concentrated in certain directions. This case is especially important when 
the sign of the friction coefficient is associated with a deviatoric stress; 
this case is explored in this section.  

8.4.1   A slip angle associated with the deviatoric stress 

The principal stress axes are aligned with the coordinate axes (as is the 
mean fabric tensor). An illustration is provided in Fig. 8.1. 

 

 

Figure 8.1. The stress ellipse and the sign of the friction coefficient 
       / /s p p k k pq p q pq p qF n F n n n n n      (in this case the maximum 

value of the stress ratio is at an angle of approx 550 in the first quadrant. 
The arrows give an indication of the direction of the tangential force. 

 
So, while only one sliding contact per particle is taken into account,  

for every angle   the conjugate angles ,    and    will 
participate with the signs of s  of +, +, , , respectively. All these are 
added to the sums of the stress contributions; averaging over the angles is 
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then done in the first quadrant according to a prescribed distribution. Here 
the result for a distribution of slipping angles is chosen that represents one 
particular angle   in the first quadrant and its three conjugate 
counterparts. These four have equal probability and averaging the 
expressions for  2 slipv   obtained at the end of Section 8.3 with the 
appropriate signs for the inter-particle friction angle yields the following: 
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These formulas are not directly very transparent, which is why a 
graphical illustration is supplied in Fig. 8.2.  
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Figure 8.2. The ratio      12 12/slip all stick
   for an assembly of particles 

with one slipping contact each in the mean field approximation. 
Parameters as indicated in the graph.  

 
The shear modulus is shown, normalised to the all-stick case. The 

parameters — friction coefficient, anisotropy index and number of 
contacts — have very little impact on the result; the shear modulus is 
relatively unaffected by the slip phenomenon when the slip angle lies in 
the vicinity of / 4.  Outside this region there is a reduction in the shear 
modulus.  

The normal moduli are most easily studied in terms of the ratio 

2211 2222/E E   and the non-dimensional determinant  2
2v   

   2 4
1111 2222 1122 2211 /E E E E k c . The former gives an indication of the 

dilatancy sensitivity (when the ratio exceeds unity the assembly expands 
in a biaxial cell test); the latter points to the stability of the assembly (when 
  approaches zero the assembly exhibits a possible rupture layer).  
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Figure 8.3. The stiffness determinant  slip   (top) and the dilatancy ratio 

 slip   (bottom) as a function of the slip angle .  The parameters are 

indicated in the graph; the solid lines are for 4; 0.2; 0.2c p sN a    ; the 

dashed lines for 3.5; 0.4; 0.5.c p sN a     

 
 
Interesting features come to the fore. The isostatic limit for one 

slipping contact for all particles in two dimensions is at 3.5.cN   Well-
away from this value and moderate values for the anisotropy and the 
friction coefficient, the assembly is neither dilatant nor prone to rupture 
layer formation. Decreasing the number of contacts and increasing both 
the anisotropy and the friction coefficient leads to a more dilatant  
assembly and also one that is closer to rupture layer formation. All this 
takes place at a certain angle for the slipping contact. This trend is what 
may be expected when studying the data from numerical simulations, 
although it is emphasised that the mean-field approximation is a very 
rough approximation and the assumption that all particles have equal  
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numbers of contacts and that only one of them slips is definitely artificial. 
Nevertheless, the key physical features show themselves.  

8.4.2   Further investigation of the slip angle and fabric 
heterogeneity 

The question is now whether there is any favoured angle for a direction of 
a slipping contact. Insight may come from the application of Equation 
(5.1), which may be used to calculate — in an average way — the value 
of the force ratio in any direction. Simple algebra permits the expression 
of the contact force ratio c  as a function of the contact angle   for given 
fabric anisotropy pa  and stress ratio 11 22/R    . 

          
   2 2

2 2
sin cos

2 cos 2 sin

p p
c

p p

R a a
R a a

   
 

  


  
     (8.2) 

This relationship is plotted below in Fig. 8.4 for two values of pa  and 
4R  . Now, the value of the force ratio cannot exceed the material 

constant s  and therefore the slip angle is just in the maximum of  
the graph. It is observed that a higher value of the maximum slip angle  
can be achieved at the same stress ratio for smaller values of the fabric 
anisotropy. 
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Figure 8.4. The force ratio as a function of the angle of the contact  
for 4R   and two values for the anisotropy parameter .pa  

 
Conversely, for a given material parameter, the inter-particle friction 

ratio ,s  the anisotropy required can be expressed in the stress ratio. To 
find that relationship the maximum of Equation (8.1) is found. This is 
easily obtained; the critical angle is  

 
1

2
cot

2

p
s

p

a

R a
 

  
  

 

The associated anisotropy parameter is 

 
2 2

2 2

4 1 1
2

2 2 1 1s

s s
p

s

R R
a

R R 

 


  


  
 

The narrative that describes the progress of the assembly as the stress 
ratio is gradually increased is now becoming clear. As deviatoric strain is 
applied the assembly becomes more anisotropic, while slipping contacts 
develop. These will be increasingly concentrated in the direction of .s
Then — consulting Fig. 8.3 — the dilatancy ratio will increase (and could 



162 The Physics of the Deformation of Densely Packed Granular Materials 
 

9in x 6in       b3746     Physics of the Deformation of Densely Packed Granular Materials, The        b3746-Ch-08        FA 

even reach values greater than unity, implying expansion of the assembly in 
a biaxial cell test) and the value of the scaled determinant   will drop to 
zero, which results in the overall stress ratio remaining constant.  

These features are observed in both physical and numerical 
experiments. The remarkable thing is that they follow from a relatively 
simple mean-strain theory. The theory is augmented by making allowance 
for fabric heterogeneity. Thus, as far as the effects of slipping contacts is 
concerned a mean-field theory is still used, but a first-order estimate of the 
influence of fabric heterogeneity is readily introduced by incorporating the 
formulas of Section 7.7 as an extra perturbation. Essentially, the principal 
moduli are affected only, with the result 
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   

 

2

2
22 11

2

2
1 222

2

2
22

1
sin 4 sin 2 sin 2

1 2
2

4 2

21 1
2 2

4 2

1
sin 4 sin 2 sin 2

1 2
4 2

s

cslip
c

p
c p V

p p p

s

c
c

v N kc e
N

aP c cN kc a N S e
p a a a a a

N kc e
N



   


   

   
  



               
       

 
 
 

   

   (8.4) 
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It is now possible to find the point at which the outer determinant 
vanishes (which corresponds to peak stress ratio) and as a function of the 
number of contacts and the heterogeneity parameter  2 2/P p  the 
associated anisotropy parameter pa , dilatancy ratio   and the stress ratio 

11 22/R     follow. All these can be read at the point for which .s   
It is then assumed that the vast majority of sliding contacts are in the 
vicinity of this angle (and its three conjugate counterparts). The results are 
plotted in Fig. 8.5.  

It is necessary to add a note on the heterogeneity parameter. Firstly, in 
the above equations it has been assumed that all particles have one sliding 
contact. That is a simplification, because there may well be particles with 
no slipping contacts at all. These would affect the result by increasing the 
principal moduli. Also, there may be a fraction of particles with no 
contacts at all and while this is accounted for in the heterogeneity 
parameter, it is difficult to ascertain how exactly these particles affect the 
analysis based on an explicit sliding contact. Secondly, it was seen that the 
heterogeneity acts in concert with the influence function   1/c a S . These 
two may as well be taken together into one heterogeneity parameter: 

 2

12

P c cH S
p a a
    

 


   

In fact, this parameter acts as an amalgam, incorporating many aspects, 
such as particles having no contacts, particles with no slipping contacts, as 
well as fabric variations. Therefore, this parameter is a collective 
correction parameter, as it is not convenient to add extra variables to the 
theory. It must be borne in mind that this is a rather primitive mean-field 
theory that essentially has the purpose of elucidating the physics of the 
problem. 

Despite the simplicity of the theory some main features come to  
the fore. When there are few contacts — that is for a loosely packed 
material — the stress ratio at peak, the anisotropy parameter and the 
dilatancy ratio are smaller than when there are more contacts. When the 
material is loosely packed it is plausible that the heterogeneity parameter 
is also larger; this regime is represented by the solid lines in the graph and 
it is observed that this leads to smaller stress ratios, less anisotropy and 



164 The Physics of the Deformation of Densely Packed Granular Materials 
 

9in x 6in       b3746     Physics of the Deformation of Densely Packed Granular Materials, The        b3746-Ch-08        FA 

smaller dilatancies. All these effects, qualitatively at least, have also been 
observed in both physical and numerical experiments. It is noted that these 
realistic results are obtained by taking into account a small amount of 
fabric heterogeneity. A further result is that the dilatancy exhibits a plateau 
for small contact numbers. 
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Figure 8.5. The anisotropy parameter, the stress ratio and the dilatancy 
parameter as functions of the mean number of contacts per particle. The 
solid lines correspond to a heterogeneity parameter of 0.1H 


 and the 

dashed lines to 0.05H 


. All calculations done at peak stress ratio when 
0.   

8.4.3   Verification of the friction criterion 

One aspect that has so far been tacitly circumvented is the peculiar 
requirement of the frictional interaction that a verification is carried out to 
check that the displacement path of the sliding contact, as applied to the 
sticking rather than a sliding state of the interaction, does not lead to a 
lower stress ratio (which would make it a sticking contact once again). The 
increase in stress ratio is easily obtained, it is 
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 1
sf f
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 



  

The compressive force F  is always positive. A diagonal sticking 
interaction has been used and therefore the increase in terms of 
displacement becomes 

 s
k d d
F

 


  

The outcome obviously depends on the mean-strain increment that is 
chosen. Here, an illustration is provided for a zero shear strain. The mean 
spin is then also zero and the increment of increase in stress ratio is 
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It is easy to verify that for the choice of parameters for the inter-particle 
friction, the number of contacts and the slip angle broadly in the range 
given above, this is always strongly positive while 11 220, 0e e  . This is 
largely due to the extra particle spin that is incurred, which is enabled by 
the sliding. A similar calculation shows that for contacts that are in the 
quadrants that are adjacent to the one in which the slip takes place the 
incremental increase in the force ratio is very small and may even be 
negative. For contacts in the opposite quadrant the increase in the 
tangential displacement is substantially smaller than the one for the sliding 
contact.  

In this calculation the fabric heterogeneity has been overlooked. The 
result for the mean-field calculation is emphatic however: sliding contacts 
for a dilatant strain path persist. This is not to say that the mean-field 
calculation is particularly accurate; in the next section refinements will be 
introduced. 
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8.5   Strain fluctuations 

An obvious improvement on the mean strain theory is to consider strain 
fluctuations. The purpose of this analysis is to investigate the effects of 
friction and therefore fabric fluctuations are ignored for the moment. 
These will be added later as an extra perturbation. 

The calculation is somewhat involved. There are a number of stages. 
The first is the determination of the spins while allowing for strain 
fluctuations. The second stage is the calculation of the displacement 
fluctuations, taking into account the fact that for sliding interactions a 
particle pair must be considered, rather than in single particle. The third 
stage involves an estimate of the strain fluctuations, derived from the 
displacement fluctuations, necessary to evaluate the spin fluctuations. 
Then all the elements are in place to work out the assembly-averaged 
incremental stiffness components. Finally, fabric heterogeneity is again 
added as a refinement. Other possible refinements are also discussed. 

8.5.1   Determining the spins 

Starting point is the determination of the spins. In the moment equation 
(8.1) the mean strain is replaced by the mean strain plus fluctuations. So, 
instead of the mean strain, the local strain is inserted 
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A concomitant equation for particle   has a similar form. The solution 
is entirely analogous to the mean-field case 
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The average of this expression must vanish. Inspection of averages and 
fluctuations under the two scenarios discussed in Sections 8.3 and 8.4 
shows that the terms proportional to cos 2 ,s   sin2  and s  all have 
zero mean. As a result the spin fluctuations are  
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Therefore, it becomes necessary to obtain an estimate for the shear 
strain fluctuations and this aspect is also the one that distinguishes it from 
the mean strain approximation. 

8.5.2   The displacement fluctuations associated with a sliding 
neighbouring particle derived from the force equilibrium 
equations 

The force equilibrium equations are 
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Averages and fluctuations may be distinguished. The double displacement 
gradient is a fluctuating quantity and all the odd structural sums ditto, so 
the first order fluctuation terms together are 
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The fluctuating structural sum can be written as a derivative, that is  
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The fluctuational content in this case derives from the slipping contact, 
which leads to the form 
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The whole set of equations that was used in the previous chapters can 
be re-deployed. However, there is now a detail that needs to be addressed. 
As was observed in the previous section, the fluctuation that arises from 
particle   cannot be viewed independently from the one that is associated 
with particle  , with which it shares a sliding contact. Starting point is 
once more Equation (6.3). Noting the modifications made in the previous 
chapter the term   A e   is again replaced by .Z  The displacement 
fluctuation takes the form 

                       
 

 1
2 22

2
i i

a ai j ij
iu d ke P k d yZ e


    k.x k.yx y            (8.5) 

The fluctuations Z  now have two contributions; the first – originating 
from particle   and centred on the origin – is treated along the same lines 
as before, but the second one stems from the fluctuating field associated 
with the neighbour   with which it shares a frictional sliding contact. The 
analysis needs to be extended to accommodate the latter. The result for the 
displacement difference between the two particles that share a sliding 
contact is given in Equation (8.6). 

The analysis goes as follows. 
The centre of particle   is located at position c  and the fluctuating 

field Z  will be assumed to be ‘smeared out’ in radial fashion as 

   2 2exp /ijZ a   c c y 
.  
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The following integral must now be evaluated 
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2 2 exp /i i

ij ijd yZ e Z d y a e      k.y k.yy c c y 
 

A coordinate transform  z y c  leads to 
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This integral is again quite easily done and the result is 
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So, the contribution of this fabric fluctuation to the fluctuating 
displacement field (8.5) turns out to be 
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The result of the analysis of the fluctuation at the origin (that is  
the fluctuation centered at particle  ) may now be taken over —  
Section (6.5) — with the substitution x  x c  and the vector m  the 
unit vector that points from the centre of particle .  To distinguish this 
vector from the unit vector that points away from the origin at particle   
it will be called   ;m  the vector m  itself, the one pointing away from the 
centre of particle   is — for clarity — denoted as   .m  

For the form of  A  the angle of the unit normal is increased by ,
thereby incurring a minus sign. As the unit normals always appear in pairs 
the form is the same as for  .A  

The form for the displacement fluctuation is recalled 
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Now, for the case of the normal and tangential interaction being equal 

1 0p   and  2
0 1/p c pk ; this is not entirely the case here, as there are 

sliding contacts. However, the 0p  term is dominant and the 1p  term is 
rather smaller, so approximately it follows that 
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Importantly, the displacement difference between the two particles   and 
  is 

 12
0j
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 


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
         (8.6) 

The way is now clear to assess the overall stress increment.  

8.5.3   The stress contribution associated with the fluctuations 
due to sliding; strain fluctuations and spin fluctuations 

In order to arrive at the assembly-averaged stress increment, the following 
expression needs to be evaluated 
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In the first term the sum is again replaced by an integral and the sum over 
the fluctuating spins of the neighbours of   are neglected. Note then that 
the displacement fluctuations are all proportional to ,Z  which average to 
zero. The spin fluctuations will be required to average to zero, so these 
need not be calculated. Thus, the first term becomes just like the mean-
field approximation 
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The third term can also be simplified. As the vectors c  and n  both 
point in the same direction, it follows from the anti-symmetric properties 
of the Levi-Civita tensor that the spin terms of the slipping contacts vanish. 
The second and third terms term are therefore 
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An estimate is needed for the strain fluctuations, which is less simple 
in this case because of the contribution of the neighbouring particle that 
slips. The displacement fluctuation is expressed in polar coordinates 

 

 
   

 

 

 

2

1 1

2

0

a

j j
j aj

au
c kp

r rrm c
m S S Z

a ar

   


 


 

          
        

x

m m c

m c




 

 

The first derivative in 0x  of the second term in the square brackets 
takes the form 
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An estimate of the strain fluctuation is obtained by means of a least 
squares procedure. While in principle it is possible to obtain an estimate 
of the strain fluctuation by simply taking the derivative of the  
displacement fluctuation in 0,x  this does not lead to a satisfactory 
procedure for two reasons. Firstly, the strain fluctuation should contain 
information about the neighbouring particles and these are all located at 
more or less the same distance from the centre of particle ;  therefore, a 
variation in the distance (as is implied by taking the gradient in 0)x  
does not yield any useful information derived from the first term in  
square brackets. Obviously, the second term does imply a variation in the 
distance, because the origin of this term is not located in the centre of 
particle  . Secondly, the presence of the second term in the square 
brackets contains information that is specific to the angle .  This 
information correlates with information in Z  and, whereas the average  
of Z  is zero, the average of the product of the contribution to the strain 
fluctuation does not necessarily vanish. This would make it not a 
fluctuating quantity.  

In order to remedy these two objections a least squares procedure is 
advocated, which — because of its functional form — enables the 
imposition of a stipulation that forces the mean of the gradient to vanish. 
The functional that delivers this goal is easily constructed. It takes the form 
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which is minimised under the condition that 
1

0ije
N





   and the set   
are the appropriate Lagrange multipliers. 

The result of the minimisation is 
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Replacing the sum over the branch vectors by its average and evaluating 
this as an integral gives 
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In a similar way the sum over the displacement fluctuations may be 
obtained. There are two contributions; the first one is simply 
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where use was made of the approximation 
1

0.
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For the second contribution — that is the one due to the source at 
particle   — the function is approximated by expanding in a Taylor series 
up to first order around 0;x  this yields a similar term in the unit vector 
of the branch as in the first term, but its front factor is the matrix ,V  as 
determined above. Altogether the strain fluctuation takes the form 
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The factors that are needed to evaluate this are plotted in Fig. 8.6.  
The Lagrange multipliers are such that the average vanishes and 

therefore the outcome is 
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It is noted that the terms of V  that contain the angle of the slipping contact 
  are rather smaller than the other terms — see graph — and therefore 
the correlation correction constitutes only a minor contribution.  
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With the form for the strain fluctuations available it becomes possible 

to make an estimate of the stress increment as a function of the components 
of the mean strain increment. Naturally, the outcome depends on input 
parameters such as the number of contacts, the anisotropy, etc. The result 
is in part the same as the mean-field estimate, so all that needs to be 
reported here is the addition due to the displacement fluctuations as 
calculated above. There are two parts to this. The first is the part due the 
actual displacement fluctuations; this part is labelled A. The second 
contribution comes about as a result of the spin fluctuations; these 
contributions are labelled B.  

The first extra term is as follows (note that averaging over the four 
directions has been carried out, so the angle   here refers to the first 
quadrant). 
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Reporting the extra stress increment due to the spin fluctuation, insofar 
as it is proportional to the components of ,V  it is convenient to introduce 

the shorthand 1 1 1 2 1 1

1 1
;
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extra diagonal stress increments then turn out to be entirely proportional 
to 1 2T T .  
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In practice, for a reasonable set of system parameters these B-
contributions are negligible, compared to the A-contributions. For the 
shear stress then, it is sufficient to report the result of the A-contributions. 
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The mean spin, ,  is determined either by requiring the spin 
fluctuations to average to zero, or simply by requiring stress symmetry.  
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The non-dimensional determinant   and the dilatancy ratio   have 
been plotted as a function of the angle of the slipping contact when there 
is one of these per particle and an average has been calculated over the 
four conjugate directions. It is seen that, with the parameter choice in the 
example of the graph that for contacts oriented towards the mean slipping 
angle s , the determinant vanishes and that the dilatancy peaks.  
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Figure 8.7. Determinant  and dilatancy ratio   as a function of the slip 
angle; the parameters for this plot are 11 22/ 4   , 0.76pa  , 0.93,s   

4cN  , 0.3s  , 6VN  , 1/ 0.5.
ca cS
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This is very similar to the features of the mean-field theory, only more 
pronounced.  

The incremental shear stress ratio has also been evaluated and is 
depicted in Fig. 8.8. It is seen that, due to the strain increment  
fluctuations associated with the slipping contacts, the incremental shear 
modulus is substantially reduced, compared with the all-stick case. It is 
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also observed that the value is rather smaller than the mean-field case.  
All this points to the characteristic features of granular assemblies with 
frictional effects and as such gives a refinement of the mean-field theory.  
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Figure 8.8. Shear stress ratio for an assembly with one slipping contact per 
particles to an all stick assembly. The same parameters as for Fig. 8.7 have 
been used.  

8.6   Fabric heterogeneity and other refinements 

There are some other refinements that can be considered. Note though that 
every refinement requires extra parameters and by introducing them the 
complexity of the modelling increases. Nevertheless, it is good to make a 
list of relevant mechanisms and show where the current — very simple — 
model is deficient. 

1. So far it has been assumed that all particles have one slipping 
contact. This could be amended, especially taking into account that there 
will be a fraction of particles with no slipping contacts at all. 
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2. A certain amount of fabric heterogeneity could be introduced (as was 
done for the mean-field investigation, Section 8.4). This is a complication, 
as of course some fabric heterogeneity already follows from that 
associated with the sliding contacts.  

3. Not all slipping contacts need to be bunched in the direction of .s  
Rather, a distribution of sliding contacts in the vicinity of s  could be 
considered. Noting the sharpness of the peaks in the graphs of the dilatancy 
and the determinant, averaging over a region around the mean slip angle 
would be appropriate. Below it will be argued that this refinement is 
equivalent to the refinement number 2. 

These three effects — while they would operate simultaneously — can 
be investigated separately to come to an understanding of how each affects 
the outcome of the calculation.  
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Figure 8.9. The same graph as Fig. 8.7, but with the addition of 0.1s   
as dashed lines.  
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To investigate the effect of not all particles having one slipping  
contact, refinement number 1, simply average the slipping model 
calculation above with the no-slide model. If there is a fraction of s  no-
slide contacts and  1 s  sliders then the graph of Fig. 8.7 changes.  
This is depicted in Fig. 8.9 for a value of 0.1,s   but all other  
parameters kept the same as in Fig. 8.7.  

It is seen that the determinant is larger; therefore, the assembly so-
described would be further away from peak stress. Alternatively, it could 
be reasoned that this state requires a higher stress ratio (resulting in a 
higher anisotropy and marginally higher dilatancy).  

Refinement 2, looks at the effect of fabric heterogeneity. The simplest 
way of doing this is by introducing a small value and thereby ignoring any 
interaction between the fabric variations due to sliding. However, it is 
noted that by assessing the displacement fluctuations due to sliding a slight 
overestimate is achieved, as the average interaction for a contact that slides 
is not the full ‘stick’ contact, but a slightly smaller value because one 
quarter of contacts in this direction slide. This effect is introduced as well 

as introducing a value for the contact point variations  2 2/ .P p  Just to 

see what this leads to, this parameter is set to a small value of 0.05 and 
the same graph as before can be made.  

The result is shown in Fig. 8.10. The effect of the mean value of the 
no-slip interaction being somewhat smaller than the no-slip interaction 
itself lifts the determinant line slightly, while the effect of fabric 
fluctuations in the number of contacts pulls it down. The dilatancy is 
affected in the other direction: it is increased by fabric heterogeneity, 
though it depends on exactly how the parameters are chosen. It is noted 
that the two refinements 1 and 2 have opposite effects. Therefore, 
distinguishing between the two may be quite hard and the best thing is to 
combine the two in one parameter (a similar thing was done in the mean-
field theory). 
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Figure 8.10. Same graph as Fig. 8.7, but added the two effects of fabric 
heterogeneity. Solid line: mean value of no-slip interaction 3 / 4  of the 

value in Fig. 8.7. Dashed line: introduction of  2 2/ 0.05.P p   

 
The third refinement is the result of non-homogeneity in the packing 

properties, which result in local stress variations. These may lead to the 
direction of slipping angle being different from position to position. In 
refinement number 2 fabric heterogeneity has already been accounted for. 
However, the deformation fluctuation associated with fabric variations has 
not been coupled to variations in the direction of the slipping angle. The 
coupling would have only a small effect in the context of an assembly in 
which the sliding contacts are not dominant. It was shown in Section 7.6 
that the dominant effect associated with fabric heterogeneity is the 
variation in the number of contacts. Thus, any other effects, such as contact 
point distribution fluctuations that are not aligned with the mean axis of 

anisotropy, are of lesser importance. As the parameter  2 2/P p  already 

comprises an amalgam of influences, it is not profitable to do a much more 
in-depth analysis. 
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Figure 8.11. The anisotropy parameter, the stress ratio and the dilatancy 
parameter as a function of the mean number of contacts per particle. The 
solid lines correspond to a heterogeneity parameter of 0.1H   and the 
dashed lines to 0.05H  . All calculations done at peak stress ratio when 

0  . 

 

It is now possible to construct a similar graph to Fig. 8.5, taking  
account of heterogeneity and the various refinements. This is reported in 
Fig. 8.11. 

Qualitatively, the results are not all that different from the mean strain 
theory. For the lower end of the number of contacts the results are 
strikingly similar to experimental findings, for example as reported by 
[Konishi, 1978]. 

8.7   The evolution of an assembly in a biaxial cell test 

A narrative for the evolution of an assembly of particles with a frictional 
interaction under deviatoric loading has been put forward by various 
authors: for example, [Cundall et al., 1982], [Thornton and Antony, 1998]. 
Taking the biaxial test referred to in Section 1.1 the following scenario is 
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plausible. The initial state is densely packed and statistically isotropic. 
This state is first isotropically compressed, then stressed further in one 
direction while the stress in the other direction is kept constant. As this 
deviatoric process progresses more contacts are made in the major 
principal stress direction while contacts are lost in the minor principal 
stress direction (more generally, the evolution of the contact point 
distribution tends to follow the stress ellipse). For geometrical reasons  
the number of contacts that can be made has a limited availability and  
the number of contacts that can be lost can in principle go on until there 
are very few left. Therefore, the total number of contacts is steadily 
reduced as the test progresses. At the same time the force ratio at  
contacts increases in the directions referred to in Section 8.4.2. In  
Section 8.3 the isotropic point of the stress-strain curve was discussed, 
while the peak-stress-ratio point was analysed in Section 8.4. Beyond this 
point rupture layer formation takes place and the problem will depend 
critically on the specification of the boundary conditions. The evolution 
from the isotropic point to the peak point could in principle be modelled 
with rate equations. However, a large number of parameters would have 
to be supplied (all of which amalgams representing various simultaneously 
operating effects).  

In this section one more effect is considered that is relevant near  
peak stress ratio while the number of contacts decreases. This effect relates 
to Fig. 6.2. It is seen that when the number of contacts decreases, while 
the variability remains constant, the distance ratio /c a  also increases, 
which results in a decrease in the function    1 / / /S c a a c  , as follows 
from Fig. 6.1. The result is that the effects of heterogeneity, both due  
to sliding and to fabric fluctuations become less intense and the value  
of the heterogeneity parameter H


 (which is proportional to the S-

function) goes down. In other words, the medium moves more towards a 
mean-field approximation, though some non-homogeneity is always 
present of course. This would happen close to the peak stress ratio point, 
when the determinant   is already small and the stress ratio will not 
change much. 

When this occurs — consulting Fig. 8.5 — the dilatancy remains fairly 
constant. This has also been observed in experiments. In fact it is one of 
the key features of such tests.  
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While the analysis has been carried out in two dimensions, the physics 
that underlies the experimentally observed effects is adequately 
elucidated. The principal elements of the theory are summarised: (1) the 
treatment of sliding friction as a constraint, (2) the introduction of 
anisotropy as an integral part of the analysis and (3) the necessary 
consideration of fabric heterogeneity and a calculus to assess its impact, 
including the spatial spreading that gives rise to the S-functions. Insight in 
the latter aspect is enhanced by the analysis of connectivity in a granular 
medium (Section 6.6). All these aspects need to work together to acquire 
an understanding of the mechanisms that take place. 
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Appendix A 

Mathematical Appendix 

A.1   Isotropic tensors 

Literature: [Jeffreys, 1931]. 

A.1.1   Isotropic 2-tensor 

The identity is ij ; its inverse is also .ij   

A.1.2   Isotropic 4-tensor 

The identity of rank-4 tensors is such that a rank-4 tensor ijpqA , which 
connects two symmetric rank-2 tensors has the inverse 1

pqabA  

 1 1

2ijpq pqab ai bj aj biA A        

The isotropic tensor of rank 4 is  

 ab pq ap bq aq bp         

Its inverse is 

 pq ij ip jq iq jp         with 
1

4



  and 

 4


  

 


 in 2-d 

and 
 2 3 2


  

 


 in 3-d. 
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A.2   Integrals of strings of unit vectors 

 
2

0

0

2I d


    

     
2

2

0

ij i j ijI n n d


      

           
2

4

0 4ijk i j k ij k ik j i kjI n n n n d
                    

The inverse of the latter is the solution of the equation 
      14 4 1

2ijk ip jq iq jpk pq
I    


 I 

 and  

   1
4 1 1

2 pq k pk q p qkk pq
     


      

 
I   

 

In three dimensions the corresponding expressions are 

 0 4
unit sphere

I d    ;  2 4

3ij i j ij
unit sphere

I n n d      

and    4 4

15ijk i j k ij k ik j i jk
unit sphere

I n n n n d                 

   1
4 15 2

16 5 pq k pk q p qkk pq
     


      

 
I   

 

The front factors 2 , , / 4    in 2-d and 4 , 4 / 3, 4 /15    in 3-d are 
easily gathered in a coefficient 

 
 
2 1

2 !!

d
n d


 

, 

where    2 !! 2.4.... 2m m ;    2 1 !! 1.3.5... 2 1m m   , m  an integer. 
(see [Abramowitz and Stegun, 1965], Section 6.1.49). 
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A very useful coefficient is  

 

 
, 1

2 !!
n d

n d
 

 
. 

A.3   Elastic constants 

Conversion of the isotropic elastic constants in two and three dimensions. 
Top line: 3-D; bottom line 2-D. 

  and  : Lamé constants 
E : Young’s modulus,  : contraction coefficient (Poisson’s ratio) 
K : bulk modulus, G : shear modulus 
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A.4   Fourier transforms and harmonic density 

Fourier transforms are a powerful tool to solve differential equations. In 
this section the basic theory is explored, which is required for the 
characterisation of the fluctuations. To begin with a one-dimensional 
approach is taken, in which functions depend on one variable, the time t  
say. In the development below it makes sense to keep the integral sign with 
its boundaries together with the integration variable. 

The appropriate tool for describing fluctuating physical phenomena is 
the auto-correlation function. For a fluctuating function of time  z t  
(which is zero on average) it is defined as 

     
0

1
limz t d z z t




   


   

It is seen that the expectation value 2z  is just equal to  0 .z  
The Fourier transform  ẑ   of the function  z t  is defined as 

   ˆ i tz dt z t e 






   

The inverse transform is  

   1
ˆ

2
i tz t d z e  







  , 

which makes the delta function (the ‘identity’)  

  1

2
i tt d e  







   

The latter has meaning only in the context of another function, as follows 

     z t d z t   




   
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In physical processes the infinite integral boundaries do not make sense 
and therefore a modified definition is employed, the truncated Fourier 
transform 

   
0

ˆ i tz dt z t e



     

Now calculate the inverse Fourier transform of the quantity 
   ˆ ˆ ˆ /zS z z       

     
0 0

1

2
i t i i

zS t d e d z e d z e
 

      







     

The order of the integrals may be interchanged and therefore 

       

     

0 0

0 0

1

2

1

i t
zS t d d d e z z

d d t z z

 
  

 

    


      



 





  

  

 
 

Integrating over   (using the properties of the delta function) gives 

     
0

1 t

zS t d z t z


  




   

For a time record   that is much longer than the correlation time the 
upper boundary may be replaced by   and it is seen that in the limit 
    the inverse Fourier transform  zS t  is just equal to the correlation 
function  z t . This is the famous Wiener–Khinchin theorem. The 
quantity  ˆ

zS   is called the spectral intensity or harmonic (spectral) 
density.  

In two or three dimensions the formulas are easily extended, by  
taking the integrals over multiple variables. The Fourier frequency    
then becomes a vector. In a spatial setting this vector is called the wave 
number .k   
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A.5   Bessel functions 

Literature [Abramowitz and Stegun, 1965]. 
Bessel functions are very useful in the evaluation of problems that have 

cylinder symmetry. There are various types. The best-known is the family 
of ‘ordinary’ Bessel functions, or Bessel functions of the first kind. They 
can either be defined as a series expansion 

   

2

0

1
1 2
2 ! 1

k

k

z
J z z

k k



 





           
  

Or as an integral 

    2

0

1

2
cos cos sin ,

1
2

z
J z z d






   
 

 
 
 
   
 

  

where   denotes the order of the Bessel function, indicating which 
member of the family is meant.  

The other type of cylinder functions that are useful are the Modified 
Bessel Functions.  

   

2

0

1
1 4
2 ! 1

k

k

z
I z z

k k



 





 
          

  

Or 

    2

0

1

2
exp cos sin

1
2

z
I z z d






   
 

 
 
  
   
 

  

The Bessel functions have been studied extensively. There are all 
manner of interesting relations between them. Many of these can be found 
in [Abramowitch and Stegun, 1965]. 

Special cases of the half-integer Modified Bessel Functions are 

 1
2

sinh

1
2

zI z
z

 ;  3
2 3/2 1/2

1 sinh cosh

1

2

z zI z
z z



    
 
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A.6   Various integrals 

A.6.1   Integrals involving Bessel functions 

Literature [Gradshteyn and Ryzhik, 1965], abbreviated as GR. 

   
2

0

0

cos cos 2z d J z


    

     
0

exp cos cosn
ni iz nz d J z



     see also GR p 402; 3.715.14 

In particular with 1 2 1 2cos ; sin ; cos ; sinn n m m       
 

 

     

     

 

2

0

2 2

0 0

2 2

0 0

1

sin cos

sin cos cos cos sin cos cos

sin cos sin sin sin cos cos

2

j

j

d kx n

d kx d kx

d kx d kx

J kx m



 

 

  

       

       



    

 
  

 
 
    





 

 



 

   

   

   

   

   

 

2

0

2
1 3

2
1 3

2
1 3

2
1 3

1

sin cos 111,112,122,222

3 3
2 cos cos cos ,

4 4

1 1
sin sin cos ,

4 4

1 3
cos cos cos ,

4 4

3 1
sin sin cos

4 4

2

j a i

i

d kx n n n

J kx J kx

J kx J kx

J kx J kx

J kx J kx

J kx m



  

   

  

  

  

 

     

     
 

   
 
   
 

    
 


  

 

    3 32
2

aj j ai a ij

i aj j ai a ij i j a

m m

J kx m m m J kx m m m

 

    

 

   
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 
2 2

2 2
0 2

0

1
exp exp

2 4

y ayJ ky dy a k
a

         
  

  see GR p717; 6.631.4 

 

 

1
2

3
2

2 2
2 2

1 1 2 2
0

2 2
2 2

3 3 2 2
0

1
exp exp

4 2 2

1
exp exp

4 2 2

x x xS a dk a k J kx I
a a a

x x xS a dk a k J kx I
a a a









               
       

               
       




 

see GR p710; 6.618.1. 

These functions are used in Equation (6.4). 

A.6.2    Integrals with confluent hypergeometric functions 

The confluent hypergeometric function can be defined asa  

   
     

1
11

0

; ; 1
b azt ab

a b z e t t dt
a b a

 
  

     

Other definitions (for example, a series expansion) are listed in 
[Abramowitz and Stegun, 1965, Chapter 13].  

The special case that is needed here is for 1
2a  ; 3

2b    

 1 3
; ;

2 2 2

iz erf i z
z
    

 
 

It arises from the integral [Gradshteyn and Ryzhik 3.896.4] 

 
2 2

2 2
2 2 2

0

1 2 1 3
sin exp exp ; ;

4 2 2

y y ydk ky a k
a a a

            
     

  

This expression has a series expansion in /y a  

                                                      

aThe Gamma function   1

0

z tz t e dt


    ;    1 !n n n n     ; 
1

.
2

   
 
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2 3 4 5
1 2 9 13 437

2 ...
3 5 21 540

y y y y y
a a a a a a
                             

 

A.6.3    Multiple integrals 

The integral 
  2

1

2

j bn i
n

k k
d ke

k  k.x  in two dimensions ( 2n  ) diverges. 

In three dimensions integrate first over the component of k  that does not 
appear in the subscripts j  or .b  Assume that that is the third component 

     

 
   

 

 

 
 

 

33 2
33 32 2 2

3

2
3 33 2 2

0 3

2
2

2
2

2

22
cos

2
0 0

2

2

1 1 1

2 2

2 1
cos

2

1 1

2 2

1 1

2 2

1

2 2

1

2

j b ik zi i
j b

i
j b

i kz
j b

i kz

j b

ikx kz

j b

j

k k
d ke d ke k k dk e

k k k

d ke k k dk k z
k k

d ke k k e
k

d ke e
x x k

d dke e
x x

x


 

 























 









 


 

 


 

 


 

  

 





 

k.x k.x

k.x

k.x

k.x

 
 

2

0 2 2 2
0

1 1

2
kz

b j b

dke J kx
x x x x z


  


  



 

Here 0z  ; there is no problem for negative ,z  as it is seen 
immediately from the cosine that the answer is the same. For the 
differentiation and integration to be exchanged all the integrals have to 
exist, which is the case if both x  and z  are positive.  

The integral 
  4

1 1

2
n i

a i j bn d ke k k k k
k  k.x  in two dimensions again 

diverges. In three dimensions a finite result is obtained if first the 
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calculation is done for a combination of subscripts that excludes one of the 
coordinates. Let this be the third coordinate.  

     

 
 

 

 
 

33 2
33 3 24 2 2

3

2
3 33 22 2

0 3

2
2 3

1 1 1

2 2

2 1
cos

2

1 1
1

4 2

a b i j ik zi i
a b i j

i
a b i j

i kz
a b i j

k k k k
d ke d ke k k k k dk e

k k k

d ke k k k k dk k z
k k

d ke k k k k kz e
k

 



















 

  

 



k.x k.x

k.x

k.x

 

Having established that this integral never diverges while both x  and z  
are positive, avoiding having to deploy complicated combinations of 
Bessel functions, the evaluation is approached again as a derivative of the 
simpler integral. However, this one does diverge 

 
 

 

2
2 3

4
2

2 3

1 1
1

4 2

1 1

4 2

i kz
a b i j

i kz

a b i j

d ke k k k k kz e
k

kzd ke e
x x x x k











 


   





k.x

k.x

 

Therefore, before the integral over k  is performed two differentiations 
have to be executed to obtain a finite result.  

 

 
 

4
2

2 3

4

02 2
0

1 1

4 2

1 1

2 2

i kz

a b i j

kz

a b i j

kzd ke e
x x x x k

kzdk e J kx
x x x x k










 
   

 


   





k.x
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Now,  

   

     

2
0

1

2
2

0 1 1

1

i j i j

j i i j

J kx xJ kx k
x x x x

x x xJ kx J kx k J kx k
kx x x x x

   
   

     
           

 

So, the integrals that have to be done are 

   
 

2

0 3/22 2 2 2
0

1
1 kz zdk kz e J kx

x z x z


  

 
  

   1 2 2
0

1
1 kz xdk kz e J kx

k x z


 

  

It follows that 

 
 

 
 

4

02 2
0

2

02 2
0

1 1

2 2

1 1

2 2

kz

a b i j

kz

a b

kzdk e J kx
x x x x k

kzdk e J kx
x x k











 
   

 


 




 

 

       

1

1 1 0 12 2

1

j

i

ji j i j i

x
J kx

x x
x x x x

J kx J kx k J kx J kx
x x x kx


 
   

     
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 

 
 

   

 

2
2 4

24
cos cos sin sin

2 3
0 0

4 3

0 13 2
0 0

2

12
0

1 1

2

1 1

2

1 1 1 1

2 2

1 1

2

1 1

2

i
a i j b

ikx

a b i j

a b i j a b i j

j

a b i

j b

d ke k k k k
k

dk d e
x x x x k

xdk J kx dk J kx
x x x x k x x x k x

x
dk J kx

x x k x x

x
x x x


   






 








 








   

   


       

   
     

  
    



 

 



k.x

2 2 4

1 1
2

2 2
jb b jb

j

x xx
x x x x


 

           

 

 
 

  2 11 1
1 2 12 32 2

20 1 2

cos
1

4
k xk x

dk k x e
kk k


 


  while both 2 1, 0k x   

Entirely analogous to the previous case one obtains 

 

 
   
 

    2 1

2
2 4

4
1 1 2 2

1 22 22 2
0 0 1 2

4

2 2 2 2 13
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1 1

2

cos cos4

2

1 1
cos 1

4

i
a i j b

a b i j

k x

a b i j

d ke k k k k
k

k x k x
dk dk

x x x x k k

dk k x k x e
x x x x k







 









    




   



 



k.x

 

By inspecting symmetry relations the régime for all values of 1,2x  is 
easily determined. 

The result is  

Subscripts 1111 
4 2 2 4
1 1 2 2

6

6 3

4

x x x x
r

 
  

Subscripts 1122 
4 2 2 4
1 1 2 2

6

6

4

x x x x
r

 
  
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Subscripts 2222 
4 2 2 4
1 1 2 2

6

3 6

4

x x x x
r

 
 

Subscripts 1112 
 2 2

1 2 1 2

6

3

2

x x x x
r


  

Subscripts 1222 
 2 2

1 2 2 1

6

3

2

x x x x
r

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Appendix B 

List of Symbols and Notations 

B.1   List of symbols

a Particle radius 
a Length parameter, describing the influence region of a 

fluctuation 

pa Contact point anisotropy parameter 

sa Simple shear parameter 

A Surface area 
A Wave amplitude (inc polarisation) 

12A Hamaker constant 
c Coordination vector 

c Average magnitude of the coordination vector 
C Compliance tensor 
d Dimension of the problem (either 2 or 3) 
d grainsize below which %  of the weight of the sample is 

measured 

Vd  Distance from particle centre   to the nearest Voronoi 
boundary 

d Normal contact displacement increment 

d  Tangential contact displacement increment 

d  Intermediate contact displacement increment 

d Deviatoric part of the contact distribution 
D  Normal contact displacement  

D  Tangential contact displacement 

/D Dt Co-moving derivative 
E, E' Young’s moduli of two particles in contact 
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E   Strain tensor 
e   Strain increment tensor 
e   Electron charge 
f   Fraction 

f   Force increment 
f   Normal contact force increment 

f   Tangential contact force increment 

f   Intermediate contact force increment 

f   Fraction of slipping contacts in an assembly 

df   Factor 
4


 in 2-d and 

4

15


 in 3-d 

F   Force vector 
F   Influence function fourth order tensor 
F   Normal contact force 

F   Tangential contact force 

F   Intermediate contact force 

 g x n  Displacement field of a rupture layer with unit normal n  

g   Acceleration due to gravity 

 G   3dx



 F  

G   Shear modulus 
H   Separation between two particles 
H


 Heterogeneity parameter for an assembly with frictionally 
sliding contacts (Section 8.4.2) 

nJ   Bessel function of order n  

k   Contact interaction spring constant 
k   Contact interaction spring constant between particles   

and   

Bk    Boltzmann’s constant  

k k
k k
 



 
 
 



 
 Normal and tangential contact stiffness matrix 
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10

0
s

s

k k
k k

k k k





 

 

  

 
 
 
 
 







 Contact stiffness matrix in three dimensions 

k   Contact interaction tensor 
k   Fourier wave vector; magnitude k  k  

K   Bulk modulus 

1L , 2L   Length parameters 
   Length of cylinder 

    Angular density of the population at the assembly 

m   Unit normal vector 
n   Porosity 
 0n    Bulk concentration of ions 

n   Unit normal vector 
n   Unit normal vector, normal to n  
n n  Unit normals in the direction of the tangential and 

intermediate force 
N   Number of particles in an assembly 

cN    Number of contacts of particle   

,c isoN   Number of contacts per particle in the isostatic limit 

p   Pressure 

P   Isotropic fluctuation in the contact distribution  

 p   Angular contact distribution of particle   
p  Two-tensor denoting the symmetrical contact distribution 

of particle   

0 1,p p  Influence parameters (inverse stiffnesses), Sections 6.5 
and 7.4 

p    11 22

1

2
p p  

q  Vector denoting the asymmetry of the contact distribution 
of particle   

1P , 2P   Principal pre-stresses 
P   Acoustic tensor 
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Q
2 23 1 1 '

4 '
Q

E E
   

  
 

 tQ  Time-dependent rigid coordinate rotation 

 Q  Coordinate rotation over an angle   

r Rotation increment 
R, R' Radii of contacting particles 
R Radius of spherical (circular) assembly 
R Pre-stress ratio 

R̂ Cell contact radius of particle 
R Local response tensor

1 3,S S Functions defined in Section

S Stiffness cross-correlation function
t Time
t Traction vector increment
T Absolute temperature
T Traction vector
t̂ Average tensor that gives the contact force increment

T̂ Average tensor that gives the contact force

1,2T 1 1 1 2 1 1

1 1
;

2 2 2

c a c c a cT S S T S S
a c a a c a

                   
        

=
 

    . 

u Displacement vector
v Velocity vector 
v  Equivalent mean volume of one particle /v V N
V Volume 

 V H Interactive potential 

TV Total interactive potential 

V  Matrix form of the positional part of the first displacement 
derivative for a sliding contact (Section 8.5.3) 

W Work 

,x  y Position vectors; magnitudes x  x , y  y
X Stiffness tensor 

mfX Mean-field stiffness tensor 

y Tangent of the rupture layer angle, squared 
z Non-dimensional parameter 
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Z Valency of the ions 
Z Fluctuation source term of the differential equation (7.2) 

 Assembly-average displacement gradient
 Dilatancy ratio
 Kronecker delta tensor
 Electrical permittivity of the fluid
ε Levi-Civita tensor 
 Solids volume fraction (solidosity)

 Angle in the two-dimensional plane

ne No-extension direction

,
V Vd d  Correlation function and normalised correlation function 

 Reciprocal of the double layer thickness
,     Lamé constants 

 Set of Lagrange multipliers
 Non-dimensional outer determinant of the stiffness tensor
 Tensor, giving the proportionality of the spin to the mean

strain

s Friction coefficient
 , ' Poisson’s ratios of two particles in contact
 Phase of a wave

0 Surface potential

 Mass density

σ Stress increment tensor 
 Stress tensor


 Jaumann stress-rate
 Material coordinate vector

 Spin control tensor in ijk mn jlkmA   

 Material constant
 Solid angle
 Amount of energy per unit volume
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B.2   List of notations

* Designation of components of a tensor in a rotated coordinated frame

Particles are numbered. The numbers are identified as a Greek superscript. 
For example x  is the position vector of particle  . Two Greek 
superscripts are used to denote a property of a particle pair. Examples, the 
coordination vector is -     c x x c , the unit normal 

/ c     n c n  and the contact force exerted by particle   on 

particle   is .  F F  Generally, pair-vectors change sign when the 
superscripts are interchanged. Second order tensors do not change sign, 
for example, the interaction tensor . K K  

B.2.1   Structural sums

Structural sums take the interaction and sum them over the Voronoi 
boundaries of a particle, weighed with components of branch vectors. 
They are called A . The lowest order ones are 

1

N

ij ijA K


 

 

  ;
1

N

ijk ij kA K c


  

 

  ;
1

N

ijk ij kA K c c


   

 

   ; etc

Other structural sums may be derived from these, for example 

in ijk mn jlkmA   

B.2.2   Other notations

q (over-bar) assembly-average value of the quantity q
q  (prime) fluctuation of the quantity q  

q̂ (hat) Fourier-transformed of the quantity q  

q (superscript dot) value of q  for a generic particle 
number 

q


(over-dot) rate of change (time differentiation) 
 mfq mean-field value of the quantity q  



205 

9in x 6in       b3746     Physics of the Deformation of Densely Packed Granular Materials, The        b3746-Index        FA 

Index 

A 
acoustic tensor, 60, 79, 87, 137, 

144, 148 

aeolotropic, 50 
all-stick, 177 
angular density, 97 
angular momentum, 42 
anisotropic contact distribution, 101 
anisotropic materials, 50–51 
anisotropy (see also anisotropic),  

17, 52, 80, 82, 94, 110, 118,  
124, 129, 142–144, 147–148, 
154–155, 158–159, 161, 163, 
174, 180, 182, 184 

anti-symmetric, 128 
asymmetry, 94 
auto-correlation function, 188 
auxetic materials, 134, 141 

B 
beach, 5 
Bessel functions, 190, 194 
biaxial cell test, 12, 162 
biaxial cell, 5, 158 
bifurcation, 68 
binormal, 20 
body forces, 41, 78 

Boltzmann’s constant, 25 
boundary conditions, 13, 60, 

68–70, 72, 78, 183 
branch vector, 77, 99, 102, 

106–107, 128 
Brownian motion, 2 
bulk modulus, 47–48, 187 
burrowing animals, 5 

C 
cakes, 124, 126 
Cartesian coordinate system, 34 
Cartesian tensor calculus, 33 
Cartesian tensors, 34 
Cauchy surface, 69 
Cauchy stress, see stress 
cell contact radius, 101 
characteristic equation, 38 
charge neutrality, 25 
chemical engineering, 46, 89, 105 
civil engineering, 89 
coaxial material, 52 
coaxiality, 51–52 
co-moving derivative, see Jaumann 

derivative 
compliance, 23, 46–48, 57, 59 
compression of two cylinders, 22 
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compressive force, 165 
computer simulations, 10, 12 
concentration of ions, 25 
confluent hypergeometric function, 

144, 192 
conjugate angles, 156 
conjugate directions, 177 
connectedness, 119 
connectivity, 123, 184 
constitutive equation, 11, 60 
constitutive law, 14 
constraint, 8 
contact displacement, 14, 128–129, 

149 
contact distribution, 12, 102 
contact dynamics, 13 
contact fabric function, 132 
contact force increment, 108, 129 
contact force ratio, 160 
contact force, 7–8, 11, 14–15, 23, 

98, 100, 130 
contact law, 13–15, 21 
contact parameter, 121 
contact point distribution, 92, 118, 

139, 147 
contact stiffness, 23, 119 
contact surface, 17 
continuous field, 115 
continuum mechanics, 33, 40, 72, 

77, 100 
contraction coefficient, 47 
convex surfaces, 18 
coordinate number, 7–8 
corners of an apparatus, 68 
co-rotational derivative, 55 
correlation function, 85, 95 
correlation in the fluctuations,  

118 
correlation time, 189 
correlation, 96, 139 
Coulomb friction principle, 16 
Coulomb, 8 

creep, 46 
cross correlation, 119 
crystal structure, 24, 95–96 
crystalline solid, 50 
cumulative distribution, 89 
 
D 
deformation fluctuation, 181 
deformation gradient, 45, 50,  

52–54, 97–98, 101, 129 
deformation tensor, 38 
deformation velocity, 53 
deformation, 46, 48, 50 
Delaunay triangulation, 92 
delta function, 80, 188–189 
dense cakes of small particles, 24 
derivative in a granular medium, 

112 
determinant of a rotation, 35 
determinant, 38 
deviatoric loading, 182 
deviatoric strain, 40, 43, 156, 161 
deviatoric, 139, 147, 183 
diagonal stress increments, 175 
dilatancy ratio, 63, 159, 161, 163, 

177 
dilatancy (see also dilation), 5–6, 

12, 110, 158, 164, 177, 180,  
182–183 

dipole moment, 25 
dipoles of the fluid molecules, 24 
Dirichlet, 69 
Discrete Element Method, 12 
displacement fluctuation, 117, 138, 

151, 166, 168–169, 171–174, 
180 

displacement gradient, 37, 69, 112, 
128 

displacement increment, 17, 106, 
130 

displacement, 36, 45, 69, 150 
DLVO theory, 25–26 
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double layer interaction, 25 
double layer, 25, 27 
double sliding models, 71–72 
dry friction, 16 
dynamic methods, 12 
 
E 
effective moduli, 142 
effective stiffness moduli, 84 
eigenvalues, 38 
Einstein’s summation convention, 

34 
elastic constants, 21 
elastic increment, 18 
elastic isotropic materials, 47 
elastic law, 18 
elastic state, 17 
elastic symmetries, 51 
elastic unloading, 150 
elasticity, 48–50, 52, 133 
elasto-frictional, 12 
electric charge distribution, 24 
electrical permittivity, 25 
electrical potential, 25 
electron charge, 25 
elliptic, 68–69, 71 
ellipticity condition, 74 
enduring contacts, 9 
energy per unit volume, 49 
equation of motion, 41–42, 73–74 
equilibrium equation, 7, 9, 12, 59, 

78, 99, 109, 111, 114, 130,  
136–137, 142 

equilibrium, 4, 6–7 
Euler angles, 36 
extension of a line element, 39 
 
F 
fabric anisotropy, 160 
fabric approximation, 131 
fabric fluctuations (see also fabric 

heterogeneity), 131, 133–134, 

148, 152, 160, 162–166, 169, 
178–181, 184 

fabric functions, 94 
fabric tensor, 95, 110 
fabric, 92, 151 
failure planes, 59 
failure, 6, 110 
filtration, 24, 105 
fluctuating spins, 170 
fluctuating structural sum, 121, 143, 

168 
fluctuation, 10, 77–79, 83–84,  

86, 106, 109, 111, 114–118,  
122–125, 135, 138–139, 141, 
143, 148, 177 

fluid molecules, 24 
force bridges, 6 
force chains, 96 
force equilibrium equation, 11, 111, 

130, 143, 167 
force equilibrium, 7–8, 108 
force increment, 17, 20 
force network, 9, 11 
force ratio, 15, 101, 149, 160–161 
force-displacement relationship, 21 
Fourier coefficients, 145 
Fourier transform, 78–79, 114, 143, 

188 
Fourier, 85 
fourth-order tensor, 50 
fractal surfaces, 23 
frame rotation, 128–129 
friction, 8–9, 15, 23, 44 
friction coefficient, 24, 151, 156, 

158–159 
friction cone, 19 
friction criterion, 57 
friction in three dimensions, 19 
frictional interaction, 15, 18–19, 

130, 140, 149–150, 164, 182 
frictional material, 55, 57, 60, 65 
frictional sliding contact, 168 
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frictional sliding state, 17 
frictional state, 18, 63 
frictionless assembly, 105 
frictionless contacts, 137 
frictionless interaction, 108, 125 
frictionless particles, 139 
frictionless, 138, 140–141 
 
G 
Gauss’ theorem, 41, 49 
generator, 90–91 
geometrical linearization, 37–38, 46 
geophysics, 46 
geotechnical engineering, 46 
grain size distribution, 7, 89 
grain size, 1, 89 
granular material, 33 
gravity, 41 
 
H 
Hamaker constant, 26 
harmonic density, 188 
Hertzian contact, 21 
hetero-disperse granular assembly, 

96 
hetero-disperse samples, 129 
heterogeneity parameter, 164 
heterogeneity with tangential 

interactions, 134 
heterogeneity, 6, 33, 77, 80, 106, 

111, 119, 124–126, 137–138, 
142, 149, 163, 182 

higher order model, 73 
hyperbolic, 68–69, 71–72 
 
I 
identity of the fourth order tensors, 

48 
identity, 35, 45, 185 
inclusion, 80 
increment, 46–48 

incremental behaviour, 55 
incremental contact law, 15, 24,  

149 
incremental deformation, 72 
incremental displacement, see 

displacement increment 
incremental force-displacement 

relation, 20 
incremental interaction, 19 
incremental moduli, 61 
incremental potential, 17 
incremental quantity, 46, 52 
incremental relationship, 21 
incremental shear modulus, 177 
incremental shear stress, 177 
incremental stiffness components, 

166 
incremental stiffness, 23, 55, 148, 

151 
incremental strain, see strain 

increment 
incremental strain, see stress 

increment 
incremental stress-strain relation, 

52, 149 
indentation, 11, 23 
infinitely sticky, 8 
influence function, 80–82, 84, 119, 

121, 123, 163 
inner product, 35 
interaction tensor, 109, 132 
interaction, 2, 150 
interactive force, 26, 28 
interactive potential, 28 
interactive tensor, 108, 113, 129 
intermediate direction, 71–72 
intermediate principal strain, 38 
internal state, 46 
inter-particle friction, 9, 165 
inter-particle friction angle, 157 
inter-particle friction coefficient, 9 
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inter-particle friction ratio, 161 
inter-particle interaction, 10 
invariant, 38–39, 44–45 
inverse, 35 
inversion, 48 
ionic charges, 24 
ions, 24 
isostatic, 6–7, 9–10, 23, 28, 125, 159 
isotropic compliances, 48 
isotropic compression, 61 
isotropic contact distribution,  

139 
isotropic elastic constants, 187 
isotropic material, 47, 50–51, 80, 

137 
isotropic moduli, 48 
isotropic tensors, 185 
isotropic, 7, 51, 86, 118, 124–125, 

140, 146–147, 183 
 
J 
jamming, 6, 89 
jamming condition, 9 
jamming density, 9 
jamming transition, 9–10 
Jaumann, 77 
Jaumann derivative, 52, 55, 64,  

73 
Jaumann increment, 55 
Jaumann stress, 59, 63–64 
 
K 
kinematic variables, 53 
Kronecker delta, 35, 37–38, 45,  

132 
L 
Lagrange multipliers, 172–173 
Lamé coefficients, 86 
Lamé constant, 47, 118, 125, 140, 

187 
landslide, 1, 4 
least-squares, 12 

Levi-Civita tensor, 42–43, 45,  
171 

lightly loaded contacts, 23 
loading, 16 
local response tensor, 83 
localised deformation, 60 
location vector, 34, 99 
lubrication, 16 
 
M 
main moduli, 67 
major principal strain, 38, 110 
major principal stress, 62, 67, 72, 

183 
mass density, 41 
material behaviour, 52, 55 
material point, 33, 41 
material properties, 21–22 
material response, 45 
material stiffness, 24 
maximum obliquity, 44, 71 
mean fabric function, 133 
mean fabric tensor, 156 
mean field approximation, 158 
mean field, 142 
mean shear stress, 140 
mean spin, 140–141, 155 
mean strain approximation, 167 
mean strain increment, 174 
mean strain theory, 166, 182 
mean strain, 85, 130 
mean stress, 84 
mean-field approximation, 108, 

130–132, 149, 159, 170, 183 
mean-field estimate, 106, 156, 174 
mean-field stiffness, 133 
mean-field theory, 111, 177–178 
mean-field, 109–110, 115, 117, 126, 

134, 151, 163, 165 
mean-strain increment, 165 
mean-strain theory, 162 
meta-materials, 134 
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metastable régime, 70–71, 73 
minor principal strain, 38 
minor principal stress direction,  

183 
minor principal stress, 63, 70,  

110 
modified Bessel functions, 190 
moduli, 47, 51, 70 
Mohr’s circle, 43–44 
molecular dynamics, 12 
moment equation, 151 
moment equilibrium equations, 11, 

130 
moment equilibrium, 7–8, 100, 108, 

153 

 
N 
network of forces, 6 
Neuman, 69 
Newton’s equations, 12 
no-extension direction, 39,  

71–72 
non-coaxial behaviour, 52 
non-linear contact laws, 14 
non-smooth motion, 14 
normal and tangential interactions, 

127 
normal displacement, 15 
normal force, 8, 15, 18, 23–24 
normal interaction, 23, 124 
normal moduli, 158 
no-slip contacts, 152 
no-slip interaction, 180 
number of contacts, 140 
numerical simulations, 9 

 
O 
objective, 52, 54–55, 64 
odd structural sum, 136, 138, 167 
orthotropic, 50 

outer determinant, 62, 88, 110,  
163 

outer product, 42 
 
P 
packing density, 1, 9 
packing fluctuations, 124 
parabolic, 68–69 
particle displacements, 11 
particle interactions, 91, 96 
particle rotations, 11 
particle shape, 1 
particle solid, 24 
particle spin, 127, 129, 165 
path, 48–49, 77 
peak stress ratio, 66, 163–164,  

182–183 
peak stress, 62, 72, 96, 180 
perfectly random medium, 125 
perturbations due to a particle pair, 

150 
photo-elastic, 3–4, 12 
plastic effects, 15, 23 
plasticity theory, 46 
plasticity, 59 
point contacts, 11, 18, 20 
Poisson ratio, 21, 24, 47, 134,  

187 
polarised light, 4 
polydispersity, 7, 9 
porosity, 89 
pressure, 43–44, 48 
pre-strain, 47 
pre-stress, 47, 52, 55, 63–64,  

67 
principal axes, 51 
principal moduli, 163 
principal strain, 38, 62 
principal stress, 43, 56, 62 
propagating error, 14 
pure shear, 38 
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Q 
quasi-static deformation, 48 
quasi-static equilibrium equations, 

73, 77, 129 
quasi-static solution, 12 
 
R 
random medium, 96 
random packing, 7 
randomly distributed slip angles, 

155 
rate-dependence, 45–46 
rate-sensitive, 45 
reference configuration, 52 
regular packing, 7 
repulsive interaction, 25 
Reynolds, 5 
rigid body rotation, 128 
rigid limit, 11 
rigid rotation, 34, 37 
rotation of the particles, 127 
rotation, 35, 37, 44–45, 52–54,  

72 
rough boundaries, 13 
rough particles, 7 
rupture, 59, 73 
rupture criterion, 71–72, 79 
rupture layer formation, 6, 59–65, 

67–68, 70, 72, 77, 79, 82, 96, 
110, 124–125, 158–159, 183 

 
S 
scalar, 44–45 
second order structural sum, 143 
second order tensor, 54 
S-functions, 117, 119, 123, 184 
shear modulus correction, 141 
shear modulus, 47, 52, 57, 63, 65, 

70, 86, 88, 117, 124, 140, 158, 
187 

shear strain fluctuations, 167 
shear strain increment, 155 

shear strain, 165 
shear stress ratio, 178 
shear stress, 57 
simple shear, 38 
size distribution, 1 
sliding contact, 149–151, 153, 156, 

163–164, 168, 179, 181 
sliding friction, 10, 19–20, 184 
sliding interaction, 153 
sliding state, 18, 149, 164 
slip angle, 159–160 
slip bands, 59 
slip, 8 
slipping angles, 155 
slipping contact, 8, 12, 152–153, 

155, 158–159, 168, 173,  
177–178, 180 

slope, 4 
small particles in a fluid 

environment, 24 
soil mechanics, 40, 59, 62, 89 
solid boundary, 24 
solidosity, 89 
solids volume fraction, 89 
spectral intensity, 120, 189 
spherical bodies in contact, 23 
spin fluctuation, 131, 133, 135,  

151–152, 155, 166–167, 170, 
174–176 

spin gradient, 131, 138 
spin increment, 130 
spin vector, 127–128 
spring constant, 15, 17, 21–22,  

108 
static equilibrium, 7, 49, 59, 73, 99 
static indeterminacy, 10–11 
statically indeterminate state, 7–8, 

10, 15 
stick, 8 
sticking contact, 151, 164 
sticking interaction, 165 
sticking state, 149–150 
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stiffness, 46, 59, 62, 85 
stiffness determinant, 159 
stiffness fluctuations, 80, 84–85 
stiffness moduli, 80, 86 
stiffness tensor, 47, 50–52, 57,  

64, 77–78, 105–106, 109–110, 
133 

Stokes’ theorem, 97, 99 
strain, 37, 46–47, 51, 57, 97–98, 129 
strain fluctuation, 78–80, 82,  

84–85, 131, 133–134, 137–138, 
149, 166, 170–174 

strain increment, 46, 55, 64, 105 
strain path, 46 
strain rate, 45, 54 
strain tensor, 38, 43 
stress, 40, 45–47, 49, 51, 54, 56,  

98–99, 101, 116 
stress ellipse, 183 
stress in a granular medium, 98 
stress increment, 46, 72, 77, 105, 

109, 131, 152, 170, 174–175 
stress path, 46 
stress rate, 55 
stress ratio, 4–6, 12, 55–56,  

62–63, 160–162, 164–165,  
180, 182 

stress symmetry, 140, 176 
stress tensor, 40, 43, 100 
stress-strain behaviour, 46 
stress-strain curve, 183 
stress-strain relation, 10, 46–47,  

56 
stress-strain response, 77 
strong ellipticity condition, 73–74 
strongly localised displacement 

field, 59 
structural sum, 109, 116, 119, 132, 

142 
structures, 96 
sum of force, 136 

 

surface potential, 14, 25–26 
surface traction, 23 
symmetry, 48, 50 
symmetry axes, 51 
symmetry relation, 47, 50 
 

T 
tangent modulus, 4, 6 
tangential contact displacement, 16 
tangential contact stiffness, 124 
tangential deformation, 150 
tangential force, 8, 18, 20, 24, 156 
tangential interactions, 138 
tangential spring constant, 134 
tangential stiffness, 23 
tensor calculus, 33 
tensor, 44–45 
thermal motion, 24 
time derivative, 52 
time increment, 52 
time step, 13 
torque constitutive equation, 11 
total differential, 49 
trace, 38–39 
traction vector, 40 
traction, 48, 99 
transition to rupture, 67 
translation, 37, 127 
transposed of a matrix, 35 
transverse (an)isotropic material, 

50–51, 57, 60, 74, 87 
triaxial-cell test, 4 
truncated Fourier transform, 189 
two spheres pressed together, 21 
 
U 
uniformity coefficient, 89 
unit normal vector, 40 
unit normal, 19, 40, 60, 149 
unit vector, 39, 169 
unloading, 16 
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V 
valency, 25 
van der Waals interaction, 25 
van der Waals, 26 
vector, 34, 45 
viscous substances, 45 
volcanoes, 6 
volume average, 78 
volume strain, 5, 39–40, 48, 110 
Voronoi boundaries, 90–93, 95–96, 

100–103, 106–109, 112, 119, 
121 

Voronoi cell, 98–99, 102 
Voronoi tiling, 92 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

W 
wave number, 78 
wave speeds, 73–74 
wave vector, 86–87 
Wiener–Khinchin theorem,  

189 
work, 48–50 
 
Y 
Young’s modulus, 21, 47, 187 
 
Z 
zero-extension direction, see no 

extension direction 
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