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“The most beautiful thing we can experience is the mysterious.
It is the source of all true art and science.”

—Albert Einstein, What I believe (1930)
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Preface

This book had its conception in 1974, when my small cottage industry
of designing geometric puzzles and handcrafting them in wood was then
in its fourth year. It began as a newsletter of limited circulation having
to do with mechanical puzzles in general, especially those that could be
made in the classroom or workshop. It was intended for persons who
enjoy designing puzzles, making them, collecting them, or just solving
them. In 1978, the various issues were assembled into a booklet. Later
more chapters were added, and it became a book of sorts called Puzzle
Craft, bound and published right in my workshop. A revised and im-
proved edition came out in 1985. Then, in 1990, an entirely new book
based on the same material was published by Oxford University Press as
The Puzzling World of Polybedral Dissections—part of their Recreations
in Mathematics series. With this book we continue along our convoluted
path of discovery in this fascinating land of puzzledom. Much new mate-
rial has been added, representing recent puzzle creations from 1990 up to
the present, including some from the far corners of the world. All of the
previous material has been thoroughly edited for possible improvements,
and some of the fat has been trimmed off. Perhaps most important of all,
the illustrations have been greatly enhanced, thanks to the expert work of
John Rausch, the book’s graphics editor. Indeed, without his enthusiasm
and untiring efforts, probably none of this would have happened. For
publishing this and all those other fine books on mathematical recre-
ations, thanks to Klaus Peters of A K Peters, a friend in need if ever there
was one. And for their patience in fitting all the parts together, thanks to
the publisher’s editorial and technical staff of Charlotte Henderson, Erica
Schultz, and Larissa Zaretsky. Jerry Slocum has provided expert help on
the history of puzzles. Assisting in the workshop and office in bygone
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days were my late wife Jane and the three little elves—Abbie, Tammis,
and Margie. Kathy Jones proofread an early version of the manuscript
and offered helpful tips. And finally, heartfelt thanks to Mary Dow for
not only tolerating the workshop dust and noise but also steadfastly of-
fering encouragement and support whenever they were needed.

Stewart Coffin
Andover, Massachusetts



Introduction

Nearly everyone must have had at least a few amusements among his or
her childhood treasures based on the simple principle of taking things
apart and fitting them back together again. Indeed, many infants show
a natural inclination to do this almost from birth. Constructing things
out of wooden sticks or blocks of stone must surely be one of the most
primitive and deeply rooted instincts of mankind. How many budding
engineers do you suppose have been boosted gently along toward their
careers by the everlasting fascination of a mechanical construction set? I
know I certainly was. Even after life starts to become more complicated
and most childhood amusements have long since been left by the way-
side, the irrepressible urge to join things together never dies out.

Figure 1. “He who wonders discovers that this is in itself a wonder.”
—M. C. Escher
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Construction pastimes in the form of geometric assembly puzzles
have a universal appeal that transcends all cultural boundaries and prac-
tically all age levels. Young children catch on to them most quickly.
One of the puzzle designs included in this book was the inspiration of
an eight-year-old, and children younger than that have solved many of
them. So much, then, for the presumptuous practice of rating the dif-
ficulty of puzzles according to age level, with adults of course always
placing themselves at the top! Likewise, almost anyone from elementary
school student to retiree having access to basic workshop facilities should
be able to fabricate many of the puzzles to be described on the following
pages.

On the other hand, this book is intended to be more than simply
a collection of puzzle designs, plans, and instructions. This is a puzzle
designer’s guidebook. Some of the most rewarding recreations are nei-
ther in simply solving puzzles, nor in making them, but rather in discov-
ering new ideas and crafting them into a form that others may enjoy too.
Equally satisfying is discovering surprises long overlooked in traditional
puzzles. It is amazing how many of these lie scattered about just beneath
the surface waiting to be uncovered. Keep in mind that the systematic
investigation of many types of problems covered in this book has taken
place only within the last few decades. Throughout these pages, unsolved
problems are mentioned, or at least implied, that should keep mathema-
ticians and analysts, tinkers and inventors occupied for a long time to
come. A few gems have even been purposely reburied so that the reader
may have the joy of unearthing them again. But watch out for traps!

Life in general is a puzzle, is it not? Examples abound: trying to
fathom the mysterious rules of English grammar and wondering if the
spelling of some words was someone’s idea of a joke! The engineer who
dreamed up the assembly procedure for my car’s transmission passed up
a promising career as a puzzle inventor. Anyone who writes poetry or
composes music knows the satisfaction that comes when all of the parts
finally fit together properly, or the frustrations when they decline to do
so. Almost any undertaking may become turned into a puzzle, intention-
ally or otherwise.

This book is devoted mostly to a broad and vaguely defined clas-
sification of geometric recreations that might be described as burrs and
polyhedral dissections. Polyhedra are by definition any solids bounded
by plane surfaces. One often associates the term polyhedra with the iso-
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metrically symmetrical Platonic solids and their relatives. It is used here
in a broader sense to include practically any solid or assemblage of parts
having some sort of symmetry, including burrs. In puzzle nomenclature,
burrs are assemblies of interlocking notched sticks. They are traditionally
square sticks, but all sorts will be considered here. And for good mea-
sure, some puzzles will be included in this edition that do not fit in either
category.

Figure 2. Burrs.

For convenience, the term puzzle is used throughout this book to
include just about any sort of geometric recreation having pieces (actual
or imagined) that come apart and fit back together again. Probably many
readers associate the word puzzle with some task that is purposely con-
fusing or difficult. That notion may be rather misleading when applied to
many of the recreations described in this book. I much prefer to regard
them as being fascinating and intriguing. Discovering the myriad amaz-
ing ways in which geometric solids fit together in space is in itself a mar-
velous revelation. If they also have the potential for challenging puzzle
problems, so much the better. But let us not make the common mistake
of assuming that the more satisfactory puzzle is one that is fiendishly dif-
ficult or complicated—a tendency more often than not counterproductive
in any creative endeavor.

A proper treatise on geometric puzzles should probably begin with a
historical overview. Here we have a problem. If you search long enough,
you can usually find at least a brief written history on just about any
possible subject, but apparently not so for geometric puzzles. Like-
wise, a search through the major anthropological museums of the world
turns up practically nothing of ancient origin. (Added note: That could
change. As we go to press, the definitive Slocum Puzzle Collection is be-
ing installed at Indiana University, Bloomington.) The conclusion to be
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drawn from this is that most geometric puzzle designs must not be very
old—not many over 200 years old. A popular marketing ploy of puzzle
manufacturers is to invent stories of their ancient origins. One favorite
theme is that they came down to us from the Orient. Some authors have
called the six-piece burr the Chinese Cross puzzle. Conversely, perhaps
puzzles sold in China are touted as products of Yankee ingenuity, and if
so, they may be just as close to the truth.

Patent files are one of our most important historical resources on
puzzles. As of 1980, there were about 1,000 patents of bona fide puzzles
filed in the U.S. Patent Office and about the same number in the British
Patent Office. The oldest U.S. patent is dated 1863. If the filing of pat-
ents is any accurate indication, then many of the classic designs familiar
to us today, including various burrs and dissected blocks, date from the
late 1800s. Starting around 1920, there is a decline in puzzle interest
and patent activity (which, by the way, just happens to coincide with the
phenomenal rise in popularity of the automobile). Puzzle interest picks
up again after World War IT and has been going strong ever since.

Many games and pastimes are known to be quite ancient, so why not
three-dimensional puzzles too? We can only speculate, but here is one
thought: of all three-dimensional puzzles, the so-called burr or notched
square stick types are certainly the most familiar, the easiest to make, and
probably the earliest to have become popular. To be entirely satisfactory,
such puzzles should be made to close tolerances, and the only practical
mass-production method is with specialized power woodworking ma-
chinery and suitable jigs. Power woodworking tools did not come into
common use until the mid-nineteenth century. Note that most ancient
games and pastimes use pebbles, beans, scratch marks on the ground,
and other such things readily at hand.

To say that most geometric puzzles are less than 200 years old re-
quires qualification. They are all based on mathematical principles
known ages ago, which in turn have roots going even further back, finally
fading away into the unknown of the past. To give credit where it is most
due, the fascinating world of geometric dissections, and indeed of math-
ematical recreations in general, is utterly and profoundly Greek in origin.
Behind every geometric model illustrated in this book, the shadow of
the Acropolis looms dimly in the background, and within every tortuous
puzzle solution lurks the ghost of the fabulous labyrinth of King Minos,
brooding over its next victim!
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Figure 3. The Platonic solids.

The term mathematical recreation is in itself rather a misnomer, for
every geometric puzzle worthy of consideration has non-mathematical
aspects that are just as important if not more so. Most of the puzzle ideas
described in this book were conceived by someone who was not a math-
ematician by either training or profession, but rather more of an inventor
and craftsman, with perhaps a whimsical or artistic bent. Conversely,
many creative endeavors that we certainly do not regard as geometric
puzzles involve essentially the fitting together of discrete parts artistically
into a logical and harmonious interlocking whole. The aspiring puzzle
inventor seeking inspiration in the art of invention may be just as likely
to find it in the classical arts as in mathematical textbooks.

Except for this edition’s predecessors, Puzzle Craft and The Puzzling
World of Polyhedral Dissections, there have been virtually no books pub-
lished specifically on geometric puzzles. Many books on mathematical
recreations have touched on the subject. There have been several com-
pendia of mechanical puzzles in general that have included some burrs
and geometric dissections. Likewise, a few woodworking books have
included a chapter or two on puzzles. The closely related subjects such as
polyhedra, symmetry, combinatorial theory, and design science all have
extensive literature. Perhaps it is inherent in the very nature of dissection
puzzles that even their literature is thus so scattered in bits and pieces.
Trying to fit all of them together for the first time was quite a puzzle in
itself!

Until recently, puzzles were regarded as little more than novelties and
certainly not as a subject worthy of university-level study or museum ex-
hibits. Before World War II, many wooden puzzles were mass-produced
in the Orient, using the same few simple designs year after year. Typi-
cal were those found in the illustrious Johnson Smith & Co. mail-order
catalog of the 1930s (Figure 4), priced at 10 cents or 15 cents postpaid!
Then, cheap plastic versions in injection-molded styrene started flooding
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1'["
Wood Puzzle

A unique wood puzzle imported
from the orient. Will test your
skill and patience. Each bar is a
separate piece' of wood and they
can all be taken apart. Your job is
to take them apart and put them
back together again. . sc
No. 3B80. Price Postpaid....

Figure 4. Product from the Johnson Smith & Co. catalog.

the market, perpetuating the image of puzzles as expendable toys and
trinkets. But all that is changing. There is a growing interest in geomet-
ric recreations at all levels, from educational materials for preschoolers
to university courses and seminars, arts and crafts exhibits, articles in
scientific journals, and hopefully even a few good books!

One reason that geometric dissections have so much potential for
recreation is the wide range of skills and talents that may be brought
into play, from the theoretical to the practical and from the mathematical
to the artistic. At the practical level, a complex interlocking puzzle well
crafted in fine wood can be a challenging and rewarding project for the
skilled woodworker. On another level, some persons are more intrigued
by the geometric shapes themselves, and a sort of Greek renaissance sub-
culture has sprung up in the field of architecture and decorative design
having to do with the adoration of polyhedra. On yet another level, there
is what I call, for lack of a better term, the psycho-aesthetics of puzzle de-
sign. This gets into the puzzling question of what it is that makes certain
puzzles appeal to certain persons but not others. So far as I know, almost
nothing has previously been written on this pregnant subject.
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Most of the designs described in this book are for puzzles that can, in
theory at least, be made in wood. Directions and helpful hints for doing
so are given. Some are much easier to make than others. You can start
with the easy ones and gradually work upward, depending upon your
woodworking skills and workshop facilities. But what about the reader
with no such inclination or no workshop? Do not despair. Many of the
designs have been or are being produced commercially, and probably
many more will be in the future. Furthermore, the reader with good
spatial perception ought to be able to solve many of them visually or on
paper, without the need for physical models.

We might carry this notion a step further and suggest that the essence
of an intriguing geometric puzzle is really the idea behind it. The physi-
cal model of the puzzle then becomes more of a tool to aid the thinking
process and help convey the idea. Crude models may suffice for this pur-
pose. As you become more adept with these skills, you may find that the
actual models assume less importance than the principles involved. Some
designers and solvers of geometric puzzles work almost entirely in the
abstract, using pencil and paper or a computer, plus the amazing imagi-
native powers of the human mind. Consider all the advantages: the parts
always fit perfectly and, unlike their wooden counterparts, never swell
or shrink, crack or break. And for the apartment dweller with limited
space, just think how many designs can be created and stored inside the
recesses of one’s head, using spaces that might otherwise have remained
vacant!

Most of those who invent puzzles like to be given credit when their
ideas are published, and some even hope to profit from them. Mention
is made of the originators or patent grantees for a few of the puzzles
described in this book when known, especially for some of the older
classics. Well over half of all the designs included in this book were con-
ceived and published only within the past 35 years. Although the origins
of most of them are known to the author, credit is purposely omitted for
these reasons: Some of the ideas are so obvious that they probably have
been discovered independently by more than one person. Others may be
just minor variations of someone else’s ideas. For example, one of the
puzzles described in this book is the author’s variation on a design picked
up from a now deceased puzzle craftsman in Florida, who reported get-
ting the idea from someone in California, who in turn reports getting it
from a puzzle company in Europe. But the idea is said to have originated
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in Japan, although it too is but a variation on a familiar theme. An analy-
sis of its solutions came to me from yet another source, and he reports
learning that someone else had done it independently. Trying to unravel
something like that would perplex even a patent attorney. So, some of
the puzzles in this book are in the public domain, some are patented,
some are copyrighted, and some are none of these. But the author cannot
say in all cases which are which, so will avoid misunderstandings by not
trying to define all origins. Anyone planning to manufacture or publish
any of them should undertake the research necessary to make certain that
no one’s rights or sense of pride are being overlooked.



Chapter 1

Two-Dimensional
Dissections

Most of the designs described in this book can be thought of as dissec-
tions of some sort. By way of introduction, we will first consider some
simple two-dimensional geometric dissections, which in their physical
embodiment become assembly puzzles.

Jigsaw Puzzles

To dissect means literally to cut into pieces. Just about any chunk of
material cut into pieces becomes a sort of dissection puzzle. If sawn
freely perpendicular to the surface of a sheet of plywood (or die-cut of
cardboard), the result is the familiar jigsaw puzzle. Most jigsaw puzzles
are not designed to exercise or perplex the mind, at least in the sense
that other types of puzzles do, and it is perhaps stretching the definition
a bit to even call them puzzles. The definition given in the dictionary
for the noun puzzle seems to have been purposely broadened so as to
include what are really pastimes of pattern recognition, memory, and
patience. The definition given for the verb to puzzle contains no such
connotation.

Jigsaw puzzles have been popular for over 200 years, longer than
most other types of puzzles. Although their relationship to burrs and
polyhedral dissections may appear to be remote, they probably serve as
an important historical root. The ancestry of inventions in general must
be an incredibly complex web of ideas branching backward in time into
just about every nook and cranny of human culture. Puzzles are certainly
no exception, and jigsaw puzzles, by their sheer numbers and long his-
tory, must play at least a minor role in the evolution of many present-day
geometric puzzles and recreations. How many of us played with jigsaw
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puzzles at one time and then began to ponder, perhaps subconsciously,
variations along logical and mathematical lines?

Various schemes have been employed to make jigsaw puzzles more
clever, such as sawing on two different faces of a rectangular block or
along multiple axes of a sphere (Figure 5). Some of these are quite enter-
taining, but still they are essentially non-geometric in principle.

Figure 5.

Tangram

If, instead of cutting freely, the dissection is done according to some sim-
ple geometric plan, an entirely different type of puzzle results. Many
fewer pieces are required to create interesting puzzle problems. Three
characteristics of such puzzles are that they nearly always use straight
line cuts, they usually assemble into many different puzzle shapes, and
the problem shapes often have more than one solution.

Of the types of puzzles covered in this book, the oldest known is the
popular seven-piece dissection of the square known as Tangram. It was
at one time thought to be thousands of years old, but is now known to
have originated in China sometime around 1800. (A quite similar Japa-
nese seven-piece square dissection has been dated back to 1742.) Tan-
gram became popular throughout Europe and America in the nineteenth
century and continues to be so to this day. It is made and sold in many
different materials. Thousands of problem shapes have been published
for it over the years, and it is mentioned in many books. For more back-
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ground information on Tangram and many similar puzzles, the reader is
referred to The Tangram Book by Jerry Slocum (see bibliography). Here
we will discuss some of the curious mathematical aspects of the puzzle not
often mentioned in the literature. The dissection is shown in Figure 6.

Figure 6.

In designing dissection puzzles of this type, the idea is to divide the
whole according to some simple geometric plan so that the pieces will fit
together many different ways. The way this is accomplished in Tangram
is shown in Figure 7. A diagonal square grid is superimposed onto the
square whole such that the diagonal of the square measures four units
and the area is eight square units. The only lines of dissection allowed
are those that follow the grid or diagonals of the grid. To put it another
way, the basic structural unit is an isosceles right-angled triangle made
by bisecting a grid square, and all larger puzzle pieces are composed of
these unit triangles joined together different ways. In Tangram, there are
two of the unit triangles alone, three pieces made up of two unit triangles
joined all possible ways, and two large triangles made up of four unit
triangles, for a total of 16 unit triangles. The relative lengths of all edges
are thus powers of V2.

The first Tangram problem is to scatter the pieces and then reas-
semble the square. Note that it has only one solution, usually a mark of
good design. (Rotations and reflections are not counted as separate solu-
tions.) For the countless other problem shapes, you can try to solve the
published ones found in many books and magazines or you can invent
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Figure 7.

your own. The easiest way to discover Tangram patterns is just by play-
ing around with the pieces. Start by trying to make the simplest and
most obvious geometric shapes—triangle, rectangle, trapezoid parallelo-
gram, and so on—always using all of the pieces. An alternate method
is to draw some simple shape on graph paper, following the rules
already given and having an area of eight squares, and then try to solve
it. Which of the examples shown in Figure 8 are possible to construct?
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Figure 8.

Published Tangram patterns range all the way from the geomet-
ric shapes shown in Figure 8 to the other extreme of animated fig-
ures created by arranging the pieces artistically. This range is rep-
resented by the row of figures shown in Figure 9, reading left to
right. Only those solutions that conform to a regular grid can be
considered true geometric constructions.  Careful inspection will
show those to be the three on the left. The others may be very artis-
tic and imaginative, but they are not within the province of this book.



Chapter 1. Two-Dimensional Dissections 5

MM &3

Figure 9.

The theme of discrete rather than random or incommensurable ratios of
dimensions is one that plays continuously in the background throughout
this book. In the case of Tangram-like dissection puzzles, it is easy to see
that they cannot be made to work properly any other way. Beyond that,
though, there must be something inherently appealing to our aesthetic
sensibilities in simple, discrete ratios. They are, after all, the foundation
of all music, although probably no one understands exactly why.

Figure 10 shows 13 convex Tangram pattern problems. A convex pat-
tern is one that can be cut out with a paper cutter straightaway, i.e. with
no holes or inside corners. They are all possible to construct. Are any
others possible?

NS

N

Figure 10.

For a slight change of pace from the usual Tangram problem, consider
the following puzzler, which by the way is based more or less on an actual
happenstance: Karl Essley made two Tangram sets as gifts, one to be sent
to his sister and the other to his brother. The instructions were simply
to assemble all the pieces into a square. Karl’s sister brought hers back
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and declared (correctly) that the solution was impossible. Examining her
set, they discovered that Karl had made a mistake in packing and had
accidentally put two pieces into the wrong box, so one person got a set
of five pieces and the other got nine. Embarrassed, Karl suggested that
they phone their brother and explain the mistake. But his sister reflected
for a moment and then said, “No that won’t be necessary; he can make a
square with his set.” Can you tell who got the two extra pieces and what
shape or shapes they were? Answer later, but be careful. This puzzler
contains a nasty trap!

In a similar vein to the above puzzler, note the pairs of figures shown
in Figure 11. In each pair, one figure appears to be complete and the
other appears to have a piece missing; yet they both use all seven pieces,
as all Tangram figures must. Can you discover the common characteris-
tic that all such confusing pairs have? (Answers later.) What other such

pairs can you discover?

Figure 11.

In order to be entirely satisfactory, especially considering the exam-
ples just given, even simple puzzles such as this one should be accurately
made of stable materials. If sawn directly out of a square of plywood,
there will be noticeable errors introduced by the saw’s kerf. A more
accurate way is to lay it out on cardboard, cut the cardboard with scis-
sors, and then use the cardboard pieces as patterns.

Throughout this book, unscaled drawings are given for puzzle con-
structions. There are always a few readers who will report being unable
to use such drawings, having been indoctrinated in woodworking class
with the notion that nothing can be made out of wood without standard
workshop blueprints with dimensions. Dimensions are omitted for the
following reasons:

1. They are unnecessary. It should be obvious for example that in Tan-
gram all of the angles are 45 or 90 degrees.
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2. They are not as accurate as geometric constructions. If the over-
all Tangram square is integral, all of the diagonal measurements are
irrational and can be expressed in sixteenths of an inch or whatever
only by rounding off.

3. Adding practical dimensions would only tend to obscure the ele-
gantly discrete mathematical essence of the problem with unessential
detail.

4. You may scale the puzzle to any size you wish.

Other Tangram-Like Puzzles

The great popularity of Tangram has spawned many imitations. Most
notable of these were the famous Anchor Stone puzzles produced by
Richter and Co. of Germany starting in the 1800s and on into the early
1900s. In Puzzles Old and New, Botermans and Slocum show 36 dif-
ferent designs, and some of these are worth examining. Six of them,
including Tangram, are squares dissected according to the usual square
grid with diagonals. Three of these, however, are on a grid with a finer
scale than Tangram, i.e., containing more grid squares and unit trian-
gles. The diagrams in Figure 12 should make this clear. The number
below each one indicates the number of grid squares enclosed for the
coarsest grid that will conform.

7<
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Figure 12.
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For a given number of pieces, dissections with coarser grids are likely
to have more mutually compatible edges—thus, the three on the left in
Figure 12 are the better designs in this respect. A dissection that accom-
plishes its purpose with the fewest pieces is usually to be preferred—thus,
the two on the left in Figure 12 emerge as the better designs. The final test
is to see which of these two sets constructs more interesting puzzle fig-
ures, and this task is left to the reader. The one on the far left is of course
Tangram, and the other one was sold under the name Pythagoras.

Incidentally, note that the next smaller possible grid would contain
only four squares and eight unit triangles. Are these too few to make an
interesting puzzle? The most obvious such set (see Figure 13) would be
Tangram with the two large triangles omitted. This simple little set of five
pieces probably contains a treasure-trove of undiscovered recreation: for
example, how many convex patterns will it form? (Answer later.)

Figure 13.

A square can be dissected into numbers of equal isosceles right-angled
triangles given by the following series: 2, 4, 8, 16, .... What is the next
number in this series? By the way, this question is reminiscent of “IQ”
tests school children used to be given, and probably still are. Example:
given the series 4, 6, 8, ..., what is the next number? A precocious stu-
dent interested in prime numbers might answer 9, while one intrigued by
the Platonic solids might say 12. But of course, by this time the students
are supposed to know that the way the system works is to always give the
answer that is expected, no matter how uninspired!

Next in the Richter series, we find eight puzzles similar to those in
Figure 12 except they are rectangular rather than square. These are
shown in Figure 14 without further comment, except to point out that
puzzles with mostly dissimilar pieces are generally more interesting than
those with many duplicates or triplicates.
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Figure 14.

All of the Richter puzzles shown so far have used only 45- and 90-
degree angles. Eight of the Richter puzzles are polygonal shapes dis-
sected into pieces with 30-, 60-, and 90-degree angles. These are shown
in Figure 15 arranged by increasing numbers of pieces.

Most of the other Richter puzzles have curved outlines or other com-
plications. For example, the two shown in Figure 16 have more compli-
cated angles. In dissection puzzles of this type, if all of the angles and
linear dimensions are not immediately obvious by inspection, then the
design is probably not very well conceived.

v

2]

Figure 15.
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Figure 16.

To digress slightly, a most curious dissection is the one shown in Fig-
ure 17 on the left. This construction within a square appears in Curiosi-
tés Géométriques, by E. Fourrey, published in Paris in 1907. It is said to
have been discovered in a tenth-century manuscript and is supposed to
have been the work of Archimedes. At least three slightly different ver-
sions of it have appeared in modern puzzle books, all supposing it to be
a geometric dissection puzzle and calling it the “Loculus of Archimedes.”
One learns to be skeptical about such things, especially when they do
not appear to make much sense and the original documents are reported
lost. The mystery of its origin and its actual purpose is a challenging
problem for recreational mathematics historians. For more information,
see Slocum’s Tangram Book.

It has been pointed out by some authors that the areas in the Locu-
lus are cleverly devised to be in the ratios of whole numbers, as indi-
cated. But there is nothing unusual about that. It is easily proven,

Figure 17.
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if not immediately obvious, that all polygons formed by connecting
points on a regular square grid must have areas in the ratios of whole
numbers. Less obvious but also provable is that polygons formed by
the intersections of such lines must also have this property, as in the
example shown in Figure 17 on the right. Exercise for the reader: com-
pute the relative areas in this figure.

Note that none of the Richter puzzles has fewer than seven pieces
and several have more. One always tries to minimize the number of
pieces without sacrificing other design objectives. Satisfactory dissection
puzzles of this type with fewer than seven pieces are not as common but
are possible. Consider the experience of another puzzle acquaintance
of mine, Bill Trong. Bill made for himself a Tangram set from published
plans, but he carelessly failed to make one cut, so he ended up with
two of the pieces joined together and thus a set of six pieces. Surpris-
ingly, he found he could construct all 13 of the convex patterns (Figure
10) with this set. Which two pieces were joined together? Judge for
yourself if this six-piece version is an improvement over the original
Tangram.

Previously, the reader was asked if other convex Tangram solutions
could be found. According to an article in American Mathematical
Monthly, vol. 49, in 1942, Fu Traing Wang and Chuan-Chih Hsiung of
the National University of Chekiang proved that no more than 13 dif-
ferent convex Tangrams can be formed. Their proof involved showing
that there are only 20 possible ways of assembling the 16 unit triangles
convexly, of which 13 were found to have Tangram solutions. An
excellent discussion of this is given in Tangram, by Joost Elffers.

Figure 18.
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The point to be made here, before leaving the subject of Tangram,
is that the simplest and most familiar puzzles often contain surpris-
ing recreational potential, much of which may have been overlooked.
Some of the practical innovations may be quite clever too. Figure 18
shows an example of what one skilled and inspired woodcraftsman,
Allan Boardman, has done with Tangram. The seven pieces fit with
watchmaker’s precision two layers deep into the tiny square box, com-
plete with sliding cover, all beautifully crafted of pearwood.

A Five-Piece Square Dissection

Figure 19 shows Sam Loyd’s well-known square-dissection puzzle. It is
made by locating the midpoints of all four sides of the square, drawing
the appropriate lines, and dissecting. The five pieces construct all of the
puzzle patterns shown. Again, note the interesting paradox of the two
on the right—one being a solid rectangle and the other a rectangle with
a corner missing, yet both use all five pieces.

When one of Loyd’s pieces is divided in two, the number of possible
interesting puzzle patterns is approximately doubled. Some of these new
patterns are shown in Figure 20. The first problem for the reader is to
discover the additional cut. It should be obvious which piece to divide,
but which way?

Figure 19.
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Figure 20.

The reader is now encouraged to experiment with new and original
dissection puzzles. Start with a simple shape such as a square or rect-
angle and dissect it according to some simple geometric plan, the idea
of which is to make pieces that fit together many different ways. Six or
seven pieces is a good number. Try to avoid having many pieces alike;
then create your own catalog of pattern problems.

Geometric Dissections

To mathematicians, the term geometric dissection has a slightly differ-
ent meaning from the one we have been using here. It usually refers to
two different polygons being formed from the same set of pieces. This
is essentially an analytical problem, and a minor branch of mathematics
is devoted to it. It has been proven that any polygon can be dissected to
form any other polygon of the same area. Most attention has been given
to the regular polygons. Choose any two regular polygons, and cut one
of them into as many pieces as you wish to form the other. It may sound
easy until you actually try it!

The classic problem in geometric dissections is to find the minimum
number of pieces required to perform a dissection between various pairs
of common polygons. An excellent book on the subject is Recreational
Problems in Geometrical Dissections and How to Solve Them, by Harry
Lindgren.

Famous puzzle inventor Henry Dudeney was a pioneer in geometric
dissections. His classic four-piece dissection between the square and equi-
lateral triangle, first published in 1902, is shown in Figure 21. This must
be the simplest of all possible dissections between two regular polygons.
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Figure 21.

Yet, if the reader will try to construct the dissection, even after glanc-
ing at the drawing, it will immediately become obvious that the methods
described earlier in this chapter do not work!

Start by constructing a square and equilateral triangle of equal area.
Thus, if the square is 1 x 1, the sides of the triangle are 2/N3 . Next, note
that all points marked with an asterisk are midpoints of sides. Therefore,
triangle ABC is equilateral, and point B on the square is located by mea-
suring 1/4/3 from point A, after which the rest is obvious. (There is also
a neat geometric method of construction.)

In geometric recreations of this sort, the essence of the puzzle is dis-
covering the dissection. Given the dissections, their physical embodiment
in the form of actual puzzle pieces has never enjoyed much popularity as
practical manipulative puzzles. Perhaps it is because the two solutions
are quickly memorized, and then there are no more problems. But there
are exceptions. The Sam Loyd dissection puzzle described in the previous
section was most likely developed by dissecting the square into the cross,
after which the other interesting problem shapes were probably discov-
ered. Creative Puzzles of the World by van Delft and Botermans contains
an excellent chapter on geometric dissections as practical puzzles. Fur-
ther investigation might uncover a dissection by which several polygons
could be constructed from a neat set of pieces. For example, what are
the fewest pieces required to construct three different regular polygons?
(Answer unknown, at least to the author.)
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Checkerboards

Checkerboard puzzles consist of a dissected standard 8 x 8 checkerboard.
The object is not only to reassemble the pieces into an 8 x 8 square, but
also to do so with the proper checkering. A Compendium of Checker-
board Puzzles compiled by Jerry Slocum in 1983 lists 33 different ver-
sions, and it includes only those that have been manufactured, patented,
or published. (Note: an updated and expanded Compendium was pub-
lished by Slocum and Haubrich in 1997, containing 376 checkerboard
puzzles.) The numbers of pieces range from 8 to 15, with 12, 13, and 14
being the most common. The oldest is dated 1880. The commercial ver-
sions were usually made of die-cut cardboard printed on one side only,
so the pieces may not be flipped. Some are printed on both sides, and the
checkering may not be the same on both sides. Those made of light and
dark wooden squares can of course be flipped. A typical 12-piece dissec-
tion taken from Slocum’s Compendium is shown in Figure 22. The pieces
may not be flipped. It is known to have at least two solutions.

Figure 22.

Taken as a whole, checkerboard dissections tend not to be the most
inspired of puzzle designs. All that can be said for most of them is that
they differ slightly from each other. Any reader wishing to make a check-
erboard dissection puzzle might just as well create an original design
rather than copy someone else’s. Here are some design suggestions:

1. As the number of pieces is increased, the difficulty increases, reaches
a maximum, and then diminishes. For the checkerboard, maximum
difficulty occurs around 11 or 12 pieces.

2. Difficulty of finding one solution varies inversely with the number
of solutions possible. Designs with only one solution are consid-
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ered especially clever, but how do you know? (Use a computer, of
course.)

Pieces with compact shapes approximating square or rectangular,
such as those containing a 2 x 2 square, lend themselves more eas-
ily to solutions and increase the number of solutions. Contrarily,
skinny, angular, complicated shapes do just the opposite, especially
those that refuse to fit into corners.

To be avoided are pieces having rotational symmetry and especially
pieces identical to each other. (There will be more on this later. For a
simple explanation here, imagine a checkerboard dissection in which
this rule is grossly violated and see how exceedingly uninteresting it

would be.)

It is interesting to note that the additional constraint imposed by the

checkering may make the solution (or solutions) easier or harder, depend-
ing upon the circumstances. If only one mechanical solution exists to
begin with, obviously the checkering makes it much easier to find. On the
other hand, if hundreds of solutions exist, but only one with the correct
checkering, then the addition of the checkering has turned it into a real
puzzler!



Chapter 2

Two-Dimensional
Combinatorial Puzzles

A combinatorial problem (puzzle) is one in which various elements
(pieces) can be combined (assembled) many different ways, only a few of
which are the desired result (solution). The success or lack of it for any
attempt at solution may not become apparent until most of the pieces are
in place. For a geometric puzzle, ideally all pieces are dissimilar and non-
symmetrical, thus resulting in the maximum number of combinations for
a given number of pieces. Maximum difficulty is achieved when only one
correct combination exists. Since puzzles of this type can usually be made
more difficult simply by increasing the number of pieces, the challenge
facing the puzzle designer is to cleverly devise simple puzzles of this sort
having few pieces while yet being intriguing and puzzling. In this chapter,
we will introduce the subject by considering some simple two-dimen-
sional combinatorial puzzles.

Regular Polygons as Building Blocks

The basic building block of a geometric combinatorial puzzle is typically
a regular polygon, although other shapes or combinations of shapes are
certainly possible. Whatever shape or shapes are used, the idea is to cre-
ate a set of dissimilar puzzle pieces that fit together a great many different
ways. Among regular polygons, the only ones that tile the plane are the
triangle, square, and hexagon (Figure 23).

Figure 23.
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Triangles as Building Blocks

Figure 24 illustrates all the different ways of joining triangles through
size-six. Note that mirror images are not counted as separate pieces, since
it is assumed that these are real physical pieces that can be flipped over.
These pieces are sometimes referred to as polyiamonds. The numbers of
pieces are summarized in Table 1.

Figure 24.
Size Number of Pieces Total Number of Blocks
1 1 1
2 1 2
3 1 3
4 3 12
5 4 20
6 12 72
Table 1.

Next, consider into what simple geometric shapes these pieces might be
assembled. For the triangle, the most obvious patterns are triangular and
hexagonal. These are shown in Figure 25 in increasing size.

Comparing the numbers in Table 1 with the total numbers of blocks in
different-sized sets, we note that none of them match. At this point there are
two different schools of thought. Those whose interest is primarily math-
ematical analysis like to work with complete sets of things, so they would
probably either tinker with the definitions of the sets in an attempt to make
the numbers match or perhaps abandon this particular line of inquiry. From
the practical point of view, on the other hand, there is no good reason why
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the pieces of a puzzle must comprise a complete mathematical set in order
to be interesting. The tabulation of complete sets is useful in that it shows
all the pieces available without duplication. Example: select a set of nine
six-block pieces that assembles into a size-54 hexagon. Second problem:
does such a set exist having a unique solution? (Answer unknown.)

For those who do insist on working with “complete” mathematical
sets, note that of the 12 pieces of size-six, nine of them can be made by
joining three two-block rhombuses together all possible ways, as shown
in Figure 26. Of course, this also has practical woodworking significance.
Assemble these nine pieces into a 54-block hexagon.

Now see if the same can be done with another set of nine pieces coinci-
dentally formed by joining two three-block trapezoids all possible ways.
Note also that the entire set of twelve size-six pieces might be assemblable
into a 72-block rhombus or rhomboid many different ways. Which of
those shown in Figure 27 are possible to assemble? For more information
on amusements of this sort, see Martin Gardner’s Sixth Book of Math-
ematical Games from Scientific American.
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Squares as Building Blocks

Continuing in the same vein, we now consider squares as building blocks
(Figure 28), with the number of pieces summarized in Table 2

When we compare this summary with that for the triangle, the much
greater versatility of the square as a combinatorial building block is appar-
ent. The various pieces are popularly referred to as polyominoes after a
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Figure 28.
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Size Number of Pieces Total Number of Blocks
1 1 1
2 1 2
3 2 6
4 S 20
S 12 60
6 35 210
Table 2.

book on the subject with that title by Solomon Golomb. The various
sets of pieces have been the object of much investigation by mathemati-
cal analysts. Note that much of this analysis is concerned with proving
mathematically where such pieces will or will not fit, which may or may
not have much relevance to the design of practical geometric puzzles.

Incidentally, the listing in Table 2 and others like it have been calcu-
lated for pieces of much larger size, often using a computer. Such pieces
have little practical value in dissection puzzles. Beyond a certain size, the
elegant simplicity of discrete dissection becomes obscured by complexity,
going against the natural human inclination to reduce all things to their
simplest and most functional common denominator. In combinatorial
recreations of this sort, those that achieve their intended object using the
fewer and simpler pieces are nearly always the more satisfactory.

The most obvious constructions for polyomino puzzle pieces are
square or rectangular assemblies. If complete sets are being considered,
then Table 2 suggests that only the size-four and size-five sets look inter-
esting. First, we will dispose of the size-four set. If the reader will mark
and cut the five size-four pieces out of cardboard, it should be easy to con-
vince oneself that it is impossible to assemble them into a 4 x § rectangle.
But how can you be sure? This problem will be used as a simple example
to illustrate two common analytical approaches to puzzles of this type.

Mark a 4 x 5 board on paper. Start with the straight piece and note
that there are 13 different positions it can occupy on the board. But

Figure 29.
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because of symmetries, only five are distinctly different. Of these five
(shown in Figure 29), three can immediately be eliminated by inspection.
The remaining two can be analyzed by placing a second piece, the square,
in all possible positions and seeing what problems then arise. When one
uses this method, a judicious choice of the first piece may save many
steps. Usually a symmetrical piece is the best choice because there are
fewer distinctly different ways it can be placed.

An alternate technique frequently used for analyzing problems of this
sort is the following: Note that if the 4 x 5 board is checkered, it will
always have ten light and ten dark squares. Now checker the pieces and
note that four of them will always have two light and two dark squares,
but the fifth will always have three of one color and one of the other (Fig-
ure 30). Consequently, they will never fit onto the board.

L | I | LT

Figure 30.

Pentominoes

As already shown, joining five squares together all possible ways pro-
duces a set of 12 puzzle pieces, popularly known as pentominoes (Fig-
ure 31). These occupy much of Golomb’s book and have received much
attention from others also. The total of 60 blocks is a most fortuitous
number because it has so many factors. The earliest reference to a puzzle
of this sort appears to be in The Canterbury Puzzles, by Henry Dudeney,
published in 1907. The idea is so obvious that it may have occurred to
many persons independently.

The pentominoes are capable of being assembled into four different rect-
angles—3 x 20,4 x 15, 5 x 12, and 6 x 10. The first investigation of these

bLTreI$lbr

Figure 31.
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by computer was probably by Dana Scott in 1958. The results were sum-
marized in an article by C. J. Bouwkamp in the Journal of Combinatorial
Theory in 1969. There are 2, 368, 1,010, and 2,339 solutions to these four
rectangular assemblies, respectively. One of each is illustrated in Figure 32.
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Figure 32.

With 2,339 solutions, you might expect that placing the 12 pieces
onto a 6 x 10 tray should be quite easy. If so, you are due for a surprise!
One of the charms of puzzles of this sort is that the first few pieces fall
into place and nestle together as though they were made just for each
other’s company. The next few pieces may be a bit more troublesome,
but they finally settle down happily into place too. It is always the last
one or two pieces that are the rascals. As you carefully rearrange things
to suit them, then other pieces become the outcasts. Reluctantly you have
no choice but to break up combinations that seemed so content together.
Alas, you have made the situation worse instead of better, for now there
are three that won’t go in. In a moment of frustration, you are tempted to
brusquely dump the lot out of the tray and start afresh. But no, you take
the gentler and wiser approach of patiently switching just a few pieces
back and forth, when suddenly the solution reveals itself as the remaining
empty space just happens to match the last piece. As it drops snugly
into place, there is a sense of resolution and harmony that any sensible
person must welcome these days, especially if you have just scanned the
headlines of the daily news or perhaps driven through Harvard Square in
rush-hour traffic!
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Although it was mentioned earlier that crude models will usually suf-
fice for experimental work, that was not necessarily intended as a rec-
ommendation. Here is a case where one might well develop a deeper
relationship with this captivating set of puzzle pieces by making them
accurately and solidly of attractive hardwood, with a smooth finish and
close fit and with a matching tray (Figure 33). They will repay your con-
sideration many times over.

Figure 33.

What may at first seem like a random process of placing the first
few pieces on the tray is anything but. Never underestimate the amaz-
ing power of the human brain, which gets even better with practice. For
example, you will find some pieces much more cooperative than others.
Piece no. 1 (see Figure 31) is the most tractable. Resist the temptation
to place it early; it is your trump and should be kept in reserve until you
really need it. Pieces that decline to fit nicely into the corners are the most
troublesome. Piece no. 8 is the worst; it refuses altogether. Yet, it has a
companion in piece no. 7, so let the pair of them mate. Try to fill the
corners first, the ends next, and work toward the center.

For an even more methodical (but less entertaining) approach, con-
sider how a complete analysis of this puzzle might be made. Number the
spaces on the 6 x 10 tray 1 to 60 as shown in Figure 34. Always try to fill
the lowest numbered unfilled space with the lowest numbered remaining
piece. So, start by placing piece no. 1 on space no. 1. Since this piece has
no symmetry, it can be oriented four different ways by rotation plus four
more when flipped over, six of which will cover space no. 1. With piece no.
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1 in place, try placing piece no. 2 in the next numbered empty space. Piece
no. 2 has four orientations by rotation, but because of symmetry it need
not be flipped over (likewise for pieces no. 3, no. 5, and no. 7). Continue
placing pieces in this manner. Note that piece no. 4 has twofold rotational
symmetry, so it has only two orientations plus two more when flipped.
Piece no. 12 has both rotational and reflexive symmetry, so only two pos-
sible orientations. Piece no. 8 is the most symmetrical of all, with only one
possible orientation. Furthermore, because of the symmetries of the tray,
the location of the starting piece can be confined to one quadrant.

11|12 (13 | 14 |15 16 | 17 | 18 | 19 | 20

21122 (23| 24|25 26| 27 | 28| 29 |30

31|32 (33|34 |35]36 (37|38 39|40

41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50

51| 52 |53 |54 |55]56 |57 | 58|59 |60

Figure 34.

Continuing methodically in this manner, one arrives at either a solu-
tion or an impasse. When an impasse is reached, the last piece placed is
tried in every possible orientation. If that fails, the same is tried with the
previously placed piece. Without belaboring all of the details, the point
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is that by proceeding methodically along these lines, or by some other
similar scheme, one eventually tries every piece in every possible location
and orientation, and compiles a complete list of solutions (or proves that
none exists). If all of this sounds exceedingly arduous, it is indeed, and in
the case of this particular example so much so as to be beyond practical
human capability. This is where computers come into play. They are per-
fectly suited for this sort of mindless task. They do in seconds what might
take a person days or years, and do so with much less likelihood of error.

More Checkerboards

The joined-square combinatorial puzzles just described bear a close
resemblance to the checkerboard dissections discussed in the previous
chapter. The distinction between dissection and combinatorial puzzles
has little to do with appearance, but rather with method of creation.
The classification is not always precise, and the two categories tend to
overlap. Consider the checkerboard puzzle shown in Figure 35, which
appeared in The Canterbury Puzzles. The pieces are printed on one side
only so may not be flipped.
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Figure 35.

At first glance, this might appear to be just another checkerboard
dissection like those mentioned in the previous chapter. Upon closer scru-
tiny, however, it is obvious that the pieces were not created by a process of
dissection. Rather, Dudeney must have taken the set of 12 pentominoes,
added the 2 x 2 square to bring the square count up to 64, assembled all
of the pieces into an 8 x 8 square, and lastly added the checkering.

In trying to solve this puzzle, one might start by assuming that
Dudeney probably placed the square piece symmetrically in the center
for aesthetic reasons. (Before checkering, there are 65 solutions with this
arrangement.) With the 2 x 2 checkered square thus centered, by placing
the cross piece in each of its four possible locations, one discovers the
impossibility of any such solution. This puzzle is known to have four solu-
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tions, but all with the square piece off-center. Did Dudeney introduce this
slight aesthetic anomaly just to confuse us? We will never know for sure,
but if he did, why then would he have chosen a version with four solutions
instead of just one, making it that much easier? A puzzle within a puzzle!

One of the checkerboard puzzles in Slocum’s Compendium is of recent
vintage. It may appear at first glance to be just a variation of the Dudeney
puzzle. But it was designed by Kathy Jones, which should alert any puzzle
connoisseur to expect something thoughtfully conceived and executed. The
pieces are checkered on both sides and may or may not be the same on both
sides. The puzzle has 1,294 checkered solutions, and the 2 x 2 square can
be in any possible position. It also solves several other problems. Three of
the solutions with the 2 x 2 square in two different locations are shown in
Figure 36. Note that not quite enough information is given here to deter-
mine the exact checkering on both sides of all pieces. The puzzle is pro-
duced by Kadon Enterprises, Inc. under the name Quintachex.

I I
IF/ | L
L ]
R L] ‘J |
| el
Figure 36.

The Cornucopia Project

Solving or attempting to solve a mechanically manipulative puzzle analyti-
cally, with all of the action taking place unseen inside a computer, may not
sound like much fun except for the computer fanatic. Be that as it may, the
computer is now frequently being used as an aid in the design and opti-
mization of combinatorial puzzles. Many examples will be given in this
book. One of the more impressive of these is the Cornucopia project.

It was shown previously that joining six squares all possible ways
produces a set of 35 puzzle pieces. Now, from this set, eliminate all
pieces having reflexive or rotational symmetry and all those containing a
2 x 2 square, because they are less desirable for various reasons already
explained. The remaining 17 pieces are the set of Cornucopia pieces
(Figure 37).
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Figure 37.

A subset of any ten of these pieces will fit onto an 8 x 8 board leaving
four empty squares. There are ten different ways that these four empty
squares can be arranged in fourfold symmetry (disregarding reflections)

as shown in Figure 38.
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Figure 39.
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A subset of ten Cornucopia pieces can also be assembled to form a
solid 6 x 10, 5 x 12, or 4 x 15 rectangle. (Note: the 3 x 20 rectangle is
impossible. Can the reader discover a neat and simple proof of this? Hint:
place pieces no. 1, 3, 4, 5, 7,9, 12, 13, or 15 anywhere in the 3 x 20
rectangle, as in Figure 39, and see what problem then arises.)

Combinatorial theory shows that a subset of ten pieces can be chosen
from a set of 17 pieces 19,448 different ways. Which of these subsets
will fit any of the boards shown in Figure 38, and in how many different
ways? Expert puzzle analyst Mike Beeler decided to find the answers to
these questions with the aid of a computer. Even with state-of-the-art
equipment and clever short cuts, this probably involved more computa-
tion than any previous puzzle analysis, and by a wide margin. (Perhaps
true when done in 19835, but certainly not today.) The final results show
8,203 usable subsets and 105,902 solutions, any one of which constitutes
an interesting and challenging puzzle problem, hence the name Cornu-
copia. This suggested the possibility of producing a series of Cornuco-
pia puzzles whereby each set of pieces would be unique, each with its
own unique solution or solutions. (The idea itself is also believed to be
unique!) One hundred such sets were produced in wood in 1985 and are
now in the hands of puzzle collectors. The remainder were contained in
a stack of papers a foot high! (Until recently discarded.)

Total Number of
Pattern .
Solutions

A 7 (one shown)
|| - B 1
C 0
| D 1
] E 11
F 1
L G 1
H 1
I 4
n J 1
6x 10 15
S5x12 12
4x15 2

Figure 40. Table 3.



30 Geometric Puzzle Design

At the beginning of the Cornucopia project, as the computer started to
spew out solutions, we wondered if any subset would be found that made
all 13 patterns. Preliminary results indicated this to be very unlikely. To our
surprise, however, near the end of the run, one prolific subset, the Copious
Cornucopia, was discovered that failed to do so by the narrowest margin. It
is shown in Figure 40, with a tabulation of all its copious solutions given in
Table 3. To gain some appreciation of the power and speed of a computer,
the reader is invited to make this subset of pieces and try to solve just one
of the other 56 solutions listed. Now imagine all 57 of them being solved in
a few seconds or less!

With polyomino-type puzzles like Cornucopia, when many solutions
are known, here is an interesting exercise: display all of them together and
have several friends judge which ones they consider to be the most and
least pleasing to the eye. If there is any consistency in the judging, try to
determine what characteristics are common to those judged most or least
pleasing. Finally, try to define these characteristics mathematically.

After staring at thousands of Cornucopia solutions, the author has
selected the two shown in Figure 41 as being a good pair for illustrating
this game. Nearly everyone polled by the author preferred the same one.
The other one has at least four easily recognizable and describable “flaws.”
What are they? (Answer later in book.) Paradoxically, perhaps the most
distinguishing feature of a pleasing polyomino pattern is its lack of any dis-
tinguishing features! Evidently the mind’s eye prefers randomness in such
designs. We all know what randomness is, or think we know, until we try
to define it mathematically. Randomness is, almost by definition, something
that cannot be defined mathematically! And even if the rules for random-
ness could be stated mathematically, what about the rules for the rules?
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Figure 41.
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To further compound this strange paradox, at the same time the eye
goes to the opposite extreme and automatically takes for granted absolute
conformity to the square grid as an unspoken rule. Any deviation from
this, as in the example in Figure 42, cries out as blatantly as would a sour
note in a Mozart serenade or an obscenity in an Emily Dickinson poem!

It is interesting to note that the basic element of a Cornucopia-type
puzzle is symmetrical, a square, and the overall assembly is also sym-
metrical, likewise a square. A dissymmetry occurs between these two
extremes in the permutated shape of the puzzle pieces. Thus, the order
symmetry—dissymmetry—symmetry represents in itself another, more
abstract sort of symmetry (Figure 43a).

A typical die-cut jigsaw puzzle is an example of a different order of
symmetry, which is itself non-symmetrical (Figure 43b).

alli

Figure 42.
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Figure 43a.
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Figure 43b.

Symmetry Symmetry Dissymmetry
Figure 43c.

A third order of symmetry would be represented by bathroom tiles
on a typical floor (Figure 43c).

Can you discover other orders of symmetry? This term, and in fact
the whole concept of order of symmetry, was developed just as a curios-
ity as this chapter was being cut and pasted for at least the tenth time.
This might be an interesting subject of study itself. Practically all puzzles
described in this book are inherently of the symmetrical order symme-
try—dissymmetry—symmetry. The intriguing symmetries of the polyhe-
dral shapes are often what attract the attention of the viewing public,
much to the chagrin of the designer, for all of the creative work lies hid-
den within and is so often overlooked.

Traditionally, artistic endeavors from music to poetry to oil paintings
have nearly always been framed in symmetry of some sort, or at least
were until the twentieth century. Yet, symmetry is a hopelessly sterile
artistic medium within which to actually work. All creativity involves
a judicious departure from symmetry and, for the geometric recreations
presented here, within the traditional symmetrical framework.
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Hexagons as Building Blocks

Shown in Figure 44 are all the ways in which hexagonal blocks can be
joined, up to size-four. (Incidentally, should the curious reader wish to
construct a set of hexagon pieces of size-five, one tedious but sure way
to do this is to add an extra block to all of the size-four pieces in every
possible position and then throw out the duplicates. You should end up
with 22 pieces.)

o883 §H&T S

Figure 44.
Size Number of Pieces Total Number of Blocks
1 1 1
2 1 2
3 3 9
4 7 28
Table 4.

The most obvious problem shapes to construct with such pieces are
hexagonal clusters. These are shown in Figure 45 in increasing size. Thus,
a set of the three size-three pieces plus the seven size-four pieces just hap-
pens to construct the 37-block hexagonal cluster (Figure 46a). It also
constructs a snowflake-shaped figure (Figure 46b) plus many other geo-
metric and animated shapes. Beeler found by computer analysis that the
hexagonal cluster has 12,290 solutions, and the snowflake pattern (from
which a commercial version of this puzzle derived its name) has 167 solu-
tions. The Snowflake Puzzle in Figure 46¢ was cast in Hydrastone.

One of the special charms of this set of pieces is that it lends itself so
well to creating geometric, artistic, and animated puzzle problems. Just
a few examples taken from the ten-page instruction booklet that came
with the Snowflake Puzzle are shown in Figure 47. The others are left
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Figure 46c.
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Figure 47.

for the reader to rediscover or improve upon. By the way, this is but one
more example of a recreation in which young children excel. Many of the
design patterns in the Snowflake Puzzle booklet were created by children
under ten years of age.






Chapter 3
Misdirection-Type Puzzles

Most of the puzzle designs included in this book could probably be clas-
sified as mathematical recreations, even though very little math may have
been involved in designing them, and even less needed to solve them. In
this chapter, we make a slight digression into puzzles that depend for
their cleverness more on psychology than anything else. First we will dis-
cuss what are called Square-Root-Type designs. The idea is not new, but
little seems to have been published in the way of exposition or analysis.

It is just human nature to fit square objects into square corners. Not
only have all of us been doing it for our entire lives, but also usually it
is the only way that makes sense. It applies to everything from desk
drawers and bookshelves to buildings and city blocks. Puzzle designers
are always looking for ways to exploit these habits of ours. In the first
example (Figure 48), five dissimilar pentominoes fit snugly into a square
tray whose dimensions are four times the diagonal of the square building
block. Any attempt to fit the pieces in orthogonally will not succeed, as
there is only the one diagonal solution shown. Even when the secret is
known, such puzzles can still be entertaining to solve.

Figure 48. Figure 49.
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The puzzle in Figure 48 goes by the uninspired name of Design
#176-A. A slight design flaw is that two of the pieces are symmetrical.
Better designs are surely possible. Goh Pit Khiam of Singapore has pro-
duced some very clever puzzles of this type.

When this sort of design trick becomes routine, the next step is to change
the angle of attack to one even less obvious, as shown in Figure 49. Again,
five pentominoes fit snugly one way only into a square tray, and you should
be able to easily calculate the tray size. This one is identified as Design
#177-A. This puzzle was produced in 2001 in fancy woods. Note that the
uniqueness of the solution allows the assembled puzzle to be designed such
that the colorful woods will always be arranged in a pleasing contrasting pat-
tern, and the flatness of the assembly allows it to be sanded to a fine finish.

In spite of what was stated earlier about simplicity, sometimes even
veteran puzzle designers who should know better get carried away by their
cleverness. One example of such is the third and last puzzle in this group,
shown in Figure 50. Here the angle is changed yet again. Furthermore,
when placed first, not a single piece enjoys a stable resting place against

Figure 50.

the sides of the tray, considerably increasing the difficulty. The solution is
believed to be unique. The biggest problem in designing puzzles of this sort
is making sure that your intended solution is unique. There are computer
programs that are useful to a degree, but sometimes unwanted solutions
(called incongruous solutions) still turn up unexpectedly, usually with the
pieces in a disorderly jumble.

Closely related to the above is a family of puzzle designs that use a
two-sided tray. One such, called Housing Project, is shown in Figure 51.
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A

Figure 51.

Careful inspection reveals that the two sides of the tray are slightly dif-
ferent, so that one accommodates a diagonal solution and the other side
doesn’t. Both solutions are unique. The diabolical scheme here is that
when the assembled puzzle is inverted to dump the pieces out, the tray
will likely end up inverted, and the hapless puzzle solver may not realize
that all the pieces must now be rotated 45 degrees.

Playing on the habitual tendency of persons to fit square things into
square corners, this next puzzle must be the definitive design in that cat-
egory. The four simple pieces, two of each shape, fit into a rectangular
tray in only one way. It is shown here to exact scale (Figure 52), so

Figure 52.
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that the reader may have the amusement of tracing the pieces and tray
onto cardboard, cutting them out, and searching for the solution. The
author has witnessed many persons, after struggling with this puzzle for
hours, declare it to be impossible. And all that, mind you, after they were
warned at the start to nof begin by placing a square corner into a square
corner, which nevertheless they continue to do!

(Incidentally, the name of this puzzle, Cruiser, comes from the author
and his companion having taken it on cruises and on bike trips all over
Europe, and sharing it with their thoroughly baffled traveling companions.)

Another amusing puzzle in this same category is shown in Figure 53,
but this time assembled. This puzzle, called Few Tile, was produced in

Figure 53.

1998 for the exchange at the International Puzzle Party in Tokyo. One
puzzle expert was reported to have tinkered with it for hours, finally
declaring it to be unsolvable. What throws everyone off the track is,
of course, those two mischievous small gaps along the sides. There are
several arrangements of the pieces that do not quite fit, so it needs to be
made accurately of stable materials.



Chapter 4

Variations on
Sliding Block Puzzles

A popular type of flat puzzle, probably familiar to most readers, is one
that involves shifting pieces around on a tray without lifting them, to
achieve some specified rearrangement—the so-called sliding block puz-
zles. Tt is a fairly distinct category, and the published designs are numer-
ous. An excellent book on the subject, Sliding Piece Puzzles by L. E.
Hordern, is unfortunately now out of print.

An old favorite in this category, fittingly called Dad’s Puzzle, is shown
in Figure 54 as a typical example. Now nearly a century old, it still rates
as one of the best. The object is to start with the arrangement shown,
and shift the blocks until the large square moves from the upper left to
the lower left corner. It requires 59 moves.

In this chapter we will examine some variations on the theme of slid-
ing block puzzles, a few of which are published here for the first time.
The first of these, the Butterfly Puzzle, is notable for its simplicity—six
identically shaped pieces in a square tray (Figure 55). The object is to

Figure 54.
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Butterfly
A sliding block puzzle

From the starting position shown on the
other side of this sheet, without lifting
the pieces from the tray, rearrange
them to put the Swallowtail

together. The shortest path

requires 31 moves.

Then, from that solution, continue
rearranging the pieces until

The shortest path this time
isonly 9 moves, Now how
can that be possible?

the Monarch emerges again.

Geometric Puzzle Design

Figure 55.

start with the Monarch butterfly as shown on the left, and end up with
the Swallowtail on the right. It requires 39 moves. But then to put the
Monarch back together again may require only nine moves. How can
that be possible? This puzzle was introduced at the International Puzzle
Party in Helsinki in 2005, made of solid hardwood blocks, with the but-
terflies laminated on in their bright, contrasting natural colors, orange

and yellow.

The remainder of the puzzles in this chapter might not be classi-
fied as true sliding block puzzles, but rather closely related variations.
(This confusing matter of puzzle classification tends to be a puzzle in

Figure 56.
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itself!) Window Pain (Figure 56) consists of six polyominoes in a square
5 x § tray. The object is simply to fit the pieces into the tray. What
makes it tricky is that the picture frame opening on the top is only
4 x 4. There is only one solution. (This is the simple version. There is
another, more complicated version with a slot in one side of the tray.)

This next puzzle, Looking Glass, does employ a slot in the side of the
square 5 x § tray through which the six polyominoes are inserted (Figure
57). The round hole in the plexiglass cover is simply to facilitate sliding
the pieces about with the eraser-end of a pencil. The one solution is not
straightforward, especially for some popular puzzle-solving computer
programs, as it involves rotation.

Figure 57.

The Decoy (Figure 58) is one example of a group of recent designs in
which polyomino pieces are inserted onto a 5 x 5 tray through an opening
in the transparent top (shown in dark gray) and then shifted about until
the last piece can be dropped in to complete the assembly. This is one
of the more challenging ones of this type, even to get apart. The name
comes from the smaller L-shaped opening, which you might assume is for
inserting the L-shaped piece. However, it serves no function other than
as an access window for moving the pieces about. The solution involves
rotation, to facilitate which the corners of the pieces need to be slightly
rounded. There would seem to be great potential here for the discovery
of many other new and clever combinations of pieces and openings.
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Figure 58.
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Figure 59.

The five-piece Drop-Out Puzzle (Figure 59) must be just about the
ultimate in simplicity of sliding block puzzles. Four rectangular blocks
and one square block are contained within a 3 x 4 tray with a transpar-
ent cover. The cover has a circular hole near one end, and the bottom of
the tray has a corresponding hole at the other end. The object is to drop
a round disk (ceramic magnet) into the top hole and, by shifting pieces
about, have it drop out the bottom hole. It requires 26 moves. The fun
begins when an attempt is then made to drop the disk in again to repeat
the solution, for now the blocks are in a position that makes the solution
impossible. Eight additional moves are required to restore them into a
playable position.



Chapter 5
Cubic Block Puzzles

Given the popularity of puzzles made up of squares joined together in
different ways, it does not require too much imagination to realize that
cubic blocks might be joined together in similar fashion to make three-
dimensional puzzles. When measured in terms of the number of different
assembly combinations possible for a given set of pieces, the cube must
be the ultimate combinatorial building block. Add to that the fact that
the pieces are easy to make, to visualize, to describe, and to illustrate.
They also pack nicely into a box or rest on a flat surface. No wonder they
are so popular!

The 3 x 3 x 3 Cube

The earliest reference to 3 x 3 x 3 cubic block puzzles may be the one
shown in the classic Puzzles Old and New by Professor Hoffmann (Angelo
Lewis), published in London in 1893—not to be confused with the recent
Botermans and Slocum book of the same name. It shows a puzzle called
the Diabolical Cube, which is rather a misnomer as it is one of the easier
puzzles of its type. The six pieces, illustrated in Figure 60, assemble into a
3 x 3 x 3 cube 13 different ways. Since all of the pieces in this puzzle have
reflexive symmetry, it necessarily follows that every solution must either
be self-reflexive or be one of a reflexive pair. It is customary not to count
these reflexive pairs as two different solutions. This particular version of
what has now become a very common type of puzzle is unusual in that
all of the pieces are flat and contain different numbers of cubes increasing
in an arithmetic progression.
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The next reference known to the author for the 3 x 3 x 3 cube is a
version that appeared in Mathematical Snapshots, by Hugo Steinhaus,
published by Oxford University Press in 1950. Puzzle historians might
well be puzzled by this half-century gap. With all of the interest in burrs,
etc. during that time, could there have been no interest in cubic blocks?
The version in the Steinhaus book (Figure 61) has two solutions that are
slight variations of each other and of medium difficulty. It is referred
to as Mikusiriski’s Cube after its originator, the Polish mathematician
J. G. Mikusinski.

Figure 61.

Nearly everyone must be familiar with Piet Hein’s seven-piece Soma Cube
(Figure 62), which is said to have been invented around 1936 and which
enjoyed great popularity and commercial success around the 1960s. With
240 possible solutions, the 3 x 3 x 3 assembly is almost trivially simple. Its
popularity may have been due more to the well-conceived instruction booklet
showing many different problems and pastimes possible with the set.

The popularity of Soma lingers to this day. Sivy Farhi has published a
booklet containing over 2000 problem figures. There have been versions with
color-matching problems, with number problems on the faces, and so on.
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Figure 62.

Variations on the 3 x 3 x 3 cube that have been published within the
last three decades are now too numerous to mention. Commercially suc-
cessful puzzles nearly always spawn a host of imitations. Even if some are
well conceived or even an improvement over the original, they are almost
certain to languish in obscurity, since puzzle fads tend to run in cycles
with no mercy on latecomer look-alikes. But we need not be concerned
with that here. As an archetype the 3 x 3 x 3 cube is a superb combinato-
rial puzzle—simple in principle and embodiment, yet with many secret
charms still lying buried inside. Perhaps we can dig a few of them out.

With puzzles of this type, there is an optimum number of pieces, and
as you tinker with them, you soon gain an intuitive sense of what that
number is. There is no way that a four-piece version can be very difficult,
although there is one in the next chapter that has the intriguing property
of being serially interlocking, meaning that it can be assembled in one
order only. The five-piece and six-piece versions of the 3 x 3 x 3 cube are
the most interesting. Some of the five-piece designs are surprisingly con-
fusing. The six-piece designs have the added advantage that they usually
can be assembled into many other symmetrical problem shapes. (A very
cleverly designed five-piece puzzle might have this feature too.) In order
to make a systematic study of this puzzle family, the first step is to list all
ways that four or five cubes can be joined (as shown in Figure 63).

The six-piece version of the 3 x 3 x 3 cube will be considered first. For
aesthetic reasons, one might prefer all the pieces to be the same size, but
this is impossible, so the nearest approximation is to use three four-block
pieces and three five-block pieces. It is also desirable that all pieces are
non-symmetrical, but this is likewise impossible, so two of the four-block
pieces will have an axis of symmetry. All pieces will of course be dissimi-
lar. Of the several thousand such combinations possible, the author tried
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several that proved to have either multiple solutions or no solution, until
finally finding one with a unique solution. It is shown in Figure 64. It was
produced at one time as the Half Hour Puzzle.

Although it was intended to construct only the 3 x 3 x 3 cube, Hans
Havermann and David Barge have discovered hundreds of other symmet-
rical constructions possible with this set of puzzle pieces, a few of which
appear in Figure 65. All of these figures have at least one axis or plane of
symmetry, and they represent most but not all of the types of symmetry
possible with this set. The cube has 13 axes and nine planes of symmetry.
Two of the figures have one axis and two planes of symmetry. Another
has one axis and one plane. All the others have one plane of symmetry
only. Challenge: with this set, discover a construction with one axis and
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Figure 65.

four planes of symmetry: i.e., the same symmetry as a square pyramid.
One is known. Are there more?

Another six-piece version of the 3 x 3 x 3 cube is Nob’s Cube (Fig-
ure 66), by famous Japanese puzzle inventor and collector, the late Nob
Yoshigahara. It likewise has only one solution.

In the five-piece versions of the 3 x 3 x 3 cube, there may be three
five-block pieces and two six-block pieces, and none need be symmetri-
cal. The number of such possible designs must be in the thousands, and
many of them are surprisingly difficult. One is shown in Figure 67, but
readers are encouraged to experiment with original designs of their own,
not necessarily using the guidelines suggested above.

Throughout this book, and throughout the world of geometric puz-
zles in general, it is taken for granted that the sought-for solution is not
only symmetrical but usually the most symmetrical possible shape—in
this case, the cube. When multiple problem shapes are considered, high-
est priority is given to those having the most symmetry. Evidently, one
of the most basic and deeply rooted instincts of mankind is a desire for

Figure 66.
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Figure 67.

symmetry, whether in the arts, the sciences, or whatever. Trying to give
reasons for so ingrained an instinct is perhaps a risky business, but here
is an attempt so far as puzzles are concerned.

For reasons already explained, ideally the solution of a combinato-
rial puzzle, by definition, begins with the individual pieces in the state of
greatest possible disorder, meaning all dissimilar and non-symmetrical.
A symmetrical solution, then, goes to the opposite extreme and does so
against the natural tendency in the world toward disorder and random-
ness. Only the human brain is capable of doing this. Practically every
human endeavor involves at least some attempt to make order out of
disorder, but nowhere more graphically than in the symmetrical solution
of a geometric dissection puzzle. It is the one point to which all paths lead
upward and from which one can go no higher. To put it another way, the
object of a well-conceived geometric recreation is usually obvious enough
as to require minimal instructions. One tends to associate complicated
instructions with unpleasant tasks, the definitive example being of course
the filing of income taxes. Contrarily, many of life’s more enjoyable pas-
times tend to require no instructions at all.

Polycube pieces fit together so naturally that some persons find rec-
reation in simply assembling random “artistic” shapes and thinking up
imaginative names for them. When they don’t resemble anything that
makes sense, the tendency is to call them “architectural designs.” (Does
this tell us something about the present state of architectural design, or at
least the public’s perception of it?)

Tetracubes

Note that four cubes can be joined eight different ways. Packing a com-
plete set of these fetracubes into a 4 x 4 x 2 box makes a neat but quite
easy puzzle. There are said to be 1,390 possible solutions. They also pack
into a 2 x 2 x 8 box and can be split into two 2 x 2 x 4 subassemblies.
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The Solid Pentominoes

Another popular cubic block puzzle is the set of 12 solid pentominoes.
Those are of course the set of pieces made by joining five squares all pos-
sible ways, discussed in Chapter 2, except in this case cubic blocks are
used in place of squares. The idea of a puzzle set made of such pieces is
so obvious that it probably occurred to several persons independently.
The earliest references known to the author are associated with Mar-
tin Gardner’s mathematical recreations column in Scientific American
around 1958. They were implied in an article by Golomb in The Ameri-
can Mathematical Monthly, December 1954, and are discussed in his
book Polyominoes.

The solid pentominoes (Figure 68) pack into the following rectangu-
lar solids: 2 x 3 x 10,2 x 5 x 6, and 3 x 4 x 5. Bouwkamp’s computer
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Figure 68.

Figure 69.
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analysis (see Chapter 2) found there to be 12, 264, and 3,940 solutions
to these, respectively, as later confirmed by many other analysts. If you
did not learn your lesson with the flat pentominoes, and you think that,
with 3,940 solutions, packing these pieces into a 3 x 4 x 5 box ought to
be easy, you are in for an even bigger surprise this time!

The solid pentominoes make a very satisfactory set of puzzle pieces
when accurately crafted of fine hardwoods and packaged in a suitable
box. Shown in Figure 69 is a set in which each piece is of a different
wood in contrasting natural colors.

A Checkered Pentacube Puzzle

There are 12 pentacubes that are flat—the solid pentominoes—and 17
that are not. There are 12 that have an axis of symmetry and 17 that do
not. There are 12 that neither lie flat nor have an axis of symmetry. If we
arbitrarily eliminate the two of these that fit inside a 2 x 2 x 2 box, then
a set of 10 pieces remains (see Figure 70).

According to a computer analysis by Beeler, these pieces pack into a
5 x5 x 2 box 19,264 different ways, and it is not very difficult to find one
of them. To make this puzzle more interesting, the pieces are checkered
(Figure 71). There are two ways that one might go about this. You could
randomly checker the pieces and then try to assemble checkered solu-
tions. There are 512 different ways of checkering the pieces, of which
511 have solutions and one does not. So it would be remotely possible,
if you were exceedingly unlucky, to end up that way with an impos-
sible puzzle. The better way is to assemble the puzzle first and then add
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Figure 70.
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Figure 71.

the checkering. This way you are sure of having a solution. Now try
to find a second perfectly checkered solution with this set of pieces. Of
the 511 ways of checkering the pieces with solutions, 510 of them have
multiple solutions and one has a unique solution. So, there is this very
slight chance that your puzzle may not have a second checkered solution,
but you may never know for sure, because finding the other solutions is
very difficult (unless you use a computer). How remarkable that out of
the 512 possible checkerings, just one should be impossible to assemble
checkered and just one other should have a unique solution!

Polycubes in General

Puzzle pieces made up of cubes joined different ways (polycubes) are
of course unlimited in size and infinite in number. Those of size-six are
called hexacubes, size-seven heptacubes, and so on. Questions such as
how many there are of each size would more likely be pursued as curiosi-
ties in mathematical analysis rather than for practical puzzle applications.
The most satisfactory polycube-type puzzles are those using small-sized
pieces in seemingly simple constructions.

The interesting design possibilities for polycube-type puzzles are prac-
tically limitless. Furthermore, the pieces are among the easiest to make.
For those with no access to woodworking tools, cubic wooden blocks can
be obtained from educational supply stores. Also from this same source,
plastic cubes that snap together are handy for experimental work.

Rectangular Blocks

Closely related to the polycube puzzles are the so-called packing problems
using rectangular blocks. Again, many of these are of interest primarily to
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mathematical analysts, but some of them also make satisfactory assembly
puzzles. Take for example Conway’s Curious Cube, named after its inven-
tor, mathematician John Conway, which calls for three 1 x 1 x 1 cubes
and six 1 x 2 x 2 blocks to be packed into a 3 x 3 x 3 box. There is only
one solution. Another, known as Conway’s Cursed Cube, calls for pack-
ing three 1 x 1 x 3 blocks, one 1 x 2 x 2 block, one 2 x 2 x 2 block, and
thirteen 1 x 2 x 4 blocks into a § x 5 x 5 box. It is quite difficult unless one
happens to be an expert in this particular branch of mathematics.

An interesting puzzle is suggested by joining 1 x 2 x 2 blocks in pairs
all possible ways. The resulting ten pieces are shown in Figure 72. They
can be assembled into a 4 x 4 x 5 solid, and there are said to be 25 solu-
tions. Now, eliminate the two pieces that are themselves rectangular, and
see if the remaining eight (shaded) will assemble into a 4 x 4 x 4 cube.
After you have become convinced that they will not, find a set that will by
duplicating one piece and eliminating one piece, and note the interesting
pattern of symmetry in the solution.
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Figure 72.

In the same vein, a simple puzzle project is to find all the ways that
1 x 1 x 2 blocks can be joined in pairs. Then, assemble them into a rectangu-
lar solid, and discover one solution having a pattern of reflexive symmetry.



Chapter 6
Interlocking Block Puzzles

All of the puzzles described thus far have been non-interlocking. Most
of them employ a tray or box to hold the pieces in place. The puzzles
to be described in this chapter, and throughout most of the remaining
chapters, are interlocking. In other words, they hold themselves together.
To be more precise, an interlocking puzzle is here defined as one in which
the last step of assembly (or first step of disassembly) necessarily involves
the sliding of mating surfaces parallel to each other. Such puzzles tend
not to come apart without deliberate effort. A box is no longer needed
to hold them, so they can be any geometric shape and can be displayed
in full view when assembled. There is more freedom in the manipula-
tion of the pieces. Beyond these obvious practical advantages, isn’t there
something intrinsically more satisfying in things that stay together rather
than fall apart by themselves? (Anyone who owns a car like mine will
understand!)

Cubic Block Puzzles

The polycube pieces in the previous chapter were formed by joining cubic
blocks together in different ways. None of the pieces thus formed up to
size-five are sufficiently crooked to have much practical use as interlock-
ing puzzle pieces. More important, the combinatorial approach does not
lend itself very well to the design of interlocking block puzzles.

The most obvious method of designing an interlocking cubic block
puzzle is to start with the complete pile of blocks, held loosely together
by your imagination or some other means, and remove one piece at a
time. A 3 x 3 x 3 cubic solid is an obvious place to start, with its thou-
sands of possible dissections. Depending upon just what the objectives
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are, quite a bit of experimenting may be required to achieve the desired
results. Again, the plastic play blocks that snap together are handy.

By definition, an ideal combinatorial puzzle is one in which all
pieces are dissimilar and non-symmetrical. A four-piece dissection of the
3 x 3 x 3 cube that achieves this is shown in Figure 73. The puzzle is seri-
ally interlocking, meaning that it can be assembled in one order only.

Figure 73.

Is a five-piece design possible that achieves all of the above objec-
tives? Evidently not, although a proof that none exists (or the discovery
of one) will probably require a computer. Shown in Figure 74 is one that
comes close, but alas two of the pieces are symmetrical.

7

Figure 74.

The Involute Puzzle

Because of the millions of possible ways of dissecting the 4 x 4 x 4 cube
into dissimilar non-symmetrical interlocking puzzle pieces, additional
aesthetic considerations may be introduced to make the design process
more of an art rather than just a series of random choices. The puzzle
could be made serially interlocking. Also, by using 1 x 1 x 2 blocks in
the construction, symmetrical patterns can be realized on the six outside
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faces. Earlier versions of this book described a seven-piece dissection
called Convolution that achieved these objectives. Here published for
the first time is an improved eight-piece version called Involute (Figure
75). The key piece is made of a darker wood; otherwise it would be
nearly impossible to locate. The puzzle is serially interlocking, and the
pieces are numbered in order of assembly. There are several tricky steps
in assembly, one of which involves rotation.

The Three-Piece Block Puzzle

Challenge: join just ten cubic blocks together to make three puzzle pieces
that interlock to form a puzzle having threefold axial symmetry. Impos-
sible? Of course, if you assume that the blocks are joined face-to-face.
But when cubic blocks are joined by their half-faces or quarter-faces,
many new possibilities arise, as well as hopeless confusion!

All the information required to construct such a puzzle is contained
in the drawings in Figure 76. This is such an amazing puzzle that it would
be a shame to spoil it by giving the solution here. But note the follow-
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ing: interlocking puzzles of this sort must be quite accurately made to be
entirely satisfactory or even to be assemblable at all. Usually the easiest
way to achieve this is to glue at least some of the joints with the blocks
held together in their assembled positions. Since that option is not given
here, unless the reader is able to achieve the difficult feat of solving this
puzzle on paper, the alternative is to first make a rough model using soft
material or rubber cement. Then, after the solution is discovered, a more
accurate model can be made of hardwood.

This puzzle has an interesting history. The one symmetrical face of
the assembled puzzle happens to resemble a certain corporate logo. The
company wanted a simple puzzle incorporating this pattern for some
sort of promotional scheme. So the arrangement of six of the blocks was
already determined. All that was required to complete the design was
the addition of four more blocks in a sort of triangular pyramid and a
judicious choice of glue joints to make it into an interesting interlocking
puzzle. So the company got what was wanted—except for one thing. It
turned out to be anything but simple! Do not be discouraged if you can-
not solve it straight away; it has baffled experts!



Chapter 7
The Six-Piece Burr

Puzzles consisting of interlocking assemblies of notched sticks are often
referred to as burr puzzles, probably from being pointed or spur-like in
assembled appearance. By far the most familiar of all burr puzzles, and
probably of three-dimensional puzzles in general, is the so-called six-piece
burr. Once thought to be about 200 years old, Slocum’s New Findings
on the History of the Six-Piece Burr now trace it back to at least 1698 in
Germany. Some persons know it as the Chinese Puzzle or Chinese Cross,
probably because it has been mass-produced in the Orient since the early
1900s, but there does not appear to be any evidence that the idea origi-
nated there.

The late David Bruce put forth the plausible conjecture that some of the
earliest puzzles may have been but slight modifications of practical objects.
For example, note the familiar interlocking box shown in Figure 77, con-
sisting of six notched boards. Did some whimsical box-maker decide to
have fun one day in his spare time, or did he perhaps just run out of nails?
Whatever, this may well have been the origin of the six-piece burr. With
six identical pieces, as suggested by the illustration, it is clearly impossible
to assemble. There are several obvious ways to modify one or more of the
pieces to make it assemblable, and a good exercise for the amateur puzzle-
maker is to see how many of these ways he or she can discover. With a
penny slot, it becomes a toy bank—a good first puzzle for any youngster.

General Discussion

The standard six-piece burr consists of six notched square sticks of
arbitrary equal length, not less than three times their width, arranged
symmetrically in three mutually perpendicular intersecting pairs. If the
square cross-section of the sticks has a dimension of two units, then all
notches are one unit deep and one unit wide or some exact multiple. To
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Figure 77. Figure 78.

put it another way, all notches can be regarded as being made by removal
of discrete cubic units, or to put it still another way, all pieces can be
regarded as being built of cubic units. All of the notches are made within
the region of intersection with the other sticks, so that when the puzzle is
assembled no notches show and it has apparent symmetry (Figure 78).

The six-piece burr is actually a large family of designs, since the
designer has a wide choice of how to notch each of the pieces. Over
the years, variations of the six-piece burr have received much attention
from puzzle inventors and authors. Directions for making them can be
found in many books and magazines. Several different versions have been
manufactured and patented. The earliest U.S. patent is No. 1,225,760
of Brown, dated 1917, with several others following shortly thereafter.
Most toy and novelty stores have a few burr puzzles on their shelves or
in their catalogs. Traditionally, these have been uninspired timeworn ver-
sions with a sliding key piece and internal symmetries. Consequently, this
fine puzzle has suffered a chronically tarnished image. To make matters
worse, over the years many inventors have tinkered with bizarre embel-
lishments to give the basic burr puzzle their own stamp of identity. The
patent files reveal many such ill-conceived contraptions, including those
with strings and holes, hidden pins, rotating keys, and other secret lock-
ing devices. Evidently taking their cue from certain composers of modern
“music,” they have thrown in odd intervals, incongruously sharpened
or flattened pieces, confusingly large numbers of parts in hopeless dis-
harmony with each other, and other jarring complications. Within the
last few decades, though, the six-piece burr has emerged from this deca-
dent period to become once again the quintessential interlocking puzzle,
thanks largely to the work of Bill Cutler.
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Figure 79.

There are twelve cubic units in each piece that are candidates for
removal (Figure 79). Removing these in all possible permutations would
theoretically result in 4,096 different pieces, but by discarding symme-
tries and those that cut the pieces in two, the number of practical pieces
is 837. The number of different ways sets of six such pieces can be com-
bined is staggering. Cutler limited his preliminary analysis to only those
combinations that make a solid assembly with no internal voids. Using
a computer, he found that there are 369 usable pieces and they can be
assembled into a solid burr 119,979 different ways. These results were
published in the Journal of Recreational Mathematics, Vol. 10(4), 1977~
1978 and were summarized in Martin Gardner’s mathematical games
column in Scientific American, Jan. 1978.

The burr pieces can be divided into two groups: those with simple
notches that can be milled out directly with a saw or dado blade (notch-

Figure 80.



Figure 81.
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able pieces) and those with blind corners and edges that must be chiseled
out or made by gluing in cubic blocks (unnotchable pieces). The notchable
pieces are the more desirable from both practical and aesthetic consider-
ations. Some puzzle analysts have limited their investigations to notch-
able pieces, of which there are 59 (including the one with no notches). It
has been customary to consider only solid assemblies, in which case there
are only 25 usable notchable pieces, and these are commonly referred to
as the set of 25 notchable pieces. They can be chosen in sets of six and
be assembled solid in 314 different ways. Some of this was calculated
independently by several different analysts, with or without a computer.
All of it has been confirmed and organized by Cutler.

In Figure 80, piece A is notchable. Piece B is not notchable. Piece C
can be made with a saw but cannot be assembled with other notchable
pieces without producing voids, so it is not included in the set of 25
notchable pieces, which are shown in Figure 81.

Burr No. 305

Cutler’s computer analysis told only what was possible, not what was
most interesting. Actually, it might possibly have done that too if appro-
priately instructed. For example, from the list of the 314 solid notchable
combinations, suppose that one first eliminates all those using duplicates
(or triplicates) of identical pieces and pieces having an axis of symmetry.
Also eliminate combinations with more than one solution. This narrows
the field down to 18, of which all but one (and its mirror image) employ
a rather common and uninteresting two-piece key arrangement. What
emerges from this screening process is a marvelous burr. It is called Burr
No. 305 because of its location in Cutler’s tabulation. It uses pieces 6, 12,
14, 21, 22, and 23 (Figure 82).

Figure 82.
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Difficulty Index and Burr No. 306

This is an appropriate point at which to digress for a moment and intro-
duce the idea of a difficulty index for a combinatorial puzzle. Puzzles
must by definition have some element of difficulty. Making a puzzle more
difficult may in some circumstances be an improvement in design, if not
carried to extremes and if not to the detriment of other considerations. In
any case, some way of predicting the relative difficulty of similar puzzle
designs would be a useful tool for the designer.

Consider the solid six-piece burr. Given a drawing of the assembled
burr or some familiarity with it, the only real problem is determining the
relative location and orientation of the six pieces. Select any one of the
six pieces at random for the bottom piece. Usually it is obvious from the
notching which side should face the center. Now, for the back piece, one
has a choice of any of the remaining five, and it can be turned end-for-
end, hence a total of ten possibilities. For the next piece, say on the left,
there are six choices, and so on. Thus, to make a complete analysis of the
puzzle by trying every piece in every position, there are a total of 10 x 8 x
6 x 4 x 2 or 3,840 possibilities to be considered. This number divided by
the number of solutions is the difficulty index of that particular design.

The difficulty index of Burr No. 305 is 3,840. While that may seem
like a large number of moves, most of them are skipped by using com-
mon sense, and so this would be a puzzle of medium difficulty. Identical
pairs of pieces, symmetrical pieces, and multiple solutions all decrease
the difficulty index. There is one charming type of piece known as an
ambiguous piece, because you cannot tell from the notches which side
should face the center, and there are different degrees of ambiguity. Piece
9 in Figure 81 is an example of the most ambiguous type because any one
of its four sides might face the center. This would increase the difficulty
index by an additional factor of four, but because it is also symmetrical,
the net increase would be a factor of two.

The mischievous role of the ambiguous piece was not taken into
account in the analysis that led to the illumination of Burr No. 305.
Adding this newfound ingredient to the recipe, another delectable puzzle
comes to light: Burr No. 306 illustrated in Figure 83. It uses pieces 6, 9,
12,21, 22, and 23 and has a difficulty index of 7,680.

Note that a set of seven pieces will allow both Burr No. 305 and Burr
No. 306 to be constructed.
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Figure 83.

Higher-Level Burrs and Bill’s Baffling Burr

So far we have discussed only burrs with no internal voids. Historically,
solid burrs have received the most attention. No satisfactory explanation
has ever been given for this, but perhaps it is simply the notion that many
things in life tend to be more satisfying when they are solid: building foun-
dations, financial investments, friendships, and so on. The recent flurry of
activity in designing ever more entertaining (meaning, to some, fiendishly
difficult) burrs has shifted attention to burrs that do not come directly
apart (or go directly together) but rather involve the shifting back and
forth of pieces or groups of pieces within the partially assembled burr.
Some of these are so baffling as to discourage a professional locksmith, yet
they are basically just standard burrs using the 837 practical pieces. They
all necessarily have one or more internal voids. Bill Cutler’s preliminary
analysis was limited to solid burrs for practical reasons of computation
time. Later, with more powerful computers Cutler continued his analysis
of six-piece burrs, solid or not, culminating in the 1994 publication of A
Computer Analysis of All 6-Piece Burrs. His analysis showed that there
are roughly 35.65 billion possible assemblies. Of these, 5.95 billion can
be taken apart. One object was to search for the highest-level burrs, where
level refers to the number of shifts before the first piece can be removed.
The highest level found for a non-unique (more than one assembly) six-
piece burr was 12. The highest-level unique six-piece burr is ten if the
pieces are eight units long and nine if the pieces are six units long. If all
pieces are notchable, the highest level is five for a unique burr. His analysis
completely explored all assemblies for the first piece to be taken out. Only
higher-level burrs were completely analyzed. So, the number of total solv-
able burrs is a statistical estimate. (Contributed by John Rausch.)
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One example of this new breed of burrs is Bill’s Baffling Burr, designed
of course by Cutler. It uses two unnotchable pieces, both of which are
easily made from notchable pieces by gluing in one and two extra blocks,
respectively. It has seven internal voids. This is an unusually large num-
ber of voids for a burr with only one solution and contributes to its dif-
ficulty, for there are 24 apparent solutions but only one that is possible
to assemble. Thus, you may think you have found the solution and are
wondering how to get the last piece in place when most likely you have
stumbled upon one of the 23 false solutions. It was stated earlier that the
pieces could be of arbitrary length. With some of these more complicated
burrs, this is no longer true. Bill’s Baffling Burr (Figure 84) cannot be
assembled if the pieces are longer than three times their width.

Figure 84.

Bill’s Baffling Burr is referred to as a level-five burr, meaning that
five separate shifts are required to release the first piece. This new yard-
stick of devilry has spurred some rivalry among puzzle experts to see
who can come up with even higher-level burrs. In 1984, Philippe Dubois
of Israel came up with a novel burr called Seven Up, with seven moves
required to release the first piece and four more to release the second
piece. Then, Peter Marineau surprised the puzzle world with a level-nine
burr, which achieved its remarkable stunt with surprisingly simple pieces.
Two are identical, another two are a reflexive pair, and another one is self-
reflexive (Figure 85). No doubt, ever more clever designs are being uncov-
ered these days, especially now that computers have entered the search.

Perhaps the reader will now be encouraged to wander off into this
vast wilderness of hidden notches and explore some of them further. For
the puzzle connoisseur, a well-crafted six-piece burr is the embodiment of
good design—simple, direct, and eminently functional. For the hobbyist,



Chapter 7. The Six-Piece Burr 67

Figure 85.

the burr is well suited for a workshop project, and helpful woodworking
tips are given later (see Chapter 24). In particular, the would-be puzzle
inventor will find much to explore beneath the deceptively familiar exte-
rior of the six-piece burr.

Considering the large number of possible assemblable sets of the 837
practical pieces, now known to be in the billions, any one of them cho-
sen at random is likely to be a new and original, but totally uninspired,
design. The first step, then, is to decide just what features one considers
most desirable. A few guidelines have been suggested here, but there may
be other, better ideas that have been overlooked. Originality, psychology,
and aesthetics all play a role at this stage of the creative process. The
second step is seeking the combination that best achieves one’s goal, and
this is essentially an analytical and mechanical problem.

Imagine a computer being programmed to methodically print out all
the billions of assemblable standard six-piece burrs. All but a handful
would be new and original designs—or would they? Does merely being
different constitute originality? There is a curious musical analogy. With
conventional discrete musical notation, one could, in theory at least,
program a computer to print out every possible musical theme, given
enough time and unlimited supply of paper. Buried within this mountain
of papers would be all of the most sublime works of the great masters of
the past and of those perhaps to come in the next Renaissance. But then
how could they be found from amongst the random noise? The whole
exercise would amount to nothing.

Trying to improve upon an existing burr design can be an enlighten-
ing exercise. For example, as a maker of puzzles, one is always trying
to reduce the number of unnotchable pieces. Moving or removing just
one offending unit block seems innocent enough, but it nearly always
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causes havoc. Attempts to correct the problem just create more problems.
(Sounds familiar?) Sometimes you work through a loop of changes and
end up back where you started. It is slow work, for every new change
requires an analysis of all possible solutions. Some analysts use a com-
puter for this. It does in seconds what otherwise might take hours or even
days. Others not in such a rush may enjoy the mental exercise in tradi-
tional methods of analysis using pencil and paper. For them, the analysis
is the puzzle, so why not relax and enjoy it?



Chapter 8
Larger (and Smaller) Burtrs

The family of burr or notched-stick puzzles is a large and prolific one,
with offspring numbering in the hundreds or even thousands, depending
upon how one counts them, and with more being born all the time. This
book is not intended to be a compendium of puzzle inventions, past and
present. One yardstick for inclusion is the extent to which the underlying
idea behind the puzzle is logical and mathematical rather than simply
mechanical. Symmetry is an important consideration. In this chapter we
will conclude the discussion of square-stick burrs by considering only
those having certain kinds of symmetry. This is an appropriate point at
which to discuss symmetry.

Symmetry

The term isometric symmetry was introduced without explaining what it
meant. A three-dimensional object is said to have isometric symmetry if
it has identical non-coplanar axes of symmetry. In other words, it exists
in a sort of geometric vertigo, with no identifiable upright orientation,
no top or bottom, front or back, left or right, all being the same. All of
the Platonic solids have this property, including their various truncated
and stellated variants. Rectangular solids (except the cube) and pyramids
(except the tetrahedron) do not have it. The three-dimensional object in
question can be anything from a polyhedral solid to a cluster of solids, a
nesting of sticks, or whatever.

There is another sort of symmetry that most of the burr puzzles in
this book have, sometimes referred to as homogeneity or congruence. It
is illustrated by the two drawings in Figure 86. On the left is the standard
six-piece burr. The 12-piece burr on the right is representative of a popu-
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Figure 86.

lar family of puzzles, sometimes called pagodas, which lack homogeneity
because not only are the sticks of various lengths but also their relative
positions are distinguishable.

The term homogeneous isometric symmetry is so awkward that it
will not be used throughout this book but rather will be implied. Most
well-conceived burr puzzles have it, and the lacking of it must be con-
sidered an aesthetic blemish. Like so many aesthetic considerations, this
one too is rooted firmly in practicality. Most interlocking puzzles have a
key piece or sliding axis that constitutes the first step of disassembly. In
a symmetrical burr, all pieces have equal standing and are indistinguish-
able from one another when assembled, thus coyly hiding their identity
beneath a geometric masquerade.

A distinction is made between apparent symmetry and total sym-
metry. When a puzzle has apparent symmetry, as do practically all well-
designed geometric puzzles, the assembled external shape is symmetrical
but not necessarily the insides. When a puzzle has total symmetry, all of
the internal surfaces of dissection are symmetrical as well. Such puzzles
necessarily have all pieces identical, limiting their possibilities for com-
binatorial problems, but there are some intriguing exceptions involving
color symmetry.

For both practical and aesthetic reasons, as already discussed, anyone
who tinkers with geometric puzzles usually takes for granted the concept
of symmetrical external form and internal dissymmetries without giving
it much thought. It is interesting to note that all higher animals also have
this property, although the exact reasons for it are not at all obvious. If
one’s body and brain were entirely bilaterally symmetrical, could one tell
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the difference between left and right, throw a ball, or use a typewriter?
Could one even think, in the usual sense of the term?

The Three-Piece Burr Problem

Symmetrical rectilinear burrs can be made of 3, 6, 12, or 24 sticks—no
other sizes are possible. The basic six-piece burr was discussed in the pre-
vious chapter. The most obvious form for the 12-piece burr is that shown
in Figure 87 on the left. Notice that the axes of the intersecting sticks are
not offset as in the six-piece burr but instead intersect with each other. In
order to understand what problem this creates, consider the simple three-
piece burr shown in Figure 87 on the right.

Figure 87.

A little reflection should convince the reader that with any sort of
conventional rectilinear notching, the three-piece burr is impossible to
assemble, or even more obvious, impossible to disassemble. When you
see a three-piece burr of this type, you can be sure that either one of the
notches has been rounded so that a piece rotates or else that the sticks
have diagonal or otherwise unconventional notches. The same applies to
the 12-piece version.

Practical 12-Piece Burrs

One way of overcoming the problem just explained is to space the sticks
apart in the 12-piece burr, as shown in Figure 88 on the left. Symmetry
is maintained. The possibilities for notching combinations are virtually
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Figure 88.

limitless. There is a well-known variation of this with the sticks spaced
farther apart so that it resembles a cage (Figure 88, center). Sometimes
a ball is placed inside. There is yet another variation, but non-homo-
geneous, with three more pairs of sticks added to fill the center spaces,
which is even more complicated to design, to solve, or even to explain
(Figure 88, right).

The Altekruse Puzzle

There is one other symmetrical 12-piece burr that is a classic and quite
unlike any of the others mentioned thus far. It is shown assembled in Fig-
ure 89, together with one of its 12 pieces, all of which are identical. U.S.
Patent No. 430,502 was granted to William Altekruse in 1890 for this
puzzle. The puzzle has been popular for a long time and manufactured in
many different forms with many different names (except of course Alte-

Figure 89.
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kruse). The Altekruse family is of Austrian-German origin. Curiously,
the name means “old cross” in German, which has led some authors to
incorrectly assume that it was a pseudonym. A William Altekruse who
is presumed to be the grantee of the patent came to America as a young
man in 1844 with his three brothers to escape being drafted into the Ger-
man army. Could he have brought at least the germ of the idea with him?
Whatever the case, it is a most interesting burr. By the way, note that if
one insists on being precise, it is not quite symmetrical visually because
the asymmetrical notch arrangements reveal themselves.

The Altekruse Puzzle, sometimes known as the 12-piece burr, has
an unusual mechanical action in the first step of disassembly by which
two halves move in opposition to each other. This may come as quite a
surprise to those accustomed to the more familiar burr types with a key
piece or pieces. Depending upon how it is assembled, this action can take
place along one, two, or all three axes independently but not simultane-
ously. If two extra pieces are available, there is a surprising 14-piece solu-
tion.

Variations of the Altekruse Puzzle

The interesting variations of this puzzle are quite numerous, and prob-
ably others await discovery. In the standard Altekruse Puzzle, each piece
has three notches, with the two end notches facing in the same direction.
There is a variation in which some pieces have notches facing in opposite
directions, and such pieces can be either one of a reflexive pair, as illus-
trated in Figure 90. Which combinations using such pieces are possible?

Figure 90.

The repetitive structure of Altekruse pieces can be extended indefi-
nitely to create larger puzzles. Before considering these, note the diminu-
tive version shown in Figure 91 that uses six pieces of two notches each:
three right-handed pieces and three left-handed. Try to solve this puzzle
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Figure 91.

visually, and then discover an interesting variation that does not use equal
numbers of right-handed and left-handed pieces (and do not forget that it
must be assemblable).

There is a version that uses 24 sticks, 12 right-handed and 12 left-
handed with four notches in each (Figure 92, left). There is a version that
uses 36 or 38 identical sticks of five notches each (Figure 92, right), and
so on ad infinitum. There are rectangular versions in even greater num-
ber. Note that none of these larger versions is homogeneous. Once the
basic principle is understood, these larger versions are not very difficult
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Figure 92.
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Figure 93.

to assemble except that some trial and error may be required to figure
out the correct order of assembly. They also require more dexterity than
some of the others, and it helps if the pieces are accurately made.

Another interesting variation of the Altekruse Puzzle uses pins and
holes in place of notches. In its simplest version, each piece has one pin
and one hole, with six right-handed pieces and six left-handed pieces.
An unusual feature of this version is that, with a large supply of pieces
to work with, they can be connected end-to-end to make longer sticks
and larger, more complex assemblies without limit. To make things more
interesting, there need not be equal numbers of the two types of pieces,
and there may also be pieces with pins facing in opposite directions. For
even more entertainment, add pins or holes in the centers of the pieces
(Figure 93). Just figuring out all the possible pieces is quite a task, and
analyzing all of the 12-piece assemblies should keep someone occupied
for a long time.

The Pin-Hole Puzzle

Like the design described above, the Pin-Hole Puzzle also uses pins and
holes. The basic puzzle consists of six 1 x 1 x 3 bars and six dowels of
length three. Each bar has three holes slightly larger than the dowels. The
puzzle pieces are fabricated as shown in Figure 94, using brads to hold
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Pin Bar Cross Elbow

Figure 94.

Figure 95.

the dowels in place. One version of the puzzle uses one pin, one bar, two
crosses, and three elbows. This puzzle can be assembled one way only
but is quite easy.

By having larger sets of pieces and including one more type of piece
twice as long, many larger and more complicated figures can be con-
structed, two examples of which are shown in Figure 95.

The Corner Block Puzzle

The Pin-Hole Puzzle has an interesting variation. Eight cubic blocks are
added to the corners of the Pin-Hole Puzzle, making the assembled shape
cubic and creating the Corner Block Puzzle (Figure 96a).
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Figure 96b.

Each cubic block might be attached to any one of the three bars
against which it rests. Thus, the puzzle designer faces a choice of 3® or
6,561 different ways of attaching the blocks. Another way of looking at
the problem is to consider all the different types of pieces that could result.
When one considers all the ways that one or two blocks can be added to
the three basic pieces (bar, cross, elbow), there are 18 possible augmented
pieces. Six of these are less desirable because they have an axis of sym-
metry, leaving the 12 pieces shown in Figure 96b. Problem: from this set
of 12 pieces, find a subset of six pieces that assembles one way only. The
author has tinkered with this problem off and on for years without suc-
cess. For some reason not understood, the solutions always seem to occur
in pairs or more. To simplify the problem somewhat, note that piece 1
must always be used, plus three more pieces with single blocks and two
with double blocks. Thus, there are 150 possible subsets.
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Here is one fairly satisfactory combination with a pair of solutions:
pieces 1, 2, 3, 7, 8, and 12. Can the reader improve upon this? The Pin-
Hole Puzzle and Corner Block Puzzle are not really burrs. They sneaked
into this chapter as close relatives. This theme is carried forward in Chap-
ter 15 and Chapter 23.

A 24-Piece Burr

The number of practical ways that 24 notched sticks are symmetrically
assemblable is very limited. Only one is known to the author, shown in
Figure 97. It uses 23 identical pieces and one key piece having an extra
notch. With an illustration to follow, assembly of the puzzle is mostly a
test of dexterity. There is also a surprising solution that uses 24 identical
pieces without any key piece, and it requires even more dexterity.

The really interesting feature of this puzzle set is that other inter-
locking assemblies are possible using fewer pieces, making it practically

Figure 98.
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unique among burr puzzles. Two such solutions appear in Figure 98. The
one on the left is the standard six-piece burr, using five regular pieces and
one key piece. Note the unusual symmetry of the one on the right, which
uses nine regular pieces and one key piece. There is another neat solution,
left for the reader to discover, that uses 16 regular pieces and has fourfold
symmetry.

In order to be satisfactory, the pieces must be made accurately, with
the length exactly three times the width. A version of this puzzle was
produced by Pentangle under the name Squirrel Cage.






Chapter 9
The Diagonal Burr

All of the burr puzzles described in the previous chapters have been
orthogonal, i.e. rectilinear, Cartesian, with right angles. They are the
most familiar and the easiest to visualize, analyze, explain, and make (but
not necessarily to solve!). The time has now come to venture beyond the
comfortable world of right angles and explore the wondrous geometry of
the diagonal burr.

The diagonal burr can be regarded as a standard six-piece burr in
which all of the sticks have been rotated 45 degrees, with the notches V-
shaped rather than square. The six pieces shown in Figure 99 represent
one version. The piece with no notches is of course the “key” which
slides in last to complete the assembly. Two of the other pieces have an
extra notch to accommodate it. The reader can probably solve the puz-
zle mentally by studying the drawings. It is also easy to whittle a rough
model from square sticks of some soft wood.

===
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Figure 99.
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After having solved this puzzle one way or the other, now make the
surprising discovery that the “key” is not really a key piece at all, more
properly called a pseudo-key. It need not go in last or come out first. In
fact, it need not even be used. The burr can be assembled in total sym-
metry using six identical pieces with two notches each by mating two
mirror-image halves of three pieces each (Figure 100).

Figure 100.

Like its orthogonal counterpart, the origin of the diagonal burr is a
mystery. The earliest U.S. Patent is No. 393,816 to Chandler in 1888, but
it shows a more complicated version with a sliding key. The earliest record
of the symmetrical version appears to be U.S. Patent No. 779,121 to Ford
in 1905. Curiously, in his patent description, Ford shows a very awkward
method of assembly rather than the simple mating of two halves.

The diagonal burr has also had its share of variations over the years.
As you might expect, a favorite theme of puzzle inventors has been to
increase the number of pieces, which is quite easy to do with this type of
arrangement. Carrying this to the extreme, U.S. Patent No. 774,197 to
Pinnell in 1904 (Figure 101) shows a horrendously complicated assembly
of 102 diagonally notched sticks. (The patent notes that no model was
submitted!) Another variation has been to enclose the burr in a spherical
outer shell (U.S. Patent No. 766,444 to Hoy in 1904 and U.S. Patent No.
1,546,025 to Reichenbach in 1925).

Someone, somewhere, perhaps in the mid-nineteenth century, made
the marvelous discovery that the ends of the diagonal burr sticks can be



Chapter 9. The Diagonal Burr 83

Figure 101.

beveled to produce a puzzle that, when assembled, is the first stellation of
the rhombic dodecahedron. According to puzzle collector and historian
Jerry Slocum, a puzzle of this sort was sold as early as 18735, but the only
patent on it that the author is aware of is Swiss Patent No. 245,402 to
Iffland in 1947.

The word intriguing is used frequently throughout this book to
describe various polyhedral dissections, but few can outshine the bril-
liance of this simple sculpture (Figure 102). From one point of view, it
may be regarded as a diagonal burr puzzle in which beveling the ends of
the pieces produces a totally unexpected and beautiful new shape. From
another point of view, it is a surprising dissection of the stellated rhombic
dodecahedron into six identical pieces that amazingly assemble and inter-
lock! It has more interesting properties too. When viewed along one of its
fourfold axes of symmetry, it is square, while when viewed along one of
its threefold axes, it is the Star of David. And perhaps most surprising of
all, it is a space-filling solid.
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Figure 102.

Although a rough model of the diagonal burr is easily whittled from
soft wood or sawn by hand, to be entirely satisfactory it should be made
very accurately, for which power tools and jigs are required. It is also
quite susceptible to changes in humidity when made in wood, so stable
woods should be used. It is often manufactured in plastic, which over-
comes this problem.

The solution to the diagonal burr is so easy as to be barely a puzzle,
but the stellated version does require some dexterity and patience, espe-
cially when accurately made with a tight fit. A problem with the stellated
version in wood is that the sharp ends of the pieces are across the grain
and easily broken. This can be corrected by making each piece of three
blocks glued together. Although woodworking techniques are discussed
later, a method for making these blocks will be explained briefly here as
an aid to understanding their geometry. This will be easiest if the reader
can actually saw some out, but perhaps others can imagine doing it.

As shown in the drawing in Figure 103, each puzzle piece consists of
a six-sided center block to which are attached a pair of tetrahedral end
blocks. The six-sided center blocks are easily made as follows: start with
uniform square sticks of any convenient size—say one-inch square. Make
a V-shaped cradle (Figure 104) that holds the sticks at a 45-degree angle
of rotation and slides in the miter grooves of a table saw at an angle of

Re~d

Figure 103.
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Figure 104.

45 degrees when viewed from above. Make a diagonal cut on the end of
the stick. Then, rotate the stick 180 degrees and advance it in the cradle
exactly the correct amount to produce a pyramidal point in the center
when the second saw cut is made. Continue in this manner to make addi-
tional blocks without waste. This very useful building block will be used
frequently in the chapters that follow and will be referred to as the six-
sided center block.

The two end blocks are made using the same square stock in the same
cradle, except that the stock is advanced a shorter distance when mak-
ing the second cut, and there will be a piece of waste for each one made.
These are referred to as tetrabedral blocks. They are not regular tetrahe-
dra—two opposite dihedral angles are right angles and the others are 60
degrees. These are also useful building blocks, both practically and math-
ematically. Many of the geometric shapes to be discussed in the next three
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chapters can be regarded as made up of these blocks. For example, the
six-sided center block contains six of these units, the whole piece there-
fore eight, and the entire puzzle 48. The rhombic dodecahedron is made
up of 24 of them, with each stellation containing two additional units.



Chapter 10

The Rhombic Dodecahedron
and Its Stellations

The number of ways that sticks can be arranged symmetrically in space
is very limited. It is convenient to examine this question in terms of
unnotched straight sticks. The standard six-piece burr can be regarded
as a cluster of six rectangular sticks to which parts have been added (or
removed) to achieve interlock and other interesting features. The Pin-
Hole Puzzle is an even better example. The hollow space in the center is
cubic. In any symmetrical arrangement of straight sticks totally enclosing
a hollow center, a little thought or experimentation will show that the
faces of the enclosed hollow center must be rhombic (or square). There
are only three isometrically symmetrical solids with such faces: the cube,
the rhombic dodecahedron, and the triacontahedron (Figure 105).

The rhombic dodecahedron has 12 identical rhombic faces. It can be
visualized as the solid that results when the edges of a cube are sufficiently
beveled at 45 degrees (Figure 106a). It is one of very few symmetrical sol-
ids that pack to fill space, two others being the cube and the truncated
octahedron. Like the cube, it has three fourfold axes of symmetry, four
threefold axes, and six twofold axes (Figure 106b). When viewed along
any of its fourfold axes, it appears square in profile, while along any of
its threefold axes it appears hexagonal (same as the cube).

Figure 105.



88 Geometric Puzzle Design

Figure 106a.
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Figure 106b.

The rhombic dodecahedron can be totally enclosed by a symmetrical
cluster of 12 sticks having equilateral-triangular cross-section, a property
not only intriguing but of great practical significance. This arrangement
has a pair of mirror-image forms, as shown in Figure 107.

Figure 107.
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Theory of Interlock

At first glance, the nest of sticks shown in Figure 107 may appear to be
self-supporting. Any attempt to assemble it without tape or rubber bands
will immediately dispel this notion as the sticks tumble into a heap. A
useful tool for the puzzle designer would be some way of analyzing such
geometric arrangements to determine if they are interlocking or not, or
even possible to assemble. If the arrangement is totally symmetrical, there
is a simple way to do this, as follows:

To take a trivially simple example with which to start, consider the
Pin-Hole Puzzle without the pins and holes. In its assembled condition
as shown (Figure 108), for each piece its two ends rest flat against two
other pieces, and the ends of yet two others rest flat against it. Now, move
each piece by some incremental distance directly away from the center,
and note that they become separated from each other. This is sufficient to
show that the structure is non-interlocking and will easily fall apart.

Figure 108.

To take one more trivial example, consider a standard six-piece burr
(Figure 109) made up of six identical pieces like notchable piece no. 2
in Figure 81. Applying this same test, we see that there is interference
between the parts and therefore the burr is impossible to assemble.

Now for a more practical example, consider the diagonal six-piece
burr (Figure 110). As each piece is moved an incremental distance away
from the center, there is neither interference nor separation as the mating
faces slide parallel to each other. Therefore it is an assemblable interlock-
ing configuration.
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Figure 109.
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Figure 110.

This useful theory of interlock can be applied most easily by using
elementary vector analysis. If the radial movement of one piece is repre-
sented by vector A and that of a neighboring piece by vector B, then the
relative motion of the two is vector A-B, and any sliding surface in an
assemblable interlocking puzzle must be parallel to it. Or make a scale
drawing of the puzzle and use methods of descriptive geometry. With
a little practice and good spatial perception or a model with which to
work, most of the assemblies discussed in this book are easy to analyze.
Applying this theory to the nest of 12 triangular sticks in Figure 107, it is
easy to show that they are non-interlocking.

How might the 12 triangular sticks be made into an interlocking
assembly? One way would be to use notched sticks, as in the burr puz-
zles. That scheme will be considered in Chapter 15. Another way is as
follows: instead of leaving the center hollow, imagine it filled solid with
a rhombic dodecahedron. Now, dissect that rhombic dodecahedron into
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Figure 111.

six identical blocks having the shape of squat octahedra, and use each
one of them as a center block for joining the triangular sticks together in
pairs, as shown in Figure 111.

If the theory of interlock is applied to this new six-piece puzzle con-
figuration, it is found to be an interlocking assembly. It can be slid apart
along any one of its four sliding axes, independently or concurrently.
Unlike the diagonal burr, it separates into two halves that are quite dis-
similar, even though each half is composed of three identical pieces and
the completed assembly is symmetrical.

Stellations

If both ends of all 12 sticks are now cut off at the appropriate angle (Fig-
ure 112), an amazing transformation occurs and the assembly becomes
the third stellation of the rhombic dodecahedron. (It is assumed that the
reader has some familiarity with polyhedra and stellations. If not, any

Figure 112.
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Figure 113.

mathematics library should have a book on the subject.) Remove the
equivalent of two tetrahedral blocks from both ends of the sticks, and
lo—the second stellation of the rhombic dodecahedron appears. Many
intriguing intermediate forms are also possible by removing the equiva-
lent of only one tetrahedral block, or by removing them selectively from
certain ends. The biggest surprise occurs when yet two more tetrahedral
units are removed from all the ends, producing the now familiar first
stellation again (Figure 113). Is this not amazing? It can be made not
only from six square sticks with ends beveled but also from 12 triangular
sticks!

The Second Stellation

Another surprise! Having now seen that the second stellation of the rhom-
bic dodecahedron can be constructed by an interlocking assembly of 12

Figure 114.
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Figure 115.

triangular sticks, would you believe that it too can be constructed (more
easily, in fact) by an interlocking assembly of six pieces made from square
sticks? Start with 18 six-sided center blocks and join them in threes as
shown in Figure 114 to make six identical puzzle pieces, which assemble
into the interesting interlocking polyhedral shape shown.

Now if V-shaped notches are made at both ends of each puzzle piece
in the model shown in Figure 114, the second stellation is produced, as
shown in Figure 115. As a practical matter, rather than cut notches in
the end blocks, it is easier to form them by gluing two suitable blocks
together, both of which are easily made from square stock using the saw
jig shown in Figure 104. These are very useful building blocks and will
be used frequently in the next two chapters. One of them is a rhombic
pyramid, and the other is a five-sided block having the shape of a skewed
triangular prism, hereafter referred to as prism block for short.

All of the above models assemble by first forming two halves of three
pieces each and then mating the two halves. Unlike those made with tri-
angular sticks, these two halves are mirror images of each other.

The Four Corners Puzzle

In the second stellation model (Figure 115), if the 12 rhombic pyramid
blocks are omitted, the result is the simple but intriguing puzzle shown
in Figure 116. Its six identical pieces are assembled in the usual way of
mating two halves, which in this case are dissimilar. The assembled shape
is intermediate between the first and second stellation, and it has the
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Figure 116.

symmetry of a tetrahedron. It serves as the skeleton for many other more
complicated puzzles to follow. It will be referred to as the Four Corners
Puzzle, the name by which a four-color version of it was once produced.

Color Symmetry

The Four Corners Puzzle is a good example of an interlocking structure
with an intriguing geometry and attractive shape but which is trivially
simple as an assembly puzzle. To make it also challenging, the concept of
color symmetry is introduced. Imagine the end blocks colored four differ-
ent colors as indicated in Figure 117.

Problem: assemble the above pieces in color symmetry. Advanced
problem: discover all the possible ways of assembling these pieces in color
symmetry. In order to solve this problem, we must first define exactly
what is meant here by color symmetry. When a multicolored polyhedral
puzzle is said to be assembled in color symmetry, it meets the following
test: choose any color and change it to black. Change all the other colors

Figure 117.
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Figure 118.

to white. No matter which color was changed to black, the apparent
result is the same, and the black pattern has an axis of symmetry.

The four different ways in which the Four Corners Puzzle can be
assembled in color symmetry are represented in Figure 118 in black and
white. The one on the left, in which each “corner” is a solid color, is the
easiest and most obvious and is how the puzzle got its name. Each has a
pair of solutions.

Finally, to extract one more bit of recreation from this puzzle, dis-
cover the 24 ways of assembling it such that the patterns of all four colors
are identical but not symmetrical. You may skip the 3,808 ways that do
not have either property. Hint: in general, these color symmetry prob-
lems are not the type that one solves by trial and error. One must try to
discover the principles involved and the simple rules that transform one
solution into another. You may not even need the physical pieces.

The Second Stellation in Four Colors

Continuing in the same vein, shown in Figure 119 are the six puzzle
pieces for a four-color version of the Second Stellation Puzzle. Can you
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Figure 119.
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Dimples Triangles Rings

Figure 120.

discover the logic of this coloring scheme? Hint: compare with the previ-
ous puzzle. Also note that the coloring produces reflexive pairs, as indi-
cated by the broken line.

There are several ways of assembling these pieces in color symmetry,
as shown in Figure 120. The simplest and most obvious is with each
of the eight hexagonal dimples a solid color, with like colors opposite.
Another way is with four triangles of solid color. The most elegant is with
four hexagonal rings of solid color intersecting each other around the
outside. The other ways are left for the curious reader to discover. Trying
to solve all of these fascinating color patterns and being able to switch
from one to another can be quite confusing and entertaining.

The Third Stellation in Four Colors

There are many different ways of dissecting the various stellations of
the rhombic dodecahedron into six identical interlocking pieces, and no
purpose would be served by listing them all. Just one more example will
be mentioned in this chapter—a simple dissection of the third stellation
that lends itself beautifully to a multicolor puzzle.

The construction of each puzzle piece from a six-sided center block
and four triangular stick segments is illustrated in Figure 121a. When
assembled, the puzzle has the appearance of twelve triangular sticks, even
though each stick is broken in two, with the two halves belonging to two
different puzzle pieces. The pieces are colored as shown. The problem is
to assemble the puzzle such that each apparent group of three parallel
sticks is one color as shown in Figure 121b. There are four solutions.

These are but a few of the many interesting multicolor problems that
are possible with puzzles of this sort. For example, the three described
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Figure 121b.

above all use four colors. Other possibilities exist using 2, 3, 6, 8, or 12
colors. The woods can be stained or painted different colors, but some of
the most beautiful effects are obtained by using brightly-colored exotic
woods in their natural state. More multicolor puzzles will be described in
later chapters.






Chapter 11

Polyhedral Puzzles
with Dissimilar Pieces

In the previous chapter, simple totally symmetrical dissections were trans-
formed into puzzling problems through the use of coloring. We will now
explore the combinatorial complexities created by making the pieces dis-
similar in shape.

The Permutated Second Stellation

As already explained in Chapter 10, the second stellation shape is obtained
by adding twelve rhombic pyramid blocks to the Four Corners Puzzle. As
each block is added, there is a choice of two surfaces to which it can be
attached. The six puzzle pieces shown in Figure 122 represent all of the
non-symmetrical ways of attaching such blocks. The added blocks are
shown shaded. By an amazing coincidence, this just happens to use the

Figure 122.
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required twelve blocks and yield the required six puzzle pieces. This quite
satisfactory combinatorial puzzle has two solutions of moderate difficulty.

The Permutated Third Stellation

The fortuitous geometric circumstance occurring with the Permutated
Second Stellation, which allows the second stellation to be assembled
from a fully permutated set of puzzle pieces, can be exploited in many
other polyhedral shapes. The analogous set of pieces for the third stella-
tion is shown in Figure 123. It likewise has two solutions and four sliding
axes. Theoretically, it should be no more difficult than the second stel-
lation, but it is probably slightly more confusing because of the greater
irregularity of the pieces.

Figure 123.

The Broken Sticks Puzzle

Carrying the development of the Permutated Second Stellation and the
Permutated Third Stellation one step further, by lengthening the trian-
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Figure 124.

gular stick segments even more, one arrives back at an assembly that
resembles the nest of twelve triangular sticks shown in Figure 107, except
that now some of them are broken in two internally. The six dissimi-
lar puzzle pieces are shown in Figure 124. Because of the extra length
of the arms, they now interfere with each other during assembly. By an
extraordinary coincidence, this results in one of the two solutions being
impossible to assemble and three of the four sliding axes being blocked.
Thus, the puzzle has only one solution and one possible sliding axis of
assembly. Consequently, it is very difficult.

This remarkable puzzle design has been described as though it were
a coincidence of four coincidences. But is it really? The term coincidence
would seem to imply chance or luck, whereas this is simply a mathemati-
cal reality of the way things are in this world. The only luck involved was
that of the person discovering it. Or was it? Perhaps the universe itself is
the ultimate example of an improbable coincidence. Have you ever won-
dered why things are as they are?
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The Augmented Second Stellation

With the addition of yet 12 more rhombic pyramid blocks to the permu-
tated second stellation of the rhombic dodecahedron, it is transformed
into the intriguing polyhedron shown in Figure 125, which is an interme-
diate form between the second and third stellations. More importantly,
these added blocks have the same practical effect as did the lengthening
of the arms in the Broken Sticks Puzzle. That is, one of the two solutions
is eliminated and three of the four sliding axes are blocked. Besides form-
ing an attractive polyhedral sculpture with simple clean lines, especially
when made of contrasting exotic woods, its snugly interfitting pieces
do not require much dexterity to assemble. All things considered, this
is a most satisfactory design. It has been produced in fine woods as the
Twelve-Point Puzzle.

Figure 125.

Building Blocks

In this and the previous two chapters, various polyhedral blocks derived
from dissections of the rhombic dodecahedron have been employed for
building up puzzle pieces. If the geometry of these pieces is not entirely
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clear to the reader from the drawings alone, some hands-on experience
with the blocks should help to clarify things. If the requirement for accu-
racy is set aside for the moment, they are all easy to make even with hand
tools. This is a good point at which to summarize them.

For our purposes, the tetrahedral block is taken as the most basic
unit, although of course it could be further subdivided ad infinitum. Since
many of the blocks are made equally well from either square or triangu-
lar stock, this is conveyed with two sets of drawings in Figure 126.

Triangular Square
Stock Stock

T Tetrahedral Block
Basic unit.
Made from triangular stock without

waste or square stock with waste. |

See Figure 104 for more information.

P Rhombic Pyramid Block %

Two tetrahedral units. y).

Made from triangular stock without _’_ ' 4—

waste or square stock with waste.

R Right-Handed Prism Block
Three tetrahedral units.
Made from either triangular or square
stock without waste.

L Left-Handed Prism Block
Three tetrahedral units.
Made from either triangular or square
stock without waste.

O Squat Octahedron Block
Four tetrahedral units.
Made from square stock with waste.
Also made of two rhomic pyramid

blocks.
C Six-Sided Center Block

Six tetrahedral units.

Made from square stock without waste.
Also made of two prism blocks.

See Figure 104 for more information.

Figure 126.
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Twenty-four tetrahedral blocks

Twelve rhombic pyramid blocks

Four six-sided center blocks

Figure 127.

For further clarification, Figure 127 shows rhombic dodecahedra dis-
sected into these various shapes. The rhombic dodecahedron itself is used
as a basic building block in Chapter 20.

With only these six building blocks, the number of simple ways in
which they can be combined into interlocking puzzles is phenomenal.
Just a few more examples will be shown in this chapter.

The Augmented Four Corners Puzzle

The single puzzle piece shown in Figure 128 consists of a six-sided cen-
ter block to which two right-handed prism blocks have been attached.
Six such identical pieces assemble into an interlocking configuration as
shown, with three gaps in each of the four corners. These gaps are filled
with 12 rhombic pyramid blocks. Each block can be attached to either
of two adjacent pieces. There is one and only one way of attaching them
whereby six dissimilar non-symmetrical puzzle pieces are created, as
shown. They assemble one way only, with only one sliding axis, to make
a very satisfactory puzzle. The appearance of the puzzle is enhanced by
using a contrasting wood for the added blocks.
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Figure 128.

The Diagonal Cube Puzzle

Often two polyhedral dissections may be internally similar and function-
ally identical as assembly puzzles, even though their external appearances
are quite dissimilar. Here is a good example.

The single puzzle piece shown in Figure 129 consists of three six-sided
center blocks joined together. Six such identical pieces assemble into an
interlocking configuration as shown, with three gaps in each of the eight

Figure 129.
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corners. These gaps are filled with 24 rhombic pyramid blocks attached
in such a fashion that six dissimilar non-symmetrical puzzle pieces are
created. The six sides of the assembled puzzle are then truncated into
square faces, making it cubic. The sliding axis for the first step of disas-
sembly is an internal diagonal of the cube and can be rather tricky to
locate. Thus, this puzzle is entertaining both to solve and to disassemble.
It is also quite attractive in two contrasting woods, with the six faces
sanded and polished.



Chapter 12
Intersecting Prisms

The Four Corners Puzzle, especially the augmented version, has rather the
appearance of four mutually intersecting prisms. By use of triangular stick
segments in the construction, this effect is accentuated to create some
interesting sculptural shapes that are also enjoyable interlocking puzzles.

The Hexagonal Prism Puzzle

The first example (Figure 130) is directly analogous to the Augmented
Four Corners Puzzle and has the appearance of four mutually intersecting
hexagonal prisms. The six dissimilar puzzle pieces assemble one way only

Figure 130.
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with but one sliding axis. The triangular pattern in the hexagonal faces can
be accentuated by using a contrasting wood for the permutated blocks.

The Triangular Prism Puzzle

By adding 12 more triangular stick segments to the Hexagonal Prism
Puzzle, it is transformed into a most fascinating geometric solid hav-
ing the appearance of four mutually intersecting triangular prisms. With
42 blocks used in the construction, many design variations are possible
depending on how some of them are attached. One version having six
dissimilar pieces is shown in Figure 131.

Figure 131.

The Star Prism Puzzle

By adding yet 12 more triangular stick segments to the Triangular Prism
Puzzle, the prism faces assume the shape of the six-pointed Star of David.
With 54 blocks used in the construction, a great many variations are pos-
sible in the individual pieces, all having the assembled shape shown in
Figure 132. This puzzle was once produced as The General (Four Star).
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Figure 133.

By adding even more blocks, other sculptural effects are possible,
such as extending the prisms in the opposite directions as in the models
illustrated in Figure 133. Since these complicated constructions are more
artistic than logical or mathematical, details are not given here but rather
left to the craftsman’s imagination.

Woodworking note: Many of the designs in this and the previous chap-
ter consist of a basic skeleton of six identical interlocking parts to which
additional blocks are attached, making the pieces dissimilar and non-sym-
metrical and the solution unique. These include the Broken Sticks Puzzle,
Augmented Four Corners Puzzle, Diagonal Cube Puzzle, and all of this
prism family of puzzles. The most satisfactory method for making any of
these is to first make the six identical parts, assemble them tightly to form
the skeleton and then glue the permutated blocks in the appropriate slots.
This assures a perfect fit every time the puzzle is assembled. The Triangu-
lar Prism Puzzle is made by gluing the 12 additional stick segments onto
an assembled Hexagonal Prism Puzzle, and so on, as suggested by the
illustrations. Use wax or waxed paper to prevent accidental glue joints.
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The end faces of the Prism Puzzles are sanded true in the assembled state.
More woodworking information is given in Chapter 24.

The Square Prism Puzzle

Getting back to basics, at the ancestral root of all these strange non-rec-
tilinear dissections is the venerable diagonal burr. An interesting variation
of the diagonal burr is one using sticks having isosceles-right-triangular
rather than square cross-section, as shown in Figure 134. The six identical
pieces assemble into an intriguing shape having the appearance of three
mutually intersecting square columns. When well-crafted of three contrast-
ing woods, the effect can be quite pleasing. As an assembly puzzle, it is so
simple as to be almost trivial. But humble parents sometimes have preco-
cious offspring.

Figure 134.

The Three Pairs Puzzle

Now imagine each piece of the Square Prism Puzzle split in two longitu-
dinally, resulting in 12 identical half-pieces. As an assembly puzzle, this
additional dissection merely transforms it into more of a dexterity problem,
which is certainly not a step forward. But now join these half-pieces in per-
pendicular pairs: three right-handed and three left-handed. Now assemble!
This amazing puzzle, shown in Figure 135, with its six simple pieces has
baffled experts. Even the name is a joke!

This puzzle was designed in 1973, and about 200 were then produced,
nearly all in mahogany. It is not difficult to make, except that care is required
to achieve an accurate fit, and stable woods must be used. The reader may
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Figure 135.

wonder why it has not been mass-produced at low cost, perhaps of injec-
tion-molded plastic. That approach may not be such a good idea.

First of all there is no way that plastic can compete with wood aes-
thetically. Without arguing this point and the reasons for it, anyone who
has sold handicrafts for a living knows that it is so. In toy manufactur-
ing, the bottom line is usually profit and quarterly earnings, so puzzles
are usually made of cheap styrene, warped by shrinkage, tapered slightly
for easy ejection, and cored out to further reduce costs. To recover the
investment in the mold, hundreds of thousands must be made exactly
alike, whereas the designer-craftsman is always experimenting with vari-
ations and improvements. To reduce mold costs, compromises are made
in design selection, especially avoiding those with all dissimilar pieces or
requiring complicated molds with side action. Also lost is the close rap-
port between designer and the public, when the manufacturer, jobber,
and retailer all stand between. Perhaps some things, such as automobiles,
are practical to manufacture only in large factories, but creative play-
things crafted by hand are likely to bring more satisfaction to both maker
and user.






Chapter 13

Puzzles that Make
Different Shapes

In Chapter 1, it was shown that plane dissection puzzles have much
greater recreational potential when the same set of puzzle pieces assem-
bles into many different problem shapes. The only three-dimensional
puzzles described thus far having this property have been a couple of the
cubic block types that form different rectangular solids and the Squir-
rel Cage burr set. Dissections between two different common geometric
solids present horrendous difficulties and in most cases have been proven
impossible. Yet, the search goes on for three-dimensional puzzles that not
only assemble into different geometric shapes but also interlock. Three
designs that succeed to some extent are given in this chapter.

The Star of David Puzzle

The six dissimilar and non-symmetrical pieces of the Star of David Puzzle
are shown in Figure 136. The 27 individual blocks required in their con-
struction are all standard building blocks from the chart in Chapter 11
(see Figure 126) and are identified by letter. This unusual puzzle assem-
bles into three different geometric shapes (Figure 136, bottom) having an
axis of symmetry, as well as other nondescript shapes having no appar-
ent symmetry. All solutions have just one sliding axis of assembly. In the
solution from which the puzzle derives its name, the assembly axis does
not coincide with the axis of symmetry. Consequently, one blindly tries
various combinations looking for the solution. Even as the correct two
halves are being mated to complete the assembly, it still looks like the
sort of jumble one associates with “abstract sculpture.” But as they mesh
together, suddenly there the solution is! This unusual and baffling puzzle
presents a challenge for the skilled woodworker as well as the solver, for
it is more difficult than most to fabricate well with a proper fit.
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Figure 136.
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All Star

All Star, created in 1990, is an outgrown variation of the Star of David
Puzzle and has somewhat more potential for recreation. The make-up of
the six dissimilar pieces is shown in Figure 137a. The five symmetrical
assemblies are shown in Figure 137b. Note that wooden blocks of two
dissimilar colors are used in the construction, as indicated by shading,
such that all solutions will have color symmetry.

Fusion-Confusion

How could a polyhedral assembly puzzle with only four pieces be so con-
fusing? This surprising discovery evolved from a simple novelty of six
identical pieces called Triumph, which assembled with no difficulty three
different ways to make three different symmetrical solids. It was recently
discovered that by joining two pairs of pieces one particular way to make
two dissimilar compound pieces (Figure 138a), all the original solutions
were still possible (Figure 138b). But now they have only one confusing
diagonal axis of assembly. When the two nondescript halves are mated
to complete the assembly, with luck the solution suddenly appears, as it

were, seemingly out of nowhere!

Figure 138a.

Figure 138b.






Chapter 14

Coordinate-Motion
Puzzles

What are coordinate-motion puzzles? For illustration, a simple amuse-
ment consisting of three identical rhombic blocks with pins and holes
is shown in Figure 139. Note that the only way it can be assembled is
to start all three pins into the holes simultaneously and bring all three
blocks together. This model is a simple example of coordinate motion.
Such amusements cannot be assembled sequentially, but rather at some
stage of assembly they require the simultaneous manipulation of three or
more pieces or groups of pieces. Unlike this simple example, such puzzles
can be very baffling. One such puzzle has already been included surrepti-
tiously in a previous chapter without being identified as such!

/7

Figure 139.

The Expanding Box Puzzle

This simple novelty (Figure 140) is a practical example of coordinate-
motion in three dimensions. Each of the six identical puzzle pieces is
made up of a right-triangular prism center block to which a pair of rhom-
boid-prism end blocks are attached. They assemble with no great mystery
to form a hollow box, but if they are accurately made, some dexterity is
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Figure 140.

required to get all six pieces aligned exactly right and mutually engaged.
Once assembled, by holding on to opposite pieces, the puzzle can be
made to expand almost to the point of collapse and then to shrink back
together again. It is more of an amusement than a puzzle.

Combination Lock

Earlier versions of this book used a puzzle called Rosebud as a good
example of coordinate motion. That puzzle gained some notoriety in the
early 1980s when, after it had been out for about a year, an assembly jig
was made available for those who were unable to assemble it any other
way. That seems to have sparked an interest in the scheme of coordinate
motion, and many other clever designs have been put forth recently. This
book is not intended to be a compendium of puzzle designs, past and
present. In each chapter, we have tried to select just one or two represen-
tative examples from the many now known, and sometimes it is difficult
since there are so many good ones now out there.

Combination Lock is modeled after Rosebud, and if made to the
same scale can even fit in the same assembly jig. But one difference is that
all the pieces are dissimilar, and another is that it has only one solution.
The six pieces, again made from standard building blocks, are shown in
Figure 141a. The partially assembled and fully assembled puzzle, which
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Figure 141a.

Figure 141b.

has a vertical axis of symmetry, is shown in Figure 141b. Some persons
find rubber bands useful for holding the partially assembled pieces in
place, while others prefer tape.

Note: for those interested in Rosebud, or numerous other classic
designs that could not be included here for lack of space, illustrations and
descriptions of them are usually now easy to find, often just by punching
in the name on the Internet.

Vector Diagrams

The mechanical action of a coordinate-motion puzzle can be analyzed
and explained using a vector diagram. For instance, in the first example
shown, if the three rhombic blocks are A, B, and C, their relative motions
are vectors A-B, B-C, and C-A, which must form a closed loop and add
up to zero—in this case forming an equilateral triangle (Figure 139,
right). The vector diagram shown for the Expanding Box Puzzle is an
octahedron (Figure 140, top right); for Rosebud and Combination Lock
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it is a triangular antiprism. The vector diagram for a coordinate-motion
puzzle cannot be rectilinear. Why?

Although it is conceivable that one might design a coordinate-motion
puzzle by studying vector diagrams, most such designs are just stumbled
upon. The vector diagrams are presented here mostly as a curiosity.



Chapter 15

Puzzles Using Hexagonal
or Rhombic Sticks

Refer back once again to the ubiquitous cluster of 12 triangular sticks in
Figure 107. For the sake of variety, reduce them from triangular to hex-
agonal cross-section. They will still rest flat against each other. To hold
them together, drill five holes in each stick and pin them together with 12
dowels (Figure 142).

Assembling this cluster of 12 hexagonal sticks and 12 dowels might
be considered a puzzle of sorts—easy if an illustration is provided but
perhaps not so easy otherwise. To make it into a more interesting puzzle,
join some of the sticks and dowels to make elbow-shaped pieces (Figure
143). The more elbows made, the harder the puzzle. With five elbows it is
hard. With six elbows it is harder. With seven, it is impossible. A puzzle
of this sort has been produced as the Locked Nest.

Figure 142.
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Figure 143.

Hexagonal sticks are easily made by first ripping planed boards into
sticks of rhombic cross-section with the saw tilted 30 degrees and then
making two more cuts. All of the holes are spaced equally apart, are at
the same 70%-degree angle to the axis of the stick, and are arranged
in helical progression. Thus, a simple drilling set-up can be used that
positions the stick using the previously drilled hole, with the stick being
rotated 120 degrees in the same direction each time. The spacing of the
holes can be determined by trial and error to achieve a snug fit. If they
are too close together, the puzzle cannot be assembled. Spacing them far-

Figure 144a.
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Figure 144b.

ther apart simply makes a more open arrangement. This lattice structure
repeats itself indefinitely in all directions, so one can make larger assem-
blies with more and longer sticks and dowels. From among the infinite
variety of such constructions, one example is shown in Figure 144a. It is
basically two clusters joined together along their threefold axes.

Another fascinating feature of this construction is that subunits are
also possible using fewer and shorter sticks and dowels. From among
the many possibilities, one example is shown in Figure 144b. It uses four
sticks and four dowels, and each stick has three holes. As an assembly
puzzle it would be rather too easy if one is given the illustration of the
solution. However, this is easily corrected by joining one stick-dowel pair
to make an elbow piece and another pair to make a cross piece. This
construction might also be used to make a novel collapsible stand for a
tabletop.

Figure 145.
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Yet another intriguing aspect of this system is its possibilities as a
play construction set. Imagine having many sticks and dowels of each
size from two-hole to five-hole and then discovering all the possible sym-
metrical constructions starting with the smallest and building upward. A
few of these are shown in Figure 145. What a marvelous plaything this
might make for some curious youngster.

The Cuckoo Nest Puzzle

By making the arrangement of the holes alternate rather than helical,
one obtains a different sort of lattice structure, which likewise can be
extended indefinitely in all directions. Constructions made with it can
have an axis of symmetry but not isometric symmetry. The version shown
in Figure 146 uses six sticks and six dowels, with each stick having three
holes. It has a threefold axis of symmetry. If five stick-dowel pairs are
joined together to make elbow pieces, it is a surprisingly difficult assem-
bly puzzle with two solutions. Rather than show how the pieces are
formed, we let the curious tinker enjoy the task of rediscovering them.
Minor variations are possible, but there is no way to avoid having two
pieces identical. A version of this puzzle was once produced under the
name of Cuckoo Nest. By the way, note the functional similarities of this
puzzle to the Pin-Hole Puzzle in Chapter 8.

Figure 146.
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The Nine Bars Puzzle

If the Cuckoo Nest Puzzle is regarded as having two layers, one way of
expanding it is to add a third layer of three more sticks and three more
dowels. One such version, the Nine Bars Puzzle, is shown in Figures 147a
and 147b. It likewise has a threefold axis of symmetry. It has only one
solution and is more difficult than the Cuckoo Nest Puzzle, the Locked
Nest Puzzle, or its variations. Other even more complicated versions are
possible with additional layers.

Figure 147a.

Figure 147b.

A Holey Hex Hybrid

Never underestimate the amazing ways that geometric constructions can
be made to fit together in space. Just when we think we have exhausted
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Figure 148.

the possible hole arrangements for symmetrical hexagonal stick assem-
blies, yet another one is discovered. Note the arrangement of the four
holes in the hexagonal stick shown in Figure 148. If the hole at the bot-
tom is ignored, the arrangement is helical, but if the hole at the top is
ignored, the arrangement is alternate. Eight such identical sticks, together
with their eight corresponding dowels, can be assembled into a structure
having one fourfold axis of symmetry and four twofold axes—i.e., the
same as that of a square prism. Furthermore, if four stick-dowel pairs are
now joined to make elbow pieces, it becomes a most perplexing assembly
puzzle. The elbow pieces have two possible forms, thus providing further
amusement and bafflement for the determined puzzle analyst.

Notched Hexagonal Sticks

The basic cluster of 12 triangular sticks shown in Figure 107, upon which
most of the designs in this and the previous five chapters have been built,
suggests the possibility of converting them into interlocking notched hex-
agonal sticks. With two trapezoidal notches in each stick, they form a
neat interlocking structure of 12 identical pieces, as shown in Figures
149a and 149b, but it is impossible to assemble. A third notch in three of
the pieces allows the puzzle to be assembled.

There are three distinctly different solutions to this puzzle, which can
be defined by the arrangement of the three-notch pieces. The easiest and
most obvious solution has these three odd pieces going in last in a trian-
gular arrangement to complete the assembly. In the second solution, the
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Figure 149a.
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Figure 149b.

three odd pieces are mutually parallel, and there is a key piece that slides
in last. The third solution is more difficult. Here is a case where multiple
solutions make the puzzle even more entertaining.

This puzzle is enhanced by using four colors for the pieces, three of
each color. If the three odd pieces are the same color, the first two solu-
tions can have different sorts of color symmetry. The second solution is
especially interesting, with all like-colored pieces being mutually parallel.

This puzzle was at one time manufactured in plastic as Hectix, but
unfortunately never in four colors (saving the manufacturer a penny or
two). A few have been produced in wood, which is quite easy with a sup-
ply of hexagonal stock and a trapezoidal cutter. Aside from its considerable
potential as a very satisfactory assembly puzzle, it would make a hand-
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some sculpture in brass or stainless steel, or perhaps even cast in concrete
on a massive scale. (Reference: U.S. Patent 3,721,448 to Coffin, 1973.)
The basic scheme was also discovered independently by Bill Cutler.

Twelve-Piece Separation

Closely related to Hectix is the Twelve-Piece Separation (Figure 150).
Twelve sticks of triangular cross-section with pyramidal end blocks
assemble with some difficulty to form a symmetrical interlocking burr.
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Figure 150.

The key piece has only one end block, with another piece being aug-
mented by the displaced block. Surprisingly, there is essentially only one
order of assembly. Gaby Games of Israel produced a somewhat similar
puzzle but with one piece cut in two serving as the key mechanism.



Chapter 16
Split Triangular Sticks

Referring back once again to the now familiar cluster of 12 triangular
sticks in Figure 107, divide each stick in two longitudinally. This pro-
duces a totally symmetrical arrangement of 24 sticks of 30-60-90-degree
triangular cross-section. These sticks are then joined in fours to make
a simple but intriguing geometric puzzle. In the model shown in Fig-
ure 151, the ends of the sticks have been cut off at an angle, giving the
assembled puzzle the envelope of a rhombic dodecahedron with eight
hexagonal dimples and six square dimples. (Reference: U.S. Patent Des.
230,288 to Coffin, 1974.)

When accurately made, this puzzle feels solid when handled, and it
may take a while to discover that it can be slid apart along any one of its
four sliding axes into two identical halves. The puzzle is assembled by the
reverse of this with no great difficulty. However, the assembly sometimes
has a surprise ending. For some reason, many persons feel the urge to toss

Figure 151.
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this puzzle into the air after they have assembled it. Perhaps it is because it
is more nearly spherical than most and feels so solid. The theory of inter-
lock indicates this to be truly an interlocking configuration, but it fails
to take into account that the pieces all rotate slightly and free themselves
from one another. The usual result is that it flies apart in all directions!

This puzzle lends itself to multicolor problems. Four contrasting col-
ors are used for the 24 sticks, six of each color. The six puzzle pieces are
made up of all possible permutations of the four colors. There are four
solutions having color symmetry. In the first and most obvious, like colors
are mated in pairs and all like colors are mutually parallel. In the second,
like colors are again mated in pairs but form four rings around the out-
side. In the third, all hexagonal dimples are solid colors. In the fourth, no
like colors touch each other. The black and white representations of these
are shown in Figure 152. Discover a simple transformation from one to
another.

SRR &

Figure 152.

This puzzle was produced at one time as Scorpius. Since the configura-
tion is very useful and leads to many other interesting designs, rather than
refer back to it by some complicated yet ambiguous geometric description,
it will be more convenient simply to call it the Scorpius configuration.

Scrambled Scorpius and Scrambled Legs

The 24 sticks in the Scorpius configuration lend themselves naturally to
being joined in fours in different ways to create a combinatorial puzzle.
Not counting side-by-side pairs, there are ten different ways of joining
four such sticks. Of these, one is symmetrical, two are impossible to
assemble, and one does not permit any solutions. By a most extraor-
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Figure 153a.

dinary stroke of luck, the remaining six pieces, shown in Figure 153a,
assemble one way only with only one sliding axis and in essentially only
one possible order to create a combinatorial puzzle of intriguing geom-
etry and considerable difficulty. The Scrambled Scorpius in Figure 153b
was made by Mark McCallum.

Figure 153b.
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One obvious but elegant variation of Scrambled Scorpius is to extend
the ends of the sticks to form the third stellation of the rhombic dodeca-
hedron. (See Figure 154a.) The model shown in Figure 154b, called
Scrambled Legs, was superbly crafted by Bart Buie in four contrasting
exotic woods.

Figure 154a. Figure 154b.

For whatever it may be worth, the difficulty index of this pair of
puzzles is calculated as follows. The six pieces can be regarded as posi-
tioned roughly as the faces of a cube: top, bottom, front, back, left, and
right. Arbitrarily choose any piece for the bottom. Next, the piece on the
left can be any one of the remaining five, oriented any one of four ways,
and so on. So, 20 x 16 x 12 x 8 x 4 gives a difficulty index of 122,880
with just six simple pieces. Added to that is the amusement of figuring
out the one correct order of assembly. All things considered, Scrambled
Scorpius is a most satisfactory puzzle and one that ought to be produced
and enjoyed much more so than it has been.



Chapter 17

Dissected Rhombic
Dodecahedra

The rhombic dodecahedron shown in Figure 155 is dissected into 12
rhombic pyramids, one for each face. Each rhombic pyramid is further
divided into two identical halves that could be regarded as skewed rhom-
boid pyramids or triangular stick segments. Not counting side-by-side
pairs, there are ten different ways of joining four such blocks together,
analogous to those of the Scrambled Scorpius. The nine of these that are
non-symmetrical are shown.

Problem: from this set of nine pieces, find subsets of six that assemble
into the rhombic dodecahedron. Two practical subsets are ABCDEF and
ACDEFG. Either subset makes a satisfactory interlocking puzzle with
only one solution and one sliding axis. Five of the pieces are common to
both subsets, so an especially interesting version of the puzzle is a set of
seven pieces that will construct either solution with one piece set aside.

Since this is a fairly easy puzzle to make, the reader is encouraged to
do so and discover these two solutions or perhaps experiment with other
sizes of pieces and new combinations. The 24 blocks are sawn from 30-
60-90-degree triangular cross-section sticks as shown in Figure 156. If
sawn accurately, they tend to align themselves properly when clustered
together and held with rubber bands and tape. The desired joints are then
glued selectively, one at a time. The finished puzzle, well-waxed and with
one piece removed, can then be used as a gluing jig for the next one.

Since the assembled shape of this puzzle is entirely convex, fancy
woods can be used and brought to a fine finish by sanding and polishing
the 12 outside faces. In combinatorial puzzles of this sort, the addition of
color symmetry to an already satisfactory puzzle tends to defeat its pur-
pose. Instead, an attractive random mosaic effect is obtained by making
each puzzle piece of a different wood in contrasting colors. This puzzle
has been produced as the Garner Puzzle.
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Truncated Octahedral Spherical

Figure 157.

Note also that this is one of the few designs in which all the planes
of dissection pass through the center of the puzzle. Consequently, the
assembled puzzle can be truncated or rounded down to various sculp-
tural shapes (Figure 157), making interesting and sometimes surprising
patterns in the multicolored versions. Some puzzles of this sort have been
superbly crafted by the late Josef Pelikan of the Czech Republic. By the
same token, the assembled puzzle can be either solid or hollow inside.

Two-Tiered Puzzles or Split Star

The 24-block dissections of the Garnet and Scorpius family of puzzles
have many characteristics in common, including the fact that one fits
exactly inside the hollow center of the other. This suggests the intriguing

Figure 158a.
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Figure 158b.

possibility of a two-tiered puzzle construction. With 48 individual blocks
or sticks with which to work, the possible puzzle pieces and combina-
tions are practically limitless. Just one example is shown in Figures 158a
and 158b. It is made of 48 identical blocks and has the assembled shape
of the first stellation of the rhombic dodecahedron, slightly truncated.
It may violate the rule that the simplest designs are usually the best, but
it does so in such elegant style, who could object? This puzzle made its
debut in 1985 as Split Star.

Pennyhedron

Now to the other extreme! It has already been shown that polyhedral
puzzles need not have many pieces to be interesting and even challeng-
ing. The confusing Three-Piece Block Puzzle speaks for itself. The fewest
number of pieces an assembly puzzle can have is, by definition, two. Is it
possible to create an interesting assembly puzzle of just two pieces?
When the author’s children were quite small, they used to spend hours
in his workshop patiently gluing together little scraps of fancy woods to
make “puzzles” for their friends. One time there was a surplus of trun-
cated rhombic pyramid blocks that they industriously glued together all
different ways. What emerged from this was a simple two-piece dissec-
tion of the rhombic dodecahedron (Figure 159). It has two mirror-image
halves made of six blocks each that fit together with no difficulty whatso-
ever. It is when you try to take it apart that the fun begins. If made care-
fully so that the division of the two halves does not show, nearly everyone
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will grasp randomly with thumb and forefinger of each hand on opposite
faces and pull. But when you do that, you will always be holding both
pieces in each hand, and it will never come apart. Only when one uses an
unnatural three-finger grasp with each hand and then hunts randomly for
the one sliding axis will it come apart with ease!

Figure 159.

They made and sold them at craft fairs with a penny inside, hence the
name Pennyhedron. They were so popular that when the scraps were
used up, I made some accurate sawing and gluing jigs, and we turned out
some better ones crafted in rosewood and other fine woods. We tinkered
with many variations too numerous to describe. There were truncated
and stellated versions, rounded, three-piece, and multicolored ones. There
were nesting sets in which each one was different. The tiny one inside was
called Minibedron. A few examples are shown in Figure 160.

One of the most amusing and confusing versions was a matched set of
two Pennyhedrons—each one made of 24 tetrahedral blocks, as shown in

Figure 160.
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Figure 161.

Figure 161. One of these is the standard model that comes apart with the
tricky three-finger grasp. The other one, which looks exactly the same,
comes apart easily along a fourfold axis of symmetry with the common
thumb-and-forefinger grasp. Naturally the kids could do the tricky one,
but the easy one had them completely baffled!



Chapter 18

Miscellaneous
Confusing Puzzles

Rightly so or not, the puzzle inventor is often perceived as a fiendish sort
whose only purpose is to confuse and frustrate others. Witness the names
frequently given to the instruments of the profession: Devils Dice, Instant
Insanity, Diabolical Cube, and so on. Anyone who has ever sold puzzles
over the counter at craft shows has been asked many times for a puzzle
that will drive someone else crazy (usually a close relative!). In this book,
we have tried for the most part to present the other side of the coin—geo-
metric recreations that are fascinating and often challenging, but where
confusion is not the ultimate object and deception is not the means to
that end. The Pennyhedron puzzle just described in the previous chap-
ter, especially the confusing pair, bears witness to good intentions gone
astray. In this chapter are two more inventions in the same deviant vein.

Pseudo-Notched Sticks

Anyone familiar with the symmetrical version of the diagonal burr puzzle
knows that the easiest way to disassemble it, especially when it is tight,
is to grasp any opposite pair of sticks, wiggle, and pull, and the whole
thing flies apart. Pseudo-Notched Sticks (Figure 162) also has six identi-
cal pieces and looks exactly like the diagonal burr when assembled. But,
when you grasp what appear to be two opposite sticks to disassemble it,
all you are doing is pressing it ever more tightly together, and it has the
feel of being glued absolutely solid! Only when one grasps in a manner
that seems to make no sense at all does it come apart with ease!

Anyone who collects puzzles or writes about them is faced with the
question of classification. This design illustrates the sort of problems one
confronts. What other field of human endeavor outside of the legal pro-
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Figure 162.

fession is so purposely confusing? If based on superficial appearance, this
puzzle would be in Chapter 9, but psychologically it belongs here.

The Hectic Hexsticks

You run into all types at craft fairs. Of course there was always the
wise guy trying to impress someone else, usually a girlfriend. We used
to set traps for the likes of him. With 100,000 plastic Hectix sold by
3M, many persons would be familiar with at least one of its three solu-
tions, the obvious symmetrical one. In the Hectic Hexsticks (Figure 163),
eight of the nine standard pieces are bonded together in pairs, resulting
in a seven-piece puzzle. Easier? Hardly—its one tricky solution will test
one’s patience. Even more confusing versions are known, with all paired
pieces being dissimilar, but this version would suffice.
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Figure 163.
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Note that none of the designs described in this book, even in this dia-
bolical chapter, employ concealed locking devices such as hooks, catches,
tumblers, or the like. Patent files reveal that one of the preoccupations
of puzzle inventors over the years has been to devise such mechanisms,
the object being to defeat them and open some secret box or toy bank.
Does this obsession with locks and concealment tell us something about
ourselves? Could the steadily increasing number of security devices one
must necessarily deal with in daily life signal yet another setback in our
haphazard efforts to become more civilized? Yet observe how casually
we now take them for granted, even turning them into recreations and
children’s toys!






Chapter 19
Triacontahedral Designs

Besides the cube and the rhombic dodecahedron, the only other polyhedron
that can be totally enclosed by a symmetrical arrangement of sticks is the
30-faced triacontahedron (Figure 164).

An obvious approach to exploring the geometry of the triacontahedron
for practical applications is to refer back to the previous chapters in which
the mating surfaces of the puzzle pieces corresponded to faces of the rhom-
bic dodecahedron and see which designs can be carried forward by anal-
ogy into this new geometry. Straight away, one finds that there is nothing
equivalent to the diagonal burr in triacontahedral geometry, so none of the
designs described in Chapters 9 through 14 have triacontahedral offspring.

Figure 164.

Thirty Pentagonal Sticks and Dowels

The cluster of 12 hexagonal sticks and dowels shown in Figure 142 has
an analogy in 30 pentagonal sticks and dowels. The version shown in
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Figure 165.

Figure 165 has seven holes in each stick. A smaller version is possible
using shorter sticks and dowels, with five holes in each stick, while yet
another smaller and more spherical version has only three holes in each
stick. There is also one larger and more stellated version with nine holes
in each stick.

The construction can be extended along any one axis and the structure
will repeat itself in an indefinite chain. It will not form a three-dimensional
space-filling crystallographic lattice, however. In this game at least, no
such constructions with fivefold symmetries would appear to be possible.

Pentagonal sticks are easy to make by first ripping %-inch boards
into trapezoidal sticks and then making two more cuts, all with the saw
tilted 18 degrees (Figure 166). All of the holes are drilled at an angle of
63% degrees to the axis of the stick, passing through the center of the
stick, and parallel to one face. Determining their irregular spacing is the
tricky part. It could be calculated, but the author must confess he found
it simpler to locate them by trial and error. Slight inaccuracies in the 210
holes can be corrected by reaming them through in the assembled or par-
tially assembled state using a round file in an electric drill.

Assembly is entertaining and not too difficult if aided by an illustra-
tion. Of course, the use of elbow pieces, as in the hexagonal counter-
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part, would turn it into an exceedingly difficult puzzle. Instead, when this
sculpture was produced in 1987-1988, it was as a straightforward con-
struction kit with directions. One can spend hours studying the assem-
bled structure, pondering its many mysterious properties and admiring
its beautiful symmetries.

Pentagonal Subunits

In Chapter 15, a symmetrical assembly of 12 hexagonal sticks and dow-
els was broken into various subunits with fewer and shorter sticks and
dowels. By the same token, the assembly of 30 pentagonal sticks and
dowels can be broken into interesting subunits. One such is shown in
Figure 167 using five identical sticks and five dowels. Each stick has four
holes. The assembly has fivefold symmetry. One puzzling version of it
uses two elbow pieces.

Note the interesting genealogy of the above offspring. It represents
the conjugation of two distinctly different ideas: the pentagonal geometry
of this chapter and the subunit scheme of Chapter 15, each with its own
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Figure 167.

separate line of development, surprisingly and fortuitously joining neatly
together. This happens all the time in the field of geometric dissections
and is just one more reason why this recreation is so fascinating.

Notched Pentagonal Sticks

The intriguing geometry of Hectix (Figure 149) with its 12 notched hex-
agonal sticks suggests by analogy a cluster of 30 notched pentagonal
sticks. Two versions of such a design are shown in Figure 168, the differ-
ence between the two being a 36-degree rotation of the sticks. The model

Figure 168.
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on the left is a mock-up only, as the sticks are so completely interlocked
that any notching scheme to permit assembly would appear to cut some
sticks completely in two. The complicated notching scheme that permit-
ted assembly of the model on the right many years ago has long since
been forgotten, as it has never been disassembled and serves only as a
wistful sculpture.

Notched Rhombic Sticks

A more practical assembly puzzle is one made with sticks of rhombic
rather than pentagonal cross-section. The rhombic sticks are easily made
on a table saw with the saw tilted 18 degrees. The basic piece with two
notches is shown in Figure 169a. Thirty such identical sticks are altogether
impossible to assemble. To correct this, the model shown in Figure 169b
has extra notches in five pieces, unfortunately nearly cutting them in two.

Figure 169a.

Figure 169b.
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In a similar vein, Bill Cutler has designed and constructed a puzzle
that he calls Square-Rod Dodecaplex. It is made up of 30 notched square
sticks. Other variations are no doubt possible.

Jupiter

The triacontahedron can be completely enclosed by an arrangement of
30 sticks of 36-108-36-degree triangular cross-section, as was shown
in Figure 164. If these triangular sticks are split longitudinally into two
identical halves and then joined in fives to make 12 identical, symmetrical
pieces, an interlocking configuration is obtained that is directly analo-
gous to the Scorpius. It has six sliding axes, and the final step of assembly
is the mating of two identical halves. It too has the tendency to fly apart
when tossed into the air, even more so than the Scorpius. In the model
shown in Figure 170, the ends of the sticks are trimmed at an angle, giv-
ing it the appearance of a stellated triacontahedron with 30 faces. One
piece is also shown.

Figure 170.

Note that for all of the polyhedral design shapes included in this
book, only one view of the assembly need be shown. One just naturally
and automatically assumes that the structure is symmetrical, so any addi-
tional views would only be redundant. This assumption of symmetry,
consistency, congruence, repetition, predictability, or call it what you will
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is so commonplace, not only in geometric recreations but in all the arts
and sciences, that we scarcely give it a thought. Yet where would we be
without it?

This design lends itself well to color symmetry problems. Six colors
are used, ten sticks of each color. Each piece has arms of five different
colors, arranged in such a way that when correctly assembled, all like-
colored sticks are in mutually parallel matched pairs, as indicated by
the five black pairs in Figure 171. Four other solutions having color
symmetry are then also possible, with a simple transformation from one
to another. When well crafted of six dissimilar exotic woods, it is a fine
specimen of woodcraft as well as a handsome geometric sculpture. It has
been produced off and on since 1971 as Jupiter, and so for convenience it
will be referred to by that name in what follows. (Reference: U.S. Patent
Des. 232,571 to Coffin, 1974.)

Figure 171.

A favorite theme of puzzle inventors is a device that looks deceptively
simple to assemble but is actually quite difficult. Jupiter is an example
of just the contrary. Most persons will not even attempt to disassemble
and reassemble this intriguing polyhedral dissection—so forbidding it
looks—yet it is really quite easy. Years ago, when we worked the rounds
of the craft fairs, we used Jupiter as the centerpiece of our display. When
a crowd had gathered, I would toss it gently so that the pieces all fell
in a heap. Then I would announce that anyone who could put it back
together could have it. Usually no one would try. Our youngest, about
age eight at the time, would be planted in the crowd, and you can prob-
ably guess the rest.
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Saturn

To convert the Jupiter construction into an assembly puzzle—its deriva-
tive, Saturn—has two identical halves of six pieces each (Figure 172).
The six pairs of puzzle pieces are all dissimilar and non-symmetrical. The
puzzle has multiple solutions. It is possible to use multicolored pieces
such that there is only one solution with color symmetry.

Figure 172.

The triangular sticks used in the Jupiter family of puzzles are of 36-
54-90-degree cross-section. For the puzzle to be satisfactory, they must
be glued together very accurately using a gluing jig with the same angles
as the vertex of a triacontahedron. For the advanced woodworker deter-
mined to make one of these, one practical way to make such a gluing jig
might be to somehow find an accurately made Jupiter and copy it. See
also Chapter 24.

A Dissected Triacontahedron

The 24-piece dissection of the rhombic dodecahedron in Chapter 17 leads
by analogy to a 60-piece dissection of the triacontahedron, as shown in
Figure 173. John Loeser has arrived at the data given in Table 5 for the
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Figure 173.
Size Number of Pieces Total Number of Blocks
2 2 4
3 5 15
4 10 40
5 24 120
6 54 324

Table 5.

possible ways of joining such blocks into different puzzle pieces, up to

size-six.

With 54 pieces of size-six with which to work, there must be thousands
of practical assemblable combinations of ten puzzle pieces. A few experi-
mental models have been produced, starting in 1985, but none seemed
sufficiently outstanding to warrant publishing design details. This is a
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good field for further exploration. Note that, like the Garnet puzzle, the
individual puzzle pieces might well be made of contrasting fancy woods
and sanded to a fine finish. Likewise, the shape of the assembled puzzle
could be modified, such as by making it spherical. Like those of the
rhombic dodecahedron in Chapter 17, these individual blocks are fairly
easy to make. They are sawn from 18-72-90-degree triangular cross-
section stock using the same techniques. Much wood and some labor
can be saved by using trapezoidal rather than triangular stock, as shown
in Figure 174, thus making the center of the puzzle hollow. The blocks
are fairly easy to assemble and glue using tape and rubber bands to hold
them in place.



Chapter 20

Puzzles Made of
Polyhedral Blocks

The ways in which various geometric solids can be packed to fill space
or be assembled symmetrically is in itself a fascinating branch of recre-
ational mathematics. Being also assemblable as puzzles just adds to the
interest.

Truncated Octahedra

Besides the cube, there are only two other space-filling polyhedra that
would appear to have much practical use as puzzle building blocks. One
of these is the truncated octahedron. The blocks are fairly easy to make
by starting with large wooden cubes and sawing off the eight corners
using a suitable jig to hold them accurately (and safely!) in the saw (see
Figure 175). To check for accuracy, the eight new faces should be regular
hexagons.

Dots indicate edges of
cube divided into fourths First corner removed Note hexagonal face

Figure 175.
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Figure 176.

There are two ways that two such blocks can be joined and six ways
that three can be joined, as shown in Figure 176. These puzzle pieces tend
to be anything but interlocking, so most practical puzzle constructions
using them are either pyramidal piles or are packed inside a box.

The five-piece Truncated Octabedra Puzzle (Figure 177) uses the two
blocks joined by their square faces plus the four non-straight three-block
pieces. They pack into the square box 11 different ways and make a
square pyramid three different ways. Note that in the model shown the
recessed bottom of the inverted box serves as a convenient base for the
square pyramid. The instruction booklet that came with a commercial
version of this puzzle showed 15 other symmetrical constructions using
some or all of the pieces.

Figure 177.
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Rhombic Dodecahedra

Puzzle pieces made up of rhombic dodecahedra joined together different
ways are fascinating to play with and offer practically unlimited pos-
sibilities for geometric puzzle constructions and mathematical analysis.
The blocks are fairly easy to saw from square stock using a special jig, as
described in Chapter 24.

There is one way that two rhombic-dodecahedral (R-D) blocks can
be joined, five ways that three can be joined, and 28 ways that four can
be joined, as shown in Figure 178.

An interesting exercise is to catalog the practical geometric construc-
tions that might be possible using R-D blocks. All of those shown in Fig-
ure 179 have isometric symmetry. They are arranged by increasing size,
starting at the top. Those in the left-hand column have four blocks com-
ing together at the center. Those in the middle column have six blocks
coming together at the center. Those in the right-hand column have a
single block in the center, and hollow versions of these are possible using
one less block. Only those constructions using 20 or fewer blocks are
shown. It is convenient to identify these constructions by names such as

Figure 178.
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16-truncated tetrahedron

179.

Figure
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tetrahedron, even though the shape is obviously not an exact tetrahedron
but only suggests it using a little imagination.

At this point, one has a choice of many possible avenues of explora-
tion. What are the fewest pieces that will construct all these shapes, or
most of them, or other shapes of your choice? To put it another way, for
a given number of pieces, say four or five or six, find the most versatile
possible set that will construct many figures. Which sets have all dis-
similar non-symmetrical pieces? Which figures have unique solutions?
The recreational possibilities here are practically unlimited and largely
unexplored.

The Leftover Block Puzzle

Polyhedral puzzles that are non-interlocking are usually more satisfac-
tory if contained inside a box of some sort. Unlike cubes or even trun-
cated octahedra, rhombic dodecahedra do not rest comfortably in square
boxes. This can be corrected somewhat by truncating the R-D blocks.
Shown in Figure 180 is a simple but entertaining puzzle made up of 14
truncated R-D blocks joined together to make five puzzle pieces. They

Figure 180.
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will construct a square pyramidal pile and also a rectangular pyramidal
pile. With one piece omitted, they will construct a tetrahedral shape that,
surprisingly, fits neatly inside a cubic box. All five pieces pack neatly
inside a cubic box, as shown. But the most entertaining trick they do is
pack snugly into the box apparently with no vacancy, but with the single
block left out, hence the name Leftover Block Puzzle.

The easiest way to make truncated rhombic dodecahedra is to start
with large cubic blocks and bevel all the edges at 45 degrees to any desired
but uniform depth. With a shallow bevel, the mating surfaces will be
small and the glue joints less strong, so it may be desirable to strengthen
them by inserting dowels.

Substitution of Spheres

Among the various ways that uniform spheres can be packed in space,
they show a natural inclination to arrange themselves most densely the
same way that rhombic dodecahedra pack. Thus, in the Leftover Block
Puzzle or almost any other, spheres might be substituted for rhombic
dodecahedra. One advantage of spheres is that they are readily available
in toy stores and educational supply shops and usually are quite accurate.
The disadvantage is that they are more difficult to join together strongly.
They can be bonded with epoxy, but an even better way with wooden
balls is to drill holes and use doweled joints.

The substitution of spheres for rhombic dodecahedra is not exactly
equivalent mathematically. Spheres have an additional symmetry that the
rhombic dodecahedra lack. This is demonstrated by the mirror-image
pair of R-D pieces shown in Figure 181, both of which have the same
spherical counterpart. Thus, pieces made with spheres will generally
produce more solutions and construct more figures, which could be an

Figure 181.
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advantage or disadvantage depending on the circumstances. Spherical
versions also tend to fall apart more easily, so the pyramidal construc-
tions may require a retaining base.

Of course, spheres might also be substituted anywhere that cubes are
used. But like playing billiards with elliptical balls, one should ask not if
it is possible but rather if it is practical!

The Four-Piece Pyramid Puzzle

Most polyhedral block puzzles are non-interlocking, including the Trun-
cated Octahedra Puzzle and Leftover Block Puzzle previously described.
All things considered, interlocking puzzles usually have more appeal. The
problem here is one of complexity. For example, most practical, interlock-
ing cubic-block puzzles require at least 64 blocks. The numbers of R-D
blocks in triangular pyramidal piles are given by the following series: 4,
10, 20, 35, 56, 84,.... Which is the smallest of these that can be dissected
into a practical interlocking puzzle? Surprisingly, the 20-block tetrahe-
dral pile of rhombic dodecahedra can be dissected into four puzzle pieces
of five blocks each that are not only interlocking but also dissimilar, non-
symmetrical, and assemblable in one order only (Figure 182). Knowing
this, it is not very difficult to discover the design, so that recreation is left
for the reader to enjoy. The one known design is believed to be unique
but has not been proven so.

Figure 182.



160 Geometric Puzzle Design

The Octahedral Cluster Puzzle

The numbers of R-D blocks arranged in octahedral clusters are given
by the following series: 6, 19, 44, 85,.... It is especially desirable that
a dissection of the octahedral cluster be interlocking because it would
fit so poorly into a box. There is a four-piece dissection of the 19-block
octahedral cluster that is interlocking and assembles in one order only
(Figure 183). Note that all of the pieces are dissimilar and non-symmetri-
cal. This one known dissection having all these features may or may not
be unique. There is also a remarkable but as yet unpublished five-block
version that has all these same features, except that the key piece is a
single block.

Top layer ﬁﬁ

Bottom layer ﬁa

Figure 183.

The two interlocking R-D block puzzles above (Figures 182 and 183)
are both surprisingly difficult to solve. Even if the reader discovers the
design by experimental dissection or some other method and makes a set
of pieces, the solution has a way of vanishing from memory the moment
the pieces are scrambled. Those made with spheres might be even more
confusing.



Chapter 21
Intermezzo

Let’s pause for a moment and review our progress thus far. Many of the
puzzle designs described in this book might be regarded as a systematic
dissection of some geometric form into bits, usually identical, which are
then partially recombined into puzzle pieces. The superficial perception
of this strange pastime is that a second party can then enjoy the confu-
sion of trying to reconstruct the original solid. In fact, there is often no
clear dividing line as to where the design process stops and the solution
begins, or who is the designer and who is the solver. They may be one
and the same. In some of the plane dissection puzzles in Chapter 1, dis-
covering the dissection is the real puzzler, after which the pattern solu-
tions are relatively easy. In those like the Four-Piece Pyramid Puzzle, as
presented, the design becomes the solution. In the Jupiter, the intriguing
design overshadows the straightforward solution because it is by much
the more interesting of the two. Some puzzles foisted upon the reader in
previous chapters (if only one could write in a whisper) may not even
have solutions!

It is common practice in most puzzle books to include the solutions
somewhere. Perhaps some readers will be disappointed to find so many
missing in this book. Solutions are fine when they serve some purpose.
Certainly a book of riddles would be dull reading without the clever
answers included, while answers to crossword puzzles may be educa-
tional. In the case of most combinatorial puzzles, including the solutions
would add nothing new or interesting. There are exceptions, and note
that some solutions have been included when appropriate. Here are four
more of them:

1. Karl Essley’s two misplaced pieces in Chapter 1 were of course iden-
tical and triangular, but we will never know who got them, will we?
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2. In the puzzling pairs of Tangram figures in which one appears to
have a piece missing (Figure 11), the pieces are always rotated 45
degrees from one to the other.

3. The five-piece mini Tangram (Figure 13) forms seven convex figures,
five of which have multiple solutions.

4. Beeler’s proof of the impossibility of a 3 x 20 rectangular Cornucopia
solution in Chapter 2 is to count the empty squares on either side of
the piece placed and note that they are never divisible by six.

The reader was asked to judge which of the two Cornucopia patterns
in Figure 41 was more pleasing and to identify four “flaws” in the other
one. The following is of course not an answer but merely collective opin-
ion. See if the reader agrees. Most persons, but not all, prefer the pattern
on the right. One “fault” raised of the pattern on the left was the long
horizontal line that nearly dissects the pattern. Another was the vertical
line intersecting it and creating two “crossroads.” (Could it be only a
coincidence that a fundamental rule of good stone masonry construc-
tion is to avoid both long straight lines and crossroads for reasons of
structural strength?) The two long parallel pieces at the bottom are also
a distraction. A fourth flaw is that the first three flaws are all asymmetri-
cal, creating a sense of unbalance. Having determined that this pattern
is “bad,” it is interesting how many other objectionable features reveal
themselves. The three vertical lines at the top lead the eye off the square,
the T is upside down, the piece at the upper left is a pointing gun, and so
on. Do you sometimes wonder what strange things take place inside the
human mind?

What some readers may find even more perplexing than omission
of solutions is that in many cases even the designs themselves are not
shown in this book but instead left for the reader to ponder. The reason
of course is that the design is the puzzle, so why spoil it by giving the
answer? Publishing everything known on a subject may be a good idea in
some fields, such as medicine. But in recreational mathematics, a gluttony
of information is probably worse than none at all. With only a few excep-
tions, the philosophy in this book has been to not include the details for
any puzzle designs or solutions that have not previously been published.
Instead, they have been left purposely in the dark so that the inquisitive
reader may have the joy of rediscovering some of them. This book is
intended to be merely a glimpse into the fascinating world of geometric



Chapter 21. Intermezzo 163

puzzles and not an open pit excavation. If every conceivable mathemati-
cal treasure were to be dug up, extracted, and refined, would it not leave
a rather barren landscape behind for future generations? We now look
forward with some apprehension to the day when computers will provide
all the answers. But answers to what?

Computers and Puzzles

The use of computers is now becoming fashionable in the world of geo-
metric puzzles. For solving certain types of combinatorial puzzles, once
the program is in place, computers can be millions of times faster than a
human, and more reliable too. Several solutions mentioned in this book,
such as those for the pentominoes, would probably not have been tabu-
lated except by computer. Such exercises usually have little practical value
other than simply as a programming challenge or to satisfy someone’s
curiosity. There is probably not a single puzzle in this book that could not
be solved by computer if someone wanted to go to the trouble of writing
a suitable program. Some lend themselves much more easily than others,
and some would present horrendous difficulties.

The computer is being used more and more now as a designer’s tool.
It was mentioned how the computer saves time in checking out new
design ideas for the six-piece burr and how Cutler’s computer-aided tabu-
lation of burrs led to the illumination of two interesting versions that had
lain dormant. The Cornucopia project was from the start an exploitation
of state-of-the-art computer technology to compile a library of unique
puzzle designs, which would have been impractical even just a few years
earlier. A computer might even be instructed to search for most pleasing
designs on the basis of certain aesthetic criteria, such as long lines and
crossroads in Cornucopia solutions or difficulty index in burrs. But is
this really aesthetics or pseudo-aesthetics? Is there any clear dividing line
between the two, and are there any aesthetic qualities that a (non-human)
computer, by definition, cannot be programmed to recognize and search
for? Who knows even what is really meant any more by the word aesthet-
ics in this world of high technology?

The main advantage that a computer has over the human brain plus
paper and pencil is blinding speed. Hence, there is a tendency to program
computers to solve combinatorial puzzles by brute force, trial-and-error
methods, whereas the human solver is always looking for clever shortcuts
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and usually finding them. This in itself can be a fascinating recreation.
Solving geometric puzzles entirely by computer can be rather like weeding
your flower garden with a bulldozer. It may do the job quite thoroughly
and rapidly, but consider for a moment all that is lost in the process; and
what is the hurry in the first place?

In summary, computers are certainly useful for solving design prob-
lems that involve too much computation to be solvable by any other
practical means or are just plain boring. Much beyond that it becomes
sort of a mixed bag, at least in this author’s opinion.

Abstraction and Reality

Shown in Figure 184a is a portion of a checkerboard dissection with
x, y-coordinates added. Any single square may now be designated by its
x, y-coordinates, and any puzzle piece by a group of such squares. Thus,
the shaded piece is 1,1; 2,1; 2,2.

Given this notation (or some other of your liking), pieces may be
moved about, rotated, turned over, fitted together, etc., all with numbers
alone and with no need for the physical pieces or even drawings of them.
This dimensionless world of numbers is of course the only world known
to electronic computers. All puzzle problems must be reduced to it before
being fed in, and any geometric figures desired must be reconstructed after
digestion and disgorgement by the computer.

It is easy to add a third dimension to this scheme and thereby use it to
describe polycube puzzles. The puzzle piece shown in Figure 184b would
then be described in x, y, z-coordinates as 1,1,1; 2,1,1; 2,2,1.

Figure 184a. Figure 184b.
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Such pieces may likewise be moved about and assembled analytically.
Now the question arises, given the geometric model and its numerical rep-
resentation, which is the real puzzle and which is the abstraction? To pur-
sue that question, consider the case of higher dimensions. This numerical
notation works equally well in any dimension. A three-block piece in four
dimensions—w, x, y, z—might be represented by 1,1,1,1; 1,1,1,2; 1,1,2,2.
Note that each square in two dimensions is adjacent to four others, repre-
sented by adding or subtracting one from any one coordinate. Likewise a
cube in three dimensions is adjacent to six others, a block in four dimen-
sions to eight others, and so on. Such higher-dimension pieces may likewise
be moved about and assembled into “solid” symmetrical solutions. The
intriguing question of determining what would be considered “interlock-
ing” or “assemblable” in four or more dimensions is left to the reader.

Now, which is the reality—numbers that we can understand (per-
haps) and easily manipulate or hopelessly unimaginable hyper-geometric
models? Some Greek mathematicians, Pythagoras especially, were said
to have regarded pure numbers alone as the ultimate reality in the uni-
verse and everything else as a state of mind. Modern knowledge in neu-
rophysiology and computer science casts this profound idea in a new
light. Recent developments in theoretical physics go even further into
the abstract world of numbers, where physical models actually become
utterly meaningless. Perhaps more to the point, what do the terms physi-
cal and abstract really mean, if anything?

The Universal Language of Geometric Recreations

There must be very few if any other artifacts in the arts and sciences hav-
ing the capability of transcending cultural barriers as do geometric rec-
reations. Show a dissection puzzle to persons anywhere in the world (or
beyond!), and they are likely to grasp its simple message and start playing
with it. Consider also their timelessness. Anyone who spends much time
pondering the mysteries of the polyhedra must sense a profound kinship
with past cultures that have likewise come under their spell. Are we not
all Pythagoreans?

Did children of yet far more ancient times fit together clay blocks into
toy pyramids or, more likely, walls and fortifications of geometric design?
Gazing into a star-studded sky, one can only wonder if other cultures in
other worlds ponder these same geometric puzzles.
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The educational potential of geometric puzzles does not seem to have
been very fully exploited. A fascinating course in mathematics and logic
could be constructed around some of the puzzles in this book. At the
same time, think of all the other related subjects that could be tied in with
it—history, art and sculpture, manual arts, philosophy, psychology—per-
haps even the rudiments of Freudian analysis!

Games

Games and puzzles are closely associated. Sometimes the two words are
used interchangeably, and the patents tend to be mixed together too. The
most popular games have been board games, now being rivaled by video
games, both of which are essentially two-dimensional. Devising a suc-
cessful game that is truly three-dimensional has proven to be an elusive
goal for many an inventor. There are certain practical difficulties in mov-
ing pieces about, adding or removing them in polyhedral space. But the
difficulties of polyhedral games go deeper than that. Competitive amuse-
ments, by their inherent nature, tend to exclude irrelevant aspects of the
game such as aesthetics. Trying to devise a captivating game that also has
much appeal to one’s artistic sensibilities is almost a contradiction. Games
have always involved beating someone else, but the favorite method with
video games these days seems to be blasting them to smithereens. It’s
hard to imagine doing that artistically. Why not instead get the children
involved in the rewarding hobby of putting things back together again?
The way things are going now, that skill may be useful someday.

The whole idea of adults inventing games for children needs to be
questioned. I used to try to devise games for our children, but I soon
found that, given a box of wood scraps or other similar treasures, they
would quickly invent their own simple amusements, which they usually
found more amusing than any of mine.



Chapter 22
Theme and Variations

One of the charms of the simple two-dimensional dissection puzzles shown
in Chapter 1 is that they construct many different simple geometric shapes
with the same set of pieces. Some of the polyhedral block puzzles in Chap-
ters 5 and 20 construct multiple shapes, but they are non-interlocking. The
difficulty of achieving this feature with interlocking puzzles was demon-
strated in Chapter 13 by three designs that succeeded to a limited extent. Is
it possible for a set of interlocking puzzle pieces to construct many different
polyhedral shapes?

The Peanut Puzzle

Recall the simple two-piece dissection of the rhombic dodecahedron shown
in Figure 161. These half-pieces can be joined in pairs in different ways to
form puzzle pieces. Excluding those that are impossible to assemble or
have an axis of symmetry, there are 12 such pieces, shown in Figure 185.

Figure 185.
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The next step is to list possible constructions, i.e., ways that R-D
blocks can be clustered symmetrically. To keep things simple, consider
only those with six or fewer blocks. Eight such figures are shown in Fig-
ure 186.

Now for the hard part: find a subset of six pieces from the set of 12
that will construct all eight of the above figures. Don’t waste too much
time looking, because Beeler’s computer could not find one either. How-
ever, of the 924 possible such subsets, one was found that will construct
all but the large triangle. This puzzle had its inception in 1986 as the
Peanut Puzzle (Figure 187). In order for all the pieces to fit together

Large Triangle Octahedron Square pyramid Diamond

Figure 186.

Figure 187.
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smoothly, great accuracy is required in sawing and gluing, so this is not
a project for the beginner.

Incidentally, a fascinating recreation is to determine how many of the
eight constructions shown in Figure 186 are space-filling. You may be
surprised to learn that they all are.

Pieces-of-Eight

The cube can be dissected into two identical halves that slide together.
This is the basic building block for Pieces-of-Eight. These half-pieces can
be joined in pairs eight different ways, as illustrated in Figure 188.

X =l ed o o X
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Figure 188.

The obvious question is whether these eight pieces can be assembled
into a cube. That they do, and much more. This puzzle has great poten-
tial as an educational tool. For example:

1. Using two disconnected half-pieces, find all the ways that they can be
joined face-to-face. You should arrive at the set of eight pieces, but
this simple exercise can be quite instructive.

2. Prove that four pieces are the fewest that can be connected together
in a closed loop. Prove that the square is the only such possible figure.
Can two separate squares be made using all eight pieces? Why not?

3. Prove that the 2 x 4 rectangle is impossible. (Problems of this sort can
always be solved systematically by trying every piece in every pos-
sible combination, but look for shorter and more elegant proofs using
logic.) Now what other shapes cannot be made for the same reason?

4. Assuming all solutions to be closed loops, prove that an even number of
pieces must always be used. Find all possible solutions using six pieces.
Likewise using all eight pieces. Examples are shown in Figure 189.
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Figure 189.

Six of the pieces have reflexive symmetry, and the other two are a
reflexive pair. It necessarily follows that every solution must either be
self-reflexive or occur in reflexive pairs. (These pairs are not counted as
separate solutions.) Can you figure out why?

Some of the most fundamental questions in physics have to do with
symmetry, and perhaps this puzzle will stimulate the student’s interest in
this fascinating subject. If the most elementary particles in the universe
and all of the laws governing them were symmetrical (which is not to
say they are), would it not follow that everything made from them, from
atoms to the entire universe, should be either self-reflexive or one of a
possible reflexive pair? But therein lies a curious paradox. Imagine that
in the next instant the universe switched to its mirror image. How could
you tell? Would not human consciousness be reflexive also? (Whatever
that means!)

Another strange case is the DNA molecule and the genetic code. Most
of us are right-handed, nearly all of us have our appendix on the right,
and all of us carry DNA with a right-handed twist. How are instructions
for right-handedness carried genetically? Would an identical but reflected
DNA molecule produce an identical but reflected organism? A lucid dis-
cussion of these and many other fascinating problems in symmetry may
be found in The Ambidextrous Universe by Martin Gardner, but don’t
expect to find all the answers.
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The half-pieces for the Pieces-of-Eight are made from three square-
pyramid blocks joined together. These blocks are made from sticks of
isosceles-right-triangular cross-section with two 45-degree cuts. For
experimental work, the mating joints can be slightly on the loose side.
A more accurate model of this puzzle made of fine woods with close-fit-
ting joints is a delight to play with. The sharp edges may be beveled or
rounded slightly to give its stark functionality a little more softness and
warmth.

Variations

Although a well-crafted set of puzzle pieces for either of the two designs
just described can be quite entertaining in itself, more important for the
purpose of this book is that the geometric principle on which they are
both based is even more fun to play with. It leads along an endless trail
of new discoveries. For example, as suggested by Figure 161, an obvious
variation of the Peanut Puzzle is to use the connection with three prongs
rather than two. The three sample pieces shown in Figure 190 assemble
into a triangular cluster.

Figure 190.

An interesting variation of Pieces of Eight is to truncate the indi-
vidual building units and convert them into cuboctahedra. The puzzle

remains the same in principle but assumes an intriguing new geometry
(Figure 191).
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When any of the half-pieces described in this chapter are joined in
threes rather than pairs, the numbers of puzzle pieces, practical sets, and
possible constructions stretch the imagination. To give but one example,
12 identical pieces assemble to form the Triple Cross Puzzle, as shown in
Figure 192. A construction with 14 pieces is also possible.

Now imagine combining all of the above into one super set contain-
ing singles, doubles, and triple pieces, perhaps some even larger. Simply
as a play construction set, what child (or adult) could resist the urge to
explore the many different ways the pieces fit together? At the same time,
such a set contains practically unlimited potential as an educational tool
and as a kit for discovering new puzzle problems. The pieces could easily
be made in (do I dare use those horrible words?) injection-molded plastic.
A few sample puzzle constructions are shown in Figure 193.






Chapter 23
Blocks and Pins

Most of us have at some time in our lives enjoyed playing with those mar-
velous construction sets consisting of blocks with holes joined together
with dowels. Many interesting variations of these are possible. In three
dimensions, the simplest and most obvious are cubic blocks with holes
centered on their six faces, and with dowels all the same length or perhaps
in integral multiples (Figure 194). These are easy for the home craftsman
to make. Blocks of about one-inch size can be sawn out or purchased.
Quarter-inch dowels may be found in most hardware stores. The ends of
the dowels are slotted with a saw and the holes are drilled slightly under-
sized for a tight fit. Great accuracy is not required in drilling the holes,
but a spur bit and a non-grainy wood such as basswood will help prevent
the drill from wandering.

Figure 194.
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Figure 195.

An interesting variation is to use edge-beveled cubic blocks with 12
additional holes, as shown in Figure 195. Many intriguing non-orthogonal
geodesic constructions can be made with a set of these. The dowel lengths
will be in multiples of V2.

Another interesting variation is provided by the truncated cube (or trun-
cated octahedron) with its eight additional holes. These will employ dowels
having lengths in the ratio of V3/2, as in Figure 196. (See also Figure 1.)

Square pyramid

Figure 196.
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Finally, one might combine all of the above into a super-set of blocks,
with all or some of the blocks having all 26 holes, together with dowels in
all the appropriate lengths. One such block is shown in Figure 197, with
dowels representing the 13 axes of cubic symmetry.

Simply constructing geometric forms with such a set of blocks and
dowels can be entertaining and educational, with or without illustrations
as a guide. They also have potential for puzzle problems. The seven pieces
shown in Figure 198 comprise all the ways that one block and one dowel

Figure 198.
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or two blocks and two dowels can be joined linearly, using 12-hole blocks.
Can they be assembled to fit snugly into the cubic box? What other sym-
metrical forms will they construct?

All of the sets described thus far employ radial holes—that is, with
their axes all intersecting each other at the solid center of the block. There
is another family of designs in which none of the holes’ axes intersect. The
holes can be drilled straight through and the dowels can be of indefinite
length. The holes will be sized for the dowels to slide freely through.

This family can be further divided into two subfamilies depending
on whether the drilled components are discrete blocks or uniform sticks
of indefinite length. Examples of the latter have already been shown in
Chapters 8, 15, and 19.

One further variation of the Pin-Hole Puzzle is shown in Figure 199.
The square sticks have holes equally spaced and arranged alternately.
The assembly of sticks and dowels forms an orthogonal lattice that can
extend indefinitely in all directions.

Figure 199.

A set of such pieces might make a simple assembly plaything, perhaps
to be fitted into a rectangular box. Or, with ingenuity, the idea might be
developed into some sort of puzzle set. A cubic block with three mutually
perpendicular, non-intersecting holes drilled through it is shown in Figure
200. It has a reflexive pair of forms.

An assembly of such blocks and dowels can be extended indefinitely.
In the model shown in Figure 201 on the left, all the blocks are identi-
cal. In the one on the right, the blocks alternate right-handed and left-
handed. Note the two different types of symmetry that result. Only the
assembly on the right can be said to have isometric symmetry as defined
in Chapter 8.
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Figure 201.

Now consider the following problem: again start with a 2 x 2 x 2
assembly of cubic blocks. Again drill three holes through each block so
that 12 dowels can be inserted through the pile. But this time, all eight of
the drilled blocks must be identical and the assembly must have isometric
symmetry. The surprising solution is shown in Figure 202.

Figure 202.
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The three identical holes in each block are all parallel to internal diago-
nals of the cube, and their axes exit the faces exactly one-third the distance
from both edges. To be entirely satisfactory, the holes must be drilled accu-
rately, and this will require suitable drilling equipment plus some patience
to get it adjusted properly.

This is likewise an omnidirectional construction capable of infinite
expansion in all directions. It has many fascinating variations. The 2 x 2
x 2 grouping can in itself become a unit building block with 12 holes, or it
could be broken into rectangular subunits, as shown in Figure 203.

Figure 203.

The puzzling possibilities here would appear to be practically limitless.
One interesting variation uses 1 x 2 x 2 rectangular blocks. The four sym-
metrically arranged holes in each block pass diagonally through midpoints
of sides. The blocks do not pack together but rather leave cubic and rect-
angular spaces. Neat symmetrical assemblies of six and twelve blocks are
shown in Figure 204.

Figure 204.
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Figure 205.

A large set of such blocks and dowels is in itself fun to tinker with,
but if some of the dowels and blocks are joined permanently and assembly
problems are devised around them, they become intriguing puzzles as well.

In yet another variation, shown in Figure 205 in two different views,
squat octahedra have been substituted for the rectangular blocks above.
Six of these are shown assembled with 12 dowels to form a solid rhombic
dodecahedron. This construction is space-filling. Note that in the view
along the threefold axis, the holes are centered in equilateral triangles.

Since the intriguing geometry of the rhombic dodecahedron is the
basis for so many of the designs described in this book, combining it with
our natural inclination for sticking pins into holes and joining things
together should lead to many interesting new recreations.

By now, it should be clear that few, if any, of the designs described
could be considered novel inspirations except in some small part. They
all are logical offspring of previously established geometric families,
legitimate or otherwise. Mathematically speaking, the role played by the
designer is often almost trivial. Once you start exploring this puzzling
world of polyhedral dissections, one idea just leads to the next. Their
arrangement in this book is an attempt to place the ideas in a logical
sequence of lineage. The problem is that one idea may have several roots
branching backward in different directions. Often, one can arrive at the
same place by two entirely different routes. Here is a good example:

Recall from Chapter 15 the arrangement of 12 hexagonal sticks and
dowels, shown on the left in Figure 206. Now imagine that instead of the
hexagonal sticks, all of the space surrounding the dowels is filled solid.
Tessellate that space into space-filling rhombic dodecahedra, and dis-
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sect the central rhombic dodecahedron into six squat octahedra, shown
in Figure 206 on the right. The result is exactly the same as the design
shown in Figure 205.

The construction described above suggests compellingly by analogy
the dissection of other polyhedra into sections held together with dowels.
Shown in Figure 207 is a stellated rhombic dodecahedron with 12 dow-
els drilled through it. There are many different practical ways that this
solid might be dissected, such as into 48 tetrahedral blocks, 24 rhomboid
pyramids, or 12 double rhomboid pyramids, as shown.

Now compare the double rhomboid pyramid in Figure 207 with the
squat octahedron of the previous design (Figure 205), and note that they
are the same geometric solid with the same hole locations, the only dif-
ference being in the number of holes. Thus, a set of 12 four-hole blocks

Figure 207.



Chapter 23. Blocks and Pins 183

and dowels constructs two rhombic dodecahedra or one stellated ver-
sion. If several of the dowels are fastened in place to form lollipop pieces
(Figure 208), assembly of these figures becomes an entertaining puzzle.
What is the maximum number that may be joined and still be possible to
assemble?

The Lollipop Puzzle

Carrying the scheme of the puzzle piece design shown in Figure 208 to its
obvious next step, make the rhombic dodecahedron itself the basic con-
struction unit. Each block will have 12 holes. Four such blocks are shown
in Figure 209, assembled into a tetrahedral pile and pinned together by
twelve dowels.

Figure 208. Figure 209.

In order to convert this intriguing construction set into an even more
entertaining puzzle, we again join blocks and dowels to form lollipop
pieces. But this time, we also eliminate all extraneous holes. Not only
does this save considerable drilling and improve the appearance, but it
also adds greatly to the puzzling potential. By a judicious choice of hole
locations, and stick locations in the lollipop pieces, simple constructions
become fascinating puzzle problems. As a simple example, a triangular
assembly of three blocks and three dowels is shown in Figure 210. Each
block has two holes. Two pairs of blocks and dowels are joined to form
lollipop pieces. The remaining dowel is the key.

Note the similarities to the Pin-Hole Puzzle. The added feature of this
new design is that even six or fewer rhombic dodecahedral blocks may
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Figure 210.

be joined many different ways to create interesting geometric shapes, as
was shown for the Peanut Puzzle in the preceding chapter. Thus, the natu-
ral appeal of pin-and-hole assembly pastimes is combined with the added
feature of multiple assembly problems, possible with one appropriately
chosen set of puzzle pieces.

We have been calling the arrangement of six blocks shown in Figure
211 an octahedral cluster. It uses 24 dowels. How many dowels may be
attached to the blocks for it to still be assemblable? Can all the block pieces
be dissimilar? What other puzzle problems can be devised using the same
set of pieces? This should keep puzzle analysts busy for quite a while.

Figure 211.

There is a limit to the diameter of the dowels in relation to the blocks.
The diagram in Figure 212 shows the limit to be 1:6. In other words, if
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the blocks are 1% inches across, the dowels cannot be more than % inch
diameter without interfering with each other.

If the dowels are made slightly larger in diameter than the limit shown
above, a most interesting puzzle results. Some of the dowels will require
cylindrical notches milled into them. Twelve such dowels are shown in
Figure 213 assembled inside a rhombic dodecahedral block with 12 holes.
Note the similarity to the 12 notched hexagonal sticks in Figure 149a,
but with some added mechanical constraints. Also, you cannot see what
is going on inside. Here is a case where clear plastic might be used to
advantage for the block, and perhaps even for the rods too. This puzzle
scheme likewise offers recreation for the designer as well as the solver,
since many different notch combinations are possible.

Figure 213.

Some Notes by the Author

The reader may have noticed the differing styles of illustrations used
throughout this book, alternating between photographs and line draw-
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ings of varying quality. The explanation is that most of the original
drawings were done by myself with pen-and-ink, but many I later redrew
using computer graphics. Both of these exercises proved to be interesting
recreations in themselves. It goes beyond merely the pleasure of learn-
ing a new skill and hopefully the satisfaction of doing it reasonably well.
Sometimes simply illustrating a problem will lead to new ideas. As for
the photographs, I took many of the original ones using a 4 x 5 Speed
Graphic, and some were then retouched with pencil. In this edition, most
of those have been replaced by much better ones taken by expert photog-
rapher John Rausch using digital techniques. Furthermore, many of the
models depicted are reproductions of my original models, made by highly
skilled craftsmen. Note the credits given. You could say that the quality
of their craftsmanship begins where mine left off.

Drawing on the Brain

Readers also may have noticed a curious departure in this chapter on
Blocks and Pins—no photos; only line drawings. The explanation is
that not a single object depicted in this chapter is known by the author
to actually have been fabricated in wood, or anything else. They all exist
only in the author’s imagination, now in print as well, and hopefully in
the reader’s imagination too. Some of these models, especially the ones
with square corners, would be relatively easy to fabricate in wood. But
others with diagonal holes in polyhedral blocks could present difficul-
ties even to a skilled woodworker. Making all of them in the author’s
workshop, even if it still existed, would have been a daunting and time-
consuming task. That is not to discourage craftsmen from trying, but
one would be well advised to start with the simpler ones. The point of all
this is that working with geometric puzzles in the abstract can be a rec-
reation in itself. It seems likely to gain in popularity, now that so many
new computer programs in graphics and puzzle solving are becoming
ever more sophisticated and readily available. Several of these programs
can be found by searching under puzzle solver or puzzle world on the
Internet. Be that as it may, many persons still enjoy crafting models,
typically in wood, and what better reason than being able to share their
creations with family and friends. So, in the final chapter, we examine
some woodworking basics.



Chapter 24
Woodworking Techniques

A few woodworking tips have been given on preceding pages, but here
is a whole chapter of general guidelines for making wooden models of
your favorite puzzles. You will learn how to at least make satisfactory
experimental models, and with practice perhaps showpieces.

Tools

The most essential power tool is a table saw, either 8-inch or 10-inch.
Consider investing some extra money in a high quality fine-tooth carbide
blade capable of producing an extra smooth cut. Radial arm saws are
reported to be unsatisfactory for this work. Unfortunately, power saws
are not for youngsters, so we will assume adult supervision for at least this
stage of the work. Many craftsmen would probably list a belt sander as
the next most useful power tool. But one skilled craftsman I know claims
that with the right sawing equipment, sanding should hardly be necessary.
He does have a point, because saw cuts can be made with great accuracy,
but then sanding tends to destroy that accuracy.

Obviously, a drill press will be required for all those designs with pins
and holes. You will need spur drill bits specially designed for drilling in
wood. You may have to hunt around for some exact odd sizes needed, but
as a last resort metal bits can be reground for wood.

That’s really about all you need for power tools. For the serious wood-
worker, a small thickness planer would probably be next on the list. I
would also recommend a dust collector.

The one other essential tool would be either a micrometer or good set
of calipers that will measure to a thousandth of an inch. That might sound
like overkill, but it isn’t. In this work, accuracy is practically a religion. An
instrument that will measure angles accurately will also come in handy.
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Lumber

One can assume that most lumber sold these days is kiln dried. By far
the most common thickness is “one-inch,” meaning that it is planed to
approximately 3%-inch thick. Our local lumber stores sell such lumber in
oak, maple, poplar, and pine. Poplar and pine are soft and are fine for
experimental work. Oak and maple are harder and are more suitable for
finished pieces.

Much efficiency can be achieved by standardizing on lumber thick-
ness at the start, such as 0.750 inches. Bring a micrometer with you
when shopping, and with luck you may find some boards close enough
to that exact thickness to be used directly. Measure both edges, as often
they differ. If too thick, they can be planed again to exact thickness. If
too thin by more than a few thousandths, reject them. Unfortunately,
lumber seems to be getting thinner all the time, but 0.750 is still available
if you hunt around.

The other thing to check is warp. Reject all boards that are notice-
ably warped. One could argue that all boards are warped to some degree,
but you get the idea—warp is very bad. Many of the models shown in
this book have been crafted in exotic woods such as rosewood or tulip-
wood. These woods are much harder to find, and I would not recom-
mend ordering them by mail. They are of course much more expensive
and are a waste until you have perfected the process. An accurately made
puzzle in maple is better than one poorly made in rosewood. Some exotic
woods are easy to work, but many spring all sorts of surprises at the
woodworker, such as warping and splitting, being hard to glue, dulling
your saw, or giving off toxic dust. We can’t go into all those details here,
but consider yourself warned!

Some puzzles, such as checkerboard dissections, call for two con-
trasting woods. Light colored lumber is easy to find by sorting through
stacks of maple, birch, or basswood. A commonly used dark wood is
walnut. When I first needed four contrasting woods for some of the early
polyhedral puzzles, I added cherry and mahogany to my lumber inven-
tory. Then along came Jupiter, calling for six contrasting colors. This
launched me into the fascinating world, all-new to me, of exotic woods.
You will find many of these woods, mostly tropical, named with the fig-
ures. For more information, the International Wood Collector’s Society
is an excellent resource. The address changes from time to time, but you
can find it on the Internet.
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Making Sticks

Nearly every puzzle described beyond Chapter 4 is made from straight
sticks, and well over half use straight square sticks. Making uniform,
accurate square sticks is by no means an easy task, especially when the
lumber is slightly warped, as all lumber is. But, it is absolutely essential
to success. Start by cutting the boards to convenient length—say about
three feet. If the lumber is quite true and the saw is adjusted perfectly,
you may be able to rip-saw the sticks straightaway. Usually not all of
these conditions are met, so you saw the sticks slightly oversized and
then plane them down to exact size. Access to a small thickness planer
will make this operation much easier. You can do many sticks at one time
and save them for future use. If so, you will want to standardize on one
or two sizes. As already mentioned, 0.750 inches square would be the
easiest with which to start. A second choice, if you can manage it, could
be 1.000 inches square.

Crosscutting

The second and final sawing operation is usually to crosscut these sticks
into numerous, identical, short stick segments or building blocks. For this
highly repetitive operation you will need to equip your table saw with
some special jigs that you make.

Shown in Figure 214 is a simple and very useful jig for sawing short
square sticks and blocks. Its body is a solid piece of plywood that slides
on a pair of rails in the miter grooves of the saw. Various inserts adjust the
jig for making different sized blocks. The thumbscrew on the right allows
for minute adjustments, such as might be necessary when changing saw
blades. When correctly adjusted, all cuts should be accurate within plus
or minus 0.005 inches.

A second very useful jig is the one already shown in Figure 104. With
just these two jigs, one can make about half of the puzzles described in
this book. A slightly modified version of the diagonal jig, shown in Figure
213, is used to make rhombic dodecahedral blocks. As the stick is rotated
to four different positions, four saw cuts are made, bringing the end to
a pyramidal point. The stick is then advanced a certain distance deter-
mined by the spacer block, and four more shallow cuts are made. In the
illustration, the final cut is being made that severs the finished block from
the stock. Thus, it is not necessary to place one’s fingers near the saw. For
one-inch stock, the length of the spacers is V2 plus the saw’s kerf.
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A jig for sawing the eight corners from a cubic block to make trun-
cated octahedra is shown in Figure 216. The same sort of 45-degree cra-
dle is used, but it forms an angle of 35% degrees to the miter grooves
when viewed from above.
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Notched pieces such as are used in the standard six-piece burr are
notched using the jig shown in Figure 217 in conjunction with a dado
blade in the saw. Spacer blocks are used to position the pieces properly.

For all of the puzzles that use equilateral-triangular sticks, the cuts
are made using the simple jig, shown in Figure 218, which holds the



192 Geometric Puzzle Design

— End block

Spacer block
held by screw

. Right-handed
prism block
being sawn

Triangular
w stick

= b ¥ Plywood base

P — Rear guide

End view

Figure 218.

sticks at an angle of 543% degrees viewed from above. Again, various
spacer blocks are used to position the stock correctly.

There are many other similar special-purpose saw jigs, but the most
basic ones have now been described, and with that as a good start, the
reader should be able to figure out the others.

Drilling Holes

For puzzles that use pins and holes, hardwood dowels are readily avail-
able in many diameters from 1/8-inch up. Always use spur bits and
stops to position the pieces accurately while drilling—not just a pencil
mark. Some woods, such as walnut, will be found easier than others to
drill accurately. With grainy woods like oak, often the drill will wander
off with a mind of its own as it tries to follow the growth rings.

Do not just force dowels into tightly fitting holes and expect them to
stay. In dry seasons, they will likely come loose. Instead, secure them
with glue or brads. By the same token, when made during the heating
season such as here in New England, one must allow for summer expan-
sion in joints that are supposed to slide freely.
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Gluing

Most gluing is done using jigs to position the blocks accurately. A flat
surface, straight edge, and combination square will suffice for gluing
cubic or rectangular blocks. To prevent glue from sticking to the flat
surfaces, they can be covered with waxed paper, but Reynolds baking
parchment works even better. The simple M-shaped cradle shown in
Figure 219 is very useful and is used for gluing practically all of the
puzzle pieces in Chapters 10-13.

|
5 &5

First stellation Second stellation Third stellation

&

Figure 219.

For some puzzles, the final gluing is most easily done by holding all
of the partially finished blocks tightly together in the assembled con-
figuration using tape or rubber bands, and then selectively gluing on the
final blocks. Examples would be the Three-Piece Block Puzzle, the Four-
Piece Pyramid Puzzle, and the Octabedral Cluster Puzzle. To prevent
unwanted joints from accidentally becoming stuck together, paste wax
or beeswax diluted with turpentine to the consistency of mayonnaise can
be carefully applied just where needed. It is slow work. The method
just described is known by machinists as fiz-at-assembly and is generally
disdained, especially for production. It is especially useless for puzzles
with more than one solution, since they will fit closely one way only and
may not even go together other ways. Consider instead gluing all pieces
fully together using accurate jigs.

The most difficult puzzle pieces to glue are those of the Scorpius and
Jupiter families. The base of the gluing jig for these is a vertex of a rhom-
bic dodecahedron or triacontahedron. The author’s jigs were made by a
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skilled machinist using a Bridgeport milling machine with rotary table.
One pattern was used to cast a mold from which several more were cast
in epoxy. The photograph (Figure 220) shows one of the elves gluing
Jupiter pieces.

Figure 220.

The most satisfactory glue I have found is the yellow aliphatic resin
type, sold under various brand names such as Titebond and Elmer’s Pro-
fessional. It is strong, fairly fast-setting, and resilient enough for the joints
not to pop apart when the humidity changes.

One very useful appliance in my workshop that I discovered late in
the game, but wish I had earlier, is a microwave oven. It reduces the set-
ting time of glue joints dramatically, especially with dense tropical woods
like rosewood. The individual blocks can be preheated, or placed in
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the oven after gluing, with or without the jig. Ten seconds is usually
enough—too long and the joint will be weakened. Equally useful is the
ability to take apart pieces already glued, which typically requires about
30 seconds in my small microwave.

Sanding and Finishing

Interlocking puzzles such as the rhombic dodecahedral type of Chap-
ter 10 are most satisfactory when they fit snugly but not too tightly.
For that to happen, the pieces must be sawn and glued very accurately.
When making several pieces, slight errors can be gradually detected and
reduced. An alternative is to make the pieces ever so slightly too tight
and then sand them down for a perfect fit. The less sanding the better, as
excessive sanding rapidly destroys the accuracy so carefully built in up to
that stage. A belt sander with #150 grit is handy. Sometimes pieces can
be exchanged between a puzzle that is too tight and another that is too
loose. The last step is to bevel the sharp edges of the pieces with a file,
or round sharp edges and corners using sandpaper. For a long time, my
favorite wood finish was very dilute clear lacquer, wiped on and immedi-
ately rubbed dry, thus leaving nothing on the surface but being more of
an impregnation. It brightens the colors of most woods and also tends to
make interlocking puzzles slide together more easily. Then for a while,
I switched to dilute Danish oil rubbed on, which works especially well
on cherry and oak. With so many new and improved wood finishes now
on the market, my latest advice is to shop around and see which works
best for the particular woods you are using. I have never favored stained
finishes. To my eye, they always look stained. Seldom is it possible to
improve on nature when it comes to the inherent beauty of wood.

Dealing with Humidity

Finally we come to this all-important subject that has been mentioned
a few times already. All woods expand and contract with changes in
humidity. In my locale, this typically means summer and winter. This is a
very serious consideration in the design and construction of interlocking
puzzles. If the expansion were uniform in all directions, it would be no
problem. But it takes place mostly across the grain rather than with the
grain. Some woods are more prone than others. I once tested every one
of the roughly fifty kinds of wood that I use and published the results.
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Nearly all domestic hardwoods are equally bad. The dense, oily woods
like rosewood and teak are much better, with padauk and cocobolo being
the best of all.

Careful attention to direction of grain can at least partially overcome
the problem. The Pseudo-Noiched Sticks (Figure 162) may actually be
tighter when dry. For interlocking block puzzles such as those in Figure
73, the problem is overcome by having the grain of all blocks run in the
same direction.

Summary

These brief woodworking hints are necessarily and purposely just that
and not detailed directions. To give workshop blueprints for each puzzle
would not only take a prohibitive amount of space but would also, I
think, detract from the theme of the book. Part of the fun is figuring out
how to do things. Because of the simple repetitive nature of geometric dis-
sections in general and the few recurring angles, the individual blocks are
easier to saw out than one might suppose. By the same token, any error
in sawing nearly always becomes cumulative and surprisingly excessive
when blocks are glued together. You will wonder how blocks sawed to
within a few thousandths can possibly misbehave so badly. But, you will
soon discover that practice makes, if not perfect, at least better.

Start with the easier projects such as the two-dimensional dissection
puzzles, the standard burr, and cubic blocks. As you gain experience with
these and are able to make them to your satisfaction, then you may wish
to progress toward the more difficult models. The arrangement of the
chapters is roughly in order of increasing difficulty except where indi-
cated otherwise. Do not be too disappointed if you find the All Star or
Jupiter to be beyond your woodworking capability. Curiously, it is the
simpler puzzles that nearly always turn out to have the greater recre-
ational potential.



Finale

One of the fascinating aspects of this puzzling world of burrs and poly-
hedral dissections is the strange counterpoint played by the duo of math-
ematics and aesthetics. Indeed, that’s really what this game is all about. In
geometric recreations, it seems you can never delve into one without also
considering the other. In fact, any reader who knows what the difference
is between art and science, or who can tell where one leaves off and the
other begins, is way ahead of the author on that score. They both play the
same haunting theme, and its echoes reverberate throughout Puzzledom.
Could this elegant cosmic order have been on the minds of the ancient
Greek philosophers with their fabled “music of the spheres?” Perhaps
this could now be rephrased slightly to include the ubiquitous cube and
the intriguing rhombic dodecahedron!

Figure 221.
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Whether one’s main interest is in solving puzzles, collecting them,
reading about them, or whatever, the reader is encouraged to try mak-
ing at least a few of these models in the school or home workshop. In all
likelihood, this will lead in turn to the ever more fascinating recreation of
prospecting for new puzzle ideas. They lie scattered all about waiting to
be uncovered, enjoyed, and shared with family and friends. It helps if you
dig with the right tools. A few have been supplied in this book, but really
the basic tools are imagination and curiosity. The essence of any creative
endeavor is the fitting together of ideas into a harmonious whole, and the
inspiration for that may come from almost anywhere.
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