CODEL ENGINEERS'

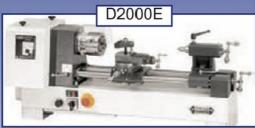
THE PRACTICAL HOBBY MAGAZINE

TAPPING STAND

Keep those threads in line

I.C. ENGINE VALVES Diamond lap technique SCRAPING Advice for the novice

CHUCK LOCK Improved safety


LONG BOLT BOX
Bolt making made easy

Pro Machine Tools Ltd

Precision Machines Made in Germany "For the discerning engineer"

See us at Harrogate MEX 6-8th May

Centre distance 350 mm
Centre height 110 mm
Power 1,4 kW, 230 V, 50 Hz
Spindle speed infinitely variable
45 - 2300 r.p.m.

Feed 0,085 and 0,16 mm

Centre distance 500 mm
Centre height 110 mm
Power 1,4 kW, 230 V, 50 Hz
Spindle speed infinitely variable
45 - 2300 r.p.m.

Feed infinitely variable 0 - 250 mm/min

Centre distance 350 mm
Centre height 100 mm
Power 1,4 kW, 230 V, 50 Hz
Spindle speed infinitely variable
45 - 2300 r.p.m.
Feed 0,085 and 0,16 mm

"These lathes are incredibly quiet and the speed adjustment is excellent; no pulleys or belts to worry about."


5 YEAR WARRANTY

On All Wabeco Machines

D1290E

Longitudinal X-axis 300 mm

Longitudinal X-axis 300 mm
Transverse Y-axis 110 mm
Vertical Z-axis 280 mm
Power 1,4 kW, 230 V, 50 Hz
Spindle speed infinitely variable
180 - 3000 r.p.m.

Centre distance 600 mm
Centre height 135 mm
Power 2,0 kW, 230 V, 50 Hz
Spindle speed infinitely variable
100 - 5000 r.p.m.
Feed 0,085 and 0,16 mm

All mills and lathes can be supplied fully fitted for CNC machining or can be retro fitted at a later date.

Wabeco produce precision made machines by rigorous quality control and accuracy testing. All lathes and mills are backed by an extensive range of tools and accessories. Wabeco machines are quality rather than eastern quantity. See our web site for details

Pro Machine Tools Ltd 17 Station Road Business Park Barnack Stamford Lincolnshire PE9 3DW Tel: (01780) 740956 Fax: (01780) 740957 Sales@emcomachinetools.co.uk

www.emcomachinetools.co.uk

Published by HIGHBURY LEISURE Publishing Ltd, Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0PS Tel: 01689 887200 Fax: 01689 886666

HIGHBURY LEISURE PUBLISHING LTD is a Highbury House Communications plc company

EDITORIAL

Editor
David Fenner - Tel/Fax: 01738 583832

Editorial Administrator Sarah Mead - 01689 886677 smead@highburyleisure.co.uk

PRODUCTION

Designer Carol Philpott

Production Manager Alan Scott - 01689 887245

Printed By Polestar (Colchester)

Origination by Atelier Data Services

SALES & MARKETING

Group Sales Manager Colin Taylor - 01689 886649

Sales Manager

Tony Robertson - 01689 886650

Marketing Executive Voula Browne - 01689 887209

CIRCULATION

Circulation Director Brian Donnelly - 020 7608 6723

MANAGEMENT

Publisher lez Walters

Divisional Director

Dawn Frosdick-Hopley

Group Financial Controller Tom Stringer

Managing Director David Nizol

SUBSCRIPTIONS

8 issues UK £30.00, Europe £36.00, US Airmail \$58.50, RoW Airmail £38.50 UK SUBSCRIPTIONS AND BACK ISSUES: HIGHBURY IFISURE FUIFILMENT, Link House

8 Bartholomew's Walk Ely, Cambridgeshire CB74ZD Tel: 01353 654422 Fax: 01353 654400 Email: leisure@hhdf.co.uk (8.00am-6.00pm Mon.- Fri.) USA SUBSCRIPTION AGENT: Wise Owl Worldwide Publications 5150 Candlewood Street, Suite 1, Lakewood CA 90712-1900 USA.

For Visa/Mastercard orders in USA Telephone (562) 461 7574. Fax (562) 461 7212. Email: info@wiseowlmagazines.co Web: www.wiseowlmagazines.com

Postmaster send address corrections to: Model Engineers' Workshop Model Engineers: Workshop
c/o Mercury Airfreight International Limited
365 Blair Road, Avenel, NJ 07001, USPS 010876
CANADIAN DISTRIBUTION:
Gordon & Gotch Periodicals

(Toll free 1 - 800 - 438 - 5005)

© HIGHBURY LEISURE Publishing Ltd 2005
All rights reserved ISSN 0959-6909
The Publisher's written consent must be obtained
before any part of this publication may be reproduced in any
form whatsoever, including photocopiers,
and information retrieval systems.

All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from negligence of our staff. Reliance placed upon the contents of this magazine is at reader's own risk.

Contents

On the Editor's bench

Dave Fenner's commentary

12 **Tapping Stand**

Vertical guidance with pitch control

18 You'd Like It Flat - Scrape It!

Beginner's guide to the black (more correctly blue) art

22 **Micrometers for South paws**

Put the numbers where you can see them

24 **Temporary Restraint**

A compendium of devices

30 **Adjustable Saddle Stop for Myford 7**

Neat accessory for improved repeatability

35 **Inconclusive experiments**

Process trials and tribulations

74th Model Engineer Exhibition 36 at Sandown Park

An overview of workshop equipment exhibits

40 **Long Bolt Box**

Combination tool for quantity production

AA Comp-U-Guide (2)

Using the system

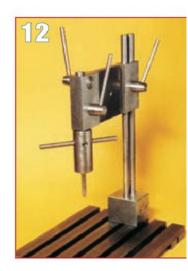
46 **Trade Counter**

New items from suppliers

48 **Powered Top Slide**

For an even finish on a taper

50 A Technique for Finishing 4-Stroke Valves


New use for that diamond lap

52 **Chuck Lock For Screw-On Lathe Chucks**

An added safety measure

Scribe a Line

Reader to reader

See page 56 for our special subscription offer!

Front Cover

The Tapping Stand described by Harold Hall incorporates axial guidance and pitch control. See page 12

April 2005

BANISH STRUGGLES

Sensors can be recalibrated, e.g. to read degrees on a rotary table or teeth for use as a dividing head (see photo) by fitting BW Electronic's **new** measuring readout

- large bright LED display
- inch/mm conversion
- · zero datum for both axes
- two independent datums
- positions can be presetradius/diameter working
- · halfway point calculation
- unclip sensors and move them between machines

Complete system (332 display, two 361 sensors, power supply, manual): £425 (incl. VAT and p+p)

BW Electronics, 12 Mussons Close, Corby Glen, Grantham, NG33 4NY MEWad **Teldas 41 436-550826** re**Welsites www.bacilestronics.co**ukl

Model Engineering Workshop Ad Index		
ADVERTISER PAGE		
BW Electronics4		
Camden7		
ChesterOBC		
Chronos DPS62-63		
Compumil5		
Emco57		
Folkestone Engineering5		
GLR10		
G + M Tools8		
Harrogate MEX7		
Hemingway61		
Home and WorkshopIBC/6		
HY4 Products Ltd58		
I M Service61		
J A Crew & Co6		
Jade Products4		
Kent Scale Engineering4		
Machine Mart9		
Metals on the Web6		
Model Eng. Services4		
Pro Machine ToolsIFC		
Rota-Grip5/4/58/61		
Simply CNC61		
Softcover6		
Tracy Tools Ltd58		
Warco MKII59		

Folkestone Engineering Supplies

Offers a fast friendly service, competitive prices, no minimum order value, no VAT, competitive delivery fee's and large stocks.

Our 2005 catalogue now available

free of charge, please phone or visit our web site. Tel:01303 894611 www.metal2models.btinternet.co.uk Goods supplied mail order or callers (by appointment) welcome.

Comprehensive range of material

Aluminium, Brass, Copper, Phosphor Bronze, Nickel Silver Stainless Steel, Bright Mild steel and Black Mild Steel, Spring Steel, Silver Steel and Ground Flat Stock, Cast Iron Sheet material - see below

Fasteners metric and imperial

Cap head, coutersunk, button head and grub screws. New range of BA screws and nuts to 16BA (machine turned).

Also

Quality Taps and Dies.

In-house hardening and tempering service available.

Sheet Material

Brass CZ108 and CZ120 (compo/|engraving) Copper Stainless Steel, Aluminium and Mild Steel.

10000	Example	CZ108 16g	CZ120 16g	C101 16g	A luminium 16g	Mild Steel 16g
	12" x12"	£11.38	£14.98	£11.52	£4.32	£3.97

Other thickness available, from 26swg to 3/16" depending on type of material All can be cut to size.

62 Canterbury Road, Hawkinge, Kent CT18 7BP

Open weekdays (0900-1600) Saturday mornings (0900-1200)

OPTICAL CENTRE PUNCHES

Simply allign scribed lines with cross hairs in lens. Remove lens and replace with punch and strike punch.

Price

Order

Code OCP-2

Flexible Arm

240 volt supply

Code

Stem

ength

Arm

Length

(mm)

400 + 400

JH20RTL

(mm)

Line up scribed lines with either lens (one containing cross hair, the other a circle). Whilst carefully holding the outer body, lift up the top section and rotate in desired direction until location is felt, then strike punch

£42.50

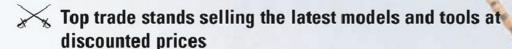
240 volt supply 12 volt 50 watt bulb

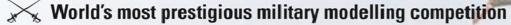
Order Length Code (mm) 200 + 260 JW55TM £45

240 volt supply 12 volt 20 watt bulb Order 200 + 200 JH20RTM

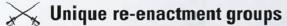
240 volt supp Arm Length (mm) 400 + 400 Code Price JF30LEB

Prices subject to the addition of carriage & V.A.T. Please add £3 for optical punches & £5.00 for lamps


Rotagrip Ltd


16-20 Lodge Road, Hockley, Birmingham B18 5PN Tel 0845 100 1566 Fax 0845 100 9188

30130



The world's best and longest established show for military modellers.

For further information please call 01689 886 649

The Caliper comes in a padded box with piano style hinge and is complete with spare battery. Also included will be a copy of our 80 page catalogue packed with thousands of bargains - Materials, Tools, Electrical and Mechanical. Plus Fastenings in Steel, Brass and Stainless steel. (£1.50 if ordered separately)

J A Crew & Co

Watery Gate Farm Chipping Campden
MEWAD200394 Coloucestershire 2:61.55/6Qtage 1

ORDER HOTLINE: 01 386 841 979

www.metalsontheweb.co.uk

MODEL ENGINEERING AND MODELLING EXHIBITION

Great Yorkshire Showground - Harrogate

Friday 6th May • Saturday 7th May Sunday 8th May

Live Steam **Railways**

n gauge to 71/4"

50,000 sq ft of ■ **Exhibition Space**

> Specialist **Trade Stands**

60 Club & **Society Stands**

Model Boats, ■ Boat Pool, 10 Boat Clubs

> **Miniature Engines** 'in steam'

OPENING TIMES

Friday 6th May	10am - 6pm
Saturday 7th May	10am - 6pm
Sunday 8th May	10am - 4.30pm

ADMISSION

Adults	£8.00
Over 65's	£7.00
Under 16's (accompanied)	£2.00

BOOK NOW!

Advance Ticket & Information Hotline 01751 473780

All major Credit Cards Accepted

FOR THE LATEST EVENT NEWS

GREAT NEW BOOKS Lindsay Publications

Metal Working for Amateurs

· 1893 ·

£ 6.50

Three part British book the first part of which covers methods of Brazing and Soldering, using distinctly hairy methods of heavy soldering and welding. Part II is entitled Practical Gas-Fitting and gives instructions on how to fit the new-fangled idea of gas lighting in your

house, including gas fuelled chandeliers. Part III is on Brass Casting at Home, and covers making patterns, moulding and melting the metal. For this latter activity no furnace is recommended, but instructions are given for melting in a 2 lb crucible in a domestic fireplace, the instructions ending "remove the hearthrug, in case you spill any metal and set fire to the house". What makes this book fascinating (as against useful) is that it is a very early D-I-Y guide, aimed at what were then called 'amateur workmen'. Well worth reading. I18 well illustrated pages. Paperback.

Brass and Alloy Founding • 1934 • £ 6.50 For years we sold one of Lindsay's pamphlets called Brass Founding; now Lindsay has reprinted the book from which this was extracted and here it is. This was part of a correspondence course so the information in it is clear and to the point with Part I broadly covering the metals and alloys, whilst Part 2 is largely on (commercial) furnaces. 108 well illustrated pages - a

lot of book (and information) for the money! Paperback.

Lathe Notes Vol. 5 • 1912-1926

MACHINERY MAGAZINE

Yet more extracts from Machinery Magazine on aspects of lathes, in this case articles covering Forces Acting on the Saddle in a Lathe, Cutting Coarse Threads on a Standard Lathe, Cutting Worm Gears with an Improvised Hob, Hobbing in the Lathe, 2 articles on the Design of Lathe Tailstocks and another 2 on Inspecting

Lathes, Design of Back Gears and A Short Bed Precision Lathe. All in 64 pages and 48 drawings and illustrations. Softcover.

English and American Lathes

• 1900 • Horner •

This quite extraordinary book was written, by a British author, at a time when American lathes were just beginning to be imported into the U.K., and was intended to provide an unbiased review of the different national practices. The text is excellent and there

are 300 illustrations, the vast majority engravings, which really do show how English and American lathes differed. If you are interested in the development of lathes this is a book you absolutely should have. 179 larger format paperback pages.

Learning the Lost Art of Hand Scraping · 1880-1919 · £ 4.95

This book not only replaces Old Time Mechanics (previously sold by us), it also includes it, along with 7 other articles on Hand Scraping. This is a skill learnt by practice rather than reading, but there is a lot of good stuff here to help you get started, notably on grinding a scraper to the right shape. 48 well

illustrated pages. Softcover.

Prices shown INCLUDE U.K. delivery

(Please allow 10% extra for overseas delivery)

MAIL ORDER (no stamp required in the U-K) to:

CAMDEN MINIATURE STEAM SERVICES

S VISA

FREEPOST (BAI502) Rode Frome Somerset BAII 6UB Tel: 01373-830151 Fax: 01373 - 830516 Website: www.camdenmin.co.uk

www.theeventsoffice.co.uk

gandmtool

selection from our current stock, have a look at our new website, now with hundreds of photos and changing every day

web: www.gandmtools.co.uk

email: sales@gandmtools.co.uk

LATHES Engineers Tool Room BL9/20 centre Lathe with Stand &	Tom Senior Vertical Milling Head, 2MT £ 5	300.00 500.00
Tooling, 240 Volt, VGC £ 550.00 Emca Maximat Super 11 Centre Lathe, Tooling, 3ph, VGC £2100.00	Stand For Above £ 1	799.00 145.00
Emco Maximat Super 11 Centre Lathe, Tooling, 3ph, VGC £2100.00	Strausak Gear Hob Sharpener £ 3	350.00 350.00
Emco Maximat Super 11 Centre Lathe, Tooling, 3ph, VGC £2100.00		250.00 375.00
Emco Maximat Super 11 Centre Lathe, Tooling, 3ph, VGC £2100.00	Hauser 3BA Jig Borer, 3ph £20	000.00 500.00
Conect Cadlet Plus CNC Lathe, Used Once Only, 240 volt, £1450.00	Bechler Pinion Leaf Cutting Machine £ 4	150.00
Warco WMT 300 Lathe with Milling Head, Bench Mount, Tooled, 1ph, VGC £ 475.00		325.00
Pultra 1750 Bench Lathe, Drive Unit, Collets, Chucks, Tooling, 1ph, VGC £1500.00		500.00
Pultra 1750 Bench Lathe, Motor, Well Tooled, Collets, 1ph, VGC £1500.00	Tom Senior Mill, No Head or Horizontal Eqpt. For Spare only, Table is: Good.	350.00
Pultra 1770 Bench Lathe c/w Handrest, Tailstock, 10 Collets, No Motor £ 350.00	POWER HACKSAWS/BANDSAWS ETC Ajax Small Power Hacksaw, 3ph £	65.00
Denford Starturn CNC Bench Lathe, 1ph, Manual £1000.00 Denford Orac CNC Bench Lathe, 1ph, Manual £1450.00	Axminster Power Tools Metal Cutting Bandsaw, 1ph	50.00
3 Off Boxford 125TCL CNC Lathes, One with Auto Turret, For sale as one lot only,	Benchmaster Senior 4" Power Hacksaw, 3ph £ 2	275.00 375.00
Boxford AUD 5" x 22" Lathe, Well Tooled, New 240 Volt Single Phase Motor, VGC £1850.00	Startrite 18-S-5 Vertical Bandsaw, 3ph, VGC £ 6	550.00 750.00
Boxford BUD 5" x 22" Lathe, PCF, Tooled, VGC, Fitted New 240 Volt Motor. #1650.00	Qualters & Smith 6" Power Hacksaw, Coolant, Hydrauli	
Boxford AUD 4 1/2" x 18" Lathe, Tooled, New Single Phase Motor Fitted £1250.00 Boxford Model A 4 1/2" x 18" Lathe, Stand, Gearbox, PCF,	Midhage HS804 Precision Circular Saw, 150mm Blades, £ 250.00	
Tooling, Single Phase £1250.00 Myford Super 7B Longbed, 3 1/s" x 30", Green, 3 & 4 Jaw,	GRINDERS,LINISHERS,POLISHERS	
Faceplate, UCTP, Steady, 1ph #2650.00 Myford ML7 3 1/2" x 19" Lathe £ 650.00	Alexander Single Lip Grinder, 3ph £ 7	750.00
Myford Super 7 Long Bed Bench Lathe, 1ph, Old, £ 600.00 Myford Super 7 Bench Lathe with Tray & Blocks, 1ph,	Creusen DPC Double Ended Bench Mounting Polisher,	1ph 175.00
Tooling, £1000.00 Colchester Student 1800 6" x 40" Lathe, Tooled, Excellent	Dronsfield Eagle Surface Grinder, Coolant Unit, Mag C	
Condition. 3ph £5250.00 Colchester Triumph 2000 7 1/2" x 50" Lathe, 3ph £2000.00		50.00
Colchester Chipmaster 5" x 20" Lathe, Metric, Tooled, Quiet, VGC, 3ph £1500.00		725.00
Colchester Bantam 1600 5" x 20", (Late Type) Chucks, Lever On Collet Att. Coolant, QCTP, Guards, Light, Manual, 3ph.		250.00
VGC £2500.00 Colchester Bantam 1600 5" x 20" Tooled, Coolant, QCTP,	£18 Brierley ZB25 Drill Point Grinder on Cabinet Stand, Som	350.00 e
VGC, 3ph £1450.00 Harrison 280 CNC Manual/CNC Training Lathe, Faults,	Tooling, 3ph £ 7	750.00 275.00
£2000.00 Harrison 13" Swing Lathe, Old & Dirty But Runs Very Well,	Viceroy Double Ended Buffer/Polisher, 3ph £ 2 Turner 6" x 16" Heavy Duty Belt Linisher, Spare Belts, 3	225.00 ph
Tooled, 3ph £ 650.00 Harrison M300 6" x 40" Centre Lathe, Basic Tooling, 3ph £1450.00	f S	500.00 750.00
Harrison M300 6" x 25" Centre Lathe, Tooling, 3ph £2250.00 Harrison M300 6" x 25" Gap Bed, Well Tooled Inc Lever Op		550.00
Collet Chuck, 3ph £2750.00 Harrison 140 5 1/2" x 25" Gap Bed Lathe, Tooled, 3ph		350.00
£ 950.00 Harrison L5 4 1/2" x 25" Gap Bed Lathe, Well Tooled, Variable		250.00 350.00
Speed Drive, 1ph, GC £1200.00 Pultra 1770 Cabinet Mounted Micro Lathe, Drive Unit, Well	SHAPERS	500.00
Tooled, 3ph £1250.00	Main Gear For Alba Shaper & Box of Other Spare Parts	
DRILLING MACHINES Boxford Union Pillar Drills, Rack Op Table, 3ph £ 325.00 Boxford Union Pillar Drill, 3ph, Excellent Condition. £ 450.00	Box Table & Other Parts for Elliott 10M Shaper LOT £ 1	
Hott High Speed Bench Drill, 3ph, VGC £ 275.00 Thoka Arba No 2 6 Station Turret Drill Head, 3MT £ 175.00	MYFORD SPARES & TOOLING	00.00
Spares Available for Fobco Star, 7/8 and 10/8 Pillar & Bench Drills £ POA	Change Gears: 20T£7.00, 21T£7.00, 22T£7.00, 24T£7.00, 25T£7.50, 26T£7.5	50,
H & G 23N Bench Tapping Machine, Fitted 1/64" -1/4" Drill Chuck, 3ph £ 250.00	27T£7.50, 28T£8.00, 29T£8.00, 30T£8.00, 31T£8.50, 32T£8.5 33T£8.50, 34T£8.75, 35T£9.00, 36T£9.00, 37T£9.50, 38T£9.5	0,
Startrite Mercury Bench Drill, 3ph £ 150.00 Clearance of Meddings, Startrite, Progress, Tauco, Fobco,	39TE9.50, 40TE9.50, 42TE9.75, 43TE10.00, 44TE10.00, 45TE 46TE11.00, 47TE11.00, 48TE11.00, 50TE13.50, 51TE13.50,	
Union Pillar & Bench Drills Choice of 25 all Three Phase From £ 35.00	53T£14.50, 54T£14.50, 55T£14.75, 56T£15.00, 57T£15.00, 58T£15.00, 59T£15.50, 60T£15.50, 61T£16.50, 62T£16.50,	
Meddings Pacera Pillar Drill £ 325.00 Sealey Pillar Drill, 1ph, £ 150.00	63T£17.00, 64T£17.00, 65T£18.00, 66T£18.50, 70T£18.50, 75T£19.50, 80T£21.50, 81T£21.50, 85T£24.00, 90T£24.00,	
MILLING MACHINES TEP CNC Bench Engraver, 1ph, Unused, As New £ 750.00	91T£25.00, 95T£26.00, 100T£27.00, 127T£35.00 Metric Conversion Set, Comprises Quadrant, Gears, Spacers and Studs, NEW £ 1	185.00
Aciera F3 Vertical/Hori Tolroom Mill, 3 Axis DRO, Well Tooled, 3ph £4750.00	Myford 3 Point Steady, NEW £ 1 Myford 2 Point Steady, NEW £	105.00 45.00
Emco FB-2 Vertical Mill, Stand, R.Table, Chuck, Power Feed Table, 1ph, GC £1875.00		05.00 22.00
Tom Senior M1 Vertical/Horizontal Mill, 240 volt Single Phase, Requires Work! £ 775.00		25.00
Bridgeport Turret Mill, 36" x 9", DRIO, PF, Single Phase From New £2250.00		45.00 30.00
Alexander 2A Die Sinker/Engraver, Single Phase, 240 Volt, VGC £ 500.00	Myford 9" Faceplate £	40.00
Adcock & Shipley Vertical Mill, 40 INT, 3ph £ 450.00 £ 500.00 £ 500.00	Myford 4 1/2" Catchplate £ Myford 4" Chuck Backplate £ Myford 5" Chuck Backplate £	18.00 20.00
Boxford 165HMC CNC Horizontal Machining Centre £2500.00 Boxford 260VMC CNC Vertical Machining Centre £2650.00	Myford MA73 V Block £ Myford Cross & Top Slide Fitted Single Toolpost, Late Ty	12.00 vpe,
Boxford 260VMC CNC Vertical Machining Centre £2650.00 Burke Machine Tool Co. Small Horizontal Mill, Old £ 250.00 Conect Contour Minor Vertical CNC Milling Machine, used	Unused £ 2 Myford Super 7 Tailstock £ 1	225.00 175.00
Once, Immaculate, 1ph £2750.00 User Made Clock Gear Cutting Engine, High Quality, Mainly		25.00 40.00
Swiss Bits £1500.00 Ajax Turret Mill, P.Feed, Coolant, Light, 3ph, 40 Int Spindle,	Myford Super 7 Cabinet Stand with Cupboard, Rusty Bo Edge, Long Bed £ 2	200.00
Imperial £1500.00 KRV Turret Mill, DRO, 3ph £ 750.00	Myford Super 7 Saddle, Apron & Cross Slide £ 2 Myford Dividing Head & Tailstock, 2 Division Plates,	250.00
BCA Jig Borer/Mill, Stand, Collets, 3ph, £ 975.00 BCA Jig Borer/Mill, Stand, 4 Collets, Keyless Chuck, Vice,	Myford Part No 1430 Series 7 Leadscrew Handwheel &	
1ph £ 975.00 BCA Jig Borer/Mill, Stand, 11 Collets, Drill Chuck, 3ph	Pointer £ Myford Rear Toolpost £	25.00 48.00
£1000.00 Boxford VM30 Variable Speed Vertical Mill, 30 INT Spindle,		15.00 575.00

o.co.an		
Collet Chuck, 3ph	£	800.00
Tom Senior Vertical Milling Head, 2MT	£	500.00
SIP Mill/Drill, NEW, 1ph, 3MT	£	799.00
Stand For Above	£	145.00
Mikron 79 Gear Hobber	£	650.00
Strausak Gear Hob Sharpener	£	350.00
Bravograph Model ITM, Well Equipped, 1ph, Exce	llent	
Condition		1250.00
Alexander 2B 4 Spindle Engraver, 3ph	£	675.00
Hauser 3BA Jig Borer, 3ph	f	2000.00
Hauser 2 BA Jig Borer, 3ph	£	1500.00
Bechler Pinion Leaf Cutting Machine	£	450.00
Clock Gear Cutting Machine, Constructed from Cl	arks	on T &
Grinder, 1ph		325.00
Thiel 158 Duplex Universal Milling Machine, Well	Equi	pped.
Sph		2500.00
Fom Senior Mill, No Head or Horizontal Egpt. For S	Span	es
only, Table is Good.		350.00
POWER HACKSAWS/BANDSAWS ETC		
Ajax Small Power Hacksaw, 3ph	£	65.00
Axminster Power Tools Metal Cutting Bandsaw, 1	ph	
		150.00
Benchmaster Senior 4" Power Hacksaw, 3ph	£	275.00
Startrite Metora 10" Cut Off Saw, 3ph	£	375.00
Startrite 18-S-5 Vertical Bandsaw, 3ph, VGC	f	650.00
Startrite 18-S-5 Vertical Bandsaw, 1ph, 240 Volt		750.00
Qualters & Smith 6" Power Hacksaw, Coolant, Hy		
additions of comments of the constant, cooling my		050 00

	£ 150.00
Benchmaster Senior 4" Power Hacksaw, 3ph	£ 275.0
Startrite Metora 10" Cut Off Saw, 3ph	£ 375.00
Startrite 18-S-5 Vertical Bandsaw, 3ph, VGC	£ 650.00
Startrite 18-S-5 Vertical Bandsaw, 1ph, 240 Volt	£ 750.00
Qualters & Smith 6" Power Hacksaw, Coolant, H	vdraulic
Rise & Fall, 3ph	£ 250.00
Midhage HS804 Precision Circular Saw, 150mm £ 250.00	Blades, 3ph
GRINDERS,LINISHERS,POLISHERS	
Alexander Single Lip Grinder, 3ph	£ 750.00
Christen 05-8 Drill Point Grinder, 3ph, VGC	£1850.00
Creusen DPC Double Ended Bench Mounting Po	
Dranefield Eagle Surface Grinder Cooland Unit	£ 175.0

	£ 1/5.0
Dronsfield Eagle Surface Grinder, Coolant Unit, Ma	g Chuck,
3ph	£ 550.00
Kent Mark 2 Bench Lapping Machine	£ 150.00
RJH Antelope Vertical Bandfacer on Dust Collection	Stand,
3ph	£ 725.00
Viceroy Double Ended Grinder, Pedestal Stand, 3ph	
	£ 250.00
Christen 05-8 Drill Point Grinder, 3ph, Lots of tooling	
	£1850.00
Brierley ZB25 Drill Point Grinder on Cabinet Stand,	
Tooling, 3ph	£ 750.00
Clarkson Radius Grinding Attachment	£ 275.00
Viceroy Double Ended Buffer/Polisher, 3ph	£ 225.00
Turner 6" x 16" Heavy Duty Belt Linisher, Spare Bel	
	£ 500.00
Hauser Jig Grinder, Well Tooled, 3ph	£3750.00
Jones & Shipman 540 Surface Grinder, Mag Chuck,	
	£1650.00

	-	1000.00
Jones & Shipman 540 Surface Grinder, No I	Chuck, 3ph	
	£	850.00
Erzell Rotary Filing Machine, 3ph	£	250.00
Canning 2HP Polishing Spindle, 3ph	£	350.00
SHAPERS		
Elliett 14e Chanas 2eh		500 AA

YFORD SPARES & TOOLING

Boxford Cud 5" x 22" Centre Lathe, 3 & 4 Jaw Chucks, Faceplate, Catchplate, Quick Change Toolpost, Drill Chuck, Manual, Fitted Single Phase Motor. £1450.00 plus vat.

Boxford AUD 5" x 22" Centre Lathe, 3 & 4 Jaw Chucks, Faceplate, Catchplate, Quick Change Toolpost, Drill Chuck, Manual, Fitted Single Phase Motor. £1850.00 plus vat.

Boxford BUD 5" x 22" Centre Lathe, 3 & 4 Jaw Chucks, Faceplate, Catchplate, Quick Change Toolpost, Drill Chuck, Manual, Fitted Single Phase Motor. £1650.00 plus vat.

240 Volt, As New & Unused. £750.00 plus vat.

Myford Toolmex 4" 3 Jaw Direct Centreina Chuck,Comes with Reverse Jaws and Key, New. £125.00 plus vat.

New Toolmex 0-150mm Depth Micrometer, Cased. £15.00 plus vat

Engineers Tool Room BL9/20 Centre Lathe, Well Tooled, Single Phase, Almost as New £550.00 plus vat.

Myford Toolmex 6" Direct Mount 4 Jaw Independent Chuck, Comes wit Key. New. £145.00 plus vat.

Gabro BF620 Light Duty Box & Pan Folder, VGC £375.00 plus vat

Cowells Mini Bench Lathe, Tooling,

All Items are subject to availability. All items are subject to postage and packing and vat @ 17.5%

Opening times Monday-Friday 9am-1pm & 2pm-5pm. Saturdays 9am-1pm only

G AND M TOOLS, THE MILL, MILL LANE, ASHINGTON, WEST SUSSEX, RH20 3BX emails: sales@gandmtools.co.uk web: www.gandmtools.co.uk Telephone 01903 892510 fax 01903 892221

G.L.R. DISCOUNT METAL PACKS

SAVE 15% OFF THE CATALOGUE PRICE WITH OUR BUDGET PACKS OF MATERIALS - 2 FEET EACH OF THE SIZES QUOTED BELOW DRAWN STEEL ANGLE B.M.S. FLATS AO 1/16 x 1/4 - 3/8 - 1/2 - 5/8 - 3/4 - 1 - 2 - 3 H3 12mm x 12mm x 3mm 16mm x 16mm x 3mm. + 3/32 x 3/4, 1. 1/8 x 3/8 - 1/2 - 5/8 - 3/4 -1. £10.45 20mm x 20mm x 3mm 25mm x 25mm x 3mm £14.22 I SEAMLESS COPPER TUBE 07.08 1/16 x 28g - 3/32 x 28g - 1/8 x 28g - 5/32 x 24g 3/16 x 22g - 1/4 x 20g - 5/16 x 20g 3/16 x 3/8 - 1/2 - 5/8 - 3/4 - 7/8 - 1. 08.70 06.20 A2 1/4 x 3/8 - 1/2 - 5/8 - 3/4 - 7/8 - 1. 5/16 x 20g Δ3 12.00 04.95 .12 5/16 x 1/2 - 3/4 - 1 - 1.1/2. 14.75 STAINLESS STEEL ROUND 303 F/C 3/8 x 1/2 - 3/4 - 1 - 1.1/2. A5 15.55 K1 3/32 - 1/8 - 5/32 - 3/16 - 7/32 - 1/4 10.92 1/2 3/4 - 1 - 1.1/4 - 1.1/2 23.20 3/16 - 7/32 - 1/4 - 5/16 - 3/8 - 7/16 - 1/2 28.32 B.M.S. ROUNDS BA STAINLESS STEEL HEXAGONS 303 F/C 18.18 **B1** 1/8 - 5/32 - 3/16 - 7/32 - 1/4 - 5/16 - 3/8 04.92 .152" - .193" - .220" - .248" - .275" - .324" BA BRASS HEXAGONS 1/4 - 5/16 - 3/8 - 7/16 - 1/2 - 9/16 - 5/8. **B2** 10.55 5/8 - 3/4 - 7/8 - 1 .152" - .193" - .220" - .248" - .275" - .324" 09.00 **B3** 17.45 3/8 - 1/2 - 5/8 - 3/4 - 7/8 - 1 EN8M **BA STEEL HEXAGONS R5** 23.52 B.M.S. HEXAGONS .152" - .193" - .220" - .248" - .275" - .324" 04.30 5/32 - 3/16 - 1/4 - 5/16 - 3/8 06.05 BRASS FLATS 1/4 - 9/32 - 5/16 - 3/8 - 7/16 - 1/2 - 5/8 N1 1/16 x 1/4 - 3/8 - 1/2 - 3/4 - 1 09.00 11.58 B.M.S. SQUARES N3 1/8 x 1/4 - 3/8 - 1/2 - 3/4 - 1 15.50 D1 5/32 - 3/16 - 1/4 - 5/16 - 3/8 05.15 N4 3/16 x 1/4 - 3/8 - 1/2 - 3/4 - 1 21.65 7/16 - 1/2 - 5/8 - 3/4 N5 1/4 x 3/8 - 1/2 - 3/4 - 1 D2 11.58 24.65 ALUMINIUM ROUND F/C **BRASS ROUNDS** 1/8 - 3/16 - 1/4 - 5/16 - 3/8 - 1/2 11.65 P1 3/16 - 1/4 - 5/16 - 3/8 - 7/16 - 1/2 10.25 1/16 - 3/32 - 5/32 - 7/32 - 9/32 - 7/16 - 9/16 - 5/8 5/8 - 3/4 - 1 **BRASS SQUARES** PHOSPHOR BRONZE ROUND Q1 1/8 - 5/32 - 3/16 - 1/4 1/8 - 3/16 - 1/4 - 5/16 - 3/8 09.90 09.45 1/4 - 5/16 - 3/8 - 7/16 - 1/2 Q2 5/16 - 3/8 - 7/16 20.20 24.00 **BRASS HEXAGONS** SILVER STEEL 1 X 13" OF EACH **G1** 5/32 - 3/16 - 7/32 - 1/4 - 9/31 - 5/16 **G2** 1/4 - 9/32 - 5/16 - 3/8 - 7/16 - 1/2 - 5/8 S1 3/32 -1/8 -5/32 -3/18 - 7/32 -1/4 -9/32 -5/16 -3/8 - 7/16 - 1/2 08 20 20 40 3mm - 4mm - 5mm - 6mm - 7mm - 8mm - 9mm - 10mm - 12mm 23.05 18.00 **BRASS ANGLE** ALUMINIUM FLATS H1 1/4 x 1/4 x 1/16 5/16 x 5/16 x 1/18 1/8 x 1/2 - 1/8 x 1 - 1/4 x 1/2 - 1/4 x 1 - 1/4 x 1.1/2 - 1/4 x 2 14.28 3/8 x 3/8 x 1/16 3/8 x 1/2 - 3/8 x 1 - 3/8 x 1.1/2 1/2 x 1/2 x 1/16 09.00 11.87 H2 5/16 x 5/16 x 1/16 3/8 x 3/8 x 1/16 1/2 x 1 - 1/2 x 1.1/2 - 1/2 x 2 18.00

3/4 x 3/4 x 1/8

METAL FINISHING PRODUCTS

15.45

NICKEL PLATING KITS Bright 0r Black Electro Plate on to: Copper - Brass - Iron - Steel Welded Brazed or Soldered Joints "TEK-NICK" Workshop Kit £59.50 + £6.50 carr. "TEK-NICK" Mid-Tec Kit £115.00 + £7.00 carr. "TEK-NICK" Maxi-Tec £180.00 + £7.50 carr. Instructions with all kits. Replacement components available

"KOOLBLAK"

Simple immersion at room temperature. Permanent heavy duty blacking for Steel - Iron - Cast Iron Creates an integral, professional finish with no dimentional change. A superlative black oxide finish on steel. "KOOLBLAK" Starter kit £30.00 + £6.50 carr. "KOOLBLAK" Workshop kit £48.50 + £7.00 carr.

1/2 x 2.1/2 - 1/2 x 3

Instructions with all kits. Replacements available

"TECHTRATE"

5"G New

Salisbury

Plus 6 0'gauge Locos

4-4-0

1/2 x 1/2 x 1/8

Steel blackening in salts. Gives an uniform Jet Black finish or on a polished surface gives a Blue/Black finish. The solution operates at 141C / 285F Ideal for - Tools, Fasteners or Fittings. £37.60 + £06.50 carr.

"ZINCFAST XL" Produces a bright zinc deposit on Steel & Iron. For Car & Motorcycle components. Zinc is highly valued as a rustproof finish, suitable for all types of fasteners. Instructions with all kits - Replacement components available. Workshop kit £76.50 + £6.50 carr. "CASE HARDENING POWDER" This case hardening compound gives an acceptable depth of hardening to steel components

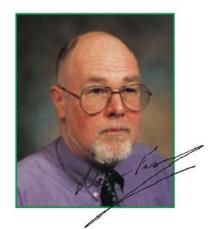
250gms £12.00 + £2.00 Carr. 500 gms £18.00 + £3.00 Carr. 1000gms £30.00 + £6.50 carr. DRY ACID SALTS 500gms £8.50 + £3.00 carr. - COPPER SULPHATE 500gms £7.95 + £3.00 carr.

LOCOMOTIVE & MILL ENGINE DRAWINGS & CASTINGS

at we have to offer below.

7.1/4"G Tich 0-4-0 3.1/2"G Britannia 4-6-2 BUILD OUR POPULAR HORIZONTAL MILL E 7.1/4"G 1366 0-6-0 3.1/2"G Molly 0-6-0 1" Bore x 1.1/2" Stroke - Slide Valve. Base pla 5"NG Dholpur 2-8-4 3.1/2"G Cant. Lamb 0-4-0 Diameter of Flywheel 6" Height 6" Width 6" Weigl 5"G Butch 0-6-0 3.1/2"G Petrolea 2-4-0 Complete with building instructions & 3D Draw 5"G Chub 0-4-0 3.1/2"G Iris 0-6-0 £125 + £6.50 carriage	
5"NG Dholpur 2-8-4 3.1/2"G Cant. Lamb 0-4-0 Diameter of Flywheel 6" Height 6" Weight 5"G Butch 0-6-0 3.1/2"G Petrolea 2-4-0 Complete with building instructions & 3D Draw 5"G Chub 0-4-0 3.1/2"G Iris 0-6-0 £125 + £6.50 carriage	NGINE
5"G Butch 0-6-0 3.1/2"G Petrolea 2-4-0 Completé with building instructions & 3D Draw 5"G Chub 0-4-0 3.1/2"G Iris 0-6-0 £125 + £6.50 carriage	ite 12"
5"G Chub 0-4-0 3.1/2"G Iris 0-6-0 £125 + £6.50 carriage	nt 4.1/2 Kilos
	vings
CITAL DATE DATE DATE DATE DATE DATE DATE DATE	
5"G Simplex 0-6-0 3.1/2"G Doris 4-6-0 MULTI TUBE BOILER MATERIALS	
5"G Springbok 4-6-0 3.1/2"G Rainhill 0-2-2 Runs on Coal - Gas - Spirit	
5"G King John 4-6-0 3.1/2"G Heilan Lass. 4-6-2 8.1/2" High plus chimney 4" Dia. X 16swg Cop	per Tube
5"G Dean Goods 0-6-0 3.1/2"G Rob Roy 0-6-0 25 5/16" x 20swg Copper fire tubes. Firebox 3.1/2"	x 3.1/2" High
5"G 2251 0-6-0 3.1/2"G Miss 10 to 8 4-4-0 Working pressure 80psi - Suitable for above or sin	milar engines
5"G Firefly 2-6-2 3.1/2"G Juliet 0-4-0 £65.00 +£6.50 carriage	
5"G Mogul 2-6-2 3.1/2"G Virginia 4-4-0 Vertical engine with Governor coming	soon
5"G Peggy 0-4-0 3.1/2"G Maisie 4-4-2 Also nice Grasshopper Type Hot Air E	ngine
5"G Twin Sisters 0-6-0 3.1/2"G City of Truro 4-4-0	
5"G Pansy 0-6-0 3.1/2"G P.V. Baker 0-6-0	
5"G Tich 0-4-0	
5"G New Comboyne 4-4-2T Radial Tank - L.S.W.R. 415 Class	700-1
5"G New Nine Elms 0-4-2 L.S.W.R. A12 Class with Beyer Tender	7

21.15


You are welcome to visit our newly extended premises

G L R Distributors Ltd, Unit C1, Geddings Road, Hoddesdon, Herts. EN11 0NT

Tel. 01992 470098 Fax. 01992 468700 E-Mail peteglr@btopenworld.com Web site - www.modelmakingsupplies.co.uk or www.glrmodelsupplies.com

L.S.W.R. 460 Class

Send 6 1st class stamps for Catalogue & Price list

New electrical regulations

I an indebted to Tony Skinner of Glasgow for drawing my attention to the new regulations intended to improve domestic electrical safety. The rules, which came into force on 1st January 2005 bringing England and Wales into line with Scotland, require that anything other than the most basic changes to wiring are undertaken by "a competent person", or checked by building control. This clearly has implications for anyone wiring up a workshop, as this is likely to involve added circuits. Thus the advice has to be "check before proceeding".

While this change is no doubt driven by well meaning politicians, yet one more step has been taken towards the day when we will all require a PhD to change a plug. I suspect that many of the electrical cowboys will simply work away as before. After all, when the job is complete, potential problems may be well hidden from view.

Many years ago, shortly after buying my first house, I wanted to run power out to the garage. Money was tight, and not wishing to incur the cost of a professional electrician, my solution was to lay a suitable buried cable between house and garage, going to a distribution box in the garage, and fed from a 13 amp plug inserted in a spare socket in the kitchen. The load was obviously limited to 13 amps, and as far as I was concerned

ON THE EDITOR'S BENCH

this was nothing more than a glorified extension cable. For those wishing to remain safe and within the spirit of the rules, but unwilling to spend hard earned cash on professional electrical involvement, this philosophy may still be valid, but does impose a fairly low limitation on power (13amps or about 3Kw).

In the workshop

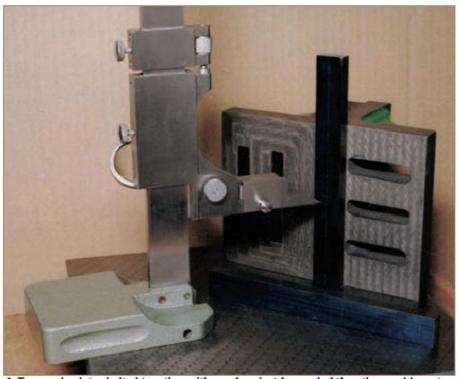
It was coincident that at the time of receiving the article from Brian Warner, "VMC Slow Speeds", published in issue 103, I had already started to undertake a similar modification to my own Myford VMC mill. The simplest solution would probably have been to fit a variable speed inverter drive, but the machine already looked a bit like a Christmas tree with bits of electrical gear hung on for lighting and power traverse. On top of that, a DRO is still to come. I did not have a set of large and small pulleys available from a defunct washing machine, but did have a couple of the small poly vee pulleys picked up during a visit to a washing machine factory, way back around 1983. The scrap box also yielded a lump of steel, which cleaned up at between 5 and 6in. dia. to form a larger pulley. Measurement over the two pulleys with a piece of string determined the length of belt required. This arrangement does not give the extremes of low speed afforded by Brian's design, but does offer a minimum spindle speed of about 65rpm, which in turn allows effective use of 6inch diameter slitting saws, also fly cutters and boring heads.

As with Brian's arrangement, there is a safety downside in that the belt cover

cannot be closed. However, since my machine is mounted some additional 3-4inches up off the floor, I feel that the exposed belt is sufficiently out of the way of my fingers. (Being follically challenged, the dangers associated with long hair are very much a thing of the past.)

Work on Bentley BR2 components continues as and when time permits. I now have a set of pistons with gudgeon pins, and have made a start on the connecting rods. The technique for working on the master rod may interest others. To cut the 10mm wide x 11mm deep groove in the 44mm dia. bobbin, the bored blank was mounted on an expanding mandrel held in a collet chuck. This assured acceptable concentricity. The cutting tool would be a 2.5mm wide parting tool, ground with a square end, (slightly radiused corners) mounted in the rear toolpost. Two saddle stops were then set, one conventional, the second arranged back to front, acting on the right hand side of the saddle, between them permitting saddle movement of about 7mm. This, added to the tool width, gave close to the required 10mm groove dimension. Final tweaking to size was achieved by using the screw adjusters on the stops.

When attempting to ream the holes in the bobbin to take the wrist pins, I came upon what may be the reaming equivalent of the difficulty in drilling clean holes through thin sheet. Here the holes had to pass through the two flanges, each being 2mm thick. After working with a normal hand reamer, the pins could not be fitted, and when turning the reamer, a cyclic resistance could be felt, which suggested that the holes were not, in fact, round. The solution adopted was to make a "Toolmaker's" reamer from silver steel filed, hardened, tempered and ground, and this did indeed shave out a little more material giving a light push fit.


The set up used in profiling the central length of each rod was similar to that noted for the bobbin. Here, saddle movement was again limited by two stops, and the material removed by a Greenwood tool with 6mm dia. tip.

April 2005 11

TAPPING STAND

1. Two angle plates bolted together with one face just forward of the other enable parts to be accurately stood upright for marking.

n my article in the last issue regarding producing internal and external threads I dealt with many aspects of the task. One, of these was the problem of tapping holes axially in line with the drilled hole. The tapping stand in this article seeks to overcome the problem.

Tapping stands have appeared on various occasions in the past, both in MEW and ME. I cannot claim to be conversant with all the published designs, but those that I do remember have not included feed or pitch control. This feature, included in the design of this stand, automatically feeds the tap at the correct rate. The operator therefore has only to rotate the tap. Many of the more expensive "professional" tapping

2. Hand tapping using a plug tap and a guide block.

machines manufactured in Switzerland have this feature, which avoids problems getting the tap to bite at the first thread or two. A result of including the characteristic in the design is an increase the number of components required as a feed screw and nut are needed for each pitch to be cut. These are though independent of the diameter of the thread being cut so in some cases the lead screw and nut will suffice for a number of differing threads. Should you consider that this is an unnecessary complication, then designing out the feed arrangement to give a simplified device should be quite straightforward.

Whilst the aim of the device is to ensure that the tap approaches the hole to be tapped axially in line, construction of it requires no abnormal precision. Only concentricity is marginally important in the make up of some components.

Design considerations

The general concept can be deduced from the General Arrangement drawing shown as Fig 1. In an effort to make manufacture that little bit easier, the device has been built without the use of castings, being assembled from commercially available sections. Thus the head assembly has been "fabricated" using three main components joined with two part epoxy adhesive. In my experience this is more than adequate for the task, and carries the benefit of zero distortion. However others of more traditional leaning may wish to silver solder or even weld. The base

Keep those threads in line with this accessory described by Harold Hall.

assembly again is constructed from standard sections bolted together. The spaces between bars may be used for clamping, should that be desirable for some tricky jobs.

Base

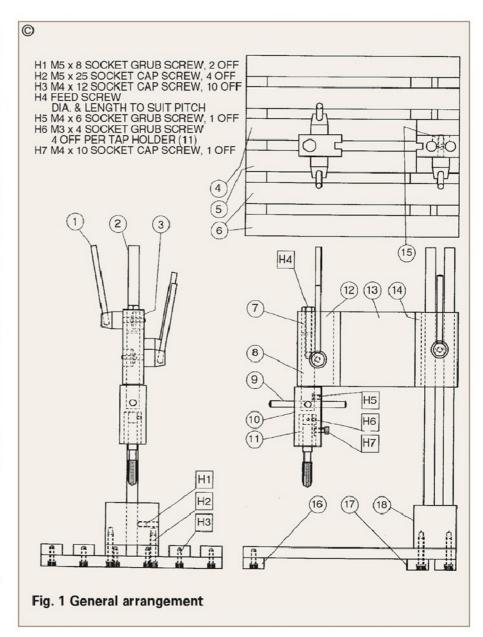
This comprises parts 4, 5, 6, 16 and 17. Do, before cutting the individual pieces, make sure that the bar is not bent in any way as this will result in the base not being sufficiently flat. Otherwise, these should present no problem. Photo 1 shows the parts being marked out for drilling. Using two angle plates bolted together with one face just in advance of the other, makes it easy to set the part vertically for marking out. The fourteen M4 blind holes were tapped using a guide block and only a plug tap as suggested in the previous issue, Photo 2.

Rear column (parts 2 and 18)

Cut the parts and finish to size. Drill and tap holes in the bottom of part 18 but leave the two holes C as these must be precisely at the same centres as those in part 14. This will be easier to control later. Leave also the two M5 tapped holes A until those for the column bars have been drilled.

Head assembly (parts 12, 13 and 14)

Cut two lengths of 40mm x 20mm a little over length and machine ends to 70mm dimension. Alternatively, as I did, cut this from 40mm square, sawing it in half and machining the cut faces resulting in a size of 40mm x 18mm. This approach enabled me to use 230M07 free cutting steel, which is not available in rectangular sizes. Mount a vice on the machine table using a dial test indicator (DTI) to ensure that it is located squarely, Photo 3. Place the first of the two parts in the vice and a 6mm end mill in the chuck and produce the 6mm deep slot as seem in Photo 4. Make this marginally deep, say plus 0.05mm maximum, so that part 13 eventually sits on the outer face and not the base of the slot. Do not make it too deep however as the face is required to assist eventually with the adhesive bond. Endeavour to make the slot central, but not moving the cross slide between the first and second part will ensure that any error is consistent between the two. Taking note of the hand of each part on assembly will eliminate any problems with part 12 and 14 being out of line.


3. Setting the vice accurately in line with the axis of the table.

Cut material for 13 a little over length and mount it on the milling machine table using a little packing to raise it off the table. This will enable the ends to be machined without fear of the cutter coming into contact with the table. Use an engineer's square set from the front face of the table to accurately position the part. Without removing the part from the table machine both ends to give the 82mm dimension thus ensuring that the end faces are parallel.

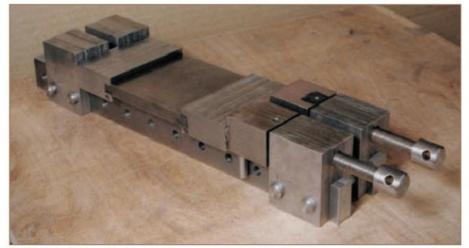
Mount a fence (6mm thick) on the machine table at right angles to the table axis, again using an engineer's square off the front of the table. Place the machined end of the head centre piece against this and machine the first recess making the width accurately 6mm, not over, **Photo 5**. First, make the depth a little on the shallow side, turning the part over and repeating the cut on the second side will create the two recesses accurately in line.

Measure the thickness of the resulting web and adjust the down feed to reduce its thickness to 5.9mm by repeating the cut on both sides, as a result making sure the web is central. The reason for making the web a little under 6mm is to provide a space for a film of adhesive. However, first check the width of the mating slot, as this may be oversize if the 6mm cutter was not running true. Having completed the first end, remove, turn end on end, and repeat the process. Doing this without altering the down feed, or the position of the table lengthways, will ensure the same result as the first end.

Place the three parts together, checking that the 2mm wide face of the recess in part 13 mates with the outer faces of parts

12 and 14. If it is found that the web bottoms in the slot then it will be necessary to reduce its length a little. Application of a file should be adequate.

Mix up some two part resin adhesive, clean and degrease and add some adhesive to the mating surfaces and assemble under pressure of a suitable


4. Milling the slot to take the head centre piece.

clamping arrangement, typically as seen in **Photo 6**. These clamps featured in the Drilling Projects for Beginners articles, which appeared in MEW issues 98 and 99. Using the slow setting adhesive, rather than the rapid, and placing the assembly on or near a gentle heat source for 24 hours will achieve maximum strength.

5. Commencing to machine the webs on the end of the centre piece.

April 2005

6. The head assembled and clamped whilst the adhesive sets.

8. Drilling the two 10mm holes in the head assembly.

When set, lightly machine the underside of the assembly so that the three faces are level. The top faces could also be similarly machined for appearance's sake. Photo 7 shows how the assembly was held between two angle plates necessitating a hole to be drilled in part 13. The hole is not included in the drawing for the part but can be seen in a number of the photographs. Using two angle plates in this way can often suffice in the absence of a large milling vice.

Mark out and drill the 16mm and 5.2mm holes for the clamping pieces prior to drilling the 2 x 10mm and 1 x 12mm holes as follows. Make and fit the clamp pieces (3 and 15) using three suitable screws. Using socket head screws will help to hold the clamp pieces securely during drilling.

Clamp the column base on the milling machine table with the 50mm edge at right angles to table traverse and the eventual position for the 10mm holes above a T slot. Place also on the table a piece of the 40mm square bar from which the column base was made. Mount on these the head

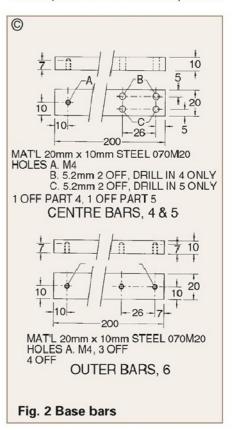
assembly with the rear end accurately positioned on the column base as required by the dimensions on the drawings and then clamp in place. Photo 8 shows that the additional hole in item 13 was again put to use. Do set the assembly axially in line with the table. Use the table traverse dials for positioning the three holes, first with a centre drill and then a 10mm or 12mm drill as required. Make sure that the milling machine head is high enough to eventually accept the 10mm and 12mm drills without raising the head. You may like to use a smaller drill first prior to drilling the final hole size.

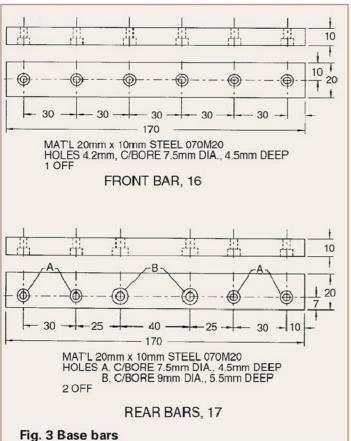
Drill first the two 10mm holes drilling into the column base by about 10mm, photo 8. Follow this by drilling the 12mm hole stopping just short of the packing to avoid drilling into this, allowing it to be saved for use on another project. The hole can be eventually extended with the assembly held in a vice. Now remove the head assembly but leaving the column base still clamped to the table and extend the two 10mm holes.

The two M5 tapped holes A can now be made in the column base (18). Incidentally, this is a good instance of where the first portion can be opened up, (say 10mm deep) to act as a guide for the tap.

The turned items

These are relatively simple and need little comment. The Tap Carrier (10) does need a little more care than the remaining parts as concentricity between the two bores is important though absolute accuracy is not called for as clearance between the spindle and the head will enable the stand to cope with small concentricity errors. Bore first 16mm end and then drill and tap the first of the two M4 holes. Turn a close fitting mandrel for the 16mm bore and fit the part using an M4 screw and bore the 12mm hole. Drill and tap remaining holes as per drawing.


The Tap Carrier Spindle (8) and Feed Screw Carrier (7) require the tapped holes to be concentric with the outer diameter. Again using the four jaw chuck do set the material to run true, say to within 0.01mm total indicator reading should suffice. Use part 10 to act as a jig for drilling the two 5.2mm holes in part 8. Mill the flat to take the end of the fixing screw. It will be necessary to make one of each for each pitch to be cut.


7. Levelling the bottom and top of the head assembly. See how two angle plates can in some cases be used in the absence of a large vice.

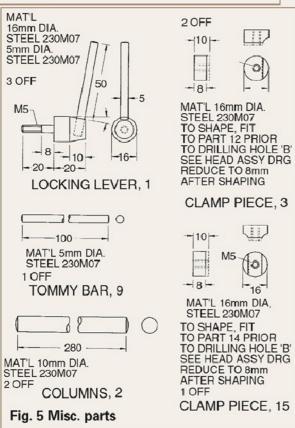
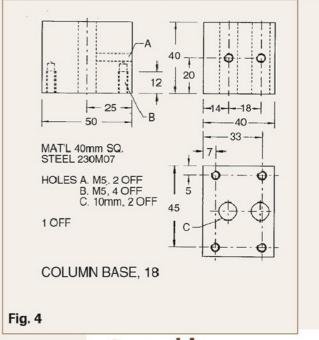

Concentricity is also required for the Tap Holders (11) with one holder being required for each tap diameter. Using the four jaw chuck as above should suffice, but using a larger diameter material and turning the outer diameter and the bore whilst still in the chuck would ensure the two diameters are precisely concentric and is probably a better approach to take. I was surprised however to find larger variations in shank diameters than I had anticipated, typically between 6mm and 6.2mm for the M6 taps that I had. Because of this I worked to the larger diameter and have found no problem when using taps with the smaller shanks.

Photo 9 shows that a dividing head was used for drilling the four clamping screws for the square on the end of the tap. As the

Model Engineers' Workshop



length of the square will vary with size of tap make the position from the end so that the screw is approximately central along its length. Mill the flat to accommodate the end of the fixing screw.

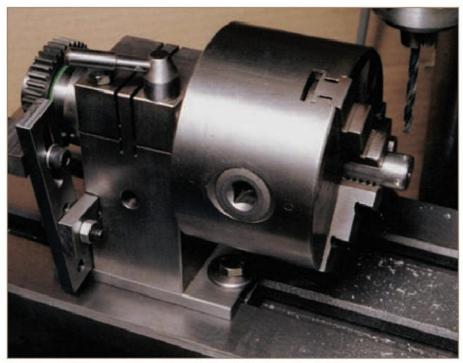
Photo 10 shows completed Feed screw carriers (7), Tap carrier spindles (8) and Tap holders (11) for threads M3 to M8.

Making the Locking Levers (1) is an easy operation but do drill and fit the levers after assembly so that they finish up in a convenient position. This will almost certainly mean that each lever is tied to the Clamp Piece and position it was first drilled for. A short length of 5mm steel will suffice as a Tommy bar.

Assembly

Generously chamfer all edges of the rectangular parts and clean up the faces and assemble as per drawing. Check that the stand's table surface is reasonably level, against a surface plate if available, if not the surface of the milling machine table.

Photo 11 shows that before final assembly I did put the stand to the test to tap the M3 holes (If you think the tap looks larger than M3, it is. I had a quantity of M4 grub screws that I wanted to use up) in the tap holders using only a plug tap. The feed arrangement worked perfectly and I was well pleased with the result so continued with the project. On completion I also put the stand to the test using the Roll taps and Spiral point taps mentioned in the last issue and with equal success.


Using

0

To use the stand, lower the head until the tap almost enters the hole to be tapped and clamp in place. Rotate the Tap Holder by hand till the tap locates in the hole and then using a Tommy bar tap the hole required. Do use a tapping compound and lightly oil the feed screw. As the feed screws may have slight pitch errors, not being precision screws, I chose to loosen the feed screw carrier once the tap had completed a few pitches allowing the tap to take over from there. This avoids any possible conflict due to pitch differences between tap and screw, but feel probably that I am being over cautious. It is though an intriguing operation being able to tap a hole without the need for any manually applied pressure, just rotating the tap.

You may question the purpose of the lower locking lever. As I consider the stand will sometimes be put to use without a feed screw this enables the spindle to be held in place whilst it is being set up.

I also found that when tapping M4 size threads, even with a plug tap, that the tap can be turned by hand using the tap carrier only, that is without the use of a Tommy bar. This leads me to consider that adding a larger diameter knurled ring to

9. Using a dividing head to position the four holes in the tap holders.

this, say 50mm diameter, would permit larger threads to be achieved without the Tommy bar being needed.

An assembly problem

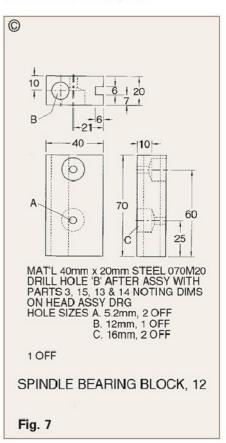
It is probably worthwhile that I share with you a problem that I encountered

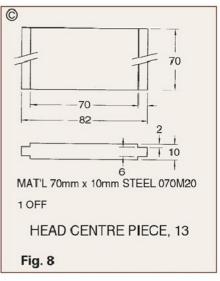
ASSEMBLE HEAD PARTS 12, 13 & 14, USING THE TWO PART RESIN ADHESIVE TO ENSURE THE HOLES ARE PARALLEL DO NOT REMOVE FROM THE VICE OR ANGLE PLATE BETWEEN DRILLING HOLES B'

Fig. 6

10. The spindle assembly parts for 5 sizes of threads.

on assembly as you may also encounter the same situation. To give scope for errors in concentricity the design relies on the 12mm material for the tap carrier spindle to be undersize and for the 12mm drill to produce a hole that is oversize. These are both what one would expect in normal circumstances and was so in my case. However, as the drill had had to simultaneously drill the head and clamp pieces (3) this had caused the hole to wander a very little and I found that the spindle would not pass fully through hole. What was surprising was that if entered from the top it passed to within a few millimetres of the




11. Putting the stand to the test before final completion by tapping the holes in the tap holders, again using only a plug tap.

bottom when it appeared to hit a solid stop. When though entered from the bottom it only managed to get about half way when it tended to seize up, why the difference?

I have on many occasions in my articles warned that a drill when it breaks through, a normally oversize hole will locally reduce to drill diameter creating a problem if it is mounted on a taper stub mandrel. This was what had happened to the 12mm hole as the drill broke through at the bottom creating the problem. Why it performed differently from one end to the other I have not fully worked out but after opening up the bottom 4 - 5mm of the hole with a scraper the problem was totally solved.

The situation could have been avoided by clamping a piece of scrap on the underside of the head so that the drill did not break into fresh air on completion of the hole. The choice is yours.

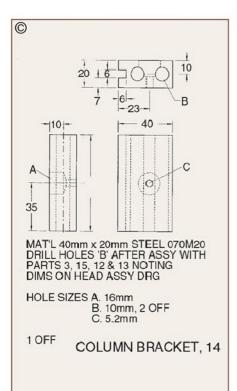
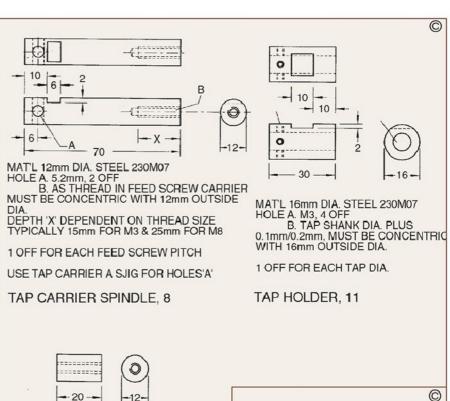


Fig. 9



12. As an alternative to the tapping stand in this article a drilling machine can be used, in this photograph the hole and spindle are being aligned.

A manufacturing consideration

I mentioned that the clearance between the spindle and the hole in the head assembly gave some leeway regarding the need for concentricity. I indicated whilst detailing the feed screw carrier that the part should be set up to run true before drilling and tapping for the leadscrew. This would seem a reasonably acceptable approach. However, when assembled and clamped in position by means of parts 1 and 3, this will force the part to one side due to the clearance between its outer diameter and the drilled hole. As a result the leadscrew will not be central in the bore.

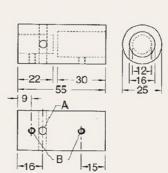
Providing the drilled hole is not unduly oversize, as in my case, there should be no problem. To be totally sure though, especially if the hole is appreciably oversize, it would be of benefit to turn the feed screw carrier from larger material making its outer diameter a close sliding fit in the hole as drilled. The outer diameter of the spindle and hole diameter in the head would then more easily cope with any remaining errors in concentricity.

-- 20

MAT'L 12mm DIA. STEEL 230M07

HOLE TO SUIT PTCH REQ'D

1 OFF FOR EACH PITCH


NOTE THREAD DIA. DOES NOT HAVE TO BE THE SAME AS THE THREAD BEING MADE TAPPED HOLE MUST BE CONCENTRIC WITH THE 12mm OUTER DIA.

FEED SCREW CARRIER, 7

Fig. 10 Misc. parts

13. A tap wrench and tap have now been inserted to tap the hole.

MAT'L 25mm DIA. STEEL 230M07

HOLE A. 5.2mm, 2 OFF B. M4, 2 OFF

12mm & 16mm BORES MUST BE CONCENTRIC

1 OFF TAP CARRIER, 10

Fig. 11

An alternative

If making the stand is considered too large a task you may consider the method shown in Photos 12 and 13 using a mill drill or a drilling machine. Photo 12 shows the machine spindle being lined up with the hole to be tapped using a tapered spindle mounted in the machine drill chuck. With this done the machine spindle is raised and the tap and tap wrench interposed with the tapered spindle now locating in the centred end of the tap wrench. The tap can then be rotated by hand and gentle down feed applied using the quill until the tap gets started.

I do hope that these two articles will have increased your knowledge of creating threads in the home workshop as they have undoubtedly mine.

YOU'D LIKE IT FI

1. A selection of scrapers

Just a touch of nostalgia

It was interesting to see, in the l00th issue of the magazine, that scraping is still alive and well in the capable hands of Mr. McKechnie of Myford. Geoff Sheppard's visit was most interesting. Looking at the photographs of the lathe saddle underside being scraped, took me back to when I was taught to scrape. These days, when there is a lot more grinding done on machine beds and parts,

Bob Loader explains the secrets of a skill, historically essential for accuracy.

there isn't the same demand for scraping which there used to be. Perhaps in the future, with developments like synthetic resin coatings for beds and slides, the demand will be even less. That is in the future though and it was very pleasant reading Geoff's article and indulging in a little nostalgia.

Where I worked, it was the management's view that senior apprentices would be more useful if they could scrape. I was one of the first to be ushered through the hallowed portals of the tool room for a month to do it.

The task was to scrape a small surface plate, 12in.x l0in. and about 3in. thick, with a step at each end for fingers to get hold of and lift it. When finished, it would be mine to keep. It was supplied as a rough, well weathered casting, so the first job was to machine it flat, parallel and square on the Butler shaper, which was kept for such work. This machine was able to get thoroughly under the casting skin. I was told to use a broad flat tool at a large feed rate, a process I was told, which was ideal for starting to scrape, that's what the tool makers said, smiling quietly as they said it.

An expert instructor

I was taught by Charlie, a man who had done the job for a living at Archdales, the machine tool makers. He was also an expert at oxy-acetylene welding, so he was quite a useful man to have in what was a medium sized workshop. Charlie saw to the making of the scraper, none of the nonsense of going to the stores and booking one out, it wouldn't have been

right. He found a clapped out 10in. hand file and we took it to Steamboat the blacksmith who forged the tip to shape and hardened it. Fig. I shows what it should look like and I rough ground it to shape, remembering to grind the teeth off the edges and radius them a bit, so that it would not cut my hands when I was using it.

Charlie then showed me how to sharpen it, quite a complex operation, more about that later.

Types of scrapers. The different shapes are shown in Fig. I.

The different shapes are shown in Fig. I. and photo. I. There may be other shapes and variations but these are the ones mostly used. They can be bought readymade, but it is cheaper and more fun to make them from old files, the steel is the same and it is a good way of re-cycling files, which are past their best.

Three square.

The simplest of the lot, just find a suitable three square file, grind the teeth off the first inch or so and stone it to a nice fine finish. It is mainly a de-burring tool for taking off the sharp edges from holes and curves. I have two sizes, a favourite, made from a double ended saw file with sides of about ¼in. The other one is much smaller, made from a broken three square Swiss file and used for removing burrs from holes too small for the other one to reach into.

Half round

Making one of these needs a bit more work. For a useful size, an old 6in. or 8in. half-round file is just the job. First, soften the file by heating it to bright red, waiting till it starts to scale, with brighter patches appearing on the surface, give it a couple more minutes to soak and then walk away and leave it where it was heated, so that it cools as slowly as possible. When it is completely cold, file the teeth off and put the relief slot in the bottom, it is there so that it is easier to stone the flat surface. To bend it to the curved shape, heat it to orange and gently tap it round a convenient shape to form the radius.

Fig. I gives an idea of the finished shape, the radius is not critical; it can be scaled off the drawing. Harden as normal, quenching in oil or water vertically and temper to the palest straw colour. Stone to a fine finish on a fine oil stone It is only necessary to stone the flat side. Half round ones are used for picking off high spots from large bearings or bores in which shafts have to fit, like the arbor bushes of horizontal milling machines, or plain lathe bearings. They can also be used for deburring large curves.

2. An oilstone fixed to the 'Bench' (photograph by Pauline Loader).

LAT? - SCRAPE IT

Flat

Making a flat scraper is a bit more work because to do the job properly, it should be forged and thinned to the shape in Fig I. When making one for my own use, I harden it a bit differently to recommended practice. Because the cutting edge has to be dead sharp and very hard, I do not temper it. If only the first 1/8in. or so is hardened it will need no tempering.

Photo I shows two sizes of flat scraper, the large one made in the usual way, the smaller one just thinned by grinding and curved on the cutting edge. The curve is important and is there so that the scraper cuts in the middle and the corners do not dig in.

The technique of flat scraping

How the scraper is held, (Fig. 2) is different from filing. The 20° angle is approximate and if the knuckles of the left hand are almost, or actually just, rubbing the work it is about right.

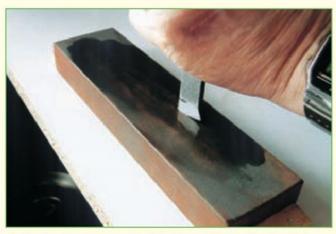
Sharpening

Sharpening a flat scraper is vital, see Fig. 3 for details. The grip is how I was taught by Charlie and is done by laying the fore finger along the scraper and gripping round it. It makes a solid lump of scraper and finger which, is easy to keep straight and level. The stone must be a fine one. The reference I have quoted may be out of date, the important thing is that it is really fine. The stone must be securely held and my solution is shown in Photo. 2. Because, nowadays, I am seriously short of working space, my bench is a piece of melamine faced chipboard laid across the kitchen sink. The stone is kept in place by the two wooden strips fastened tight to each end. It does the job and with the draining board on the left, I have a drawing office too with ample room for my Rotring A4drawing board. Photo. 3 shows the flat side of the scraper being sharpened and Photo. 4 the radiussed edge getting the treatment. Some light oil like 3 in I or some paraffin is very good for the lubricating. Photo. 5

3. Stoning the flat side of the scraper (photograph by Pauline Loader).

shows the flat scraper in action and **Photo.** 6 is a typical de-burring done by the three square one. There are probably other methods of sharpening, but I stick to the one I was taught.

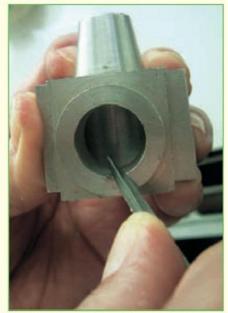
Making a start


Going back to the historical bit. With the scraper well and truly sharp, to Charlie's liking, he started me off on the bottom surface, where it wouldn't show. He stood over me for the first hour or so, to make sure that I had the hang of it. It was genuinely one to one tuition. He also passed on any short cuts and dodges which were useful, like using a file where it could shift a stubborn high patch. One most important thing he warned me about, was to resist the temptation to try the cutting edges with my fingers to see how sharp they were. It takes the edge off. Mostly it is a patient process, the plate to be worked on is smeared with white lead to make the spots show up well, then the master plate is lightly blued and the job rubbed lightly over it. The high spots show up and are scraped off. Then the rubbing

and scraping starts again and again and again. At first it seems as if it will be never ending but gradually the high patches become spots and they get smaller and more numerous. Eventually I was let loose on the proper plate surface and the more I did the better it got.

After many hours, I got to the magic condition of 20 spots per square inch, an acceptable standard. There was no lack of volunteers to do the testing. The toolmakers were only too happy to supervise, ritually marking random square inches and counting spots.

The sting in the tail


I thought I had won, with a day or so in hand. I looked forward to getting rid of the remains of the ache from shoulder to finger tips and cleaning the cocktail of white lead, cast iron dust and engineers' blue which was well ground into my hands. I had reckoned without one of the seasoned toolmakers, a pragmatic chap to whom an idle apprentice was a challenge. His philosophy was that you didn't keep a dog and do your own barking.

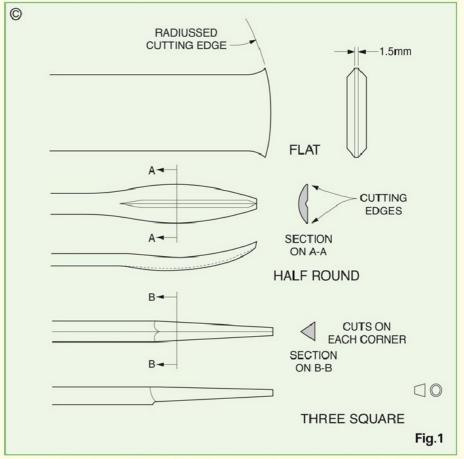
4. Stoning the scraper edge (photograph by Pauline Loader).

5. The small flat scraper being used.

6. De- burring with the three square scraper.

His surface plate, a larger one than mine, needed re-scraping and I was in the driving seat, so away I went again. That was my introduction to what is a very good method for flattening a surface accurately. It isn't a skill which you would use every day and sometimes very much less frequently but it is a useful skill to be able to call on. Should I want to do some scraping, I would have to spend a bit of time getting the feel of it back again, especially the sharpening, but I could still do enough to make a surface flat.

Reasons for scraping


Surfaces are scraped mostly for accuracy and flatness where machining is not accurate enough.

This is especially so when one part must slide over another. Machine slides, flat bearing surfaces and gib strips can all be scraped and high spots picked off. Another effect is that it can break up a surface, which could be 'sticky' by being too flat, like a ground one. The very shallow pockets produced act as oil retainers, a useful feature for machine slides.

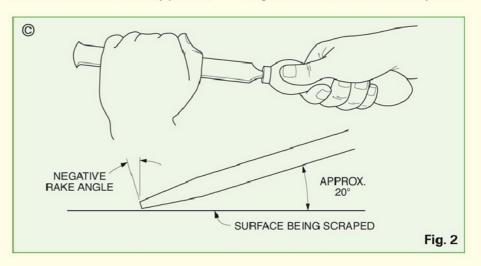
Finishing

Scraped surfaces can be quite decorative, Fig. 4 shows the two which look the best, crescent, sometimes called feathering or fettling, depending on who you are talking to and which part of the country they live in, and chequer. Feathering is done by using a corner of the scraper as a pivot and wobbling it over the work so that the radiussed cutting edge makes a crescent shaped mark. It is not an easy thing to describe, the best I can do is to compare the movement to the dipping flight of a small bird.

If the movement is diagonally across the work with another row crossing at right angles, it looks very hand wrought. The scraper must always cut on the centre of the radius, so that the corners do not dig in. It is easier said than done and needs considerable practice. I can no

longer feather and would need a lot of time to get the touch back. A smear of blue helps to see where the crescents are and perhaps keep them regular. I can, however, still manage to do chequering, a much easier option.

It makes a chess board pattern and the way to do it is to mark out a grid on the work with a soft pencil and scrape every other square, filling in the others at right angles. If it is done accurately, it looks good and when the light catches it at certain angles, there is a now you see it, now you don't, effect, There is also a case for leaving well alone because by the time a lot of high spots have been scraped off, in different directions as happens, there will already be a pattern. Photo, 7 shows three examples, the large plate was my working surface plate and the smaller one the milling/drilling table I made for my Unimat. The third piece was a disc of cast aluminium alloy put in to

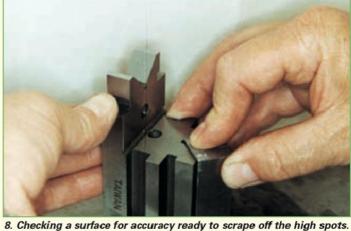

show that cast metals, even softer ones, will scrape quite well, although the same cannot be said for the very hard ones. The best scraping metal is cast iron but cast bronze and the harder brasses are good. Mild steel is reasonable and a sharp scraper will cut it satisfactorily as it will most of the wrought metals.

Although I have used the word 'cut' it is not quite the cutting action we usually see and the negative rake angle is rather different to what we normally think of as a cutting tool.

Things to remember

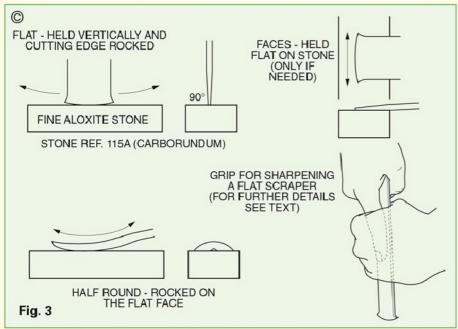
The scrapers must be always dead sharp and kept that way, so continual stoning is necessary.

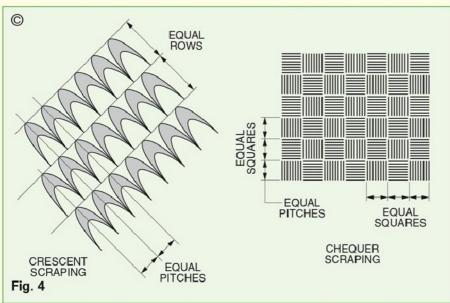
It is best to start a job in the furthest corner and work towards you, the small shavings are less likely to get under the edge and dull it. The amount a scraper will



7. Three scraped articles, see text for details. remove in a pass is miniscule, so if you are

photo 8 is an example of the technique.

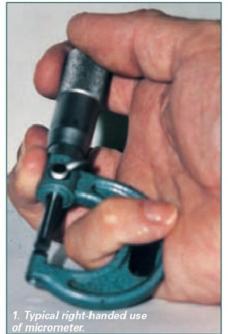

Do not waste money by forking out for genuine engineers' blue, there are many good substitutes, one of my favourites is my wife's navy blue shoe polish, (with to take a nice flat surface and decorate it,



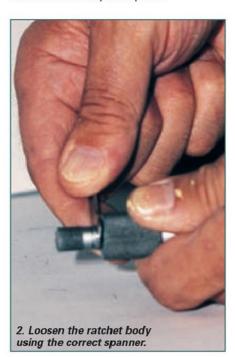
thinking of shaving off a thou or so, forget it, it would take a long time. Another use for scraping is making sure that a datum surface is truly flat and at right angles. A good way is to blue a surface plate permission of course). It is nice to be able or other reference and gently rub the work on it with an accurate Vee block to support like the milling table in photo. 9. the work and keep it upright and square,

Photo. 10 is a look at the business end

of a flat scraper. Notice how the sides have been forged out thin and the slight curve to the edge. To sum up, scraping is a worthwhile skill to develop, more so if your workshop does not have the luxury of grinding facilities. It takes a bit of time and trouble, the right tools, a nice sharpening stone and some patience, time and trouble well spent.


9. A nice finish for a milling/drilling table for a small lathe, the pattern is a result of random scraping in different directions.

10. The cutting edge of the small scraper.


April 2005 21

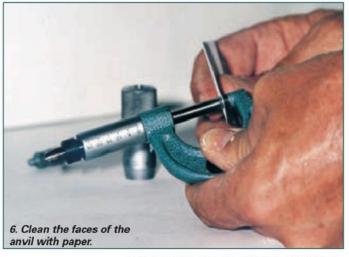
MICROMETERS FOR SOUTHPAWS

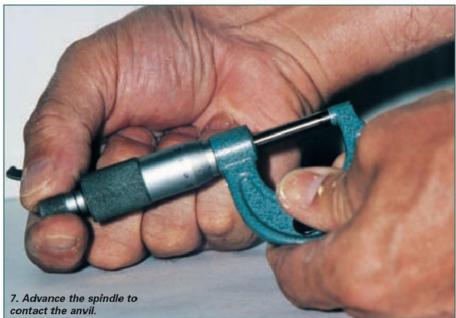
Dissassembly

To convert to left-handed use, first slacken off the micrometer. You shouldn't have left it with the spindle in contact with the anvil because this encourages corrosion of the faces, but if you did, don't do it again. Hold the thimble firmly between the fingers of one hand and, using the small end of the spanner provided, loosen the ratchet body a turn or two (**Photo 2**). If you can't find the spanner, borrow someone else's. On no account use a pair of pliers.

Bill Morris takes a sinister view of a dextrous instrument.

Background


British magazines take about three months to reach newsagents in New Zealand so it was only then, on the first day of the southern autumn that I have received the Christmas edition of the Model Engineer. David Lewin's article Something Sinister Afoot, about being left-handed in a right-handed world, reminded me that one of my brothers is left-handed, cack-handed, a southpaw or, more technically, a sinistral. He was good at cricket, perhaps because he bowled left-handed and batted right, but academic work at school was always a trial, as the legibility of his hand-writing left (and leaves) something to be desired. Nowadays, one can get left-handed scissors, potato-peelers and nibs, but how, I wondered, does the left-handed engineer get on when handling a micrometer? Held left-handed, the fiducial line is out of sight on the back of the instrument. This led me to produce a pictorial guide to converting a micrometer to left-handed use, without resorting to reversed photographic negatives. This should be of interest to about ten percent of readers. Of the other ninety percent, some, new to the hobby, may find the comments on general dismantling useful for future cleaning and adjustment.


Photo 1 shows one way of holding it right-handed. The ring finger holds the frame against the heel of the hand and the little finger stops it slipping, while the index finger and thumb do the twiddling.

Holding the thimble firmly, give a gentle tap to the end of the ratchet assembly with a soft mallet (**Photo 3**). A lump of copper serves the purpose for me. This should loosen the thimble from the taper on the end of the spindle, so the ratchet assembly

8. Adjust the sleeve.

can now be unscrewed completely and the thimble removed (**Photo 4**).

Using the large end of the spanner, rotate the sleeve so that the fiducial line now lies at the back of the instrument, unless you are left-handed, in which case it

now lies at the front for the very first time (Photo 5). Clean the faces of the spindle and anvil by trapping a piece of note paper gently between then and sliding it out (Photo 6), followed by a gentle blow to get rid of any paper fibres. Rotate the spindle until it gently contacts the anvil and replace the thimble upon its taper with the zero against the fiducial line. Replace the ratchet assembly, but do not lock it against the thimble until you have backed off the spindle by rotating it between your fingers.

Resetting

Now advance the spindle until it touches the anvil (**Photo 7**). I always advance the spindle slowly by means of the ratchet until it gives one click. In my hands, advancing slowly until it gives three clicks, as recommended by some authorities, results in an extra movement of 2 microns and advancing rapidly, an extra and unpredictable 3 to 5 microns. It doesn't matter how many clicks you prefer. As long as you advance the spindle slowly and use the same technique every time, you should get consistent measurements if the instrument is otherwise in good order.

Finally, adjust the sleeve to set the fiducial line against the zero and recheck (Photo 8). Yes, I know the numerals are upside down if you use the micrometer left-handed (Photo 9), but as the fox in St Exupery's Little Prince sighed, "Rien n'est parfait" (Nothing's perfect).

April 2005 23

TEMPORARY or Latches, Catches,

Introduction

This article is not about handcuffs and straight jackets; rather it relates to devices and arrangements that retain two parts in a particular relationship until released. These include bolts, pins, plungers, latches, catches, pawls and toggles amongst others, and their uses are described below. Some are taken from a decidedly agricultural context, however many will find a variation with relevance to the workshop situation.

Definition

(Macquarie Dictionary)

Latch - device for holding a door or gate or the like closed, consisting basically of a bar falling or sliding into a catch, groove or hole.

Operating means

The operation of a latch may be manual, by gravity, by spring, electrical, magnetic,

pneumatic or hydraulic means. In some cases one means is employed to secure the catch, while another is employed to undo it

Manual operation

(i) Bolt

The simplest means of preventing relative movement between two components is the bolt or pin, arranged transverse to the direction of movement. The commonest manifestation is probably the gate bolt (or pad bolt) found on gates and doors and as shown in **photos 1 & 2**. This usually has some form of handle projecting at right angles to allow operation, and indexing open or closed. For cupboards and boxes barrel bolts (or tower bolts) fulfill a similar function on a smaller scale - see **photo 2**.

For double gates or doors a sliding bar or bolt, carried in saddles or hooks, and passing across both gates provides a strong constraint as shown in **drawing 1**. Much used in ancient times to hold shut the gates

A review of devices compiled by Philip Amos

of towns, castles and fortresses. All of the above require manual operation to engage or disengage the securing means.

At a smaller scale, pin arrangements such as the Lynch Pin, "R" Clip, or well known Split or Cotter Pin may be encountered. In the case of the Lynch Pin, the pin is inserted through a hole in the shaft, and then retained by the loop, which springs over to the "closed position". To operate correctly, it must be located close to the end of the shaft. The type shown in photo 3 is used to retain a cutter assembly on a large grass cutting machine. The "R" clip, (photo 4) also shown, is retained by its own shape, which gives spring retention, and may be positioned at any point along the shaft.

(ii) Stirrup

Another simple means is the stirrup, usually of metal strip as shown in **drawing 2** (a) but can even be just a piece of wire. It is effective but must be operated manually. A variant is the bow catch shown in **drawing 2** (b) often used in connection with tubular steel gates.

(iii) Semi-automatic engagement

The pipe post catch as shown in **photo 5** and **drawing 2** (c) has widespread use in garden gates and similar situations. The moving gate first pushes the catch aside and then back again to hold it in position. It requires operation of the hand lever to release it. Frequently used in conjunction with a gate closing spring, which tends to hold it in engagement; if the gate is left free swinging, wind action can rattle the catch undone.

RESTRAINT Pins, Bolts & Bars

(iv) Chain, ring & hook

All the earlier manual catches find use for normal garden gates and the like. However cattle are inquisitive beasts and can often flick open such catches, releasing them to "fields afresh and pastures new". So cattle gates are frequently secured by chain, ring and hook arrangements as in **photo 6** which are beyond the capabilities of a beasts mouth to undo. The keyhole slot feature of the ring will also be found on other devices e.g. door security chains and wall mountings.

(v) Cabin hook

This device shown in **photo 7** is more often used to hold a door or gate open rather than closed.

(vi) Sash fastener

To secure window sashes in position relative to one another, the sash fastener shown in **photo 8** was developed. It has a cam action allowing tight engagement of the sashes. It has been in use for centuries. Various improvements in recent times allow positive locking for added security.

(vii) Box catch

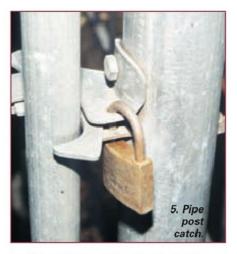
A most useful closure means for small workshop boxes, usually comes packaged with a screw eye as in **photo 9**. However it often works better when set to engage the parallel part of the stem of a round headed screw as shown in **photo 10**. The small protrusion intended for its operation is best bent forward for ease of use.

(viii) Strap catch

An effective but rapidly openable arrangement is shown in **photo 11** as fitted to the belt ammunition box for a Vickers

machine gun (latterly a tractor tool box). Manually engaged and released. Historically a leather straps were also sometimes used to secure car bonnets.

Gravity operation


(ix) Bar

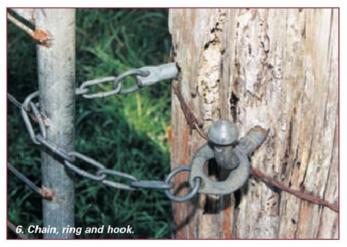
The gate latch and striker depicted in **photo** 12 and **drawing 3(a)** are probably the simplest of the gravity operated catches. The movement of the striker deflects the catch up out of the way, and after it passes, the catch drops back under gravity action, securing the striker in the closed position. It must be manually released.

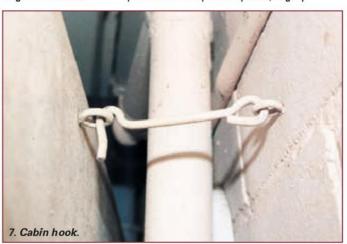
The arrangement shown in **drawing 3(b)** is similar but more complicated - it appears to present no advantages over the simpler type.

(x) Lift latch

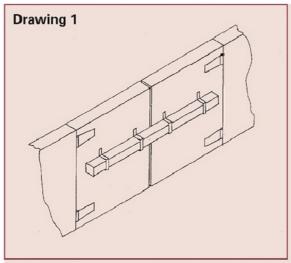
When it is necessary for access to operate the latch from both sides of a gate or door the lift latch depicted in **drawing 4** (a) can be employed. The thumb on piece A lifts the latch bar, as will a finger under the

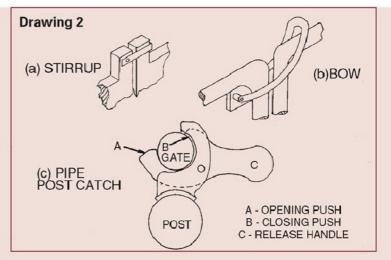
hook B on the opposite side. Again this device has been in use for centuries.

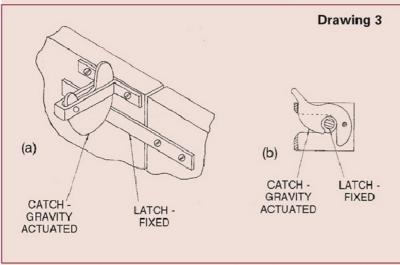

Much the same result can be obtained by rotary motion with the action as shown in **drawing 4 (b)**.

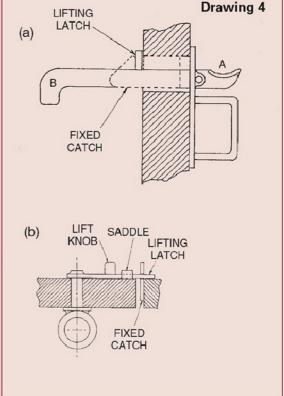

(xi) Two way catches

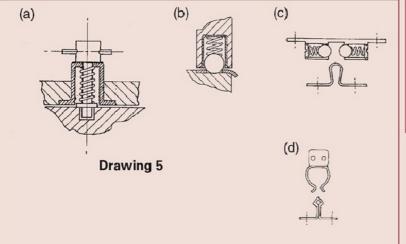
The arrangement shown in **photo 13** is intended for use with tubular gates. There are two independent leaves each of which can be pushed up out of the way by a closing gate and then fall back under gravity to hold the gate in a closed position. The type shown in the photo was cast and was popular in the 1920's but these days they tend to be formed in sheet metal.

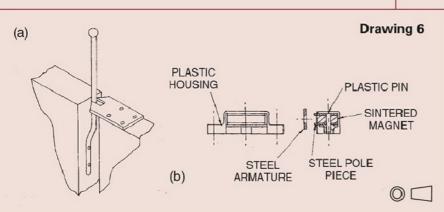

Spring operation (xii) Plunger


A spring loaded plunger engaging a hole is a most positive form of latch - see drawing 5 (a). This is widely employed in machine tools, to index parts in relation to one another, and to hold them firmly in position. If the pin is tapered, highly






April 2005 25



accurate positioning can be achieved. **Photo 14** shows three examples of spring loaded plungers on my lathe - upper left for engagement of the backgear in the headstock; centre for right or left hand rotation of the leadscrew; and bottom for Norton gearbox ratio selection.

(xiii) Ball catch

0

Perhaps the most common form of temporary restraint known, - see photo 9 and drawing 5(b). Combined with a curved striker plate (which deflects the ball) the spring returns the ball to partially lodge in a hole in the striker plate, and holds the parts in fixed relation to each other. Added manual effort transverse to the ball axis, causes the ball to retract against the spring, releasing the catch.

(xiv) Double ball catch

A more sophisticated arrangement is shown in drawing 5 (c) having two spring

loaded balls, acting on opposite sides of a rounded striker, but otherwise similar in action to the simple ball catch.

(xv) Simple spring catch

A less sophisticated arrangement shown in drawing 5 (d).

(xvi) Riding gate catch

The device shown in **drawing 6 (a)** relies on the springiness of the vertical bar on the gate, which engages in a slot in the metal plate attached to the top of the post. It is very convenient for horseback riders, but may not be cattle proof.

Magnetic catch

Shortly after World War II the magnetic door catch depicted in **photo 15** and **drawing 6** (b) appeared on the market, and found great popularity (at least in Australia). However despite its components being electroplated, it still was found to rust easily in humid or salt laden air, leading to marking of fabrics and so was supplanted by other types of catches for new installations. Thousands at least are still in service however.

More recently magnetic gaskets have been introduced on domestic refrigerators and freezers. They are made from soft plastic material incorporating magnetised powder, and act both to hold the door closed and to seal it against air movement. Such arrangements seem to provide greater

9. Top: ball catches. Second row: ball & cylindrical catches. Third row: spring catches. Fourth row: magnetic catch, box catches. Bottom: sash fastener.

security against long term failure than mechanical latch devices previously used.

Sliding latch

This is mostly used to release the energy in a compressed or extended spring, but sometimes for that in pneumatic or hydraulic cylinders. The classical example is the rat trap - see **drawing 7 (a)**. Slight downward pressure on the bait A moves the latch plate B anticlockwise so that it disengages the end of the latch pin C thereby allowing the spring loop to unwind anticlockwise and break the rat's neck.

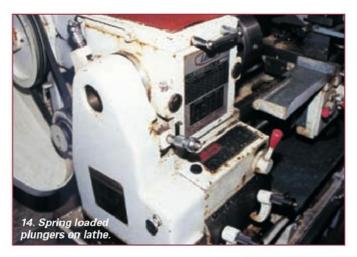
Roller latch

When the spring forces get larger, so does the friction restraining the latch from sliding. By substituting a roller latch these forces are reduced by an order of magnitude, so extending the application. See **drawing 7 (b)**. Movement of the roller to the left continues until the point of contact is to the right of the line of centres of the roller lever, at which stage the latch flies clear under the influence of its spring.

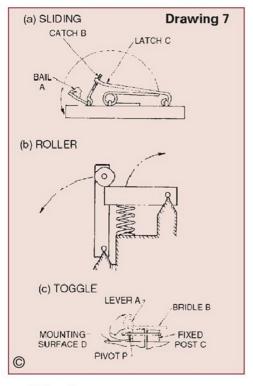
Toggle

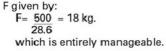
(a) Case latch

Photo 16 and drawing 7 (c) show a lever A

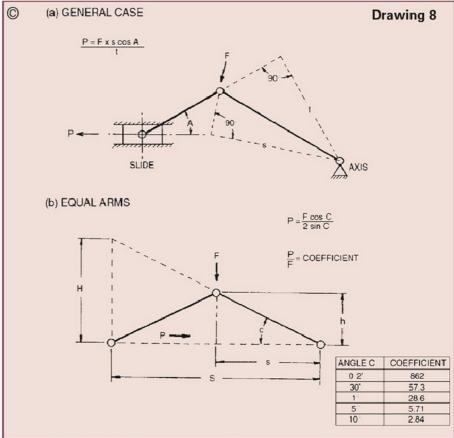

pivoted at P, and having an extensible bridle beyond its pivot, looping around a fixed post C. If the lever is forced down against its mounting surface the bridle passes beyond the support point P and the device locks in place i.e. it has gone "over toggle". If the lever is raised the bridle extends slightly and unlocks releasing the part bearing the post C from that bearing lever A. These latches are widely used on tool boxes, machinery cabinets and suitcases.

(b) General use


Quite apart from its use in hardware the toggle is one of the most widely employed mechanical arrangements in machine tools, as it is the essence of toggle punch presses, and many press brakes and guillotines. Some commentary on its use for guillotines is given in reference 1. In fact it is a force multiplier as shown in drawing 8 (a) (from reference 2). The multiplying force coefficient depends on the angle between the linkages as shown in drawing 8 (b) (from reference 3). If the point happens to go over toggle then the device becomes locked, so this must be prevented - usually by a locked adjusting screw in line with force F. Likewise there can be no allowance for any clearance or play in the mechanism joints or this over toggle condition may occur as a result. While theoretical mini angles yield enormous force magnification, practical considerations for stability probably mean a linkage angle of say 1deg. This still gives a multiplier coefficient of 28.6 which, for a spring force P of say 500 kg (in a 33 kV oil circuit breaker) would require a latch force



April 2005 27



(c) Toggle clamp

The force multiplication characteristic of a toggle linkage has been noted above. If the arrangement is permitted to go marginally over toggle, then it can be used for quick action clamping. Toggle clamps of various sizes are commercially available, and one fitted to a small fixture is shown in **photo 17**. Another application of the principle is illustrated in **photo 18**, in this case a quick action milling vice.

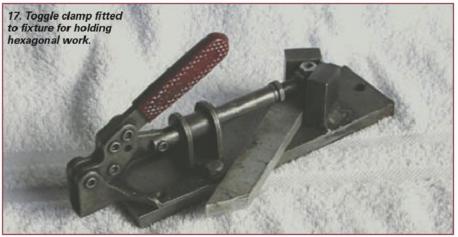
Ratchet

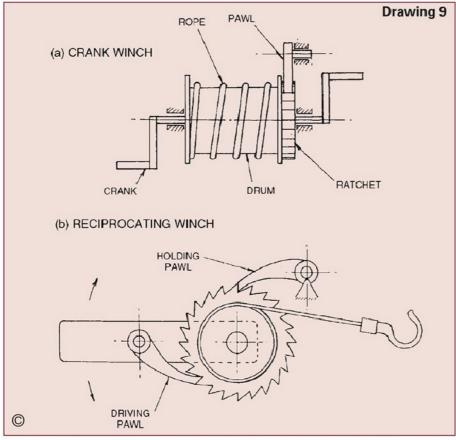
By the use of a "gear" wheel having radial tooth sides it is possible to produce a multi position latch with a prop or catch (the pawl). The concept is commonly applied to control a winch drum as shown in **drawing 9** (a). Such crank operated winches found wide use in cranes on railway sidings over the last century and a half in this country, and probably elsewhere as well.

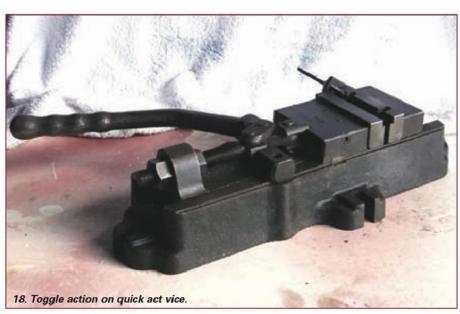
Such a ratchet gear can also be rotated with another pawl on a manipulating lever as shown in **drawing 9 (b)**. The pawls are spring loaded in engagement and slip over the wheel teeth as the ratchet is revolved, but prevent rotation in the opposite direction. Means are usually provided to disengage the holding pawl to allow the ratchet to unwind under the control of the manipulating lever. By the use of several holding pawls each slightly displaced from one to another around the circumference of the ratchet it is possible to move the ratchet positively by less than one tooth space.

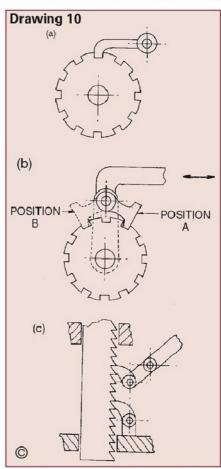
The form of ratchet and pawl shown in drawing 10 (a) is really more of an indexing feature used in machine tools. The pawl must be disengaged before the wheel can be rotated, but will re-engage automatically by gravity – or perhaps spring assisted.

In some machine tools a ratchet also finds a place in progressively feeding a


tool automatically across a work piece notably in the shaping machine. Where feed is required to be available in either direction a "flop over" pawl as shown in drawing 10 (b) is used. Reciprocating motion of the operating lever will drive the wheel clockwise (position A) or anticlockwise (position B).


Indexing using a spring loaded pin, engaging slots or holes in a gear or disc might be thought of as an extreme form of ratchet. The ratchet is not confined to circular forms, and a ratchet rack as depicted in **drawing 10 (c)** is often found in vehicle jacking equipment, and also as a floor board cramp.


Conclusion


Most latches used for gates, doors and windows have been commonplace for hundreds of years, and this is reflected in the seemingly infinite numbers of styles and variations to be found available in the

local DIY shop. See **photos 2 & 9** for some. The choice in a particular case is thus highly individual and may well depend on aesthetics, convenience or just personal preference.

It is quite a different case with latches included in machinery of one kind or another, where specific technical performance is required, and correct design with accurate manufacture are essential. Hopefully this article draws attention to the latter concepts with sufficient emphasis.

References

- Shear Philip Amos MEW 70 Dec 2000.
- Mechanical Engineer's Handbook -L.S.Marks 1941.
- Machinery's Handbook -Revised 21st Edition 1982.

April 2005 29

ADJUSTABLE SADDLE

Rationale

Many and varied have been the designs for saddle stops, which have been published over the years in both Model Engineer and MEW. Some have been delightfully simple, being little more than a movable clamp fitted to the bed. Some cannot allow full movement of the saddle towards the chuck, some do not feature micro adjustment and some are not compatible with the optional quick change gearbox. The design presented here, attempts to address some of these criticisms. It has been kept fairly straightforward, and does not provide automatic half nut release. As the stop is easily viewed, timely manual release of a feed does not cause a problem. The device shown in context in the heading photo, does not take many hours to construct, and will, it is hoped, be viewed by readers, as an accessory well worth the time taken to make. **Photo 1** shows the Myford lathe with the device fitted.

Design concept

The principal sub assemblies of the Saddle Stop are the body and the rail. The rail is mounted on the lathe bed in such a position that it clears the back of the apron and the lower half nut. The body slides along the rail and can be clamped at any position. When the body is parked fully to the left it allows full movement of the saddle to the point where the leadscrew cover meets the side of the gearbox. The body carries a stop rod which can be adjusted by the collar, graduated to indicate thousandths of an inch travel of the stop rod. The full travel of the stop rod is ¾in. My lathe is imperial and I decided to keep to this for the saddle stop, however, the drawing dimensions are all metric. The stop rod is rotated inside the threaded portion of the body by the collar which has a pin engaging with a slot in the stop rod. The collar is retained in the body by a ball, held in place by a spring. Any axial load is taken by the threads of the body and stop rod and nothing is transmitted to the collar, so the ball is adequate for retention. I keep the saddle clear of the stop rod during adjustments. Obviously, if whilst the stop rod is being extended, it has to push the saddle along, there will be some load on the ball and the pin. In use the

stop rod engages with a button mounted on the edge of the apron. Fig. 1 shows the general arrangement, and photo 2 the various components.

Fig. 2 shows the position of the Rail behind the apron. Although the profile of the bed changes along it's length, the portion on which the Rail is mounted remains constant. My lathe is a Super 7 Serial Number SK 151178 and Myford tell me that there has not been any change in the bed profile. However, as this is an as cast surface, and therefore potentially more variable than a tightly toleranced machined surface, you should check the clearance on your own lathe, and adjust dimensions if necessary.

Materials required

Body, Rail and machined components - mild steel

Index Shoulder - brass

4 off M5 x 25 mm countersunk socket screws

1 off 4BA x 15 mm cap screw

2 off 9BA countersunk brass screws

1 off 3 mm ball

1 off 3 mm spring

Spot Face Cutter - silver steel

Tony Stauber presents a version which overcomes some shortcomings of other designs.

Manufacture of main components

Rail (Fig. 3)

The length of the rail is very much up to the individual builder. So far, 300mm has worked fine for me. Having been cut to length, the bar for the rail should first be normalised. Heat to dull red and then allow it to cool slowly. Mill out the 3 x 5 channel and leave the bar for a few days to relieve any stresses. The machining is straightforward, I used ¾ x ½ bar but if you can get 18 x 14mm stock, so much the better. I used four mounting points for the Rail but in fact three would be plenty. Drill the four (or three) holes for the mounting screws, initially 3mm dia.

Body (Figs 4 & 5)

I made my body from 40mm square stock. Cut to length and then face the ends square to the sides. I then milled out the area where the rail goes, starting with the easy, square lower section and then the diagonals at the top that sit on the rail. After machining the diagonals I had to make small adjustments to get really good seating on the rail, due I expect to my poor setting up and/or machining. With the rail to hand (not yet mounted on the bed) it is very easy to get a good fit.

I then machined the body to shape. My design here was entirely personal. The body can of course remain square or any shape you wish as it doesn't have to clear anything except the leadscrew. First, mark out the 9.5mm radius and position of the sloping front on one end and drill 5mm, on centre, right through where the stop rod will go. Insert a 5mm bar and use this to suspend the body between the vice jaws on the mill. By gripping the body on the ends it can then be rotated to machine a series of small flats which can then be filed to produce the curve between the top and the front. The sloping front face is milled at the same time. Whilst this curve does not have to be a constant 9.5mm radius it will help with the manufacture and fitting of the brass shoulder. Then mount the body on the faceplate with the 5mm hole centred and open up to 7.8mm. Turn the seating for the adjusting collar 13.8mm diameter and then ream 14.0mm. Remove the 3mm runout at the end of the thread and drill the portion to be threaded 8.3mm. Tap %BSF and clear the inside of the thread to 8mm. Finally, ream the end section 8mm.

Drill the 3mm hole for the retaining ball and spring and tap the bottom M5 for the retaining screw. If you follow my body shape then this hole will have to be at an

STOP FOR MYFORD 7

angle. This is not critical so long as it enters the Collar seating in line with the centre.

Finally drill and tap M6 at the bottom for the Clamp.

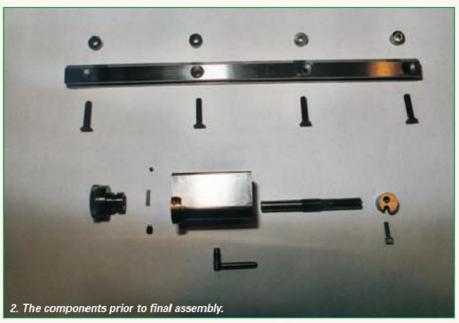
Small parts

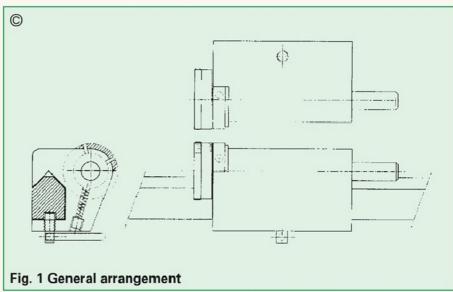
Adjusting collar (Fig. 6)

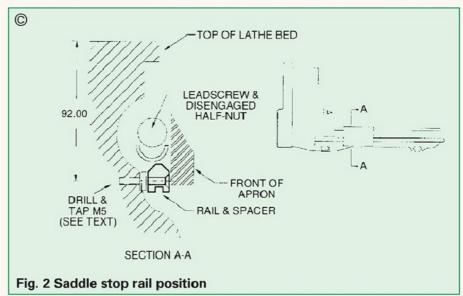
This is straightforward, with a knurl, graduations, an annular seating for the ball and a threaded hole for the Pin. Keeping the bar stock in the chuck, I first of all produced the knurl then machined the rest of the collar and finally cut the graduations. The collar needs to be a good sliding fit in the body which means machining it to fit or machining it undersize by 0.01/0.02 mm. The same applies to the stop rod. I do not have a dividing head but I have a spring loaded detent that I can mount either to engage with the bull wheel or the change wheels. It was simple to put the 50 tooth gear on the change wheel sleeve and graduate (not forgetting to tie a piece of string with a weight round the chuck to eliminate

I prefer my graduations with the longest for 0.010in., a shorter length for 0.005in. and the shortest for 0.001in. My respective lengths being 4.5, 3.75, and 2.5 mm. I numbered the major ones 1, 2, 3, 4 and 5 as opposed to 0, 1, 2, 3, and 4, in order to remind myself that one revolution is only 50 thou and not 100.

Pin (Fig. 6)


The only comment here is that the Pin should be good sliding fit in the slot of the Stop Rod with no play.


Stop rod (Fig. 6)


I screwcut the ¾in. thread to be a good fit in the body and the end of the Rod needs to be a good sliding fit in the reamed portion. Obviously any play in the pin/slot or threads will lead to inaccuracy. I did not harden the end of the rod or the pin but this would undoubtedly be an option for those who make heavy or semi commercial use of their equipment.

Brass shoulder (Fig. 7)

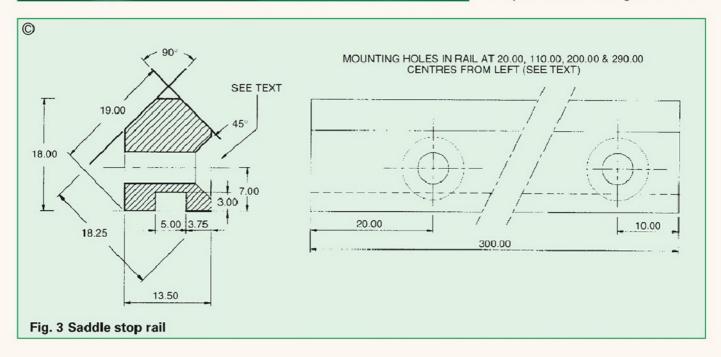
As the graduated part of the collar has a larger radius than the body I decided to make a shoulder to bring the index mark level. I must admit that I did not realise the effect of this difference in diameter until well into the job! I could have made the body larger or the collar smaller, but this would have made the graduation/number portion very cramped. I think the brass shoulder looks good but it is more work. I turned a brass ring and then cut a section out as shown in the drawing. With a nice curve on the body this fits well and is secured with two 9BA countersunk brass screws. An index mark should be made

April 2005 31

slightly towards the front where it is easy to see. I filled this and the graduations and numbers with black paint then cleaned the surrounding areas afterwards.

Clamp (Fig. 7)

You can do this now or wait until the rail is fixed to the bed. In either case, having made the stem of the clamp, sit the body on the rail, screw the clamp in finger tight and mark the front of the stem. This can then be drilled and tapped for the lever which will be accessible when the body is clamped.


Spot face cutter (Fig. 7)

I made a 13mm diameter spot face cutter with a 3mm pilot spigot and used this to just clean up the bed so that the spacers would have machined vertical faces, on which to locate.

Use silver steel rod and machine to size: - a 3mm spigot, a 13mm section and a section to fit in your hand drill. Chamfer the end of the pilot spigot. Grind down part of the 13mm section to form a flat with a thickness of 3mm. File or grind the top of the flat on both sides at an angle of about 5deg to make the cutting edges. Then harden and temper. Heat the part with the cutting edges to bright red and quench in water. Clean and polish, then reheat to pale straw. Heat from the bottom and watch the colours travel up to the cutting edges then quench in water. This should suffice for the amount of work we want this tool to do. I am not an authority on hardening and if you want more precise details for a better tool, there are books and many articles on the subject. Finally sharpen the cutting edges with a small stone.

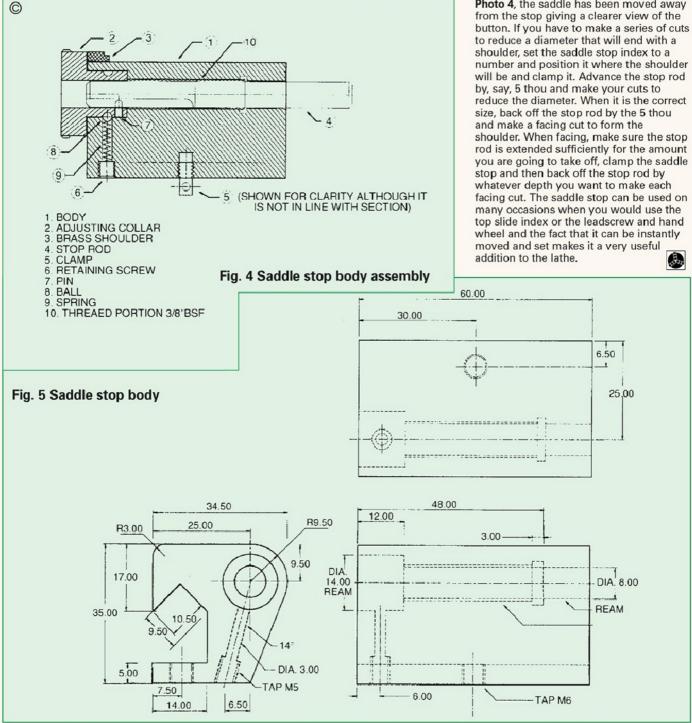
Mounting and assembly Rail

Setting up the rail to fix to the bed is a bit fiddly. I did consider making some sort of

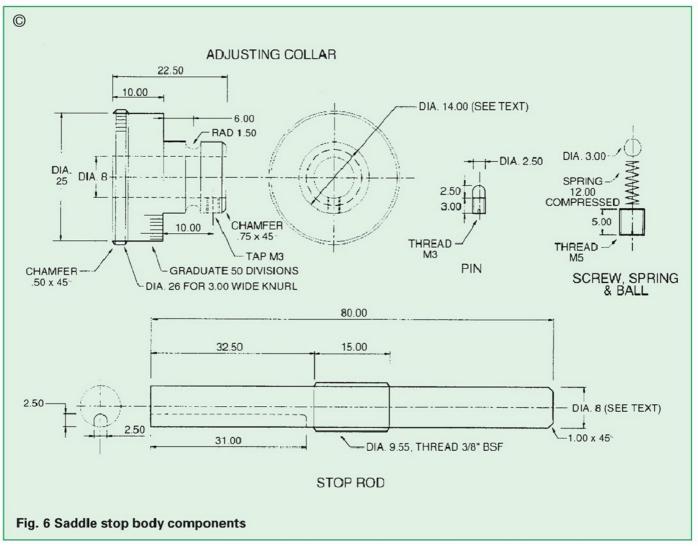
device to hang it from the bed slideway but finally opted for simply raising it to the correct height with blocks on the suds tray. I spotted through to mark the end hole on the right. I drilled this 3mm with a hand drill. I thought this might be difficult but with care to make sure you are holding the drill at right angles and horizontal it is not a problem. I drilled right through the bed, it is less than 10mm at this point. With a piece of 3mm rod through the rail and into the bed it is easy to support the rail level and mark for the other holes. Drill these 3mm. Use the spot face cutter to clean up the bed at each location.

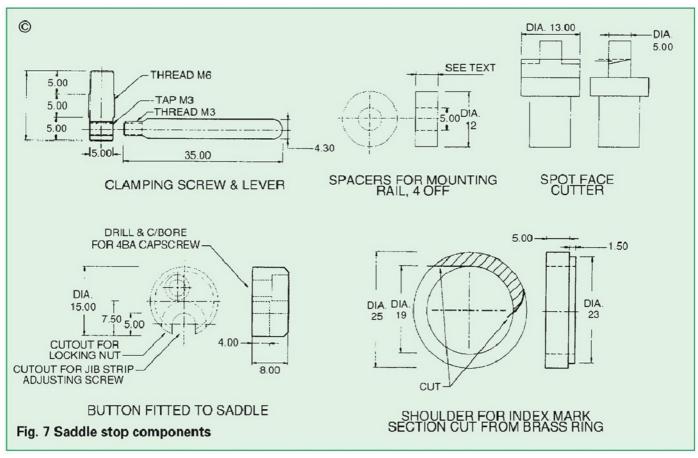
Drill and tap the holes in the bed M5. Open up the holes in the rail to M5 clearance and countersink for M5 socket screws. It is now necessary to make spacers for the number of mountings you are going to use. Mount the rail using the

screws and measure for the spacer at one end. Manufacture and fit this spacer, it is then fairly easy by adjusting the screws to set the Rail a constant distance from the back of the apron and measure for the rest. My four spacers vary in thickness from 4.18 to 4.83 mm due I suppose to the shape of the bed and also a difference in depth of the spot faces.


Assembly of the body is straightforward. Apply Loctite to the pin and screw it into the collar sufficiently to get a good sliding fit on the stop rod. Oil the stop rod and feed it into the body from the collar side and screw partway into the thread. Slide the collar onto the rod, engaging the pin in the slot. Screw the collar/rod assembly into the body until the collar is fully in it's seating and then insert the ball and spring followed by the retaining screw. Slide the body onto the rail.

Button (Fig. 7)


This is fixed to the side of the apron with a 4BA cap screw. Position the button with the cut outs over the gib strip adjusting screw and locknut and make sure it is in the correct position for the stop rod. Then mark through for the cap screw position, this should be in the centre of the side of the apron. Drill and tap 4BA. Once again I drilled this with a hand drill without difficulty.


Using the saddle stop

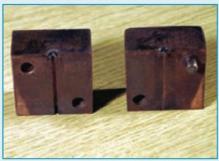
For a simple stop, position the tool where you want the cut to finish, slide the saddle stop up until it engages with the button and clamp it, as shown in Photo 3. In Photo 4, the saddle has been moved away from the stop giving a clearer view of the to reduce a diameter that will end with a shoulder, set the saddle stop index to a will be and clamp it. Advance the stop rod by, say, 5 thou and make your cuts to reduce the diameter. When it is the correct size, back off the stop rod by the 5 thou and make a facing cut to form the rod is extended sufficiently for the amount stop and then back off the stop rod by whatever depth you want to make each many occasions when you would use the top slide index or the leadscrew and hand wheel and the fact that it can be instantly moved and set makes it a very useful addition to the lathe.

April 2005 33

INCONCLUSIVE EXPERIMENTS

Dave Fenner reports partial success with manufacturing trials

Background


I mentioned in a recent editorial note that in making the centre electrodes for Bentley spark plugs, I had eventually resorted to machining from solid, taking the material down from 0.25in. dia. to 0.0625in dia. in one pass, then drawing the material further out for a second bite. A 10BA thread was cut with a tailstock mounted die, and the head diameter of 0.165in. turned before parting off. Using the dead length collet chuck accessory in the Myford Super Seven concentricity was assured, even though the bar was moved and re-clamped. This method follows the practice that would be adopted on industrial sliding head CNC lathes. A finished spark plug is shown in photo1.

As this was going to take a fair bit of time, I felt it might be worthwhile investigating whether other methods might work, and two avenues were indeed explored. In each case a degree of success was achieved, and I believe that with further perseverance, viable production methods would result, which might also be applied to other components having a long slim section and a larger diameter head. I should perhaps add that I had earlier searched many hardware stores to see if a common or garden nail of appropriate size could be found.

It had occurred that it might be possible to produce the large diameter head by melting down a length of 0.0625in. dia. wire. For the experiments, lengths of ordinary welding rod were used, the heat being applied by a TIG torch set on very low power. It is likely that the same effect could be achieved by either an oxy acetylene flame, or one of the old twin carbon arc torches powered from a stick welding set.

Some means had to be devised to hold the wire, to give shape to the head and to make the earth connection. My solution was the pair of copper dies shown in photo 2. A groove was machined in one half only, and for simplicity, this was cut to a rectangular shape 0.0625in. wide, and a few thou less in depth so that when clamped together the wire would be tightly held in position. A recess of about % diameter and %in. deep was then machined on the top surface to coincide with the wire centreline. On the basis that the larger diameter has an area of nine times the smaller, trials proceeded with about half an inch of wire protruding, as in photo 3. The method then adopted was to locate the dies in a small vice with the earth lead connected, then melt down the

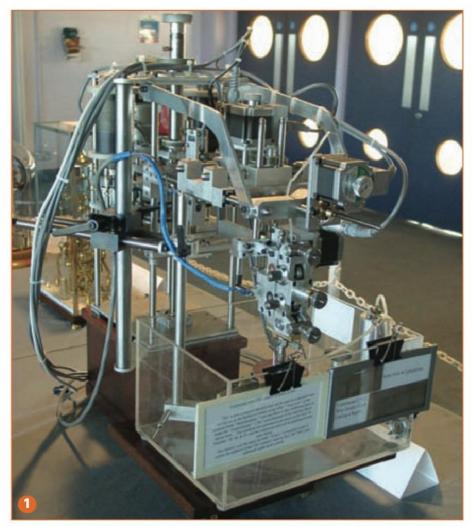
Two copper dies, that on the left features the location groove.

wire with the torch (held in the left hand), and finally quickly smack with a small hammer (right hand).

A number of parts were knocked out using this system, but subsequent machining of the head threw up a flaw, in that a significant proportion suffered blowholes. Discussions with my friendly metallurgy guru, Jim Brown have since suggested that it could be better to shape the recess more like a hemisphere, and thus improve the flow of molten metal

A second line of thought was to make the disc for the head by punching out from sheet steel and then to weld this on to the wire. The punch parts in the Roper-Witney device each feature a small spike probably intended to locate on a centre punch mark. Centre punching heavily and then punching out the blank yielded a disc with a depressed centre, which in turn could be located on the end of the wire. The same copper dies were used for wire location again, ensuring good electrical contact. However, this time they were used inverted (the recess being unnecessary) and clamped by a G clamp, with a piece of

3. Wire clamped in dies ready for application of welding torch.


1. Completed spark plug showing centre electrode in place.

perforated cardboard being used as an insulator under the disc. The assembly was then manipulated between the electrodes of an automotive spot welder, set (after one or two abortive efforts) to minimum current and just one pulse. A satisfactory joint was achieved, but the combination of force and plasticity meant that the end of the wire deformed sideways as in photo 4. I believe that with more time spent developing a restraining jig-cum-insulator, this system could well have borne fruit.

For the future, should any reader continue these lines of experiment, I should be extremely interested to hear of the outcomes.

74TH MODEL ENGIAT SANDC

The state of the s

udging from the warm reactions from trade/club exhibitors and paying visitors alike, the 74th Model Engineer Exhibition was a resounding success. To cater for junior interest, train rides on indoor the 7½ gauge line were arranged in a first floor hall alongside the Whiteleaf Garden railway layout. An outdoor track had also been established, and on this, Tim Coles gave regular demonstrations of his gas turbine locomotive.

The smooth running of the event was due in no small part to the efforts of the stewards working under the guidance of Norman Phelps, and of the judges directed by chief judge Ivan Law. A vote of thanks goes to both groups, without whom such an event would not be possible.

The standard of models was as ever, extremely high, notable examples being the superb model of a 1936 747cc Twin Cam Austin Racer by Arthur Bodily, and in the loan section, the 1857 Blackburn Agricultural Engine Patent No 414 by Cherry Hill. It is understood, that to build the Austin model, Mr. Bodily borrowed the original prototype, dismantled it and measured the components.

Whilst casually looking over a 7½ gauge B1 steam locomotive, I was directed to have a look at the oil lamps. It was only on

- Peter Rawlinson's Continuous Wire Erosion machine – winner of a Silver Medal and the Bowyer-Lowe Challenge Cup
- 2. The hand tooling section of Integrated Lathe Tooling by Peter Clark
- The second section of Peter Clark's entry

INEER EXHIBITION WN PARK

close inspection that it became clear that the lamps were not only well modeled but that the light emanating was not reflection. The lamps contained oil and had been lit.

Workshop Equipment

Competition entries

Class A5 consisted of seven entries and taking them in catalogue order, they were:-

A5/1 Continuous Wire Eroder — CNC Controlled by Peter Rawlinson

Regular readers will be familiar with this machine (photo 1) as it was described in detail in *MEW* issues 95 to 99. The erosion process is often associated with the more simple electrode downfeed arrangement for removal of broken taps. In contrast, here, the wire passes though the work piece, immersed in electrolyte, a little like a horizontal bandsaw blade. Stepper motors then move the wire position along orthogonal axes to effect a cutting action.

The machine clearly embodies a sizeable commitment in research and development effort, and the judges were duly impressed. Peter was awarded a

- Gary Wooding's "Yet another knurling tool"
- Ian Cornish displays a simplistic approach with his Engraving Pantograph
- Modified and improved Stent tool and Cutter Grinder entered by Mr P. Glenister

silver medal and the Bowyer-Lowe Challenge Cup. This is the second occasion on which Peter has won this prestigious silverware (previously for his CNC milling machine) and I understand that this feat has only been achieved by one other competitor, none other than the late great George H. Thomas. The trophy was donated by the late Mr. A.E. Bowyer-Lowe to be awarded for the best example of craftsmanship and design in the Tools and Workshop Appliances class.

A5/2 Integrated Lathe Tooling by Peter Clark

This was a two part entry, comprising a hand turning system, and an interchangeable toolholder system. The

accompanying notes indicated that the hand system (**Photo 2**) was developed from one made earlier for a Cowells 90 lathe, and as exhibited was intended for a Lorch Junior horological lathe.

A hardened steel plate is fixed to the lathe bed. Individual toolholders also with hardened bases may be held in the fingers and slid anywhere on the plate. Various small tool mounting blocks with round shanks and screws for height adjustment are clamped on the bases. For heavier cuts, some of the bases are fitted with handles. Freehand turning of complex shapes is easy and a fence with micrometer adjustment facilitates the making of long parallel or taper cuts. Raising blocks were displayed for Lorch KD50, Schaublin 70 lathes.

The second part (**photo 3**) demonstrated the adaptation of the hand turning blocks for use in conventional turning. Adapters

- 7. Derrick Crossland's "Improvements to 90 x 325mm lathe"
- 8. Alan Wragg's unusual Vertical Polishing/Honing Machine
- 9. Copying Attachment for Warco 300/2 lathe/mill
- Cutting frames and chucks on the S.O.T. stand.

were shown for Schaublin, Lorch and Harrison M300 lathes.

The judges awarded a "Very Highly Commended"

A5/3 "Yet Another Knurling Tool" by Gary Wooding

I have come to look forward to seeing an entry from Mr. Wooding. Last year he displayed a bandsaw blade soldering jig, simple in concept and effective in use. This year he showed his straddle knurling tool. As his title suggests, not especially novel but again, conceptually straightforward, and eminently useful. The device is shown in photo 4.

A5/4 Engraving pantograph by Ian Cornish

This entry showed how a relatively complex piece of machinery may be simplified for home construction and use (photo 5). Presumably built for a specific application, the reduction ratio was fixed, thus avoiding the complication of arm adjustment. Spindle power came from a 240volt mini tool, so that relatively few components had to be manufactured in order to achieve the result.

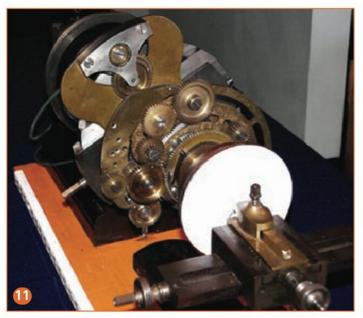
A5/5 Stent Tool and Cutter Grinder by Peter Glenister

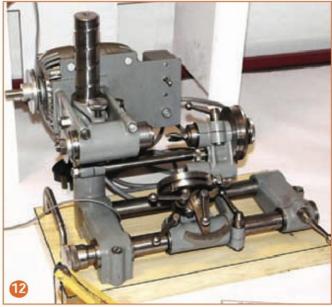
Based on the well known design, the device (**photo 6**) incorporated a number of modifications which included:-

Vertical slide leadscrew extended to increase the height adjustment by 1.25in. and the vertical slide itself drilled with three mounting holes to extend adjustment.

Spindle assembly being fabricated from stock and drilled with four mounting holes allowing horizontal adjustment and 180deg. rotation of the spindle as the motor is double ended and reversible. The spindle is machined with a 20deg. internal taper and draw bar to allow grind wheels to be changed with minimum dressing.

Two toolholder knurled nuts are available with 24 and 30 divisions, with plunger assembly.


The judges awarded a bronze medal.


A5/6 Improvements to a 90 x 325mm bench lathe by Derrick Crossland

The various improvement aspects were displayed on a mock up of the lathe bed, and can be seen in **photo 7**. At first glance

this appeared to be a section cut from a machine bed. Only on close examination did it become clear that the "bed" was a composite construction. Tailstock improvements included a clamp lever and set over screw. Nearer the headstock, friction dials had been added for both cross and top slide, saddle movement could be controlled by a stop with micrometer adjustment, and a Dixon type toolpost had been fitted.

The judges awarded a "Highly Commended"

A5/7 Vertical Polishing/Honing Machine by Alan Wragg

While the relatively small motors fitted might be pushed to undertake honing in the industrial sense, this appeared to be just the sort of tool to finish cylinder bores for model i.c. engines. The second motor powered the up/down motion, and speed controls were fitted. The machine is shown in **photo 8**.

The judges concluded that the machine merited a "Highly Commended" award.

Loan Entry

Copying Attachment for a Warco 300/2Lathe/Mill

This was an interesting piece of equipment shown by Alan Barrett. For those who may not be familiar with such equipment, hydraulic copying attachments were readily available for larger tool room lathes, and gave a cost effective method of turning repetitive parts. The growth in popularity of CNC machinery means these are nowadays less frequently encountered in commercial work. In operation, a follower is kept in contact with a master profile by a small hydraulic ram, and the turning tool follows the required path. Mr. Barrett's device, shown in photo 9 looks very much less complicated, with the follower being driven by an "Inverse" master template.

Club Stands

As one might expect, a wide variety of workshop related items was on display. Taking just a few, **photo 10** shows a

selection of cutting frames and chucks displayed by the Society of Ornamental Turners, while **photo 11** indicates just how complex some of their kit can be.

Tool and cutter grinders continue to be a popular build it yourself item and several were in evidence. **Photo 12** shows a Quorn to the D H Chaddock design shown on the Guildford stand. This one was built by the late Ed. Pitkethley and loaned by Alan Jensen. **Photo 13** is of a Worden viewed on the Reading Society stand.

As part of his run up to retirement as Editor of *Model Engineer*, Mike Chrisp had set up a personal display entitled the Mike Chrisp Collection comprising a variety of steam models and workshop items. Mike's versatile bending rolls are shown in photo 14.

- 11. Demonstration set up by S.O.T.
- This well made Quorn was typical of several displayed by clubs.
- A fine example of the Worden grinder displayed on the Reading stand.
- Versatile bending rolls shown by Mike Chrisp.

LONG BOLT BOX

Faced with making a large number of long, small diameter bolts, Howard Harvey designed this effective solution

Back to the Beginning

Not being used to public writing I was at something of a loss as how to start. I have been told that the best place to begin is at the beginning. So I set to thinking where the beginning had actually been and found that not at all easy to decide. Perhaps it all originated when I was a toddler and I used to go with my mother to the Celynon South Colliery, to take my father's dinner to him, when he had to work on late. He was a wagon repairer and I found the wagon shop an intriguing place, with a monstrous 5 or 6 foot circular saw, pillar drilling machine and a hand held machine driven by a blast that put a 2in. hole through an oak headstock as if it were butter. Wagon springs, axle boxes and wheel sets all over the place. I probably would not be let within a mile of it with today's Health & Safety regulations, but I came to no harm there and quickly knew what would cut or injure you.

So now I am a few years older and have a bit of spare time, I thought it would be a good thing to build a railway wagon and soon came across the need of a fair number of long bolts. The prospect of supporting these to turn them in the lathe was a bit daunting and my mind started off in the direction of a capstan roller box. The outcome was the little fakey which is the subject of this article. In essence, one tool mounts in the tailstock, combining. the support feature of a roller box, with the added facility to rapidly index the die into position for easy threading and a length stop for repeatability.

In these days of universal metrication the method of dimensioning the drawings may appear to be a bit antiquated, but it is the way I have worked all my life and still seems to possess certain advantages in manufacturing. Decimal dimensions need to be held to close limits to obtain the necessary fit, while fractional dimensions

2. Body, shank,

and indexing

trigger.

are not so important and do not need as much care. As we used the system, running, push and drive fits were indicated by applying limits.

However I do not think this would be appropriate for many model makers who come into the hobby without tool room or drawing office experience, and would be put off by such apparent difficulty. When making one offs we can achieve the necessary fits by taking extra care when approaching finished size.

detail 3 to

1. The completed tool.

I should also record my thanks to Phil Bridgeway for his conscientious effort in checking the drawings.

Manufacture

Start off by turning up detail 4 and 5 (OK but that is the way the numbers come out on the GA). Get an old drill shank for detail 5 if you can, but if not then you can have a lot of practice turning a No.2 Morse taper. Make sure that the 1/8 in. diameter is parallel and is a good tight press fit in detail 4

Progressing backwards, we come to detail 3, which requires the most attention. Rough turn the O.D. then face off to a good smooth finish and tap the 5/16in. B.S.F. thread for the pivot screw taking care to get it perfectly square With the face. Now mill out the four ¼in. x ¼in. deep locating slots. Make and fit the pivot screw detail 6 taking care that the 0.437in. diameter is a good fit in detail 4 and the length of the shoulder is such that when it is screwed firmly home in detail 3 it allows it to rotate with the minimum of end float. Finish turn OD.

Now make the detail 2 getting it a snug fit on detail 3, drill four holes on 2.125in. P.C.D. tapping size for 4 B.A. Assemble detail 2, 3 with 4 holes in line with locating slots in detail 3. Engage one of the locating slots with latch detail 13. Assemble to lathe tailstock and clamp in with 15%in. B.S.F. drawbar if you have a through bored

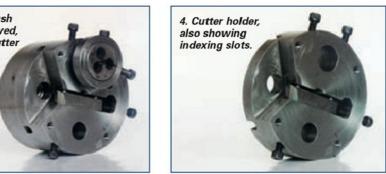
tailstock barrel. If not make sure that the Morse taper is really securely engaged. Centre and pilot drill for four holes on 1.5in. P.C.D. using latch in locating slots in detail 3 to position holes exactly on centre.

Clamp detail 2 and 3 together and spot holes through into detail 3 %in. deep. Remove detail 2 and

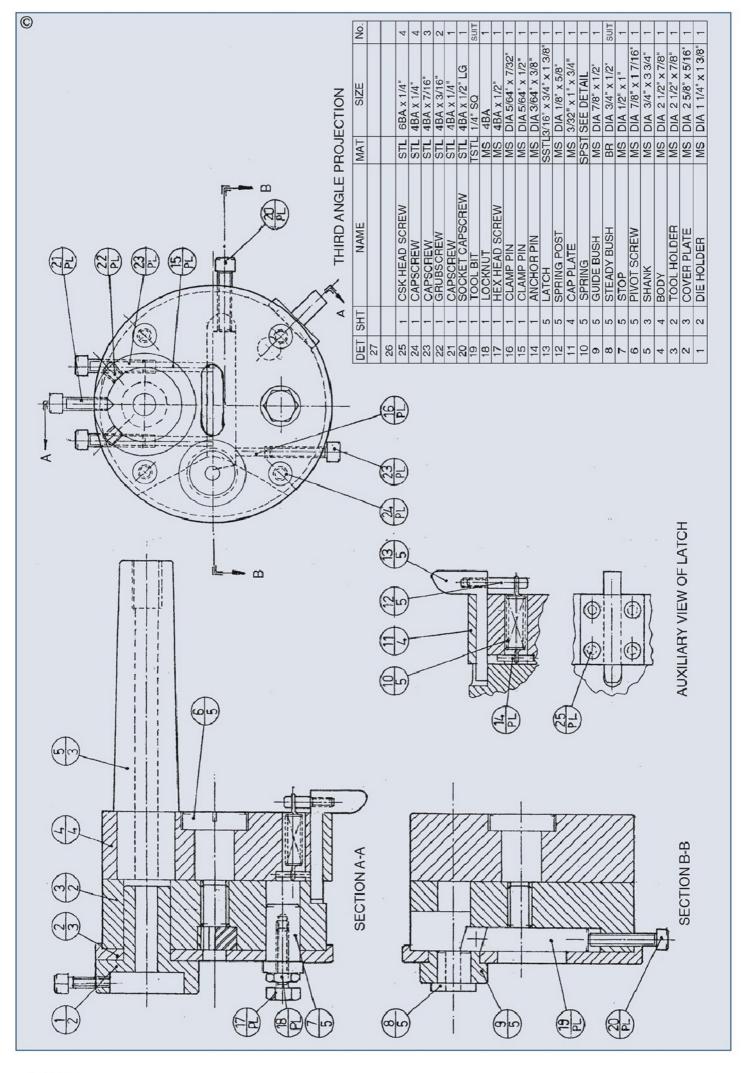
> open up holes in detail 2 to ½in. diameter. Tap four

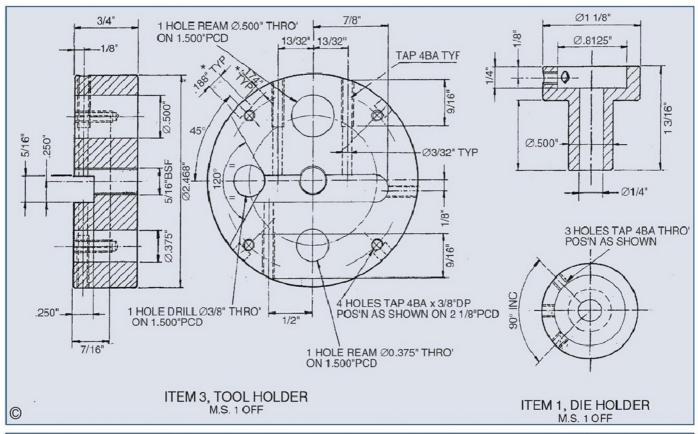
holes in detail 3 to 4 B.A. Now reassemble details 2, 3 and 4 and secure detail 2 with 4 off 4 B.A. capscrews.

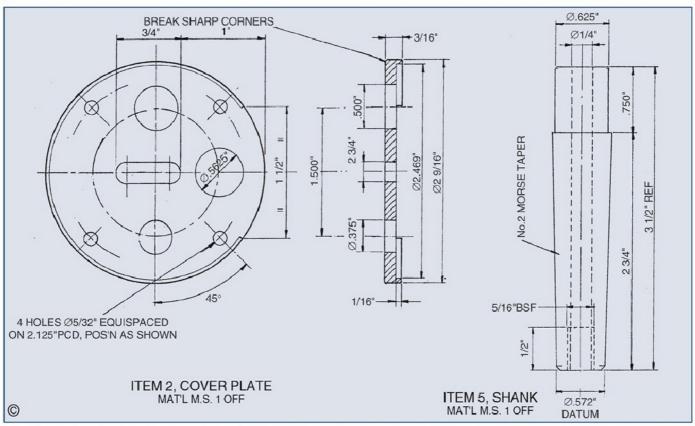
Release pivot screw detail 6 and remove details 2 and 3. Pick up accurately on pilot holes, drill and ream %in. diameter %in. diameter and %in. diameter holes on 1.5in. P.C.D. in details 2 and 3. Dismantle detail 2 and drill and ream %in. diameter hole on 1.5in. P.C.D. It is important to ensure that these last holes are lined up accurately on pilot holes and that they are in their correct sequence. Failure to do so means a scrapper.

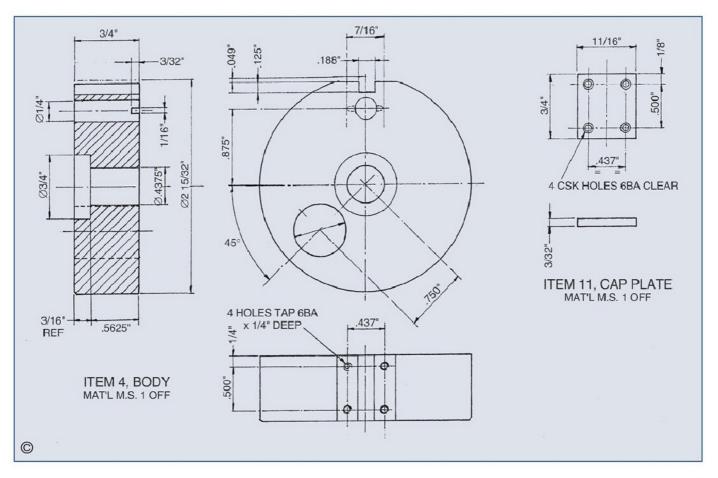

The 120° x %in. swarf clearance cut out can now be made and the %in. x ¼in. deep tool bit slot milled out to %in. dimension. It will be best to check the size of the tool bit material and if necessary alter the 0.250in. dimension to bring top edge onto centre line.

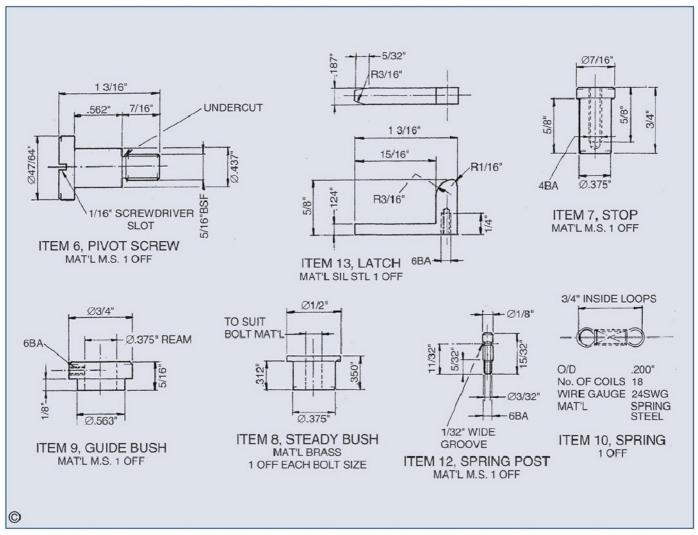
Make guide bush detail 9 a tight press fit in detail 2 with ¼in. dimension a bit short so that it does not protrude outside the backface of detail 2, which would prevent the latter seating square and firm on detail 3. Get stop detail 7 a good press fit in detail 2 but ease the projecting part to a nice slide fit in detail 3. One off steady bush detail 8 will be required for each size of bolt to be made. They can be clamped into detail 9 with a 6 B.A. grub screw. If you can make some bushes with square holes then square headed screws can be produced. A fair number of these are needed for a wagon.


Operation


To use the tool secure it at a convenient angle in the tailstock and set the tailstock barrel on the 1in. graduation. This is to make sure you do not eject the tool when

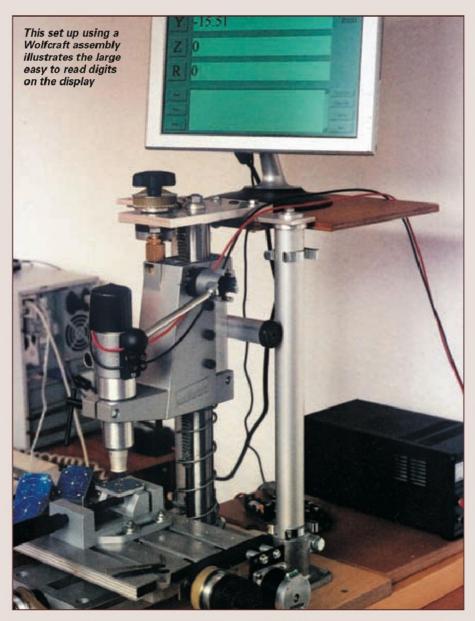






retracting the barrel and also to give a clear starting point for measuring the length to be turned. Now set stop detail 17 so that when the tool holder detail 3 is rotated, the end of the bar material will clear the dieholder. Extend sufficient material from the chuck to produce a bolt. Bring the tailstock up to engage stop with end of material, clamp tailstock to bed. So away you go making long bolts by the dozen.

Hope this provides interest to you all.


5. Left to right, guide bush plate, cutter bit and adjuster, die holder.

COMP-U-GUIDE

his article describes the operation of the Comp-U-Guide system, exploring some of the opportunities afforded by the "Intelligence" which results from utilizing the computational power of a PC. To be strictly fair, many up market DRO systems will give some of these facilities, but generally at a typically "Professional" price range, whereas that under discussion, can be put together with a flexible mix of sensors for amateur type expense.

The previous article, covered building the system, and gave an overview of its capabilities. This continuation looks in more detail at some of the possible applications. It assumes you have successfully constructed the kit, and have fitted and connected the necessary sensors (scales or modified mouse devices) for the axes you wish to work with.

Load the Comp-U-Guide program and select OPTIONS by left clicking the mouse on the legend or TABbing through until the OPTIONS box is activated and pressing SPACE or ENTER. If the OPTIONS box display is too wide for your screen and the UNITS column is obscured then change your screen size to 1024*768 pixels or higher resolution.

If you do need to change the resolution and are not sure how, then the procedure is as follows: work through from the Win START > SETTINGS > CONTROL PANEL > DISPLAY > SETTINGS. Click on the horizontal slider and move right until the resolution shows 1024*768 then click on APPLY, then follow prompts as the system updates.

If your monitor / graphics adaptor cannot manage this resolution then you can TAB 'blind' through the menu noting that the X-port button is active as you enter the options menu. Pressing TAB will activate the options in an X, Y, Z, R sequence through: PORT settings, AXIS settings, SCALE FACTORS, UNITS, MOUSE / SCALE input selection, DIAMETRAL ON/OFF option, REVERSE ON/OFF option.

Richard Bartlett gives details on how to use the budget "intelligent programmable DRO system"

Once you have TABbed (using the TAB key) to the UNIT required, the SPACE bar can then change the units in the sequence: mm, inch, degrees, blank, rpm.

As an example: to change the Y-axis units from mm to degrees.

From the main display click on OPTIONS then TAB 13 times, then press SPACE twice then left click on SAVE SETTINGS. This configuration is saved and will be re-loaded each time until you change it.

In the descriptions which follow, the type of transducer used will be down to the user's preference. However, using linear scales for linear movements and rodents for rotary movements is probably the best choice of input device. Where 'rodents' are used it is assumed that the SCALE parameter has been set in the OPTIONS menu with regard to number of slots in the encoder wheel and any gearing involved. Also the channel must be enabled as a MOUSE device rather than a SCALE.

When powered up the system will display random numbers. Move the machine slides to your choice of datum and press the CONTROL key together with an axis identifier chosen from X, Y, Z or R. For example, Ctrl (extreme bottom left of keyboard) and X will zero the X-axis display, pressing Ctrl and Y will zero the Y-axis etc. Clicking the mouse on the axis identifier button also clears the axis.

Mode 1 DRO

MODE 1 is a relatively straightforward application of the system as a digital read out. When using MODE 1 it is likely that the user will choose a WORK datum rather than a MACHINE datum. For example, a bar is chucked in the lathe and a sliding cut is taken to true the diameter and the Yaxis is zeroed. A surfacing cut is taken to clean the bar-end and the X-axis is zeroed. This assumes that the work was drawn as it would be viewed in the machine with its axial centre line along the X-axis of the plotted sheet. I am aware that this is not the conventional assignment of CNC axes, but is entirely appropriate for users working from their own CAD drawings via plot files. (Note that for lathe work in industry, the normal CNC convention would use X and Z axes for saddle and cross slide movements respectively.)

The DRO system is now referenced to a WORK datum which might be represented on the component drawing as the extreme bottom right of the work piece.

Any movements of the saddle or crossslide will now be shown on the DRO. The displays will show actual slide movements and hence will be independent of any backlash in the lead screws. Fine cuts can be put on the cross-slide by working to the Y-axis display and fine adjustments to length can be made by working to the X-axis display.

Having core-drilled for a bored hole and set the boring bar to the X-datum it is very convenient to observe the display of current tool depth as the boring progresses.

That's about it for MODE 1, it is simple to use and as accurate as the scales.

As you only need regular access to the axis ZERO functions, a mouse type pointer can be dangled from the tailstock or anywhere out of the way and then used to point to the large (over 30mm square) axis identifier on screen from where a quick click will give a zero of that channel of the display. There are a wide range of pointers such as roller nibbed penlike devices and Trackballs all of which mimic a standard mouse. As they are cheap enough to be considered expendable, a remote pointer, keypad or keyboard could be fixed to the machine thus completely protecting the workshop PC in this mode.

Mode 2 preset

MODE 2 introduces the first stage of "added intelligence", offering the facility to preset any of the channels of display thus allowing the setting of targets. Continuing the lathe example, The Y- axis is set to DIAMETRAL units in the OPTIONS menu. The reference sliding cut is made to establish the Y-axis datum and the diameter is measured. This size is entered directly into the Y-axis display box. From here in, the diameter actually turned will be that shown on the screen Y-axis display. An interesting practicality here is that (as with any DRO system) tool slide movement is indicated on the DRO but spindle or work deflection is not, so the usual practice of making measuring cut depth similar to finishing cut depth must be maintained.

A variation on the Mode 1 boring depth measurement described above, would be to use Mode 2 presetting of the X-axis to required depth rather than a zero. Numerically of course the techniques are the same, but on a 'simplicity equates to less scrap' basis the repeated cuts down to a length displayed as zero are almost foolproof, whereas the user had to remember the actual depth dimension on each cut when working in Mode 1.

Each axis may be individually preset by:
Moving the mouse cursor to the Edit
window. Zero the axis, then type in the
target value such as, x-50. Click on Start
and the Start/Step/Stop menu will go red
and the X-axis display will change to 50.
Note that multiple clicks on Start will each
add 50 to the X-axis display.

Zero the Y-axis then click the Edit window cursor down to the next line and type y34. clicking on Step will change the Y-axis display to -34. Clicking Step again will cancel the Stepping mode and the red area will go back to normal.

All axes can be pre-set by first zeroing the axes using Cntrl + Z (XYR) or by left clicking the axis buttons. Then click the mouse cursor into the top of the Edit window and clear the window by Right clicking to bring up the mouse sub-menu then left click on Select All to highlight all text in the window. Now press DEL to clear or select the Delete option from the Right click menu.

Now type in your new targets:

x-50

y-100

Click on Start then on Step until all values are displayed. Further Stepping will terminate the Step procedure.

If there is no mouse on your system, press the TAB key several times. As the TAB is pressed it will activate the screen buttons, keep pressing until the X-axis button is active (the grey button surround shows in 3-D).

Subsequent keying of TAB will make the other buttons active in the order of Y-axis, Z-axis, R-axis, EDIT window cursor, R-axis, Z-axis, Y-axis, X-axis, Options, Load file, Save file, Exit, Start, Stop, Step. When an axis button is active pressing Enter will zero that axis.

Since Mode 2 requires numeric inputs we must type on the PC's default keypad. This will not suit all laptop users but most of the keyboard commands can also be made from a small external numeric keypad as sold for laptops. The exceptions are the four 'Zero an axis' keys making a mouse pointer essential when using these small numeric pads.

Macro routines

Operations which are required on a regular basis can be made the subject of dedicated routines - "Macros". These macros can be incorporated into any job as required by calling up the routine and adding a list of specific parameters. An obvious choice is the need to drill holes on a pitch circle diameter. This will usually entail three operations, the first to set the spindle to the pitch circle radius and then to rotate the work around the centre to the start position. then to make the required number of angular moves. Fixtures such as dividing heads and rotary tables allow these divisions to be made fairly easily providing the work can be clamped with the centre of the PCD on the centre of rotation of the fixture. An alternative approach is that discussed by Harold Hall in MEW Issue 100, whereby the X, Y coordinates for the various positions would be calculated, and this is essentially the method used here.

When we call the 'B' (bolt pattern) macro, CompUguide calculates the radius and all angular movements required then resolves these into rectilinear co-ordinates relieving us of the need for rotating fixtures. This often makes work holding easier by allowing the work to be clamped down solid to the table.

For example, let's say we require to drill 17 holes equi-spaced on a 183mm PCD, the first hole is at 10degrees. Note, 0 degrees is taken as 12 o'clock or North relative to the centre. Also note that the 'B' command adds a final move to finish back at the centre of the pitch circle, which was the starting position.

The syntax is: B p183, h17, a10; signifying a BOLT pattern on 183pcd of 17holes starting at 10degrees.

The work piece is bolted down on packing to the table of the mill. We decide on the datum from which to find the centre of the B pattern, this could be the outer rim or a bored hole in a round workpiece sharing a centre with the bolt pattern or an XY position from X0Y0. We will assume

the B pattern is to be concentric with an existing bore.

Using the 'C' macro first, will allow setting the machine spindle on the centre of the B pattern. The syntax is: C;

To execute a C macro the user must have fitted a dowel into the chuck and moved the spindle into the bore at approx 12 o'clock then lowered the spindle to allow a 'feel' onto the bore using a feeler gauge. CompUguide puts prompts onto the screen at each stage of the operation.

So, the work is bolted down and the dowel fitted in the chuck and positioned within the bore and lowered below the surface.

Press TAB until the EDIT window cursor is active. (a black vertical line will be flashing), back space away any characters in the window and then type C;(upper case) and then Enter. On the next line type B p183, h17, a10; then Enter

To execute your macro list press Ctrl and T to START or click on the START button. This will put a prompt on the screen to move your probe (dowel) to a 'feel' on the bore at 12 o'clock (the prompt says "Move anywhere on the bore" but for best accuracy use points at approx 120 degrees for your probe points) When ready press Enter or click on OK.

You will be prompted again to move, so move to approx 4 o'clock and obtain a 'feel' on the bore. Press Enter when ready and repeat for the final probe, on pressing Enter this time the TARGET co-ordinates will displayed on the DRO and the user can then drive the targets to zero by moving the X and Y machine slides.

Now execute the next step in your command list by pressing Ctrl and S or clicking on the STEP button. The B macro will now execute by calculating the XY cordinates equivalent to the angular moves required and prompting the user with TARGET positions in X and Y on the display. Drive these targets down to zero, drill the hole and when ready press Ctrl and S for the next step in the list. The sequence can be terminated at any time by pressing Ctrl and T for STOP or clicking on the STOP button.

The requirement to obtain a 'feel' on the bore using a feeler gauge can also be met by insulating the dowel in the chuck and using an electrical circuit to give a buzz or light an l.e.d.

The 'Mx' macro finds the MID point between locations in any axis. As with the C command it needs a dowel in the chuck and the user is prompted to move to the first location, typically the vice jaw and obtain a 'feel' then press Enter. The user is then prompted to move to the opposite location, in this case the other vice jaw and set to the feeler. The target is then displayed allowing the user to drive down to zero for the mid point. Syntax is Mx, My or Mz.

That's about it for the universal 4-axis Linear / Rotary positional digital readout system. A further article to be published in the future will look at how data may be extracted from CAD drawing files and used with the Compuguide system in Mode 3 to give "Virtual jigs". Working in this way can give some of the advantages of CNC machining, but for those who like to be in total control of what the machine is doing, those all-important machine handles remain in the hands of the operator not the computer.

I wish you much fun.

TRADE COUNTER

Please note that, unless otherwise stated, Trade Counter items have not necessarily been tested. We give news of products and services which have been brought to our attention and which we consider may be of interest to our readers.

Model Engineer Exhibition - Sandown Park

The recent exhibition afforded an opportunity to meet up with a number of trade suppliers, and to have a chat about recent developments which form the basis of the notes below.

Home and Workshop Machinery

The display of well prepared pre-owned machinery, accessories and tooling again lived up to expectations, with excellent examples of Myford and Boxford lathes along with rather larger equipment. One interesting item spied (following the correspondence in recent issues) was the Taylor chuck fitted to one Boxford CUD Mk.111 lathe. Home and Workshop Machinery are located at: 144 Maidstone Road, Foots Cray, Sidcup, Kent. DA14 5HS tel 020 8300 9070 or see their website www.homeandworkshop.co.uk

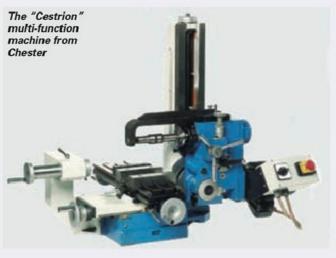
Taylor chuck seen fitted to lathe on Home and Workshop Machinery stand

Tilgear

Unfortunately, the winter offers promotion leaflet arrived too late for inclusion in the last issue, but if you move quickly, (before the end of March) then bargains are there for the taking. A few specific items that caught my eye were: 6inch digital caliper for £19.50, a hand sheet metal punch set for £17.50, two packs (of ten) Eclipse bimetal 24tpi hacksaw blades with an Eclipse 20T hacksaw, all for £29.00. Prices exclude VAT, but carriage is free on orders over £50.00. Tilgear can be contacted by phone on 01707 873 434 or by post to Tilgear, Freepost NW5014, Potters Bar, Cuffley Herts EN6 4BR

Folkestone Engineering Supplies

John Bridges has augmented his range of materials with a range of small fasteners aimed at the model engineer. Made in Switzerland these are high quality items conforming to BS 57, in sizes going down to 16BA. On the materials front, during 2004, John installed an Edwards Trucut guillotine and is now able to offer a cut to size service on sheet metals. A further recent development was the addition of a muffle furnace allowing the introduction of a heat treatment service for customers. Folkestone can be contacted on 01303 894 611 or at 62 Canterbury Road, Hawkinge, Kent, CT18 7BP. Their website is www.metal2models@btinternet.co.uk


Smaller Pips from Greenwood Tools

Following requests from customers, Greenwood Tools have announced the arrival of a 5 deg. angled cutting insert to suit their KIT-Q-CUT parting tool. This insert helps to reduce the size of 'pip' left on the workpiece being parted off. The price is the same as for the standard, neutral insert, and Greenwood Tools have both types in stock. For further details, telephone 01527 877576 or visit the Greenwood Tools website, www.greenwood-tools.co.uk

Chester UK

The most notable new machine on display was the Cestrion multi-function machine which aims to give great versatility within a small footprint. Machines similar in concept, have been produced in the past, notably by at least one Swiss manufacturer, but have been outwith most amateur budgets. The Cestrion can be configured as a lathe or a mill, and in the latter guise, as horizontal, vertical, or angled. Power comes from a 0.55Kw variable speed motor and is fed through a geared head to the roller bearing mounted MT2 spindle. For milling purposes it comes supplied with a designed in table clamp system allowing good use of the table size without losing a great deal of height. As a lathe, capacity is 150mm dia. x 260mm bc. and as a mill, table travel is

350mm x 160mm with spindle/head travel of 330mm. The machine with its set of standard accessories is priced at £1995-00 including VAT and UK delivery. Chester can be contacted by phone on 01244 531 631 or at Chester UK Ltd. Clwd Close, Hawarden Ind Park, Hawarden, Chester, CH5 3PZ. Information is also available on their website: www.chesteruk.net

Model Engineers' Workshop

Magnifiers from Norville Group

For anyone working in small scale, or to tight tolerances, increasing age frequently brings with it some imperfections of eyesight, and hence the need for some form of optical aid, or magnifier. Norville is not a name that will be familiar to many readers. They are however a business which specializes in the supply of a wide range of quality magnifiers available either via your local optician or by mail order direct from Norville.

Magnification factors extend to a maximum of 20 times, and the range of types includes: hand held, neck mounted, head mounted, desk mounted, battery operated illuminated, even lightweight opera glasses, and a sheet magnifier. The catalogue section entitled "Occupational magnifiers" lists not only the expected watchmakers eyeglasses, but also a linen tester, and tweezers with integral magnifier.

For more details call Norville free on 0800 328 1864

Warco

The WMT300/2 is just one of the machines available from Warco with variable speed drive.

Historically, quality machines (notable lathes and mills) would be driven through multi speed gearboxes giving perhaps eight or more spindle speeds. The developments which have taken place, over the last few years in variable speed electronic drives, now mean that users can enjoy the benefits of continuously variable speed at significantly lower cost.

Warco is taking a two pronged approach to variable speed. Firstly, a selection of four lathes is offered ranging in size from the WM180 to the WM280. The smallest gives 3.5in. centre height and can be supplied with stand for under £600-00 while the

largest gives 5.5in centre height for under £1600-00. All models in the range are factory fitted with a variable speed DC motor driving through a two speed system which gives control ranges of 0-1250 and 0-2500rpm. Standard equipment includes 3 and 4 jaw chucks, fixed and traveling steadies, coolant tray and splashguard.

The second avenue is an application of the systems developed by George Newton of Newton Tesla. A number of Warco machines can now be supplied fitted with Newton Tesla inverter drives specifically designed for the particular application.

Warco may be contacted by phone 01428 682 929 or at Fisher lane, Chiddingfold, Surrey, GU8 4TD

Chronos

As ever, Mark Smith had quite a number of new tooling items on display. The Vertex and Shobha rotary tables have proved to be very popular with customers, and so it is logical to introduce a dedicated chuck and backplate assembly (ref. VO) designed specifically to fit the four slot versions. The chuck is an 80mm four jaw independent and is mounted on a fitted adapter plate. This in turn has mounting lugs, and a set of Tee nuts to match the rotary table. The introductory price is £49.95 including VAT and

carriage.

The principal advantage claimed for carbide tooling is that of much higher machining speed. Indexable tooling conveys the further benefits of avoiding regrinding, and easy replacement of tips. Until recently, however, the high

cost of indexable holders tended to keep them out of the amateur domain. The set of four indexable counterbores (ref. SCT133S) priced at £49.95 shows how costs have come down. One standard insert fits all sizes which cover cap sizes %, %, %, %, %.

For gear cutting, two related items may be of interest. Many industrial cutters conform to the one inch bore standard, which may be a bit on the heavy side for small work. Cutters are now available for 0.5 module 20 deg. pressure angle, with 16mm bore, supplied either individually from No1 to No 6 priced at £10.50 each or as a set of six for £58.00. To

mount these cutters accurately, Chronos have introduced Morse taper arbors, (either 2MT or 3MT, tapped %BSW) precision ground, and supplied with four spacing collars. Price for either arbor is £48.00 or a set of cutters and arbor is available for £98.70.

For more delicate work, a new parting tool is now available. The holder is half inch square and six in. long and houses a specially made mini blade which measures just 63mm long by 5mm wide, and 1.5mm thick. Price of this is £8.95. All Chronos prices include VAT and carriage, and they can be contacted by phone on 01582 471 900 or at Unit 14, Dukeminster Estate, Church Street, Dunstable, LU5 4HU

Set of indexable

counterbore cutters.

POWERED TOP SLIDE

1. Completed unit fitted to lathe.

The Raison d'etre

This all came about because I had undertaken the building of a "Wyvern" gas engine to the Edgar T Westbury design published earlier in the M.E. in 1963. This engine features a connecting rod, which tapers over some 3 inches in length. My initial thought was to use an offset turning tool which I built many years ago. This plugs into the number 3 Morse taper of the tailstock and allows the centre to be offset in relation to the fixed tailstock centre.

This set up was initially tried but failed due to the various clearances that are required and which were impossible to arrange, it was therefore necessary to offset the top slide and it was in this way that the connecting rod was machined.

Now three inches is a long way to wind a slide by hand, and it is difficult to get an even finish over the whole length by this method. So a solution was sought which would allow the addition of a powered system, built to be removable so as to avoid getting in the way of regular turning operations.

Please note that for this project, there are no drawings. It was thought that the photos alone should convey the concept and construction, and given that there are many sizes and styles of lathe, the individual will be able to make appropriate modifications to suit his own machine.

2. Boring the pulley using a Rotabroach.

Take the drudgery out of turning that topslide handle with Peter Rawlinson's accessory.

What's in the bits box?

I had at that time a stepper motor and control board, obtained earlier from "Model Motors Direct" and although it had been intended for another project it seemed to be ideal for this power unit. The motor is about the same size as a type 23 stepper but has the added advantage of having an integral inline gearbox with an output spindle of %in. diameter.

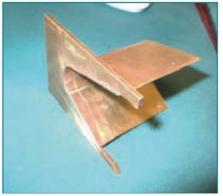
The next problem was transmitting the drive between gearbox and the top slide handle. The solution proved to be remarkably simple, being a toothed belt drive which used a couple of timing pulleys left over from my C.N.C. Mill project, namely a 12 tooth and a 48 tooth thus giving a 4:1 reduction.

Putting it together Not only were all the parts to hand, but by

good fortune, the 48 tooth sprocket fitted into the hand wheel perfectly. The only item not to hand was a timing belt. I have in my junk box a piece of timing belt that is some 1000mm long and it was this that was used to determine the correct length of belt to be used. (Calculating the correct belt length is one of those things I find a bit tricky, not having the manufacturers tables to refer to.) A suitable size turned out to be 260mm. Some belt suppliers only keep a small range of sizes, but if you go to one of the specialist suppliers, then belts can be obtained in increments of 5mm. This 260mm.belt gave me the required shaft centres, but it is sensible to allow some adjustment by way of slots. The belts that I use are of the Synchroflex type and these have an internal skeleton of steel wires, which will not let it stretch. I understand that in the limit, the teeth will shear before the belt will break.

3. Pulley fitted to handle.

To start with, the topslide hand wheel was removed and the 48 tooth pulley was bored using a Rotabroach cutter, (photo 2) which gives a very accurate bore and an excellent surface finish (see article MEW 37). Some might say I am addicted to their use and if you happen to have these available to you, then I highly recommend their use. The handle was then turned down for a press fit, and the pulley fitted using a little Loctite, just to be sure. The relative sizes worked out very well, as the parts of the original handle that were left, acted as the pulley flanges, as can be seen in photo 3. It was therefore not necessary to include these on the 12 tooth pulley, which in turn, allowed for a simpler mounting arrangement.


Attachment

A quick and simple way was required to fix the power unit to the topslide. It was also necessary to allow for the easy fitting of the belt. After a bit of head scratching, the system depicted in the photographs was finally used. This consists of a sole plate with a vertical front plate to hold the motor/gear box, with two cheek plates positioned on either side to locate it on the topslide. Please note that the motor mounting holes are slotted and also are rebated to provide clearance for the shield.

It was fortunate that the topslide on my machine has a ground finish on its top and side faces, thus providing flat and square location surfaces. The width of the sole plate was machined so that the two cheek plates when fitted to it, were a good sliding fit over the topslide. A pair of ½in. wide slots was then machined in the cheek plates and these were used as a jig for spot drilling the top slide for a pair of clamp screw holes in the main casting. These holes were then tapped M6, and fitted with grub screws, washers and wing nuts. The items on the inner side must be

4. Slides for guard on end of unit.

5. Removable pulley guard.

removed from time to time to allow the topslide to be used close to the tailstock

After using them as a jig, the slots are then opened out with a slight taper to give easy fitting while the belt is eased on.

To bring out the wiring, I fitted a 10 way chassis plug in the cheek plate, but the cable could equally easily be bought out through a gland. A couple of advantages of the system adopted are first that it does let the control be utilised for more than one motor, and second that you do not have a length of cable getting in the way when fitting the unit.

The top case was then added to save any swarf from entering the motor and wiring area. Make this from any material to hand, I happened to have some 16.swg aluminum. Build to suit, but do consider whether some form of ventilation may be needed, mine has pressed in louvres. The louvre tool was made some time previously and has now been used on six

8. Power Supply and driver board.

6. Easing the unit and belt into place.

separate projects. The motor is only rated at 10 watts so it is probably debatable whether even minimal ventilation is actually required.

It was also decided at this stage that some form of guard over the belt was required to ensure that no swarf would be thrown into it. This also acts as a finger guard, which could be further enhanced by a front plate (as would be the case in an industrial application).

This removable shield is made from brass sheet and soft soldered together. It slides into position in two grooves machined into pillars mounted on the front face of the power unit and only requires gravity to hold it in place. It does require to be removable in case the belt requires attention. **Photos 4, 5, 6 & 7** illustrate the relevant features.

Control electrics

In my case this was straightforward; the motor that I used came complete with an electronic controller, which only requires a 12 volt DC supply and the following odd components:

- 1 Variable Resistor, (Speed) 5K ohms 2 on/off switches, (one for
- forward/reverse)
- 1 Fuse holder. 5 amp.

With the above it can be run from a car battery charger or a 12 volt battery or built like mine with a purpose built power supply (photo 8). (The one used was originally built for the C.N.C. mill and never used.) Speed variation is achieved via the variable resistor, and is of the order of 20rpm to 200rpm thus giving about

7. Detail of multi-way socket.

5rpm as a minimum at the topslide handle. So far this has proved to be slow enough. If a slower feed rate is required then the ratio of the two timing pulleys will need to be increased.

As an alternative to the stepper motor, a standard DC type motor could equally well be used. Again it would require a suitable gearbox. The control might then take the form of that marketed in kit form by Maplins, or something similar. I have not used their device myself, but, according to their catalogue, it is capable of 5 amps power and would be more than ample for the small motor required. Again, it will still require a 12volt power supply as above. This kit is part number VF59P in the Maplin catalogue; they also have various power supply kits.

To summarise, the device works well, and hope the photographs cover all the main points. As usual I can be contacted by telephone if I can be of help.

Peter Rawlinson, Charing, Kent. 01233 712 158.

Suppliers

Model Motors Direct 01749 860111

9-10 am is best
Maplins

0870 264 6000

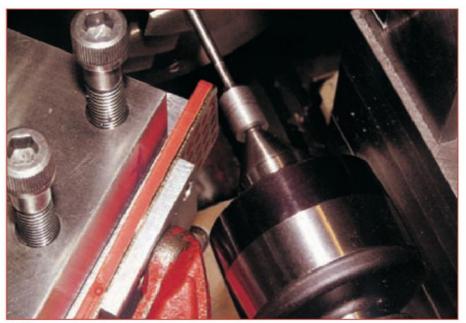
Olympic Chevron (Wyko) See Yellow Pages for nearest branch

Farnell 0113 263 6311

IK UP

Would readers wishing to make use of this facility please note that the maximum total value of items accepted for a 'For Sale' entry is £50.

To advertise goods of a greater value, please contact our Classified Advertisement Department. Please indicate clearly if an item is intended for Link Up.


FOR SALE

- For Sale: Ball screw shaft 1425mm x 25mm with matching recirculating ball bearing. As new £50.00 please phone 01723 362 537 (Scarborough)
- For Sale: Pollard Floor Standing Pillar Drill fitted with Brook 2.3 amp single phase motor and a 10mm Albrecht keyless chuck. Spindle speeds 940,
- 200, 3500, 5400 rpm. Absolutely no play in the spindle bearings. Max throat size 6in. x 30in. Could deliver locally, please phone Richard on 01634 370 167 (Kent)
- For sale: HSS Milling cutters ¾ ¾ MT with tang, no draw bar. As new £2.00 each. Hand reamers ½ ½ little used £5.00 each. Various home brewed cutters mostly countersinks but some very strange shapes. Please phone 01303 267 122

WANTED

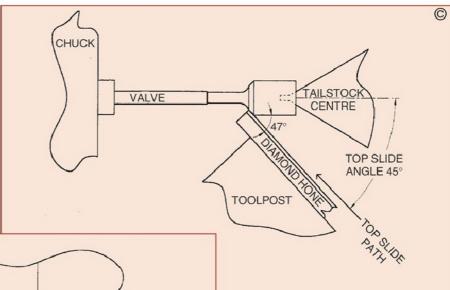
- Wanted: For a Denford Viceroy 5.5in. Centre lathe Model TDS/1/1/GB/L, a copy of an Operators/Maintenance handbook,(expenses happily met) also an address from which spares may be purchased. Please phone Mr. John Chambers on 01922 640 731
- Wanted: Rear belt guard (door) for Tom Senior M1 Horizontal Milling Machine. Please phone 01274 815 435 after 8pm (West Yorkshire)
- Wanted: Jabus Small Diameter turning tool complete with steadies.
 Sensible price offered. Email to mail@woodhaygallery.co.uk or phone 01635 253 680

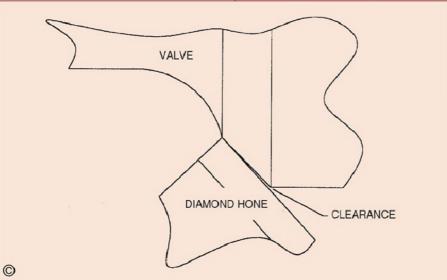
A TECHNIQUE I 4-STROK

1. Close up view of operation from above.

With the availability of cheap diamond hones, Shelley Curtis successfully experimented with an unorthodox method to create an improved surface finish.

compound slide setting employed in machining both valves and cylinder head seats.


Not owning a toolpost grinder and having an aversion to grinding on my Harrison M250 lathe, another method would have to be found.


The solution

It is said that "diamonds are a girl's best friend" - could they not be also a model engineer's? I clamped a small diamond hone to the tool post (see photos) and angled it so that there was clearance or

The problem

One of the problems I have encountered in making valves for model four stroke engines is that of achieving a satisfactory finish on the underside bevelled seating area. A well-sharpened and honed HSS tool with a .02mm radius gives a good finish on free cutting stainless steel (303). However, on my current engine I am using EN24T for the valves and this method leaves a lot to be desired. Lapping them in on assembly with the cylinder head (aluminium) will only transfer the imperfections to the softer material. The chamfered face would be better finished by grinding but this would need to be done on the lathe so as to use the same

relief behind the point of contact at the front edge of the hone (Figs 1 & 2). This clearance is necessary to preserve the original 45 degree angle of the valve face as produced by the top slide setting. On the drawing I have shown this difference as being 2 degrees to emphasise the need for clearance. The exact angle is not critical - keep it to the absolute minimum, using a magnifying glass when setting up. The hone will now operate like a single point tool. Pass it across the valve face using the top slide with a cross slide in feed of 0.01mm per pass until a good

Model Engineers' Workshop

FOR FINISHING E VALVES

2. Viewed from rear of lathe, also showing home made rear toolpost fitted with Q cut part off tool from Greenwood.

3 A general view of the front of the lathe also shows the Eurotherm inverter drive, and the Newall DRO system, definitely one of the better life enhancing benefits brought to us by modern technology.

finish is obtained. Care is needed as the depth of diamond coating is shallow but I have not found it to wear away before one valve is completed. Use a fresh section of the hone for the next one if necessary.

The photographs were taken during experimentation to prove the method. A

valve would not be parted off from stock until this operation was completed.

It may be rather unorthodox - but it works!

NEXT ISSUE

Coming up in Issue No. 106 will be

Drill Grinding with the Quorn

Prof. Jörg Hugel presents a deceptively simple accessory to improve convenience.

Tee Slot Cutter

Commercially available but at a price. Harold Hall suggests you make your own.

The Beginners Guide - To The Black Arts Of Workshop Acquisition

Peter King offers word of wisdom

Two Heads Better Than One

Will Bells describes two boring heads for light and heavy duty.

Issue on sale 6th May 2005

(Contents may be subject to change)

CHUCK L SCREW-ON LA

seem only to use the motor reverse when cutting RH threads from a shoulder, or a blind hole, with metric threads of some length, and when avoiding "climbing" using a milling cutter or slitting saw. Until now, my technique has been to check that the chuck will screw "home" smoothly, back it off about 45degrees, and then send it home with as much angular velocity as I can impart. Removal of the chuck involves clamping a length of 50 x 25 Eucalypt hardwood in the jaws, and fetching the end of the timber a smart whack with a mallet. This method

Necessity being the mother of invention, Derek Cooke describes a useful safety device.

gave good service for 20 years, except for the sad demise of a 3in. slitting saw. Recently I had another disaster, decided that it was probably due to the feebleness of old age, and I'd better do something about it. In a discussion with a fellow TAD (ref.1) volunteer we both eschewed the methods we had met in our reading, and felt that a hollow draw-bar was indicated. It would reduce the mandrel space available, but at least not wipe it out.

A day or two later, and with nothing pressing to do, I put the four jaw chuck nose down on the bench, and with a piece of galvanised pipe with an internal dia. of slightly over 1in. and an external dia. which comfortably entered the 1%in. hole in the mandrel, I considered ways and means. A big nut on the rear of the drawbar was obvious, but ways to connect the other end to the chuck conjured up more and more hare-brained ideas, and then the penny dropped, with the result shown in the photographs.

Hidden opportunity
I suddenly realised that there was a space between the mandrel nose and the back of the chuck when home. Careful measurements showed this to be 10mm in the case of the three jaw chuck, and slightly less in the case of the four jaw. I did not have time to mourn the unnecessary extra overhang, nor the loss of bed length! The thread on the mandrel nose is 21/in. x 8tpi (55deg.), and I had some BDMS of 60mm dia, so I was in business

Machining

One end of the pipe was skimmed back for a couple of inches to clear the galvanising, and to provide a surface for re-centring. The other was drilled for a 10 mm tommybar. The pipe length was chosen to give a good hand's breadth to the rear of the mandrel when assembling the chuck lock. A 12 mm slice was cut from the 60mm BDMS with my faithful cheap oriental bandsaw and bored to give a Loctite fit on the pipe end. Though I have never been let down by Loctite, I then got cold feet thinking of the possibility of the joint breaking down when trying to undo the chuck, and decided to braze weld the disc. and made a further cut of 0.05mm. At each of 90deg. intervals I made 3 pop marks on the pipe end, which gave a fairly fight fit for the disc, and allowed an even annular space. By the time I had tried to manoeuvre the disc to a truly radial position it had become a free fit over the 'pimples". I then recalled that I had a couple of brand-new firebricks and placed one on my Cooke "patent" rotating table (ref.2). This, with a stay, brought things under control. I did not feel like using one of the many flux coated rods in the armoury, and found a rod of unknown provenance which I suspected to be of the 'Easyflo" type. Lifting the disc, I applied Easyflo flux to the end of the pipe using a spatula, and let the disc drop.

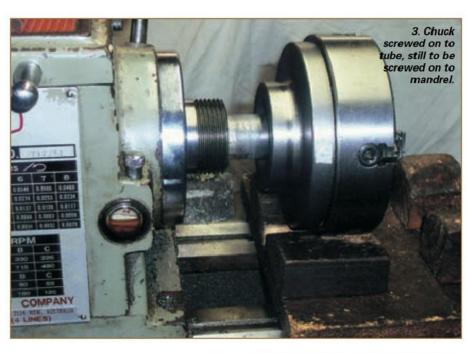
Brazing

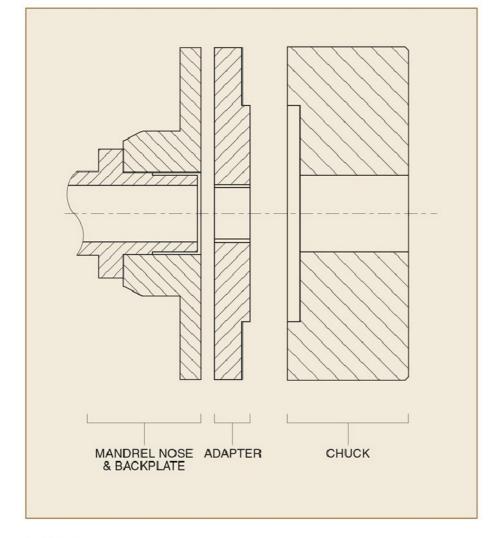
Surrounding the disc with odd bits of broken firebrick, I fitted a large jet to the Oxy-Acetylene hand piece. The end of the filler rod was scrubbed using a stainless steel pan-scrub (aka pot scourer), and liberally coated with the flux. When I thought the job hot enough, I applied the rod, and it formed a bead at the junction. A further heating, and the bead disappeared, and I added a little more "for luck". I was pleased to find braze material on the front of the disc when it had cooled off and even more pleased after facing in the lathe to find a thin continuous golden band between pipe and disc. The pipe was centred in the lathe, and both sides of the disc faced, and the disc brought down to 9mm thickness. It was then brought to diameter and threaded.

Operation

In use, it is placed in the mandrel, and screwed into the chuck back plate. The chuck is then screwed onto the mandrel nose, and the lock screwed anti-clockwise

Model Engineers' Workshop


OCK FOR THE CHUCKS


to lock. No, it is not a lock nut. It is a lockstud. The mandrel nose is effectively a stud. If it were a real stud, it would be threaded into the mandrel, and the chuck would lock anyway?

Footnote

When it came to my colleague's problem, it appeared that the chuck back plate barely extended beyond the nose of the mandrel, and I suggested the solution in the sketch, using a couple of dowels to engage the adapter plate to the back plate. The "lock stud" obviously must have a major diameter less than the minor diameter of the back plate thread, so it is possible to use a finer thread for the lock stud and for the adapter plate. This should give a better "grip". The "lock stud will also need a shoulder at its left hand end to locate against the end of the headstock mandrel or to locate in a recess between back plate and adapter.

On discussion we decided it would be better to turn an annular recess into the back plate – either beyond the holes for securing the pieces together, or

encompassing them, and a corresponding positive piece on the adapter. If there be a small gap between the end of the mandrel and the back of the chuck, say 3 or 4 mm, the obvious answer is to make a register of say 3mm depth on the back plate and have the mating projection on the adapter plate. Should these all be turned on the lathe for which they are intended, concentricity will be the reward. One thing about being able to use a finer thread, is that one can cheerfully use Loctite. In the extremely unlikely event of a separation, it will only be necessary to slacken the chuck securing screws to release pressure.

4. Tommy bar to apply locking torque.

References

- TAD: Technical Aid to the Disabled (= REMAP in UK). In recent years, a similar organisation has appeared in the USA.
- Foot-powered rotating welding table. ME Vol 180, No 4080, pp 137-139

Scribe ALine

Dr. Peter Anderson of Horwich writes

Other readers may be amused by classified advert which appeared in one of the "Heritage Motorcycle magazines". The text was as follows:

"For sale a round bed drum and lade, hasn't run for 30 years, in perfect condition etc."

Harold Hall writes:

I am in the process of producing a series for the benefit of the "lathe only" workshop owner and wish to contact a company, should they still exist, who produced tee slotted cross slides for lathes which do not have this facility.

The company was in existence during the short time that I was editor but I have lost any reference to them. This was around ten years ago so they may not now be providing the service. Either way I would like to know their name should any reader be aware of the company.

I can be contacted by E-mail at me@homews.freeserve.co.uk or via the editor.

Trevor Palmer writes

In Scribe a Line, Issue 104, Mike Brennan raised several points concerning my modification to the tailstock of the Clarke Metalworker, described in the article published in Issue 102. In answer to the comments, yes it is worth it. I now find the lathe more enjoyable to use. I do not have to obtain or manufacture special tools such as long centres. Incidentally, (as pointed out in the editorial comment which appeared with Mike's letter) a long centre would also increase the loading on the tailstock and, I suspect, provide less support. The extra 20mm of travel is a real bonus, I was constantly running out of travel before the modification.

For me, the reduction in "between centre distance" has not been an issue, but I accept that it may be a problem for some users. As for rigidity, the tailstock casting and barrel are both substantial and the two supporting screws are M10, which have far greater tensile strength that this lathe could possibly generate

In the approximately 8 years since carrying out the modification I have not experienced any problems due to lack of support. I recently turned down a 30mm diameter EN36 shaft 350mm long with a keyway cut down its entire length. The surface finish was good.

If I do have one regret, it is not re-engineering the 4mm anti-rotation spigot, which I feel is the weakest link, and could shear at any time with a heavy drilling operation.

I hope this has answered Mike Brennan's points adequately.

Peter King writes:

Re. Curing A Bandsaw Problem

I pass on the following as it may help someone else whose temperature is rising as the frustration level reaches boiling point:

I have just found a cure for an annoying fault on my band saw; this is one of the common Taiwanese jobs of which there must be thousands in small workshops.

Over the last five or six months there has been a gradually increasing tendency for this machine to 'throw' the band off the driving wheel when cutting, it will run all day when running light with no problems. There was no tendency to throw the band off the idler wheel. In the last three weeks it has become a positive nuisance, there was nothing obviously wrong and careful resetting of the guide rollers had no effect. There is no problem with the wheel bearings, where there is no detectable rocker 'free play'. Last night I decided on drastic action as I had been trying to trim some fabrications freehand on the table with the saw vertical and the band had flipped off about 20 times under load. Thinking that the wheel must have some fault that I could not see I removed the driving wheel and mounted it in the lathe on a mandrel with two conical sleeves to hold it true by the bore. I then set a carbide

tool to take a 0.001in. skim off the diameter (lathe was in Imperial mode), it became immediately clear that the wheel was not truly round as there were several intermittent 'cuts' around the circumference right across the face. The lathe was reset to take a total of 0.005in. off the diameter and the wheel cleaned up nicely. There was no evidence in this operation that the wheel was in the slightest bit conical towards the outside, but perhaps very slightly conical down towards the guide flange. There was no evidence of the wheel being eccentric either. I refitted the wheel and to my delight the band stays in place even with quite heavy pressure on it. The rest of the fabrications were sawn with no further trouble, but why this (wear?) fault should throw the band off I haven't the faintest idea. One might argue that the slight conical shape would encourage the band to ride out to the maximum diameter, but why only under heavy cutting load. Perhaps the lobed effect is one contributory factor, or perhaps reduced frictional effects due to the worn/polished surface are another.

John Wilson of Harlow writes:

With reference to your editorial comments (Issue 102) "And next the information police?" I am afraid they are already here. As a keen amateur photographer, I purchase a weekly photo magazine, which has reported the case of a photographer who was arrested in Trafalgar Square, held in a cell for a day, had his house searched, his computer equipment and photo library removed, but was finally released without charge.

What heinous crime was he suspected of? Taking candid shots of people (amongst whom were children) playing in the fountains in the square. The arresting officer accused the photographer of taking obscene photos of children and therefore being a paedophile.

The fact that none of the subjects were naked did not matter one jot to the arresting jobs-worth. And incidentally this is the second such report of police heavy handedness against a photographer.

Even in Harlow, photographers have been prevented from taking photos of the water feature in front of our new town hall

Just imagine what our police state would make of any model engineer's workshop? Lathe milling machine, drill, grinder, well we must be making or converting replica guns to fire live rounds. Hang on! The boiler shaped thing under the bench - ha ha clearly a bomb casing, the foot of %in. BMS - well that must be a cosh.

It is quite frightening to speculate on what these politically correct coppers could interpret as offensive weapons in the average workshop. And by the way, don't photograph your latest effort, particularly if there are any kids about that might get in the shot, you don't want to accused of being a paedophile as well as a terrorist.

Mr. Len Billinge of Essex writes

As a long term reader of MEW, I go back to issue number one, I was a little surprised to read your recent comments about Health and Safety and the "Nanny State". My initial reaction was "why are we suddenly getting all political". But after a little reflection, common sense began to prevail and I found myself agreeing wholeheartedly with your comments.

The way governments enact laws and regulations in knee jerk reactions of late do make one sit up and think seriously about the possible consequences. Only the next day after reading *MEW* there was a case of someone being arrested for carrying a Swiss army knife and of two 13 year olds similarly treated for carrying toy guns purchased that day in a high street shop. Whatever some official or other would infer from some of the materials we keep in our model workshops makes me shudder to think.

Not too long ago our government banned the ownership of almost all firearms following the Dunblane massacre but I wonder just what this has achieved other than the fact that it has put our Olympic sharpshooters at a distinct disadvantage.

Our Health and Safety Executive on the other hand seem to be intent on making every aspect of normal day to day activity absolutely 100 percent "safe" to such a degree that it sometimes becomes impossible to do what we strive to do. It is worrying to discover that many modellers seem to think that the Health and Safety at Work Act even applies to them in their own workshops.

I am diabetic but am blessed with a remarkable specialist doctor who explains everything to me at great length. When he prescribed insulin for me some 18 months ago he explained the dangers quite logically and sensibly. During subsequent discussion he made the surprising comment "if we were trying to invent insulin today as a new drug, we should never get it approved" (because of the

dangers of overdosing etc). On hearing this, my wife, who seldom comments on these things said, "yes, I suppose if we had all this H&S regulation in the past, we would not have had an industrial revolution".

I wonder what Brunel would have had to say about this?

Mr. N Summers from New Zealand writes:

Re Straightening Briggs & Stratton cranks.

I refer to the comments from Richard Wilson – Scribe a Line, MEW Issue 103. The thought of a Briggs & Stratton crankshaft breaking after straightening is, I think, highly unlikely, as a friend and I, over about 40 years, must have straightened approx 500 shafts and have never heard of one breakage even in cases of shafts which have been straightened several times. The people who damage them, seem to be rather careless as I have had them returned for repair again, just the day after the previous rework.

There was on the market 40 years ago, a fixture for straightening vertical shaft engines without dismantling the motor. It is still in use today, and I have made a couple for the other service dealers. The device is arranged to fix to the underside of the mower, and apply a straightening force to a substantial close fitting bush placed over the shaft.

Roy Grafton writes:

After reading some of the letters in *Model Engineers' Workshop* about chuck keys flying across the workshop I wondered if readers would be interested in my solution. The basis is a metal box of the type made for a single gang 13amp socket. A paxolin cover was made to fit on the front. Find a piece of tube (I used a section of telescopic aerial) big enough for the key handle to pass through. Drill a

hole in the top of the box and araldite the tube into the hole. Next obtain (lovely elastic word) a microswitch capable of handling the current drawn by your machine and fix it to the inside of the paxolin cover in such a way that inserting the key will close the switch.

Run two cables into the box using proper clamps, place a 13amp plug on one and a 13amp socket on the other. Connect the neutrals with a connector block, most of these boxes have a connection inside for earth wires. Connect the live wires to the microswitch, one to the common terminal and one to the normally open terminal. Fix the box near your machine and pop the key in. Plug the machine into the socket and off you go.

I've found two advantages to this

- the machine cannot possibly start until the key is in place and
- its (almost) impossible to lose the darn thing! No measurements are given, it all becomes obvious when you get the bits together.

Roger Hailey of Warwickshire writes:

Further to Mr. B.C.Spick's enquiry in MEW issue 101 and Mr. Ted Wale's reply in MEW issue 103 about Atlas lathes, the good news is that most parts are available in this country from: Mr. M.J.Kurn who trades as MJK Engineering at 16 Mansfield Place, North Ascot, Berkshire, SL5 8ND. Tel: 01784 434225

Email: mikekurn@otmservo.com

He used to run the Acorn Machine Tool Co and took over the business when it was sold. He has the agency from Clausing Industries Inc referred to in Mr. Ted Wale's letter. The parts he stocks or can get, also cover most of the UK variations of the Atlas; ie: Sphere, Halifax and Acorn. I was referred to him by Clausing Industries. He is most helpful and this has solved a problem for me and I suspect several others judging by comments I have read in MEW over the years.

Norman Atkinson writes:

May I add some information to Harold Hall's interesting article on hardwoods.

I have found that Lignum vitae is not difficult to machine. Despite its density, it is one of the few hardwoods which will turn on a small lathe using conventional lathe tools in a fixed holder.

Normal cutting tools with angles for steel are quite suitable but the best results come from razor sharp edges.

The swarf comes off like brown candle wax and can be used for final polishing. I should add that this is one of the better hardwoods for things like Northumbrian bagpipes. My experience rates it far easier to work than rosewood and African Blackwood. The latter woods look better but are far more difficult to turn.

As an interesting aside, my wife is a clarinet player and a brilliant article has just been published on CNC machining of clarinets in the "Clarinet and Saxophone".

Gert Raynholt of Egaa, Denmark, writes:

Other readers may be interested in this tip which may be applied when a ring or tube has to be turned on the outside, concentric to the previously finished bore. We will assume that there is no suitable mandrel to hand, nor the time or desire to make one. But if you happen to have an adjustable reamer of the right size, it can offer a quick

solution.

Chuck the reamer shank, feed the work on to the reamer, and adjust it, without undue force to sit tight. Put a live centre into the tailstock, run it up to steady the end of the reamer, and clamp in position. The outside diameter of the work is now easily accessible and ready to be turned.

If a high level of precision is demanded, the reamer can be set between dead centres using a driving dog, in which case please remember to lubricate the tailstock centre.

SUBSCRIPTION OFFER

WHEN YOU RENEW OR SUBSCRIBE TO

MODEL ENGINEERS'

WORKSTOP

FOR ONE YEAR

- Superb discount
- MEW contains useful projects, reviews of workshop equipment and many handy money-saving tips
- Free home delivery
- Avoid price increases
 throughout your subscription term

Call **01353 654429** now to subscribe (quote MEW105DP) or simply fill in the coupon below

	vould like a s <u>UK</u> □ £22,50	ubscription t			RoV		
Is this a re		urrent subsci	iption?		□ No	20.00	
Please quo		W105DP for			ods		
☐ Mastero	ard	□ Visa □	Amer	ican Expres	ss 🗆	Switch	
Cardholder	's name:						
Card no:							Ш
Switch Issu	ue no/valid d	ate:					
Payee Ad	dress						
Title:	Initials:	Surn	ame:				
Address:							
Postcode:		Country:					

Title:	. Initials: Surname:
Address:	
Postcode:	Country:
Tel:	E-mail:
	this box if you do not wish to receive any further information from Highbury mmunications Pic
	this box if you do not wish to receive any further information from companies carefully selected by us
MEW Subso	RIBERS PLEASE RETURN YOUR COMPLETED COUPON TO: criptions, HIGHBURY DIRECT FULFILMENT, Link House, new's Walk, Ely, Cambs. CB7 4ZD.
US/CANAD	IAN SUBSCRIBERS – PLEASE RETURN YOUR COMPLETED
MEW Subso	criptions, Wise Owl Worldwide Publications, 5150 Candlewood St., ewood, CA 90712 - 1900 USA
0	R E-MAIL OUR SUBSCRIPTION DEPT. NOW
	leisure@hhdf.co.uk

Delivery Address (if different from Payee's address)

This offer closes 17th April 2005
Photocoples of this page are acceptable

- Variable Speed 30-90m/min
- 1kw Motor
- **Cutting Capacity** 85mm dia x 105mm long
- No need for coolant

Speed 180-2300rpm

Made in Austria

Maximat Super II

- Swing 280mm
- Centre 650mm
- Geared Head
- 25m or 35m Bore
- Price from £5200.00
- Made in Austria

230V version now available

Speeds 45-2300

Machines shown with optional accessories – Prices include VAT

Emcomat 17/20 Series Toolroom Lathe Swing 340-400mm Centres 700-1000mm Toolroom spec.

- · Advanced features, eg. constant surface speed
- Price from £11,500
- Made in Austria

EXCLUSIVE IMPORTER FOR PRO Machine Tools Ltd

17 Station Road Business Park Barnack, Stamford, Lincolnshire PE9 3DW Tel: (01780) 740956 - Fax: (01780) 740957 E-mail: ProMachUK@aol.com Internet: http://www.emcomachinetools.co.uk

5C Collet Chuck Key Operated 5C Collets Round 1/8 - 1.1/16in x 64ths £6.00 3 - 26mm x 1mm Hex 1/8 - 7/8in x 16ths 1/8 - 3/4 x 16ths **5C Collet Sets** 1/8 - 1in x 1/8ths (8pc) 1/8 x 1.1/16 x 16ths (17pc) 1/8 x 1.1/16 x 32ths (31pc)

Recess Mount £105 1/8 x 1.1/16 x 64ths (64pc) Camlock D1-3 £161 3 - 26mm x 1mm (24pc) **ER Collet Chucks ER Collets**

ER11

ER16

FR20

ER25

ER32

Spanner Included	West 1		9 6	
2MT ER16 2MT ER20 2MT ER25	3/8" Whit / M10 3/8" Whit / M10 3/8" Whit / M10	£44 £44 £44	ER11 ER16 ER20	0.5 - 7 x .5mm 1 - 10 x 1mm 1 - 13mm x 1mm
3MT ER20	3/8" Whit / M10	£44 £44	ER25 ER32	1 - 16mm x 1mm 3 - 20mm x 1mm

	3C Collets	
30Int ER32	1/2" Whit / M12	£59
	1/2" Whit / M12	
R8 ER32	7/16" UNF	£49
R8 ER16	7/16" UNF	£49
3MT ER32	3/8" /1/2" Whit	£44
3MT ER25	3/8" Whit / M10	£44

1/16 - 1/2in x 16ths	£8.50
1 - 12mm x 1mm	£8.50
3C Collet Set	

1/16 - 1/2 in x 16ths (8pc) £60.00 £90.00 1 - 12mm x 1mm (12pc)

All prices subject to the addition of Send s.a.e. for full details a.da an 400 the aboverx d Poarsinge & V.A.T. Rotagrip Ltd

16-20 Lodge Road, Hockley, Birmingham B18 5PN Tel 0845 100 1566 Fax 0845 100 9188

£6.00

£8.00

£8.20

£36.00

£68.00

£102.00

£204.00

£90.00

£6.00 £6.00

£6.00

£7.00

£7.00

£65.00

£45.00

£60.00

£75.00

£90.00

£6.50

£6.50

£50.00

ER Collet Sets

0.5 - 7mm (13pc)

1 - 10mm (9pc)

1 - 13mm (12pc)

1 - 16mm (15pc)

3 - 20mm (18pc)

1/4, 3/8, 1/2, 5/8 & 3/4in

6, 10, 12, 16 & 20mm

10 Piece Set

R8 Collets

This is just a small selection of collets & collet

chucks available. Please phone for details.

Hy4 Precision Products Brings to You Exceptional Quality Measuring Equipment and Small **Tools at Unbeatable Prices**

SALE NOW ON

Digital Calipers From £19.99

✓ Moisture Proof. Inch/mm

conversion, zero

at any position,

data output.

Resolution:

Includes: 2

batteries (1

inserted).

locking screw and

0.01mm / 0.0005"

instructions and

protective case.

comes supplied in

To Order Visit Our Website

www.hy4.co.uk

Next Day Despatch

Size	MRSP	Sale Price
15cm/6"	£22.99	£19.99
20cm/8"	£39.99	£30.99
30cm/12"	£48.99	£39.99
100cm/40"	£350.00	£299.99
Data output from	CDC Panalution	0.01mm/0.000E

Our aim is to provide customers with a fast and efficient service supplying quality tools and exceptional competitive prices!

Tel: 01926 818418

Our website www.hy4.co.uk offers 24 hour access to a unique range of Engineering Equipment and Tools available for next day despatch All our products carry a full UK warranty.

Hy4 Precision Products Ltd Web: www.hy4.co.uk Email: info@hy4.co.uk

DARTMOUTH, **MAYOR'S AVENUE, SOUTH DEVON TQ6** Telephone: (01803) 833134 • Fax: (01803) 834588 Credit Card Hotline: 01803 839500 (minimum £10)

TO COVER VAT,

AL	WAYS AVAILABLE	,		,	& POST
1.	MODEL ENG TAPS & DIES SET (2 Taps each size) 1/8 x 40, 5/32 x 40, 3/16 x 40, 7/32 x 40.	1/4 x 40. 9/52 x 32. 5/16 x 32. 3/8 x 32		TAPS: £18 SET	DIES £18 SET
2.	SPECIAL MODEL ENG. SET (2 Taps each size) 1/4 x 32, 9/32 x 40, 5/16 x 40, 3/8 x 40, 7/16		P	TAPS £22 SET	DIES £22 SET
3.	BA TAP SET (2 Taps each size) & BA DIE SET: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 BA		ALSO	TAPS £18 SET	DIES £20 SET
4.	26 TPI TAP SET (2 Taps each size) & 26 TPI DIE SET (CYCLE OR BRASS THREAD)	1/4 x 26, 5/16 x 26, 3/8 x 26, 7/16 x 26, 1/2 x 26		TAPS £18 SET	DIES £18 SET
5.	BSF TAP SET (2 Taps each size) & BSF DIE SET: \$\frac{1}{16}, \frac{1}{6}, \frac{5}{16}, \frac{5}{16}, \frac{7}{16}, \frac{1}{16}, \frac{1}{2}		AVAILABLE	TAPS £18 SET	DIES £18 SET
6.	BSF TAP SET (2 Taps each size) & BSF DIE SET: 9/16, 5/6, 3/4, 7/6, 1"		5	TAPS £18 SET	DIES £18 SET
7.	BSW TAP SET (2 Taps each size) & BSW DIES: 1/8, 5/32, 3/16, 1/4, 9/32, 5/16, 3/8, 7/16, 1/2		8	TAPS £20 SET	DIES £20 SET
8.	BSW TAP SET (2 Taps each size) & BSW DIES: 9/16, 5/6, 3/4, 7/6, 1"			TAPS £18 SET	DIES £18 SET
9.	METRIC COARSE TAP SET (2 Taps each size) & METRIC DIE SET: 2, 3, 4, 5, 6, 7, 8, 9	9, 10, 12 m/m	2	TAPS £20 SET	DIES £20 SET
10.	METRIC COARSE TAP SET (2 Taps each size) & METRIC DIE SET: 14, 16, 18, 20, 22,		WOODEDN	TAPS £25 SET	DIES £25 SET
11.	UNF OR UNC TAP SET (2 Taps each size) & DIE SET: 0 to 12 UNF or 1-12 UNC		8	TAPS £15 SET	DIES £18 SET
12.	UNF OR UNC TAP SET (2 Taps each size) & DIE SET: 1/8, 3/16, 1/4, 5/16, 3/8, 7/16, 1/2		E	TAPS £18 SET	DIES £18 SET
13.	UNF OR UNC TAP SET (2 Taps each size) & DIE SET: 9/16, 5/8, 3/4, 7/8, 1"			TAPS £18 SET	DIES £18 SET
14.	GAS (BSP) PIPE SET: 1/8, 1/4, 3/8, 1/2, 5/8, 3/4 (2 Taps each size)		BOXES	TAPS £30 SET	DIES £25 SET
15.	METRIC FINE PITCH SETS (10 sizes from 3 - 12 m/m) TAPS & DIES		XE	(10) TAPS £18 SET	DIES £25 SET
16.	METRIC FINE PITCH SETS (6 sizes from 14 - 24 m/m) TAPS & DIES		03	(6) TAPS £18 SET	DIES £25 SET
17.	ENDMILL SET (THREADED SHANK) [1/8, 3/16, 1/4, 5/16, 3/8, 7/16, 1/2] or (m/m 3, 4, 5, 6, 7, 8, 1	O, 12 m/m]	12 7	A-2000	£20 EACH SET
18.	SLOT DRILL SET (THREADED SHANK) [1/8, 3/16, 1/4, 5/16, 3/8, 7/16, 1/2] or (m/m 3, 4, 5, 6, 7, 8,	, 10, 12 m/m]			£20 EACH SET
19.	ENDMILL SET, 5/8, 3/4, 7/8, 1" DIA, WITH 5/8 THREADED SHANK TO FIT COLLET CHUCK				£25 SET OF 4
20.	COUNTERBORE SET (FOR SPOTFACING) [3/16, 1/4, 5/16, 3/8, 7/16, 1/2] OR [m/m 3, 4, 5, 6, 8 m				£30 EACH SET
21.	REAMER SET (STRAIGHT SHANK) [1/16, 3/32, 1/8, 5/32, 3/16, 1/4, 5/16, 3/6, 7/16, 1/2] or [m/m 2, 3, 4,	, 5, 6, 7, 8, 10, 12 m/m]			£30 EACH SET
22.	DRILLS (LONG SERIES) 10 VARIOUS SIZES BETWEEN 1/16 - 5/16 STRAIGHT SHANK				£6 LOT
23.	MORSE TAPER SOCKET REAMERS (FOR CLEANING MORSE TAPERS)	No. 0, 1, 2 M/T @ £18 EA.	No. 3 @	£22.	No. 4, 5, 6 m/t @ £35
	BALL-NOSE MILLING CUTTERS (THREADED SHANK) 1/8, 3/16, 1/4,				£12 SET
24.	D-BIT SET (FOR DRILLING SQUARE BOTTOM HOLES) 1/16, 1/8, 3/16, 1/4, 5/16, 3/8, 7/16, 1/2 DIA			C101101101010101010101010	£25 SET
25.	SLITTING SAW SET (HS) 3 PIECES, BETWEEN 1/64, - 1/16 (FINE TEETH)				E6 SET 2" DIA @ £5 SET
26.	CENTRE DRILL SET (HS) 1/8, 3/16, 1/4, 5/16, 7/16 @ £5 SET		1/2·IND	EXABLE ENDMILL (THR	EADED SHANK) @ £14 WITH TIP
27.	TAPER SHANK DRILLS (No. 1 M/T) 10 VARIOUS SIZES UP TO 1/2 DIA				@£10

@ £18 EACH @ £70 COMPLETE IN HSS @ £15 SET, OR CARBIDE TIPPED @ £18 SET 10 SMALL BURRS @ £5 LOT COVENTRY DIEHEAD CHASES - ALL SIZES DHILLS WITH 1/2 SHARK 1/6, 1/6, 1/6, 1/6, 1/6 ID A & FETS SET DHILLS SELLOW 1/6, UNA & 50 3 - WAY PRECISION ANGLE VICE, 50 m/m JAWS, 180 DEGREE COMPLETE CIRCLE INDEXABLE TOOL HOLDERS (SWISS) 1/6 SHANK OR 1/2 SHANK PARTING OFF TOOLHOLDERS, COMPLETE WITH COBALT BLADE. WARROWS BRILLS, BELOW 1/6 IDIA 1/6 EACH, STUB, QUICK SPIRAL, SLOW SPIRAL, LEFT HAND, @ £5 EACH TYPE KNURLING TOOLS. 2 WHEEL SIZE @ £5, 6 WHEEL SIZE @ £10 (SPARE KNURLS £2 EACH) ROHM PRECISION DRILL CHUCKS, WITH NO. 1 OR NO. 2 MORSE TAPER ARBOR @ £80 + POSTAGE @ £10 EACH, WITH TIP [EXTRA TIPS £2] V₁₆ @ £13, V₂ @ £14, V₁₆ @ £14, V₄ @ £16 EACH

1 - 6m/m x .1m/m @ £18.

FOR UNITHREAD TAPS & INSERTS Call 01803 55959 Also: Selection of Dovetail, Woodruffe, Balinose, Concave, Spotfacers, Broaches, Knurls, Carbide Centres, Cycle Taps & Dies, Boring Bars, Left Hand Tap & Dies, Milling Cutters, Reamers, Countersinks, Gear Cutters, Slitting Saws, Acme Taps, Diehead Chasers, Socket Reamers. These are available between 50% & 75% off list price

Open: Monday to Friday 8am to 5pm — Sat to Noon Despatch by return. Overseas P&P.P.O.A. Send for new complete Catalogue (Stamp Please)

6 - 10m/m @ £25 SET

MAGNETIC BASE @ £15 EACH RE-THREADING FILES (IMP OR M/M) @ £6 EACH

\$\frac{1}{16} @ £7, \$\frac{3}{8} @ £8, \$\frac{1}{2} @ £10

The widest choice ... the best prices!

GH-1322 Lathe ONLY £2,550

- 165mm centre height
- 560mm between centres
- Removable gap bed allows 476mm swing 38mm spindle bore
- Supplied with 3 and 4 jaw chucks
- Faceplate
- · Fixed and travelling steadies
- Coolant system
- Halogen lighting
- Telescopic leadscrew covers
- Four way tool post

Also available as 750mm between centres.

£2,990.00

BH-600 Lathe

ONLY £1,600 inc VAT & Delivery

For a limited period we will include a revolving centre, tailstock drill chuck and a set of 16mm index lathe tools FREE of charge!

Optional equipment

- Quick change tool post hardened and ground, supplied with 3 tool holders and parting off holder with blade £170 inc VAT with fitting kit to suit BH-600 fitting
- Coolant system £130 inc VAT
- Tailstock die holder £39 inc VAT

- THE ULTIMATE MODEL ENGINEERS LATHE
 HARDENED AND GROUND BEDWAYS
 TAPER ROLLER BEARING HEADSTOCK SPINDLE
 TEE SLOTTED CROSS SLIDE

- POWER CROSS FEED

- NORTON THREAD CUTTING GEARBOX
 2HP SINGLE PHASE MOTOR
 BACK GEAR WITH 50 RPM LOW SPEED
 1 3/8" SPINDLE BORE

SUPPLIED WITH ACCESSORIES AT NO

- EXTRA CHARGE

 6" 3 JAW CHUCK

 8" 4 JAW CHUCK

 10" FACE PLATE

- FIXED & TRAVELLING STEADIES FOUR WAY TOOL POST
- IMP/MET THREADING

CHUCK

SWARE TRAY

REAR CHIP GUARD

· STAND, COOLANT TRAY, REAR SPLASH BACK

SUPPLIED WITH:
• 4" 3 JAW SELF CENTERING

4"4 JAW INDEPENDENT

VMC Mill ONLY £1,450

inc VAT & Delivery

SUPPLIED WITH POWER FEED TO X TRAVEL AT NO EXTRA COST

- · ILLUSTRATED WITH OPTIONAL D.R.O AND POWER FEEDS
- TABLE SIZE 26" X 6"
 MOTOR 1 ¹/2 HP
- · AVAILABLE 3MT R8 -METRIC - IMPERIAL

SPECIFICATION:

- CENTRE HEIGHT 4' DISTANCE BETWEEN CENTRES 14

- SWING OVER CROSS SLIDE 5"
 SWING OVER CROSS SLIDE 5"
 SPINDLE BORE 3/4" CLEARANCE
 SPINDLE SPEEDS (6) 140/1710 RPM
 HEADSTOCK TAPER 3MT
 TAILSTOCK TAPER 2MT
 RANGE OF IMPERIAL THREADS 8-24 TPI RANGE OF METRIC THREADS 0.4MM 3MM
 MOTOR 1/2 HP 1 PHASE DIMENSIONS 38" LONG x 19"WIDE x 15" HIGH WEIGHT 230 LB
- CHUCK FIXED STEADY FULL ENCLOSED GEARED HEADSTOCK • TRAVELLING STEADY • FACE PLATE SPEED SELECTION BY LEVER FOUR WAY INDEXING TOOL POST
 3MT AND 2MT DEAD CENTRES
 METRIC & IMPERIAL THREAD
 CUTTING CHANGE GEARS
- PRECISION GROUND VEE BEDWAYS
- LARGE BORE SPINDLE RUNNING ON TAPER ROLLER BEARINGS

BV-20 Lathe

ONLY £525 inc VAT & Delivery

COVERED LEADSCREW

Optional floor stand £99

- SET OVER TAILSTOCK FACILITY
- INDIVIDUAL ACCURACY TEST REPORT
- SAFE ELECTRICAL INTERLOCKS TO CHUCK

WM-20 NEW MILLING MACHINE

ONLY £3,500 inc VAT & Delivery

- INVERTOR DRIVE -INFINITE SPEED CONTROL
- SPEED RANGE
- 25 1480RPM TABLE SIZE 9" X 36"
- R8 SPINDLE 1.5HP WILL OPERATE

FROM 13AMP SOCKET WEIGHT 750KGS

Warco Mini Lathe ONLY £375 inc VAT & Delivery

- 31/2" CENTRE HEIGHT X 12" BETWEEN CENTRES
- · SUPPLIED WITH 3 JAW CHUCK · FACEPI ATE
- THREADCUTTING
- · COOLANT TRAY AND SPLASH BACK
- · VARIABLE SPEED 0-2500RPM WITH BACK GEAR FOR MAXIMUM TORQUE
- · HARDENED AND GROUND VEE BED
- ACCURACY TEST CERTIFICATE WITH EACH LATHE
- RELIABLE USA BUILT PRINTED CIRCUIT BOARD - THE HEART OF THE MACHINE
- OPTIONAL ACCESSORIES STEADIES AND VERTICAL SLIDE.

Special offer Tailstock drill chuck and TCT indexable lathe tool set with each machine

Warco WMT 300/ ONLY £799 inc VAT & Delivery Combination Lathe Mill Combination Lathe Mill

6° CENTRE HEIGHT X 20°
BETWEEN CENTRES
SUPPLIED WITH
SUPPLIED WITH
SUPPLIED WITH
SUPPLIED WITH
FIXED AND TRAVELLING
STEADIES
VICE
PACE CUTTER
LATHE TOOL SET
IMP/MET THREADCUTTING

Warco WMT 300/2 ONLY £1099 inc VAT & Delivery

SIMILAR TO THE SPECIFICATION AND ACCESSORIES TO WMT-300/2. POWER CROSS FEED TO MILLING TABLE/CROSS SLIDE. DEEP THROAT FOR EXTRA MILLING CAPACITY.

Delivery UK-Mainland

inc VAT & Delivery Optional Stand £89 Ideally matched to the BV-20 Lathe

Table size
Longitudinal travel
Cross Travel
Spindle Stroke
Spindle Taper
Diameter of Spindle Diameter of Column

Max distance spindle to table

Height with head at top of column Width Depth Spindle speeds Weight Head tilting

654mm x 150mm 455mm 145mm 90mm 3MT 63.5mm 66.65mm

320mm

ZX-15 Milling 1067mm 775mm 559mm 400-1640 4 phase 1/2hp with F/R switch Machine

90-0-90 worm gear tilt mechanism

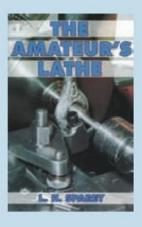
Warco, Fisher Lane, Chiddingfold, Surrey GU8 4TD Fax: 01428 685812 Tel: 01428 682929 warco@warco.co.uk www.warco.co.uk

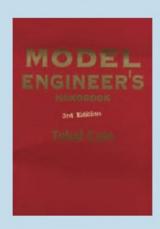
Back in print

AN ALL-TIME MODEL ENGINEERING CLASSIC

THE AMATEUR'S LATHE

L.H.Sparey


Virtually the standard work on small (3-1/2 inch) lathework since its original publication in 1948.


0-85242-288-1

224 pages

Illustrated paperback

£8.75

NO MODEL ENGINEER SHOULD BE WITHOUT

MODEL ENGINEER'S HANDBOOK

Tubal Cain

This third edition comprises a compilation of tables, facts, procedures and data that the author has found invaluable in his model engineering activities. It provides a real mine of information to which you will return again and again. Not the least of its attributes is the use of data and calculations in both imperial and SI units. The book also contains helpful explanations of the how's and why's of using many of the entries.

1996 1-85486-134-4

3rd Edition

240 pages

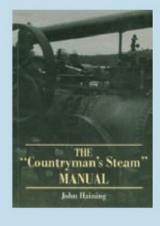
Illustrated paperback

£9.95

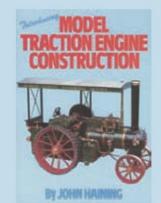
Our favourite live steam trio

THE COUNTRYMAN'S STEAM MANUAL

John Haining


First published in 1982, this new and enlarged edition covers the design, construction and care of steel boilers in general, with formulae and data used by firms of repute. Designs of three vertical boilers are included - the Sentinel, the Caradoc and a 3-inch scale version.

1996 1-85486-136-0


96 pages

Illustrated paperback

£5.95

THE MODEL LOCOMOTIVE

INTRODUCING MODEL TRACTION ENGINE CONSTRUCTION

John Haining

This book discusses types in a brief history, choice of model, workshop processes and the tools needed for every stage of construction. Profusely illustrated and full of interesting and useful information.

1983 0-85242-805-7

112 pages

Illustrated paperback

£6.95

FROM

THE MODEL LOCOMOTIVE FROM SCRATCH

B.Terry Aspin

The Model Locomotive from Scratch is based on a series of articles by Chuck, the pseudonym used by the author for a series of articles published in Model Engineer. Although

some of the techniques may be regarded as a little strange by some, all the examples shown are perfectly functional and the illustrations

factual. It is not merely a collection of previously published material - all the text and illustrations have been specially prepared by the author for this book in which he offers suggestions that can be regarded as an alternative to the more expensive option of acquiring one of the hundreds of commercially available model locomotives.

1998 1-85486-165-4

96 pages

Illustrated paperback

£10.95

Please add £1 p&p for single book orders and 50p for each additional book ordered

Send payment with your name, address and telephone number to: Customer Services, HIGHBURY LEISURE Publishing Limited, Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 oPS. Cheques made payable to Nexus Media Limited.

SIMPLY CNC

- Power feeds on every axis
 - Digital readouts
 - Engraving
- Machine impossible shapes
 - Easy to use software

3 Axis CNC Mill from £2999 inc VAT + Del. (UK Mainland only)

www.simplycnc.com 01292 311377

External Turning Tool Style STACR						
Size	Insert	Price	Insert	/e\		
8 x 8 x 100mm	TCMT090204	£17.50	£2.51	140		
10 x 10 x 100mm	TCMT090204	£18.00	£2.51	17		
12 x 12 x 100 mm	TCMT110204	£18.50	£2.51			
External Turning &	Facing Tool S	tyle SCLCI	3	Enja		
Size	Insert	Price	Insert	5		
8 x 8 x 100mm	CCMT060204	£17.50	£2.79	(8)		
10 x 10 x 100mm	CCMT060204	£17.50	£2.79	Jus.		
12 x 12 x 100mm	CCMT09T304	£18.50	£3.39	0		
			20.00	- 20		
External Turning T	ool Style SDJC	R		7		
Size	Insert	Price	Insert	10.7		
8 x 8 x 100mm	DCMT070204	£17.50	£2.79	4		
10 x 10 x 100mm	DCMT070204	£18.00	£2.79	193"		
12 x 12 x 100mm	DCMT11T304	£18.50	£3.42			
External Turning &	& Copying Tool	Style SDN	ICN			
Size	Insert	Price	Insert	4		
8 x 8 x 100mm	DCMT070204	£17.50	£2.79	W. W.		
10 x 10 x 100mm	DCMT070204	£18.00	£2.79	52		
12 x 12 x 100mm	DCMT11T304	£18.50	£3.42			
Boring Bar Style S	CLC					
Size	Insert	Price	Insert			
8mm dia x 110mm		£17.95	£2.79	-		
10mm dia x 125mm		£17.95	£2.79			
12mm dia x 150mm	CCMT060204	£17.95	£2.79			
16mm dia x 200mm	CCMT060204	£19.95	£2.79	(0)		
Boring Bar Style S	TFC					
Size	Insert	Price	Insert			
8mm dia x 110mm		£17.95	£2.51	-		
10mm dia x 125mm		£17.95	£2.51	100		
12mm dia x 150mm		£17.95	£2.51			
16mm dia x 200mm		£19.95	£2.51	9		
All tools supplied				Please add 20% to cover		
with one insert	Ro	tagrip Li	td	postage & V.A.T.		
16-20 Lodge Road, Hockley, Birmingham B18 5PN						
Tel 0845 100 1566 Fax 0845 100 9188						
161 0075 100 1500 1 dx 0075 100 5100						

Desk CNC Machine controller and Cam programming software for Windows computers. Machine DXF, STL, Image files, PCB drilling and milling.

Vector Cad/Cam low cost surface modelling and machining, and wireframe cad/cam for lathe, mill, wire EDM.

IMService:

THE Source for Low Cost Cad/Cam

http://www.imsrv.com

Free demo download, international credit card orders.

PHONE FOR YOUR FREE 120 PAGE CATALOGUE 01582 471900

ORDER ONLINE AT WWW.CHRONOS.LTD.UK

690.00

£110.00

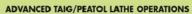
JFR Videos

JFR Video

CHRONOS IMPORTED CHUCKS!!

80MM

NEW - MICRO MACHINING DVD S BY J F RODRIGUEZ EXCLUSIVE TO CHRONOS - SOLE UK DISTRIBUTOR


THE MILLING MACHINE & ITS USES

4 HOURS LONG. COVERS ALL ASPECTS OF MILLING CODE DVD1 - £34.95 INC

GRINDING LATHE TOOL BITS AND OTHER THINGS

90 MINS. CODE DVD2 - £26.95

MICRO MACHINING ON THE TAIG/PEATOL LATHE 2 HOURS, INCLUDES FACING, TURNING, GROOVING, PARTING CHAMFERING, DRILLING, TAPPING ETC ETC ON THIS POPULAR SMALL MACHINE, EXERCISES ARE APPLICABLE TO ALL SMALL LATHES CODE DVD3 - £26.95

4 HOURS, SEE THE PEATOL LATHE PERFORM SOME OF THE MOST UNORTHODOX MACHINING TECHNIQUES THAT MOST THOUGHT WERE IMPOSSIBLE CODE DVD4 - £34.95

THREADING ON THE LATHE

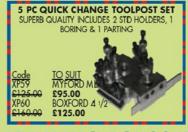
2 HOURS. FINALLY THE MYSTERY OF THREAD CUTTING HAS BEEN MADE SIMPLE ENOUGH FOR THE BEGINNER CODE DVD5 - £26.95

MACHINING OPS ON THE 7X10 VARIABLE SPEED MINI LATHE

4 HOURS. THIS DVD IS ALL ABOUT THE 7X10 VARIABLE SPEED MINI LATHE CURRENTLY OFFERED UNDER VARIOUS BRAND NAMES INCLUDING THE CLARKE 300. IT IS VERY THOROUGH INCLUDING A FULL TOUR OF THE MACHINE AND SHOWS VIRTUALLY VERY BASIC MACHINING CUT A LATHE CAN DO. AN EXTREMELY INFORMATIVE PRESENTATION WHATEVER TYPE OF LATHE YOU HAVE. CODE DVD6 - £34.95

MILLING WITHOUT A MILLING MACHINE

2 HOURS. LEARN HOW TO DO SUCCESSFUL MILLING WITHOUT A MILL - USING YOUR LATHE AND EVEN A DRILL PRESS. CODE DVD7 - £26.95


MAKING GEARS THE EASY WAY

4 HOURS. THE SECRETS OF THE HOB REVEALED. HOW TO USE ONE AND EVEN HOW TO BUILD ONE FROM SCRATCH ON A SMALL - MEDIUM SIZED LATHE AND SMALL MILLING MACHINE CODE DVD8 - £34.95

FURTHER DETAILS AT WWW.CHRONOS.LTD.UK OR ASK FOR OUR DVD LIST

SECURE ONLINE ORDERING AT WWW.CHRONOS.LTD.UK PRICES INCLUDE VAT & CARRIAGE (UK MAINLAND)

CHRONOS LTD, UNIT 14 DUKEMINSTER TRADING ESTATE, CHURCH ST, DUNSTABLE, BEDS, LU5 4HU

NEW - ENGINEERS MEASURING SET!! INCLUDES 12" STEEL RULE
BRASS POCKET CALIPER
BORE GAUGE, SCREW CUTTING GAUGE,
MET/IMP THREAD GAUGE
4" DIVIDERS, AUTOMATIC CENTREPUNCH
ANGLE GAUGE
POCKET SCRIBER
4" ENGINEERS SQUARE AND PROTRACTOR

GLANZE 3MT INDEXABLE

ENDMILLS

(prices are correct at time of going to press and are only available while stocks last)

CLASSIFIE

Advertisements

Send to Model Engineers' Workshop Classified Department, Highbury Leisure,
Berwick House, 8/10 Knoll Rise, Orpington, Kent. BR6 0EL Tel: 01689 886650 Fax: 01689 886666
All Advertisements will be inserted in the first available issue. There are no reimbursements for cancellations.
All advertisements must be pre-paid.

The Business Advertisements (Disclosure) Order 1977 - Requires all advertisements by people who sell goods in the course of business to make that fact clear. Consequently all trade ads in *Model Engineers' Workshop* carry

MODELS - MATERIALS - EQUIPMENT

ALL MODEL STEAM **ENGINES REQUIRED**

Any gauge, any condition including static models, unfinished projects OR JUST PLAIN WORN OUT!

Also Stuart Turner, Bing Marklin, Traction **Engines and Boats.**

Even complete collections. Will call and pay cash

Distance no object!!

Tel: 01507 358808

1897

KENT SCALE ENGINEERING and SUPPLIES

FREE

2005 MODEL ENGINEERING SUPPLIES CATALOGUE

Phone: 01795 665577

Unit 1, Times Close, AcomStreet, Shemess, Kent. ME12 2ST www.bentseale.co.uk

SOCKET SCREWS

Cap. Csk. Button. Set (Grub). Shoulder METRIC. BA BSF. BSW. UNF. UNC Hexagonal & Slotted Screws Nuts & Washers.

Dowel & Spring Pins. Dormer HSS Taps & Drills. Draper Tools.

NO MINIMUM ORDER PROMPT SERVICE Special offer Workshop Discount Pack

30 different packets of socket, hex. and slotted screws

Pack 1. BA 8BA to 2BA. Pack 2. Metric M2 to M6. ie value of pack is over £35.00 ther pack on offer to you for only £24.95 + £2.95 p/p
Send for this offer and benefit from a very

useful stock of screws in your workshop. You will not be disappointed. Refund guaranteed. Emkay Screw Supplies (MEW) 74 Pepys Way Strood Rochester Kent ME2 3LL

Email: emkaysupplies@onetel.net Tel: 01634 717256 www.emkaysupplies.co.uk

(Just 4 miles J13 M5 Motorway)

F Mail: sales@toolco.co.uk

TOOLCO

The home of good quality used tools and machinery

www.toolco.co.uk

or send for full itemised stocklist.

Unit 4, Ebley Ind Park. Ebley, Stroud, Glos GL5 4SP

Important: Phone for opening times before travelling.

PRECISION MACHINING FOR MODEL ENGINEERS

Trade enquiries welcome. Est. 36 years. Write G. Plume 137a Erith Road, Bexleyheath, Kent DA7 6BT or Tel: 01322 554516 anytime

Wanted: Information on Micon 850 C.N.C. control system as fitted on Matchmaker Lathe and Mill. any costs refunded Tel:01329 843205

For Precision Engineering, Model Engineering, Instrument Making, Prototype Development, Industrial Models etc. Please Call Ray on :-01603 488107. Est. 1983

LOCO'S WANTED Mail Order Only

Doris, GWR Hall, Britannia, Hielan Lassie, etc. Partbuilt or finished. Nationwide Coverage. For a friendly and personal

Please telephone Graham 0121 358 4320

ALL 31/2 GAUGE

Tich, Juliet, Rob Roy, Firefly, Jubilee, Maisie, service, any distance

Diamond Grinding Wheels tel: 0114 268 5472

BOOST PHASE CONVERTERS

Tel: 01452 770550 Fax: 01452 770771

The UK's most advanced phase converters with a unique 3 year guarantee. Never beaten on price.

Tel: 01344 303 311 Fax: 01344 303 312 Mob. 07952 717960 www.boost-energy.com info@boost-energy.com

BOOST HAS BEEN MANUFACTURING HIGH QUALITY PHASE CONVERTERS IN THE UK SINCE 1957

MAKE THAT

WE BUY, SELL & EXCHANGE

TOOLS, MACHINERY, MATERIALS, PART BUILT LOCOS, MODELS ETC. WORKSHOP TOOLS, MACHINES, MODELS WANTED – WE COLLECT & PAY CASH

M.E. SALE & EXCHANGE

Compass House, High St., Rotherfield, Sussex. Phone (01892-85) 2968 Long S.A.E. for List

BA FASTENERS IN BRASS STEEL & STAINLESS

SPLIT PINS, TAPER PINS, ROLL PINS, TAPS, DIES, DRILLS, NUTS WASHERS RIVETS, MATERIALS

Send Stamped addressed envelope plus two first class stamps for 28 Page List (Overseas £1.50) Quote MEW.

"ITEMS" MAIL ORDER LTD, 46, ST. MARTINS ROAD, NORTH LEVERTON, RETFORD NOTTINGHAMSHIRE DN22 0AU Telephone 01427 884319 Fax 01427 884319

Enaineerina Sunnlies

Visit our new 6500 sq ft premises in Dunstable

Order securely on-line www.chronos. Itd.uk

CL500M WITH LIVE CENTRE DRILL CHUCK 3 JAW CHUCK SET OF 6 TOOL **FLYCUTTER DEAD** CENTRES SCREWCUTTING COMPOUND SLIDE 4 WAY TOOLPOST MACHINE VICE + KNURLING TOOL TEL: 01582 471900 FOR YOU FREE 125 PAGE CATALOGUE UK MAINLAND 3820

CL300M - £360 OR LATHE PLUS 2MT LIVE CENTRE **3MT DEAD CENTRE SET OF 6 TOOLS DRILL CHUCK 4 JAW CHUCK**

£425!!

NOW STOCK A HUGE RANGE OF CLARKE MACHINERY

AND CARRIAGE (UK MAINLAND)

VISA

UNIT 14, DUKEMINSTER TRADING ESTATE, CHURCH STREET, DUNSTABLE, BEDS LU5 4HU TEL (01582) 471900 FAX (01582) 471920 WWW.CHRONOS.LTD.UK EMAIL SALES@CHRONOS.LTD.UK

Don't wait for the next issue! Check out the Internet Web Site above. It contains a stocklist of used lathes, millers, grinders, drills, saws, miscellaneous machinery, accessories, items of interest, etc. A stocklist is also available 'FREE' by post.

Contact: David Anchell, Quillstar Ltd, Lower Regent Street, Beeston, Notts. NG9 2DJ Tel 0115 9255944 Fax. 0115 9430858 or you can send an e-mail to: david@tradesalesdirect.co.uk. WORLDWIDE SHIPPING. TRADE SALES DIRECT IS A SUBSIDIARY OF QUILLSTAR LTD.

NEW! - Lower cost, compact, high performance speed controller and motor combination.

The new CL range features start, stop and emergency stop buttons and speed control with forward, reverse and jog. It comes complete with high quality motor and is ready to mount, plug in and go!

Call us now for more information and friendly advice on 01925 444773 or visit www.newton-tesla.com From only £390 inc VAT

MAKE THAT CALL TODAY PARTBUILT MODELS BOUGHT. All locomotives, at any stage of construction. Completed models also bought regardless of condition. Traction engines and all Stuart stationary engines wanted - beam, vertical, horizontal etc. part built or complete. Will travel any distance. Please telephone Graham, 0121 358 4320. (T)

TESLA Unit G18, Warrington Business Park, Long Lane, Warrington, Cheshire WA2 8TX, UK

Operate three phase machinery from your single phase supply system. " Insi

Power Capacitors Limited

30 Redfern Road, Tyseley, Birmingham B11 2BH Tel: 0121 708 2811/0121 708 4522 – Fax: 0121 765 4054 E-Mail: transwave@powercapacitors.co.uk

MODEL MAKING METALS

on to 12in. dia. bright steel, stainless steel, bronze, spring steel, bra aluminium, silver steel, steel tubes, bolts, nuts & screws, tap dies drills, white metal casting alloys. Fine materials, chain, plastic, Lath milling machines and equipment, new and secondhand.

Mail order nationwide and worldwide callers Mon.-Fri. 9-5pm.

Access/Visa welcome

Send now for a free catalogue or phone: Milton Keynes Metals, Dept. MEW, Ridge Hill Farm, Little Horwood Road, Nash, Milton Keyn MK17 0EH Tel: (01296) 713631 Fax: (01296) 713032

LOOK

www.mkmetals.sageweb.co.uk email: sales@mkmetals.co.uk

NAME PLATES

Download prices & info at www.nameplates.org.uk 45 STANDARD SIZES

- 7 FONTS
- 11 FANCY BORDERS
- ALUMINIUM, BRASS & LAMINATES

25 WHITTAKER ROAD SUTTON, SURREY SM3 9QG E-mail rainbowbadges@tiscali.co.uk

020 8644 5419

ALL 5" GAUGE LOCO'S WANTED

Hunslet, Jinty, Simplex, Speedy, BR Class 2, Horwich crab BR 8400 tank, Maid of Kent, Black Five, Jubilee, Royal Engineer, BI Springbok, Torquay Manor, Castle, A3/A4 etc. Partbuilt or finished. Nationwide Coverage. For a friendly and personal service, any distance.

Please telephone Graham 0121 358 4320

PHASE CONVERTERS 2HP TO 50HP

A Top Quality Range of Static and Rotary Converters to run 3-phase 415v machinery from 240v single-phase supply.

For further details contact:

Motorun Phase Converters 23 Waldegrave Road, Teddington, TW11 8LA Middx. Tel: 020 8977 0242 Fax: 020 8943 3326 Ansaphone Service After Hours

Division Master Convert your rotary table, dividing "Indexing Without Pain" head, or dividing attachment to CNC

ig Lathe by Tony Jeffree + £2 P&P from DivisionMaster, or Peatol Machine Tools, 19 Knight low Road, Harborne, Birmingham, B17 8PS Tel: 0121 429 1015

ALL DIVISIONS from 1 to 9999 - NO GAPS, NO DIVIDING PLATES, NO HASSLES!

ANY angular movement up to 360 degrees Positions to -1/200th degree (with 90:1 worm ratio) Configurable for drive ratios to 5000:1 and motors to 2A/phase Stores up to 4 different configuration personalities for different rotary devices, motors, speed settings etc. Converted Homge and Vertex rotary tables available to order

Motor mounts and shaft couplings for Homge or Vertex 4 /6 /8 rotary tables, and Homge or Vertex BS0 dividing heads Stepper motors from 100 oz-in to 1000 oz-in available to order

Contact us or visit our website for full details and latest prices Visit us on stand 29 at the Harrogate ME exhibition

6-8 May 2005

DivisionMaster Ltd., 11a Poplar Grove, Sale, M33 3AX U.K. Tel: 0161 973 4278 Fax: 0161 973 6534 sales@divisionmaster.com http://www.divisionmaster.com

ENGINEERS TOOL ROOM

The tool supplier for Professional & Model Engineers

CUTTING TOOLS: HSS - COBALT -

Drills: Metric, Fractional, Jobbers, Long Series, Boxed Sets

Reaming: Metric, Fractional Hand and Machine.

Threading: Taps, Straight Flute, Spiral Flute, Boxed Sets, Metric, Imperial, Unified, BA.

Dies: Split Dies, Solid Dies, Die Nuts, Metric, Imperial, Unified, BA.

Milling: End Mills, Slot Drills Plain and Screw Shank, Horizontal Cutters, Slitting Saws, Collets.

Turning: HSS Tool Bits, Tungsten Carbide Tipped Turning Tools, Insert Tools, Collets.

Measuring: Micrometers, Verniers, Dividers, Callipers, Setting up Tools

Workshop Machinery: Lathes, Milling Machines, Pillar Drills, Band Saws

Machining Services: full machining service available, turning, milling, grinding, wire and spark eroding, tool and mould making

"New" Tool Catalogue available FREE – Send for one today

CHECK OUT OUR SPECIFICATIONS & PRICES BEFORE ORDERING YOUR MACHINES — Contact us for a Quotation

Tel: 01443 442651 Fax: 01443 435726 Mobile 07770 988840

Web Site: www.engineerstoolroom.co.uk Email: regpugh@aol.com UNIT 28, ENTERPRISE CENTRE, LLWYNYPIA ROAD, TONYPANDY, RHONDDA CF40 2ET

Sievert torch. Economiser handle, neck tube, large 2960 burner, pressure regulator 0-2 bar (Bullfinch), 6m hose. All in very good condition. £60. Tel: 01327 351274 (Ray Henshaw)

Myford ML7, stand, 3/4 jaw, faceplate, change wheels, tools swivel vertical slide and quick change tool post. £750. Tel: 01730 813504

Tool Post internal grinder, with small 2"-3" dia grinding wheels, medium or fine grit to fit. Good to fair used condition to fit 41/2" Boxford Lathe. Tel: 01865 773252

Lathe 5" x 24" stand, power feeds, screwcutting with change gears, backgear, slotted crosslide, coolant, 3 & 4 jaw chucks. £250. Tel: 01245 362997 (Chelmsford)

Hobbymat MD 65 lathe, complete with BFE 65 mill vice, mill table, four jaw chuck, collet chuck and standard equipment. £700 o.n.o. Tel: 01924 270319

For Sale: Original as new information/training videos. The Welding Institute: 'Oxy-Acetylene Welding' also 'MIG welding'. Rudy Kouhoupt: 'Grinding Lathe Tools' also 'Operating a Shaper'. Ted Jolliffe: 'A taste of Turning'. Woodworking: 'Shop Secrets from Master Craftsmen'. Also various MEW magazines. Please phone Steve 01527 543869 (Worcs)

Laser cut parts frames, cabs, tender kits, stretchers, spokes, hornplates, etc. Tel: 01302 721611 (Doncaster)

Closing Home Workshop. Many small items for sale. Also MEW Magazines, issues 19 to 103. Tel: 01780 782581 (Peterborough)

For Sale: Full set of MEW magazines and two Index Books. £350 plus postage. Tel: 01889 882676 (Staffordshire)

Myford Super 7 with gearbox on metal cabinet. Fully equipped with 3 and 4 jaw chuck. Excellent condition. $\Sigma750$. Tel: 01270 877195 (Staffs)

Myford ML7 with TRI-LEVA and screw cutting gearbox plus Myford cabinet. Excellent condition, includes 3 & 4 jaw chucks/faceplate. Various metals also available. £900. Tel: 01284 789477 (Suffolk)

Victoria Elliot Horizontal milling machine, extechnical college. Metric dials. Good condition. 3 phase. Seen Working. £275. Tel: 01388 718334 (Co. Durham)

Hand Shaper Adept No. 2. Good condition. Buyer collects. £100. Tel: 01424 733083 (East Sussex)

Emco tool post grinder. Virtually new and in box. £120. Tel: 0114 2712731 or 01226 759204 (South Yorkshire)

Myford ML7 lathe, stand, 3&4 jaw chucks, change wheels, range of tools, manuals. £750. Tel: 01508 492559 (Norwich)

Cowell 90 lathe 3 & 4 Jaw chucks, manual. £275. Tel: 01394 282906 (Suffolk)

Peatol lathe with motor, lots accessories including vertical slide. Little used. £180 o.n.o. Tel: 01473 832032 (Suffolk)

Wanted: Four-way tool post, Raglan Littlejohn, 5 inch. Tel: 01527 873112 (Worcs)

Wanted: Myford ML7 Handbook, headstock front guard, T.Slide and X Slide Bezels, Square Toolpost, Three Point Steady. Tel: (Day) 02476 644475 (Corley Moor)

THINKING OF SELLING YOUR LATHE, MILL OR COMPLETE WORKSHOP

and want it handled in a quick, professional no fuss manner? Contact David Anchell, Quillstar (UK) Ltd (Nottingham).

Tel 0115 9255944 Fax 0115 9430858

Non-Ferrous material supplied in all forms, tailored to your need by size & quantity. Aluminium, Brass, Copper & Stainless steel.

Catalogue free. P.L. Hill (Sales) Ltd

2, West Street, Bradford, BD2 3BS

Tel/Fax: 01274 632059

Email: plhillsales@aol.com www.plhillsales.com

Smart & Brown 9" Sable lathe, well equipped, delivery within 100 miles Cambridge. £599. Tel: 01223 248483 (Cambridge)

Myford Super 7 with gearbox on metal cabinet. Fully equipped with 3 and 4 jaw chuck. Excellent condition. £750. Tel: 01270 877195 (Staffs)

Myford ML7 with TRI-LEVA and screw cutting gearbox plus Myford cabinet. Excellent condition includes 3 & 4 jaw chucks/faceplate. Various metals also available. £900. Tel: 01284 789477 (Suffolk)

For Sale: Boley and Leinen watch makers lathe, original box, many accessories - Books, catalogues etc. Offers. Tel: (Eve) 01749 672707 (Somerset)

Model Engineer individual issues and full volumes. Send for list through www.cdmec.co.uk or Tel: 01992 572078 (Phil)

Closing Home Workshop. Many small items for sale. Also MEW magazines, issues 19 to 103. Tel: 01780 782581 (Peterborough)

Lathe Parts and Gears for most makes of machines + accessories and Tooling Special parts made and cross slide screws & nuts.

For more information call 01282 869262 or 07745 707644

or see, www.latheparts.co.uk

BLACK-IT!

Easy to use Chemical Blacking for Iron and Steel Produces a professional satin black finish in less than 15 minutes

Standard Kit (4 x 500ml) £30.99 Large Kit (4 x 2 litres) £71.99 BLACK-IT! for Brass £21.00 All prices inc. VAT & Delivery

Pixel-Plus, Bryncroes, Pwllheli, Gwynedd, LL53 8EH Tel: 01758-730356 Fax: 08700-523497 Credit Cards accepted

More details on our website at www.black-it.co.uk

ww.piiiiisaies.com

PROJECT MACHINERY
VISIT OUR WEB SITE - www.projectmachinery.co.uk

A sample of our current stock includes:

Lathes

Boxford 1130 industrial, on cabinet, 1 PH, well equipped,	£2250
Myford Super 7B, 3 1/2" x 19", screw cut gearbox,	£875
Myford ML7, 3 1/2" x 19", single phase, equipped	£595
Harrison M250, 5 1/2"x 30", equipped, almost as new condition	£2600
Colchester Master 2500, 6 1/2" x 25" gap bed, clutch etc	£2450
Colchester Chipmaster, 5" x 20", vari speed, clutch, well equipped	£1500

Mills.

.....£2250

Various.	
	325
Eagle hand opp surface grinder, single phase, nice example with mag chucl	k
	495
Elliott Progress 2E, 10 speed 2 morse taper pillar drill, 1 phase, quality£2	295
Clarkson T&C grinder, no tooling£1	95.
3ft Edwards Guillotine £3	395
4ft Box & Pan folder, choice of 2,£8	95.
Vibro Shear, multipurpose sheet metal worker, ex college,£6	95.
Telwin 250 amp AC/DC tig welder, as new	995

Part exchanges always welcome, other machines available, can deliver nationwide (High Wycombe)

Telephone 01494 481 682 (day & eves) **Mobile 0775 2659904**

MAKE THAT CALL TODAY

HOME AND WORKSHOP MACH

QUALITY USED MACHINE TOOLS

144 Maidstone Road, Foots Cray, Sidcup, Kent, DA14 5HS. **Telephone 020-8300 9070** – Evenings 01959 532199 – Facsimile 020-8309 6311

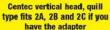
www.homeandworkshop.co.uk stevehwm@btopenworld.com

Opening Times: Monday-Friday 9am-5.30pm – Saturday Morning 9am-1pm 10 minutes from M25 - Junction 3 and South Circular - A205

RJH pedestal 12" grinder

Elliot powered suface grinder "as good as it looks"

Harrison M250 lathe with 3000rpm top speed


A current photo of our small stock!

RJH 4" linisher complete on dust extractor cabinet

Colchester Bantam 2000 (very late model) complete with 3

Lockwood quad head 2MT and 3MT die sets. last few available

VMC complete with DRO

£1850

Myford

£325

Rolling mills,

milling machine, 49" x 12"

powered all ways table,

40INT vertical head, 18

Colchester Student 1800

Tom Senior 'E' Type vertical milling machine

Viceroy precision screwcutting lathe

complete with Hiab 011 hydraulic crane includes legs

Transit smile type body

Raglan precision screwcutting lathe 5" x 24"

120mm very nice

speed

Equi-Spacer pitch circle drilling jig

Precision two way table (size: 12" x 12")

Vanco linisher, 1" wide belt

Meritus spot welder 8kva

Fobco Star 1/2" Bench drilling machine

Ajax turret milling machine in very good order with table just

Myford Super 7B long bed lathe 31/2"x31" complete with cabinet stand

Rishton buffer (The best buffer

Tom Senior vertical / horizontal milling machine complete with powered table and Edwards coolant all driven of the corner knotcher

£2750

Vicerov vertical milling machine excellent condition

Still boxed Ex MOD as new Baty clock gauges, imperial reads to

Crompton Parkinson Motors NEW 3/4HP ideal for Myford & Boxfords etc.

£245

- 2-Axis DRO from £615 inc VAT
- Made in the UK
- 5 year no-fault warranty
- 10 Micron accuracy
- Myford fitting kit now available

CHESTER UK LIMITED

920 Lathe

Swing over bed 240mm MT3 Spindle Taper Between Centres 500mm 100-1800rpm

PRICE:

£599.00

Centre Height 125mm, MT3 Spindle Taper Between Centres 550mm, 130-2100rpm

PRICE: £850.00

Model B Multi Purpose Machine

Centre Height 210mm, MT3 Spindle Taper Between Centres 520mm Range of Speeds for Lathe 160-1360rpm Range of Speeds for Milling 117-1300rpm

PRICE: £645.00

Craftsman Lathe Centre Height 150mm

MT5 Spindle Taper
Between Centres
570mm
Spindle Speeds 501200rpm

PRICE: £1499.00

Eagle 25
Drilling Capacity 25mm, End Mill Capacity 25mm
MT3 Spindle Taper, Table Working Surface 190x585mm

Shown with optional oil tray

PRICE: from £699.00

H80 Bandsaw

Max Cutting Capacity at 90? Round 90mm Square 90 x 120mm 420w Motor

Power 240volt

PRICE: £115.00

Lux Mill Round Column

Drilling Capacity
32 mm
End Mill Capacity
28 mm

MT3 Spindle Taper Spindle Speed 95-1600rpm 1hp Motor

PRICE:

£999.00

Spindle Speed Range 400-1640rpm, 1/2hp Motor PRICE: £545.00

Call for our FREE 36 page Colour Catalogue Tel: 01244 - 531631 Fax: 01244 - 531331

Champion Mill/Drill

Drilling Capacity 20mm, End Mill Capacity 25mm

MT3 Spindle Taper

Visit our website www.chesteruk.net For our Special Offers Email us at sales@chesteruk.net

PRICES ARE INCLUSIVE OF VAT AND DELIVERY UK MAINLAND ONLY