THE ORIGINAL MAGAZINE FOR MODEL ENGINEERS

Vol. 224 No. 4628 • 20 December 2019 - 2 January 2020

IMODEL ENGINEER

Join our online community www.model-engineer.co.uk

508 PAGE CATALOGUE IN-STORE 0844 880 126 ONLIN

GWH4

Little Devil II Devil 700 Devil 900

Devil 1600

MODE

Machine Mart

IN STOCK

Self centering 3 jaw chuck & guard

CI 300M

· Power

Carre METAL LATHE

STATIC PHASE Clarke CONVERTERS Run blg 3 phase

MONTHLY

woodworking machines from 1 hase supply 300mm between centres = LH/RH thread screw cutting = Electronic variable speed = Gear Variable output ower to match Hi 229 80 274 80

COSTS

	NVERT 230 TO 400V 3		PC6		AL	SO IN TOCK	
MODEL	MAX. MOTOR HP	FUS	E E	XC.V	AT IN	IC.VAT	ì
PC20	2HP	10A	mps £	229.0)0	274.80	1
PC40	3.5HP	20A	mps £	269.0	00 £	322.80	П
PC60	5.5HP	32A	mps £	319.0	00 =	382.80	ı,

Clarke ARC / TIG INVERTER technology Variable output

MODEL	MIN/MAX	ELECTRODE		INCOM
	OUTPUT	DIA.	EXC.	INC.
	CURRENT	(mm)	VAT	VAT
MMA80	20-80A	1.6-2.5	£98.00	£117.60
MMA140	20A-140A	1.6-3.2	£119.00	£142.80
MMA200	20A-200A	1.6-4.0	£159.00	E190.80
AT133	10A-130A	2.5/3.2	£129.98	2155.98
AT135	10A-130A	2.5/3.2	£169.98	£203.98
AT162	10A-160A	2.5/3.2/4.0	£149.98	£179.98
AT165	10A-160A	2.5/3.2/4.0	£199.98	£239.98

Carre DRILL PRESSES

= Bench mounted

Floor standing

CDP152B

Rend Roll 8

Range of precision bench & floor presses for enthusiast,

engineering & industrial

application

E83

IODEL MIN	-MAX AMP		
R090	24-90	£194,99	£233.99
10E	30-100	£229.98	£275.98
35TE Turbo	30-130	£249.98	£299,98
51TE Turbo	30-150	£289.00	£346.80
75TECM Turbo	30-170	€449.00	2538.80
05TE Turbo	30-185	£489.00	2586.80

HEATERS_

36.6kW

49.8kW

HEATERS DEVIL 6003

EXC.VAT

Carre ELECTRIC

www.machinemart.co.uk

Bench mountable, tilts 45° left & right from vertical • Table travel 100x235mm • Table Effective Size LxW; 92 x 400mm

MICRO MILLING & DRILLING MACHINE

Bench mountable • MT2 Spindle
Taper • Face mill capacity 20mm, end mill 10mm • Table cross travel 90mm, longitudinal travel 180mm

-			
MODEL	MOTOR	SPINDLE EXC.VAT	INC.VAT
A Property of the last		SPEED	
CMD10	150W/230V	100-2000rpm £399.00	£478.80
CMDOSS	4700U/220U	A 3500mm CE00 on	£710 00

STEEL SHELVING Simple fast °35

Clarko ENGINEERS

BENCH	VICES
A	ange of fixed and swivel vices with top quality cast iron construction
BEST	FROM ONLY 19.98 293.98

	100		1.10	
MODELJA	W WIDTH	BASE	EXC.VAT	INC.VAT
V75B	75mm	Fixed	£19.98	£23.98
V100B	100mm	Fixed	£20.99	£25.19
VR100B	100mm	Swivel	£24.99	£29.99
V125B	125mm	Fixed	£31.99	£38.39
VR125B	125mm	Swivel	£36.99	£44.39
V150B	150mm	Fixed	£49.98	£59.98
VR150B	150mm	Swivel	£52.99	£63.59
MV140	140mm	Swivel	£79.98	£95.98

*87.59 The ultimate in tool storage

164 99 197 NO.WAT

CRANES Fully tested to proof load

1 ton fold R 1 ton long reach

CFC1000LR

fold £164,99 ton £219,00

Folding and fixed frames

available • Robust, rugged construction • Dverload safety valve

10 Dr Chest 3 Dr step up 5 Dr Cabinet 7 Dr Cabinet 3 Dr Cabinet

217B

MODEL	BED WIDTH	EXC VAT	INC VAT
SBR305	305mm (12")	£239,00	£286.80
SBR610	610mm (24")	£439.00	£526.80
SBR760	760mm (30")	£529.00	£634.80

CAPE LIFTING TABLES

 Ideal for lifting & moving models
• Foot pedal
operated HTL500

	VAT	
HTL300 300kg 340-900mm	£299.00	£358
HTL500 500kg 340-900mm	£319.00	£382

TURBO AIR COMPRESSORS 8/260 master 107:08 107:00 master ideal for Dil hobby & sen

		-		* 'V' Twi	Pump
MODEL	MOTOR	CFM	TANK	EXC.VAT	INC.VAT
8/260 (75)	2HP	7.5	24ltr	£89,98	£107,98
7/250	2 HP	7	24ltr	£94.99	£113.99
11/260 @	2.5HP	9.5	24ltr	£109.98	£131.98
8/550 4	2HP	7.5	50ltr	£119.98	£143.98
11/550 @	2.5HP	9.5	50ltr	£139.98	£167.98
16/510	3 HP	14.5	50ltr	£209,00	£250.80
16/1010*	3 HP	14.5	100ltr	£259,98	£311.98

SHAFT SPEED	EXC. VAT	INC.VAT
4 pole		
2 pole	£69.98	£83.98
4 pole	£79.98	£95.98
2 pole		£95,98
2 pole	£94.99	£113,99
2 pole	£119.98	£143.98
2 pole	£139.98	£167.98
	4 pole 2 pole 4 pole 2 pole 2 pole 2 pole 2 pole 2 pole	4 pole £59,98 2 pole £69,98 4 pole £79,98 2 pole £79,98 2 pole £94,99 2 pole £119,98

With sanding	belt	*8" whetst	one & 6"	drystone
MODEL	DUTY		EXC.VAT	INC.VAT
CBG6RP	DIY	150mm	€32.99	£39.59
CBG6RZ	PRO	150mm	£42.99	£51.59
CBGGRSC	HD	150mm	£54.99	£65.99
CBG6SB#	PRO	150mm	£56,99	£68.39
CBG6RWC	HD	150mm	£59.98	£71.98
CBG8W* (wet)	HD	150/200mr		

Kit includes: • Height adjustable stand with clamp • Rotary tool CRT40

- Over 18, 24 or 36 months
- From only £300 minimum spend
- 18.9% Rep. APR (APPLICATION

OPEN MON-FRI 8.30-6.00, SAT 8.30-5.30, SUN 10.00-4.00

BARNSLEY Pontefract Rd, Barnsley, S71 1EZ
BYAM GREAT BARR 4 Birmingham Rd.
BYAM HAW MILLS 1152 Coventry Rd, Hay Mills
BOLTON 1 Thynne St, BL3 6BD
BRADFORD 105-107 Manningham Lane, BD1 3BN
BRIGHTON 123 Lewes Rd, BN2 30B
BRISTOL 1-3 Church Rd, Lawrence Hill, BS5 9JJ
BRITON UPON TRENT 124 Leiffeld St, DE14 302
CAMBRIGGE 181-183 Histon Road, Cambridge, C84 3HL
CARDIFF 44-6 CD; Rd. CF44 3DN
CARLISLE 85 London Rd. CA1 2LG
CHELTENHAM 84 FAIVIEW ROAG, GL52 2EH
CHESTER 43-85 St, James Street, CH1 3EY
COLCRESTER 4 North Station Rd. C01 1RE
COVENTRY Bishop St, CV1 1HT
CROYDON 423-427 Brighton Rd, Sth Croydon
DARLINGTON 214 Northgate DL1 1RB
DEAL (KENT) 182-186 High St, CT14 6BO
DERBY Gerwent St, DE1 2ED
DONCASTER Wheatley Hall Road
DUNDEE 24-26 Trades Lane, DD1 3ET
EDINBURGH 163-177 Pierstield Terrace BARNSLEY Pontefract Rd, Barnsley, S71 1EZ B'HAM GREAT BARR 4 Birmingham Rd,

CFC100

NORWICH 282a Heigham St. NR2 4LZ NOTTINGHAM 211 Lower Parliament St. PETERBOROUGH 417 Lincoln Rd. Millfield PLYMOUTH 58-64 Embankment Rd. PL4 9HY PLYMOUTH 58-84 Embankment Hd. PL4 9HY
POOLE 137-139 Bournemouth Bd. Parkstone
PORTSMOUTH 277-283 Copnor Rd. Copnor
PRESTON 53 Blackpool Rd. PR2 6BU
SHEFFIELD 453 London Rd. Heeley. S2 4HJ
SIOCUP 13 Blackfor Parade, Blackfor Rd.
SOUTHAMPTON 516-518 Portswood Rd.
SOUTHEND 1139-1141 London Rd. Leigh on Sea
STOKE-ON-TRENT 382-396 Waterloo Rd. Hanley
SUNDERLAND 13-15 EMBARD Rd. GEORGEORGE SUNDERLAND 13-15 Ryhope Rd. Grangetown SWANSEA 7 Samlet Rd. Llansamlet. SA7 9AG SWINDON 21 Victoria Rd. SN1 3AW TWICKENHAM 83-85 Heath Rd. TW1 4AW WARRINGTON Unit 3, Hawley's Trade Pk WIGAN 2 Harrison Street, WN5 9AU WOLVERHAMPTON Parkfield Rd. Bilston WORCESTER 48a Upper Tything, WR1 1J2

EASY WAYS TO BUY SUPERSTORES NATIONWIDE

ONLINE www.machinemart.co.uk

TELESALES 0115 956 5555

CLICK & COLLEC OVER 10,500 LOCATIONS

CALL & COLLECT AT STORES TODAY

MODEL ENGINEER

Published by **MyTimeMedia Ltd**. Suite 25S, Eden House, Enterprise Way, Edenbridge, Kent TN8 6HF www.model-engineer.co.uk

SUBSCRIPTIONS

UK - New, Renewals & Enquiries Tel: 0344 243 9023 Email: help@me.secureorder.co.uk

USA & CANADA - New, Renewals & Enquiries

Tel: (001)-866-647-9191

REST OF WORLD - New, Renewals & Enquiries

Tel: +44 1604 828 748

Email: help@me.secureorder.co.uk

CURRENT AND BACK ISSUES

Tel: 01795 662976 Website: www.mags-uk.com

EDITORIAL

Editor: Martin R Evans Tel: +44 (0)7710 192953 Email: mrevans@cantab.net Assistant Editor: Diane Carney Club News Editor: Geoff Theasby

PRODUCTION

Designer: Yvette Green Illustrator: Grahame Chambers Retouching Manager: Brian Vickers Ad Production: Andy Tompkins

ADVERTISING

Advertising Sales Executive: David Holden Email: david.holden@mytimemedia.com

MARKETING & SUBSCRIPTIONS

Subscription Manager. Kate Hall

MANAGEMENT

Group Advertising Manager. Rhona Bolger Email: rhona.bolger@mytimemedia.com Chief Executive: Owen Davies

© MyTimeMedia Ltd. 2019 All rights reserved ISSN 0026-7325

The Publisher's written consent must be obtained before any part of this publication may be reproduced in any form whatsoever, including photocopiers, and information retrieval systems. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from negligence of our staff. Reliance placed upon the contents of this magazine is at reader's own risk.

Model Engineer, ISSN 0026 - 7325, is published monthly by MyTimeMedia Ltd, Suite 25S, Eden House, Enterprise Way, Edenbridge, Kent, TN8 6HF, UK. The US annual subscription price is 132USD. Airfreight and mailing in the USA by agent named WN Shipping USA, 156-15, 146th Avenue, 2nd Floor, Jamaica, NY 11434, USA. Periodicals postage paid at Jamaica NY 11431. US Postmaster: Send address changes to Model Engineer, WN Shipping USA, 156-15, 146th Avenue, 2nd Floor, Jamaica, NY 11434, USA. Subscription records are maintained at DSB.net Ltd, 3 Queensbridge, The Lakes, Northampton, NN4 5DT. Air Business Ltd is acting as our mailing agent.

http://www.facebook.com/modelengineersworkshop

Paper supplied from wood grown in forests managed in a sustainable way.

ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS ISSUE IN THI

Vol. 224 No. 4628 20 December 2019 - 2 January 2020

12 SMOKE RINGS

News, views and comment on the world of model engineering.

13 THE MIDDLETON DOUBLE SIDED BEAM ENGINE

Rodney Oldfield constructs the latest stationary steam engine from Bob Middleton.

17 BACKYARD FOUNDRY TECHNIQUES

Luker explains how you can set up your own foundry at home.

22 THE POLAR EXPRESS

Jon Edney gets all festive in a Cambridgeshire village.

24 THE STIRLING ENGINE RALLY 2019

John Arrowsmith pays a visit to the Hereford Waterworks Museum for this year's rally.

28 THE BARCLAY WELL TANKS OF THE GREAT WAR

Terence Holland describes and constructs two appealing, century old locomotives.

33 INDEX TO VOLUME 223

37 MAGDALEN ROAD REVISITED

Jeremy Buck welcomes us back to Magdalen Road for a tour of the locomotive works.

41 GARRETT 4CD TRACTOR

Chris Gunn paints the belly tank and fits the ashpan.

44 THE STATIONARY STEAM ENGINE

Ron Fitzgerald tells the story of the development of the stationary steam engine.

47 A NEW GWR PANNIER

Doug Hewson embarks on a mission to improve LBSC's half century old GWR Pannier Tank design.

51 STEAM TURBINES LARGE AND MINIATURE

Mike Tilby explores the technology, history and modelling of steam turbines.

56 CLUB NEWS

Geoff Theasby compiles the latest from model engineering clubs around the world.

59 DIARY

Forthcoming events.

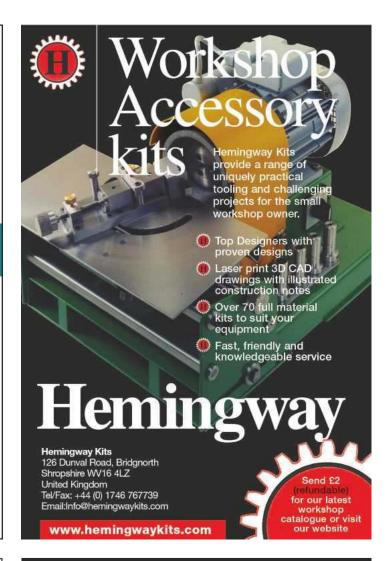
ON THE COVER...

Bob Middleton's double sided beam engine, constructed by Rodney Oldfield (photograph Rodney Oldfield).

The Digital Readout & Measurement Specialists

- Lathes
- Mills
- UK Brand
- Hobby
- Industrial
- Optical
- Magnetic

If you have a lathe or milling machine then you will appreciate the need for a quality digital readout system to provide consistent accuracy and repeatability in machining.


ems-i provide both **optical** and **magnetic** systems to machine builders, re-builders and main dealers so you can be assured of performance, quality and service.

Our specialist encoders, for smaller machines, allow for neater installation and integration in limited spaces without performance compromise. Perfect for Myford, Boxford, Viceroy, SIEG etc.

0116 279 3035 : facebook.com/emsi.systems info@ems-i.co.uk : www.ems-i.co.uk

Powerful 3D CAD Software for Precision Engineering

- o A powerful and affordable 3D design package
- Easy to learn, easy to use and precise modelling of your projects
- Export to CNC machines, 3D printers and more, or create 2D drawings
- Create single parts and combine them into moving assemblies
- Also available, Alibre Atom3D A design package tailored to hobbyists and model makers

For more information please contact MINTRONICS on 0844 3570378, email business@mintronics.co.uk or visit www.mintronics.co.uk

Steam Workshop Now Incorporating D.Hewson Models

All steam models bought, sold, exchanged, valued, restored, repaired, finished, painted, lined,and of course,.....played with!

We always have a huge number of models in stock, and are always interested in anything from a set of castings to a gold medal winner. Please do visit our website, or simply give us a bell for the most friendly, helpful, fair and knowledgeable,.... (if we do say so ourselves),.... service available.

30 years experience providing fittings, fixings, brass, bronze, copper and steel Browse our website or visit us at 10-11 Larkstore Park, Staplehurst, Kent, TN12 0QY

Alec Tiranti Ltd

Centrifugal Casting & Mould Making Machines, White Metal Melting Pots & Hand Casting Alloys

www.tiranti.co.uk Tel: 0845 123 2100

Modelling Moulding Tools & Materials, Pewter, White Metals Alloys, Bearing Metal, Silicone Rubbers, Polyester, Polyurethanes & Epoxy Resins, Including Fastcasts, & Clear Resins. Professional range of Cold Cure Silicone Rubbers.

27 Warren Street, London, W1T 5NB 0207 380 0808

3 Pipers Court, Berkshire Drive, Thatcham, Berkshire, RG19 4ER

Steamways Engineering Limited

WORKING LIVE STEAM SCALE MODELS, SPECIALIST PARTS MANUFACTURE. PRE-MACHINED KITS FOR WORKING STEAM LOCOMOTIVES IN 5" AND 71/4" GAUGES

- BESPOKE PARTS MACHINING
- STATIONARY AND MARINE **ENGINES MANUFACTURED**
- **FULL PAINTING & LINING** SERVICE
- **EC COMPLIANT BOILERS FOR** SALE
- UNFINISHED MODELS COMPLETED

STEAMWAYS ENGINEERING LIM

Dovecote House, Main Road, Maltby Le Marsh, Alford, Lincs. LN13 0JP Tel/Fax: 01507 206040

Email: info@steamwaysengineering.co.uk

Company Registration No. 11978043

www.steamwaysengineering.co.uk All major Credit and Debit cards accepte

Contact 17D:

Email: sales@17d.uk

Wheels, Axles and Bogies

in 5" and 7¼" gauge

Narrow gauge Dished face wheels:

71/4" gauge:

6" dia. on tread £22.85 ea 51/4" dia. on tread £18.30 ea

5" gauge

41/4" dia. on tread £15.35

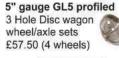
71/4" Narrow gauge Wheels, axles, sprockets & bearings

71/4" Heavy Duty, double sprung Narrow Gauge Bogie

Un-braked: £295.00 ea Vac Braked: £365.00 ea

Ready to run:

£249.00 pair



Standard gauge Plain disc wheels

71/4" gauge:

4 5/8" dia. on tread £14.85 ea £57.50 (4 wheels)

3.18" dia. on tread £ 9.75 ea

Available to suit all our wheels

Prices shown are ex-works, and excluding VAT

MINIATURE RAILWAY SPECIALISTS LOCOMOTIVES, ROLLING STOCK, COMPONENTS CNC MACHINING SERVICES

www.17d-ltd.co.uk

17D Limited, Units 12 & 13 Via Gellia Mill, Bonsall, Matlock, Derbyshire, DE4 2AJ

THE MOST VERSATILE TOOL FOR TURNING & FACING

It's easy to see why our best selling turning tool is the SCLCR. It can turn and face a bar without altering the toolpost, and the 80° nose angle gives much more strength than a 60° (triangular) insert. The NJ17 insert cuts steel, stainless, cast iron, phosphor bronze, aluminium, copper, brass etc. Please state shank size required - 8, 10 or 12mm square.

Spare inserts £6.86 each for 8-10mm tools, £7.99 for 12mm.

SPECIAL OFFER PRICE £20.00

USE THE OTHER 2 CORNERS FOR ECONOMY!

Our SCRCR rough turning tool uses the same inserts as the SCLCR tools above. The good news is that it uses the other two corners! These very strong 100° corners are rigid enough for rough or intermittent turning. The insert is mounted at 75° to the lathe axis. 10mm sq section (for CCMT06 insert) and 12mm section (for CCMT09 insert).

SPECIAL OFFER PRICE £31.90

PROFILING WHEELS or SHAPING AXLES & PILLARS?

If you need to create complex shapes, our SRDCN button tool is invaluable. The 10mm square shank holds a 5mm dia cutting insert, and gives great versatility, superb strength and excellent tool life. The late Mr D Hudson of Bromsgrove SME used these tools for many years to profile the special form of tyre treads for his self-steering wheel sets with great consistency. Spare inserts just £5.79 each.

SPECIAL OFFER PRICE £34.00

TURN SMALL DIAMETERS with LIVE CENTRE IN PLACE!

The SDJCR tool uses a 55° insert, allowing access to small diameter components when using a tailstock centre. It can also profile back-angles. The NJ17 insert cuts steel, stainless, cast Iron, phosphor bronze, brass, copper, aluminium etc. Shank size 8mm or 10mm square section. Spare inserts just £6.86 each.

SPECIAL OFFER PRICE £20.00

A TOP QUALITY BORING BAR FOR YOUR LATHE

Bar Dia.	Min Bore
8 mm	10 mm
10 mm	12 mm
12 mm	16 mm

Here's your chance to own a top quality boring bar which uses our standard CCMT06 insert. Steel shank bars can generally bore to a length of approx 5 times their diameter. Please state bar dia required - 8, 10 or 12mm.

Spare inserts just £6.86 each.

SPECIAL OFFER PRICE £20.00 ea or buy all 3 sizes for just £55.00!

INTRODUCING THE GROUNDBREAKING NEW KIT-QD PARTING TOOL!

The new and innovative KIT-QD parting tool has a more secure insert location, stronger body and improved insert design compared to the original KIT-Q-CUT. It has an increased maximum reach of 23mm, giving over 1.3/4" parting capacity in solid bar.

As previously, the tool fits the vast majority of ME lathes, including ML7 & ML10 machines, regardless of toolpost type, It comes complete with the key to locate and eject the tough, wear resistant insert. Cuts virtually all materials. Spare inserts just £10.75 each.

SPECIAL OFFER PRICE £69.50

EXTERNAL THREADCUTTING TOOL

These tools use the industry standard 16mm 'laydown' 3-edge inserts. With tough, tungsten carbide inserts, coated with TiAIN for wear resistance and smooth cutting, threads can be cut at very slow speeds if required. Tools are right hand as shown. 55° or 60° insert not included order separately at £5.65. See our website for more info.

SPECIAL OFFER PRICE £36.50

INTERNAL THREADCUTTING TOOL

These tools use the industry standard 11mm 'laydown' 3-edge inserts. With tough, TiAIN coated tungsten carbide inserts, quality threads can be cut with ease. Tools are right hand as in picture. 10, 12 and 16mm dia's available. 55° or 60° insert not included - order separately at £5.65. See our website for more info.

SPECIAL OFFER PRICE £36.50

DORMER DRILL SETS AT 60% OFF LIST PRICE!

All our Dormer drill sets are on offer at 60% off list price. The Dormer A002 self-centring TiN coated drills are also available to order individually in Metric and Imperial sizes. Please see our web site for details and to place your order.

TURNING, BORING & PARTING TOOLS COMPLETE WITH ONE INSERT.

Please add £3.00 for p&p, irrespective of order size or value

GREENWOOD TOOLS

Greenwood Tools Limited

2a Middlefield Road, Bromsgrove, Worcs. B60 2PW

Phone: 01527 877576 - Email: GreenwTool@aol.com

Buy securely online: www.greenwood-tools.co.uk

THE SOUTH'S MAJOR SHOWCASE OF MODEL ENGINEERING & MODELLING

Featuring the Past, Present and Future of Modelling

A GREAT DAY OUT FOR ALL AGES

FRIDAY 17th to SUNDAY 19th JANUARY 2020

Alexandra Palace, London, N22 7AY

10am - 5pm Friday & Saturday, 10am - 4.30pm Sunday

Last entry Friday & Saturday 4.00pm Sunday 3.00pm. The Model Active Zone will close at 3.30pm on Sunday.

Over 45 clubs & societies present

Nearly 2,000 models on display Exciting demonstrations Radio control planes & trucks in the Model Active Zone Model trains, boats & tanks Meccano, Horology & More...

OVER 55 LEADING SPECIALIST SUPPLIERS PRESENT. EVERYTHING HOBBYISTS NEED UNDER ONE ROOF!

Car Parking for 1,500 Vehicles & FREE Showguide

BOOK YOUR TICKETS NOW

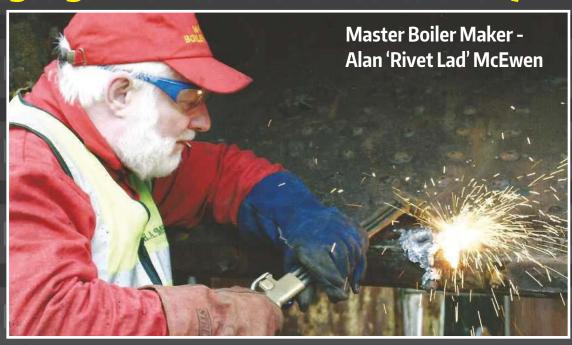
TICKET	ONLINE TICKETS*	FULL PRICE TICKETS**
Adult	£11.50	£12.50
Senior Citizen/ Student	£11.00	£12.00
Child (5-14 yrs)	£4.00	£4.50

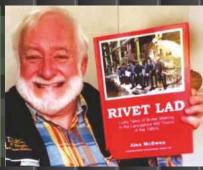
*Tickets are available via our website at discounted prices until midnight Tuesday 14th January 2020.

** Full price tickets are available on the day from the ticket office.

For groups of 10 or more, 10% discount applies. Quote GRP10 online.

See our website for the latest exhibitors and mini showguide with floorplan


www.londonmodelengineering.co.uk



Bringing British industrial history to life

When Master Boiler Maker and author, Alan McEwen was a young sprog, he loved banging and hammering on rusty old boilers; now that he is an old hog, he just prefers others to bang and hammer!
Alan McEwen's Boiler Making

adventures and also 'potted histories' of several Lancashire and Yorkshire Boiler Making firms, can be read in RIVET LAD - *Lusty Tales of Boiler Making in the Lancashire Mill*

Towns of the 1960s. The book is crammed with 'hands on' technical information of how Lancashire, Locomotive, Economic, and Cochran Vertical boilers were repaired over 50 years ago. The book's larger-than-life characters, the hard as nails, ale-supping, chain-smoking Boiler Makers: Carrot Crampthorn, Reuben 'Iron Man' Ramsbottom, Teddy Tulip, genial Irishman Paddy O'Boyle, and not least Alan himself, are, to a man, throw-backs to times gone by when British industry was the envy of the world.

Alan's second RIVET LAD book: *RIVET LAD – More Battles With Old Steam Boilers* was published in September 2018.

Now priced at £20 including postage and packing to UK addresses.

This latest book chronicles Alan's story from leaving Phoenix Boiler Makers and establishing his own firm: H.A.McEwen (Boiler Repairs) on the 4th August 1968. In those early days Alan battled with a great variety of old steam boilers in town and country, where he met some extremely interesting and rather bizarre characters, such as the 'Piggers'. The book is hard back and contains 128 pages of text and numerous amazing photographs.

ZWZ

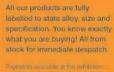
BOOK BUNDLE SPECIAL OFFER 猟

Both RIVET LAD books can be purchased together for £35 including postage and packing to UK addresses. To place an order please telephone 01535 637153 / 07971 906105. All our books can be ordered on our website www.sledgehammerengineeringpress.co.uk or email: lankyboilermaker@btconnect.com.

Overseas customers contact Sledgehammer by email for postage costs.

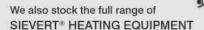
We accept payment by debit/credit card, cheques, cash and postal orders made out to SLEDGEHAMMER ENGINEERING PRESS LTD.

World From Rough Stones House, Farling Top, Cowling, North Yorkshire, BD22 ONW.



The no.1 Silver Solder Supplier for the Model Engineer

With over 100 years of brazing experience, you can count on us for the supply of various low temp, medium temp and high temp silver solders in a variety of sizes to suit every job.



Order online with free delivery, or visit us at our exhibition stand to see the comprehensive range in person!

Grab yourself a bargain at our exhibition stand and receive discounted prices!

Visit us at the London Model Engineering Exhibition 2019

From 17th to 19th January 2020 at the Alexandra Palace Stand 5 as usual. For bookings see www.londonmodelenginnering.co.uk

web: www.cupallovs.co.uk | tel: 01623 707955

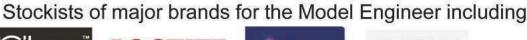
VISA

The World's Largest Stockists of Model Engineering Supplies

Trade Counter Fully Stocked and Open to Callers - ALL WELCOME Reeves 2000, Appleby Hill, Austrey, Warks CV9 3ER 9:00am-4:00pm Mon - Fri Tel: 01827 830894 Closed Sat & Sun

sales@ajreeves.com http://www.ajreeves.com

Castings and drawings for over 170 models


For exclusive offers visit our website WWW.ajreeves.com

images for display purposes only. Actual item supplied may differ from image

or follow us on Facebook

DIRECT DEBIT SUBSCRIPTIONS (uk only)			
Yes, I would like to su ☐ Print + Digital: £18.29 ☐ Print Subscription: £	5 every quarter	J	
YOUR DETAILS n	nust be con	npleted	
Mr/Mrs/Miss/Ms	Initial	Surname	
Address			
Postcode			
Email			
I WOULD LIKE TO			
Mr/Mrs/Miss/Ms	Initial	Surname	
Address			
Postcode			
INSTRUCTIONS T	TO YOUR BA	ANK/BUILDING	SOCIETY
Originator's reference 422			Direct
Name of bank			•
Address of bank			
		Postcode	
Account holder			
Signature		D	ate
Sort code	Accoun	t number	
Instructions to your bank or by account detailed in this instru I understand that this instruct electronically to my bank/buil	uilding society: Please ction subject to the s ion may remain with I ding society.	e pay MyTimeMedia Ltd. Direc afeguards assured by the Dire MyTimeMedia Ltd and if so, d	et Debits from the ect Debit Guarantee. etails will be passed
Reference Number (official use only)			
Please note that banks and bu types of account.	uilding societies may	not accept Direct Debit instru	ctions from some
CARE	PAYMEN ⁻	TS & OVERSEA	S
Yes, I would like to s			
for 1 year (26 issues UK ONLY:	s) with a one-	off payment EUROPE & ROW:	
OIL OILLI.		LOTIOT L & HOVV.	

)	٠.
UK ONLY:	
Print + Digital: £77.99	
Drint: C65 00	

☐ EU Print + Digital: £104.99 ☐ EU Print: £92.99

☐ ROW Print + Digital: £104.99

ROW Print: £92.99

PAYMENT DETAILS

Postal Order/Cheque Please make cheques pay- back			28P on the
Cardholder's name			
Card no:			(Maestro)
Valid from	Expiry date	Maestro issue no	
Signature		Date	
	. ,		

TERMS & CONDITIONS: Offer ends 2nd January 2020. MyTime Media collects your data so that we can fulfil your subscription. We may also, from time to time, send you details of MyTime Media offers, events and competitions but you always have a choice and can opt out by emailing us at unsubscribe@model-negineer. co.uk. Please select here if you are happy to receive such offers by email \(\frac{1}{2}\) by post \(\frac{1}{2}\) by phone \(\frac{1}{2}\). We do not share or sell your data with/to third parties. Details you share with us will be managed as outlined in our Privacy Policy here http://www.mytimemedia.co.uk/privacy-policy.

Please visit www.mytimemedia.co.uk/terms for full terms \(\frac{1}{2}\) conditions.

MODEL ENGINEER SUBSCRIPTIONS, MYTIMEMEDIA LTD, 3 QUEENSBRIDGE, THE LAKES, NORTHAMPTON NN4 7BF

PRINT + DIGITAL SUBSCRIPTION

- 26 Issues delivered to your door
- Great Savings on the shop price
- Download each new issue to your device
- A 75% discount on your Digital Subscription
- Access your subscription on multiple devices
- Access to the Online Archive dating back to August 2001

PRINT SUBSCRIPTION

- 26 Issues delivered to your door
- Great Savings on the shop price
- Never miss an issue

SUBSCRIBE TODAY

MODEL **ENGINEER**

SUBSCRIBE TO MODEL **ENGINEER TODAY AND SAVE!**

SAVE up to 41%**

Model Engineer is a great way to stay informed of everything to do with working mechanical models. With over 100 years of experience to draw on, Model Engineer covers everything from classic steam locomotives to cuttingedge modern developments in scale engineering. Regular content includes constructional articles, features on the best techniques and tools available and profiles of full-size modelling subject prototypes. Model Engineer magazine publishes 26 great issues a year.

So subscribe today, make great savings and never miss an issue!

KERINGS SINGS SMOKERINGS SMOKERIN

MARTIN EVANS Editor

DIANE CARNEY Assistant Editor

YVETTE GREEN Designer

Duff Coal

A little while ago I bought a small bag of coal from a trader at a show. I started a fire in the locomotive firebox in the usual way and then shovelled some of the coal in top. Normally there is no problem and I have a fire blazing away in no time. This time the fire simply went out. I tried several times, always with the same result. 'Noninflammable coal?', I thought, 'now there's a novelty!'

Has anyone else experienced this, or is it just me?

Another Year Gone

I hope you have all had an interesting, happy and productive year. As you will probably know, especially if you are a regular reader, I did at last complete my garden railway, but at the expense of all my other projects. I can now get back to my LBSC 'Pansy' pannier tank and also my Winson 1400, both in 5 inch gauge. These are both at a late stage and perhaps I can actually finish them this year! There are, inevitably, a couple of other projects and perhaps I can move them forward a little too.

Despite my workload I have been able to get to several exhibitions and rallies, all of which have been a welcome diversion from the business of preparing a fortnightly magazine! The first of course is the London Exhibition, which takes place in January of each year at Alexandra Palace. This is one of the leading shows and always worth a visit. Another top show is of

Merry Christmas from me and General Gough!

All of us here at *Model Engineer* would like to wish all of you out there – both readers and writers – a very Merry Christmas!

George Punter learns that he has won the Duke of Edinburgh trophy.

course the National Exhibition at Doncaster. This year's show was especially notable in that it hosted the Model Engineer Competition for the first time. It was a great joy to be able to resurrect this iconic exhibition, through the efforts principally of SMEE president Mike Chrisp, show organiser Lou Rex and competition organisers Mike Law and Steve Eaton . One of the highlights of the show, for me, was seeing the look on George Punter's face on being told that he had won the Duke of Edinburgh trophy for his 1913 Saunderson and Mill tractor. He had not realised that the card placed discreetly minutes before in front of his model informed him, and everyone else, of the award!

Later in the year, was another top show, the Midlands exhibition at the Warwickshire Exhibition Centre, where the major attraction, for me, was the rake of beautiful 5 inch gauge Pullman cars built by Brent Hudson and Ben Lyons. That was followed, in the same weekend, by the Lowestoft exhibition, organised by the Halesworth club, possibly the largest such event in the East of England and certainly the most varied.

I was also able to get up to the Whissendine steam rally. The high points for me were the visit to Nigel Moon's windmill and the trip down to the pub at lunch time, with a ride on Mike Robinson's Burrell Scenic showman's engine General Gough, followed by a run along the Rutland country lanes. A highly memorable experience all round!

Here's to a Merry Christmas and an equally memorable 2020.

The Middleton Double Sided Beam Engine PART 1

Rodney
Oldfield
constructs
another
of Bob
Middleton's stationary
engines.

ob Middleton was a deep sea ship's Captain and taught himself draughtsmanship; he must have one of those minds that can see mechanical motions in his head. In my opinion he is one of the most talented and remarkable designers of small, stationary engines around today.

Hot off his drawing board, this model was thought up whilst he was sunning himself on holiday and it fits all his criteria – make it different, make it chunky with no castings and leave plenty of scope for embellishment.

As a long stroke engine it is intended for slow running and to his knowledge there is not a full size engine or a model built similar to this. I was fortunate enough to be asked by Bob to have a go at building this

engine to see if it works and to see if all the measurements work out.

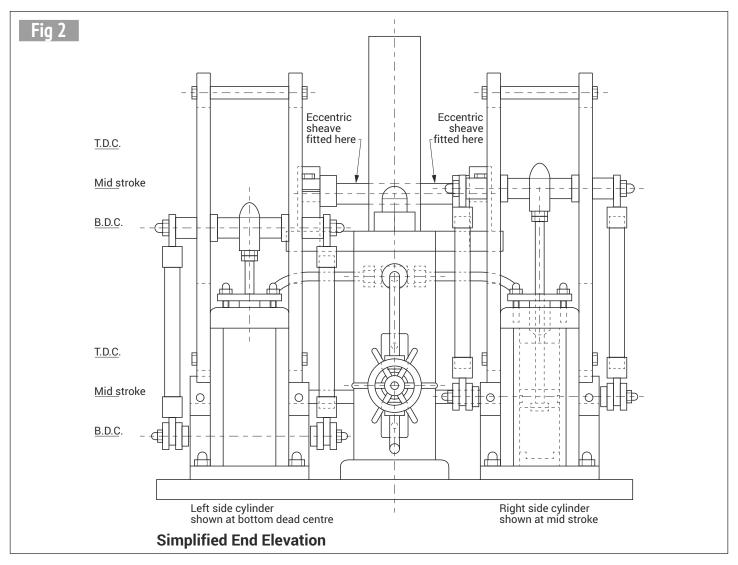
Bob is so busy he cannot get around to building it himself but he does normally build all his own models and runs them all on steam (12 models so far).

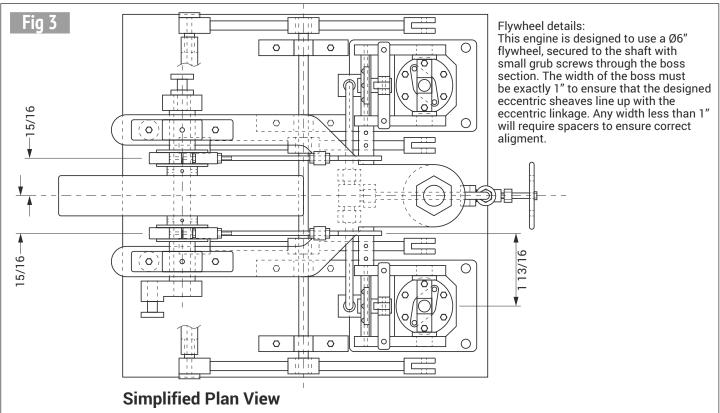
The way of building this model is not set in stone and where I have deviated from the drawings I have tried to indicate this. This is the way and order that I built it, just as a guide.

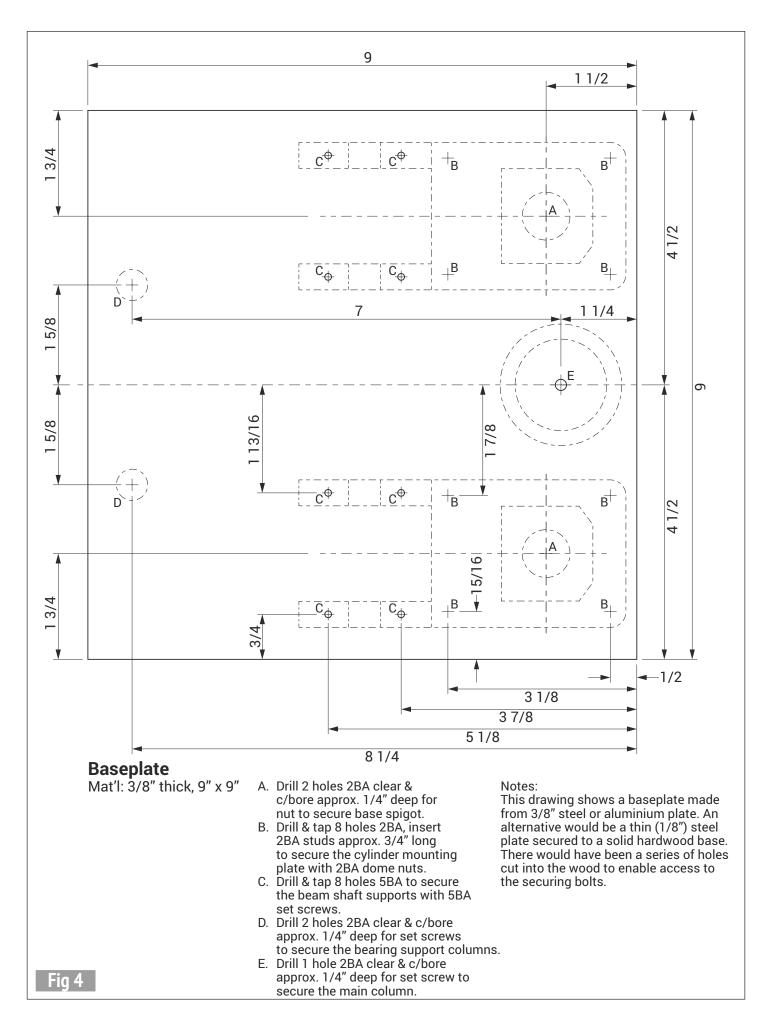
Make up your own mind and do your own thing using the materials you have and fastenings you think fit and look cosmetically right. The drawings that I include are those I worked from. **Figures** 1 to 3 show the general arrangement of the engine.

'ENJOY THE BUILDING and DO YOUR OWN THING'

Base Plate (fig 4)


We'll make a start by drilling the baseplate. I used aluminium plate 3/8 thick and I cut it off at 91/2 inches square so I had room to put a good chamfer on. Taking this into account, I marked off the left and right hand centres for the cylinders, the centre for the main column and the two centres for the bearing support columns. Using a 3/16 inch drill, I drilled them out for the cylinders and put counter bores on the back of the base for the 3/16 inch Whitworth Allen cap screws I used.


To be continued


NEXT TIME

We'll make a pair of cylinders.

Backyard Foundry Techniques

Part 3: Sand and moulding

Luker
describes
how to set
up and use
your own
backyard foundry.

Continued from p.841 M.E. 4627, 6 December 2019

The basics of sand

There are hundreds of different binders (what you need to add to sand to make it suitable for casting) with some backyard guys swearing by their own mix and industry moving away from green sand to phenolic resins or oil sands. My requirement for the casting sand is simple - I get my sand from the local river and I need to put it back into the local river without polluting the ecosystem. Alternatively, the sand will go on my grass or the veggie garden. I also want the sand to be reusable.

With some of the industrial binders you can only recover the sand once or twice before it starts giving poor castings. The sand I use has increased in volume over the years as I've increased the number of moulds I cast at a time but there's still sand in there from when I started casting.

Don't let anyone fool you, provided you can mould with the sand and it allows the gasses during casting to escape you'll be able to use it for casting. One thing that makes sand good for casting is if the grains have flat sides like a cube. Rounded sand grains like beach sand make poor casting sand because the binder has less surface area to cling to. But even with beach sand if you up the amount of binder you'll still come right.

Safety with sand

There's a fundamental safety principle when it comes to sand casting and casting in general. We are all taught that water and molten metal is bad and for kids at school that's fine but we have water in the moulds - what now? If the gasses from the mould can escape you won't have any issues and I have cast in very wet moulds. So molten metal on wet sand is not a bad thing that's why wet sand around the moulds is not a train smash and some foundries actually do just that.

A wet core on the other hand is looking for trouble and by wet I mean any volatiles that will expand, displacing metal out the mould. If you recall from the first article, I mentioned not to cast over concrete and the same principle applies. The concrete has entrapped water that cannot escape so it violently pushes the molten metal away which could spray hot metal where it's not wanted. If sand is used to cover the concrete, moisture can escape in a less exciting manner.

Green sand mix

With that all said, let's get straight to mixing the sand. My green sand mix is as follows:

4kg sand 400g Bentonite 140g coal dust 160ml water

Bentonite (with water) is the glue or binder for the sand and is typically used by farmers for dams so it is easy to get and is relatively inexpensive. If you find it difficult to source

some of the beauty shops sell bentonite for face masks but the quantities are smaller and it's more expensive. The carbon helps by preventing the metal penetrating into the sand (called 'burn on') by burning at the surface of the mould and holding the metal back. The components also come out shinier and less oxidised. Coal dust is an easy one to source and the quantities are quite small so you just grind a little coal dust for your castings. Don't add more than 5% coal to the mix.

Making your green sand is a simple matter of adding the water to the sand and mixing that up properly (I fashioned a mixing paddle from 6mm rod and I connect it to my electric drill). Once that's mixed you can add the bentonite and coal dust and mix the whole lot up. To check if the sand will work make a ball in your hand like you are making a snow ball and compress that tightly. Then use your fingers to pull the sand apart; it should break cleanly into two halves. You can tell if you've added to much water if the sand sticks to your hands when making

You might have to play around with the bentonite/ water/sand ratio to get the best results for moulding. The sand will dry up after casting or standing for long periods and you may need to add water before the next casting session. **Photograph 16** shows a selection of useful sand moulding tools.

≫

Sand moulding tools.

Any sand in contact with the pattern needs to be fine and of good quality. This doesn't mean you need to have two bags of sand. I use a flour sieve to separate fine sand which I use for facing sand. You just need to cover the pattern with facing sand; so large quantities aren't required. The sand behind the facing sand (backing sand) should be coarser allowing gasses to escape.

Core sands

Once again there are many different core sand mixes and you need to find one where the ingredients are easy to come by and you happy with the results. With any core sand you need to make sure there is no moisture or volatiles left after curing otherwise when you pour into the moulds all the metal will come straight back up the sprue. I use an old fashioned linseed oil mix modified from a book I read on casting written in the 1900's and it's as follows:

1kg dry sand 34g starch (I use flour) 15g sugar 22ml linseed oil (boiled or raw doesn't matter)

Mix the flour and sugar with water to a consistency

of paint. Cook on a hot plate at low temperature until the texture of the mixture changes - it becomes like a gel. After you've done with the cooking and your wife is done shaking her head this needs to be mixed into the sand, properly. Then finally add the linseed oil into the mix. This core sand doesn't keep so you need to mix it and use it within a week or two.

The core boxes are typically fashioned from rolled plate or a pipe that has been cut open (photo 17). Hose clamps are used to compress the pipe closed. The sand is rammed in the core box using a dowel or a piece of suitably sized wood and breather holes are made to at least the middle of the core using a 1.6mm welding rod. If the core is particularly slender I push a 1.6mm welding rod down the centre for increased strength but in general I don't bother as these cores are relatively strong.

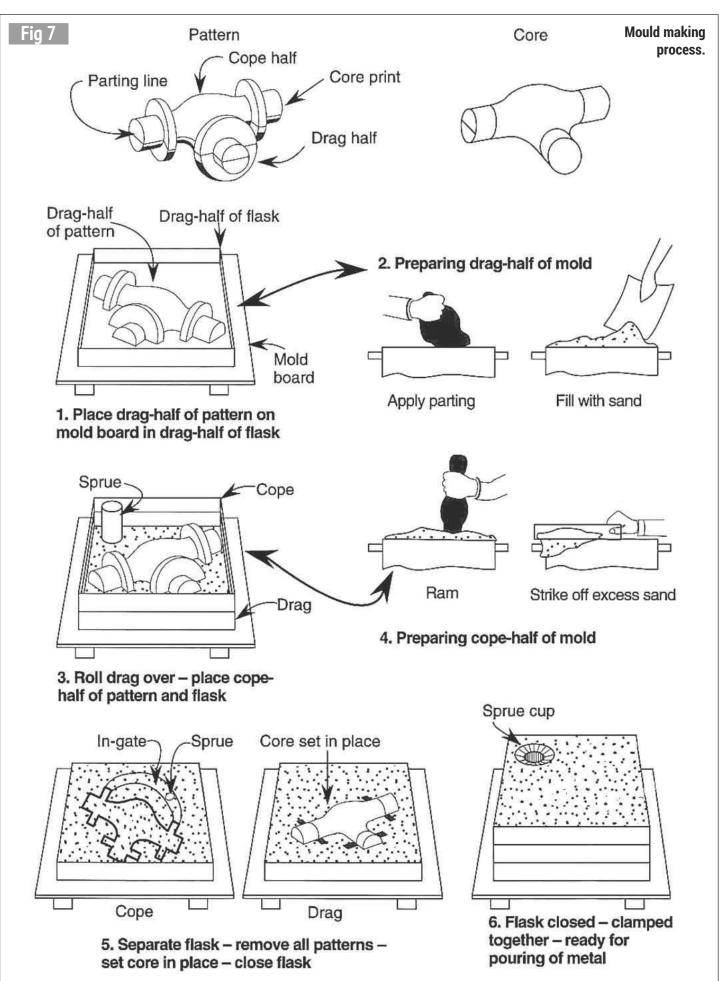
The cores need to be baked at 250°C until they stop smoking. This core sand has no strength when still wet (no green strength), so the cores need to remain in the core boxes until dry before they can be handled for final baking.

What I typically do is prebake a number of cores at 150°C for an hour per inch thickness, in

Core boxes.

the core boxes. To help get the cores out of the boxes I prespray the boxes with non-stick spray used for baking. I then remove them from the boxes and finish the baking at 250°C.

The cores need to stand in such a way that the entire surface area that will contact metal is properly baked. If for example you let a round core rest on its side that area might not cure properly resulting in surface porosity in the casting.


Cleaning the sand out of cored castings is a mission so I normally apply a mould coat to the cores. This gives a much better surface finish and there is less chance for 'burn on'. My mould coat is mixed as follows:

40g graphite powder 30g talc powder (baby powder) 30g bentonite

Mix this with water to the consistency of thick paint and apply to the cores after they have been baked with a paint brush. Then dry out the cores in the oven at 150°C for at least an hour (photo 18). Incidentally if you want excellent surface

Cores after baking.

quality castings or you want to improve metal flow in the mould you can use the same mould mix with methylated spirits and spray it onto the moulds. The surface will need to be flashed with a blow torch and the spirits allowed to burn off. I have only done this a handful of times with very specific castings and generally you don't need to go to these lengths.

Flasks for sand moulding

Flasks, as they called in the casting industry, come in all shapes and sizes and generally they can be made as needed (photo 19). I have even used wooden flasks and they work fine but they don't last as long as steel flasks. When making flasks make sure the top and bottom ('cope' and 'drag', but let's keep it simple) align easily. To this end I normally weld tabs, or angles, to opposing corners. If the flasks are clamped together with bolts you don't need to weigh the moulds down when casting. With the sand lighter than most metals cast, the top

half might float off resulting in molten metal pouring from the sides of the mould.

Try to keep at least a fingers gap between the angles for clamping; this helps when splitting the moulds to remove the patterns.

Tools for sand moulding

The tools for moulding are simple; a piece of wood makes a good ramming device and some wooden dowels make very good formers for sprues. Your fingers are the best tools for putting any sand back into its place if it decides to wander after removing the pattern. Make sure you push sand gently and don't rub or smear. You'll also need a thin rod to poke holes for the gas to escape and a thicker rod to rap the patterns before removing them, both with a point. I made a fancy device for cutting the ingates but a piece of pipe with the end cut in half will work iust as well.

Making the sand moulds

There are hundreds of videos and books on how to make the

Flasks.

Any sand in contact with the pattern needs to be fine and of good quality.

moulds for casting, so I'll be very brief as this is the easiest bit when it comes to casting (fig 7).

Split the flask and place one half with the split line face down. Place half of the pattern face down and dust with baby powder. Remember to leave space for the sprues and risers. Using the facing sand you mixed, compress the sand around the pattern using your fingers and make sure the

Rolling the sprue.

Cylinder - top box.

Cylinder - top box with riser and pattern removed.

You then assemble the rest

of the flask and the other

half of the pattern, as well

best place for the riser is

as any risers, and dust with baby powder. Generally, the

between the pattern and the

sprue, as close as possible to

the pattern. Placing the riser

entrapping any slag carryover

in the riser instead of it going

Repeat the ramming procedure but prop a dowel upright for

straight into the casting.

the sprue. Here you don't

need to scrape the top and I generally ram higher that the

top of the flask. Wiggle the

wooden dowel a little and pull

it out - it should leave a nice

hole. Split the flask carefully

between the clamping angles

- this is where a finger gap

above the ingate helps with

the 16mm sprue, 1-3kg the for when I want to use the sprue as bearings.

> Your fingers are the best tools for putting any sand back into its place if it decides to wander after removing the pattern.

The ingate needs to be pressed flat and it should be smooth for casting. Cut a funnel at the top of the sprue where you going to be pouring and use a kitchen funnel to compress and smooth. A smaller dowel is placed down the sprue and, by rolling, the surface is compressed and smoothed. Make sure there are no loose pieces of sand along the path of metal flow.

At this point the pattern can be removed. Using the

surrounded by the pattern, don't rap side to side as the sand between the spokes will break when you remove the pattern. Grip the pattern using the holes and hooks described in the pattern making article and carefully remove it from the sand. Photographs 20 to 23 show the preparation of a

Cylinder – bottom box with cores fitted and ingates cut in sand.

rapping tool (6mm rod with a

point) and a piece of wood the

pattern is tapped down lightly

and side to side to help with

getting it free from the sand.

If your pattern has spokes, or

any similar areas with sand

do) push breather holes from the pattern side through to the through. Any high point where gas cannot escape should be vented, especially all risers. Carefully push any sand that has dislodged back into place. That's it – you're done! Close

If you want to mould an unsplit pattern the principles are the same but first you lightly ram the top flask, push the pattern into the sand to the halfway line, dust and ram the other half. You then split the flask and break out the top and redo as with a split pattern with the sprues etc. Far more care is required when splitting the flasks to prevent the sand from breaking.

With this you have a mould ready for casting. You should cast within two days and I generally cast the next day. Don't fire up the furnace before making the moulds; there's a little work required when managing the furnace, as we'll see next time.

To be continued.

pattern is completely covered. Half fill the flask with backing sand and ram using a piece of wood. Overfill the flask and ram to above the edge. Using a piece of wood, scrape the excess sand away level with the flask

the pattern and sprue but $\frac{2}{3}$ of the sprue should be adequate. Up to 1kg I generally stick with 20mm and the 25mm is saved

pays off. There should be an imprint where the dowel was so use your fingers to compress the sand to make a half moon (just bigger than the sprue); this will help prevent excessive turbulence when pouring. Cut a nice ingate from the halfmoon under the riser to the pattern. The ingate needs to be big enough for adequate metal flow without freezing. I normally judge by the size of

mould for casting a cylinder. Using a thin rod (1.6mm will top surface and pull straight

If you can't always find a copy of this magazine, help is at hand! Complete this form and hand in at your local store, they'll arrange for a copy of each issue to be reserved for you. Some stores may even be able to arrange

for it to be delivered to

your home. Just ask!

Please reserve/deliver my copy of Model Engineer on a regular basis, starting with issue Title Surname Address Postcode Telephone number

If you don't want to miss an issue...

The Polar Express

Jon Edney
tells how
the festive
spirit is
brought to a
Cambridgeshire village.

The festive scene.

Alert engine driver.

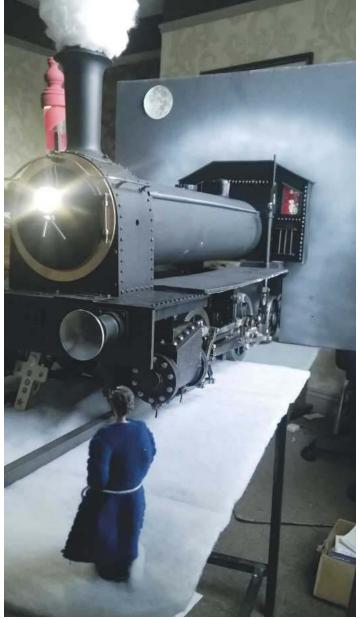
or the last five years our village in Cambridgeshire has been engaging in a community activity called 'Advent Windows'. Each year a theme is announced and twenty three households around the village are assigned a topic and prepare a decorative window. There is a launch event on December 1st and then each house unveils a window on each day of December, culminating with a big window on Christmas Eve at the Baptist Church. I have seen other locations doing something similar and it is becoming quite popular.

Some people do very artistic windows, some clever or intriguing designs but, of course, being an engineering household we always have a model scene, usually with animated features. Last year we had a moonscape and the 'Clangers' all rose up

and appeared in one of the craters. This year the theme is 'Charades' and each window will feature a film, book or song etc.. The idea is that passersby have to guess the theme. The organiser (knowing my proclivity for trains) assigned us The Polar Express which. as many readers will know, is a book and also an animated film from 2004. This film has an iconic scene of a boy, in his dressing gown, staring at a huge locomotive which has magically appeared on his street. If you search the Internet for 'Polar Express' you will immediately see this image.

So the task, obviously, was to replicate the scene with the locomotive and the boy to display in our window. Now, I have been working for some time on a 7½ inch gauge Bridget locomotive (by Ken Swan) but this is not finished – I had just the chassis and the smokebox completed. Also, Bridget, as a tank engine, would hardly conjure up the image of the massive locomotive in the story.

So. I followed the path of all true model engineers and started cobbling together whatever I could find. I used a plastic pipe (designed for an extractor fan) to make a long boiler for the locomotive and stuck a milk bottle top and a rubber bung on top to give the effect of steam dome and sand boxes. After painting it black, I stuck a stainless rod down the side to give the 'cluttered' effect. I didn't have room for a full cab so I made a mock-up cab front about an inch deep and placed it against a plywood back board which was painted black with steam effect from an air brush. The cab itself was made from craft board stuck with hot melt glue. I wanted to add rivets to give a locomotive effect but what could I use? As I sat in the kitchen puzzling. inspiration struck - I saw a jar of dried split peas on the shelf. These were stuck on with superglue and, with the addition of some tubes made from drinking straws and a coat of black spray paint, I had a viable 'cab'. To get steam from


In course of arrangement.

the chimney I stuck a bung in the top with a vertical stick and added cotton wool. The boy was a doll's house eBay purchase and my wife kindly made the dressing gown.

An important feature of the locomotive in the film is a large, very bright central headlight. I turned up a suitable headlight from brass and glued in a 2W white LED. This was way too bright so I stuck a piece of translucent tracing paper across the front to give a nice effect and not leave onlookers with a black spot on their retina! The lamp is not actually attached, but hangs on black wires trapped by the 'smokebox door'. Finally, for extra fun I stuck aluminium foil inside the cab and created a glowing fire effect using a red and a yellow LED driven by an Arduino microprocessor.

Just a couple of other details: the meerkat in the cab is just because, for reasons now forgotten, we always include a meerkat somewhere in our window – it is a sort of trademark. The red, stripy pole in the background is supposed to be the North Pole. It is made of acrylic, rotates and is illuminated from below.

The finished result is shown in the photos and I trust that it will give much pleasure to adults and children alike this year. Making it certainly gave me a lot of pleasure anyway!

The finished result.

John
Arrowsmith
visits the
Hereford
Waterworks
Museum, the venue again
for this year's rally.

This 1890 Hayward-Tyler hot air engine was working all day.

A group of assorted engines from Julian Wood.

The Stirling Engine Rally 2019

The new experimental gear box produced by Julian Wood.

The old style way of reversing a hot air powered car.

he annual Stirling
Engine Society Rally
was once again held at
the Herefordshire Waterworks
Museum. This fine venue
is a good setting for these
machines simply because
they have a number of them
on permanent display. This
enables visitors to see a
couple of full size hot air
engines working in typical
conditions, doing what they
were designed for, in this case,
pumping water (photo 1).

The rally itself has established a good relationship with the museum and always provides a wide range of models and equipment to complement the museum's own working examples. Julian Wood is the Society secretary as well as being a prolific builder and operator of a wide selection of well built, interesting models (photo 2). His latest development is a new, small gearbox for a hot air powered car which replaces the common set of two pulleys to provide forward and reverse motion. This new arrangement is easier to operate and provides more power for the wheels (photos 3 and 4). Bob Cannon is a regular contributor to both this show and the Midlands Exhibition and his group of models here showed off some interesting examples and uses of Stirling engines. Among the engines on show was a nicely made working example of a Gamma configured Stirling engine alongside an Henrici configured engine (photo 5).

There are lots of simple commercial models available these days and Brian Lowe had an attractive display of a number of such engines (**photo 6**) which contrasted nicely with the scratch built models from other contributors. Andy Badman was showing his nice example of a Rider-Ericsson

Bob Cannon provided this example of Gamma and Henrici hot air engines.

Hot Air engine (photo 7) alongside his Flame Gulper engine. Chuck which, to the amusement of many, was making a rather flatulent sound at the end of each stroke. This was apparently caused by the diaphragm valve at the bottom of the cylinder. One exhibitor, David Laycock told me he had bought a small second-hand engraving machine and then wondered what could be done with it. in addition to engraving. The result of his pondering was some nice side plates between which a small hot air engine was mounted - and it was on show here (photo 8).

An attractive display of modern commercial engines provided by Brian Lowe.

A well made example of the popular Ryder-Ericsson Hot Air Engine built by Andy Badman.

David Laycock used a traditional engraving machine to machine the side plates for his engine.

The elegant cooling fan under construction by Jeff Ford.

Tony Goodger is constructing this free piston engine for his model boat.

A really first class Edwardian/ Colonial style fan is being constructed by Jeff Ford who displayed the not-quite-finished machine here. Excellent workmanship showed off an elegant fan which, as Jeff explained, contains an element of art deco styling to complete the model. He has been experimenting with a hard, anodised cylinder but this has not been a success so having done all the drawings himself he is returning to a cast iron burner and will use an electrical band heater rather than a gas burner clamped to the burner to provide the heat,

as he thinks this will improve the aesthetics of the finished fan (**photo 9**).

There was an interesting build project featuring a hot air engine mounted in a small boat hull. The engine is using a free piston system where the piston is not coupled directly to the displacer, but relies on the difference in air pressure to enable operation (photo 10).

Tony Goodger had a couple of other interesting engines on show, one of which uses a glass hypodermic syringe as a cylinder and a recycled battery case as the piston; he said it was a bit messy cleaning the battery out but the combination works well.

I had a long conversation with Norris Bomford who was displaying his four-lever Stirling marine engine which he has developed. Mounted in a small boat it can produce enough power for two people to enjoy a leisurely sail at about 2/3 knots (photo 11). The multi-tube heater was an interesting part of the engine (photo 12) and additional engine control is offered via a small air bleed valve from the crankcase: when used it can add another 20 rpm to the propeller speed. He had a novel way of sealing a leaking gasket around the heater barrel: he had found that the leak was through the gasket material itself so by painting a layer of Loctite around the outside, the internal vacuum sucked it into the material and he hasn't had a leak since.

I mentioned above that the Museum has its own small collection of Stirling engines and one of the displays is an interactive one which allows visitors to read about the engine and then press a button to watch it operate. This is a popular feature as the information boards describe the movements which can then be seen in action by simply pressing the button (photo 13). A further display, given to the museum by a local businessman, has a good time line section combined with the models so again visitors can discover how these machines progressed (photo 14). What this doesn't show, though, is the NASA project to use a

Norris Bomford built this four lever Stirling engine for use in a small boat.

The heater tubes on the four lever Stirling engine.

The interactive display by the Waterworks Museum.

Stirling Engine powered by a nuclear fission generator to provide power for a future base on the moon or even the planet Mars. The project expects this machine to provide around 40KW of power - enough for about eight houses. I wonder what the Reverend Dr. Stirling

would think of his 1916 invention being used in such a high tech project as a moon

Finally the Museum's own full size Haward-Tyler hot air engine, circa 1890, was working merrily away all day (photo 1) demonstrating how

A static display of models with a time line diagram showing progress over the years.

these machines performed their tasks in real life. This one provided a water supply for a local country house.

I hope this short ramble around the annual Stirling rally gives you enough of a taste of these interesting engines to perhaps try and visit next year.

My thanks, as usual, to all the museum staff who contributed to the success of the day and to all the Stirling Engine members who came to display their engines and who did so with great enthusiasm. It was a pleasure to meet you all.

ME

FREE PRIVATE ADVERTS

YOUR FREE ADVERTISEMENT (Max 36 words plus phone & town - please write clearly) **■** WANTED **■** FOR SALE Phone: Date: Town: Please use nearest well known town NO MOBILE PHONES, LAND LINES ONLY

Adverts will be published in Model Engineer and Model Engineers' Workshop. The information below will not appear in the advert. Name _____Postcode _____ Email address.

Do you subscribe to Model Engineer \square Model Engineers' Workshop \square

Please post to:

ME/MEW FREE ADS, c/o Neil Wyatt, MyTimeMedia Ltd, Enterprise House, Enterprise Way, Edenbridge, Kent TN8 6HF Or email to: neil.wyatt@mytimemedia.com

Photocopies of this form are acceptable.

Adverts will be placed as soon as space is available.

Terms and Conditions:

PLEASE NOTE: this page is for private advertisers only. Do not submit this form if you are a trade advertiser. If you wish to place a trade advert please contact David Holden on 07718 648689 or email david.holden@mytimemedia.com

By supplying your email/ address/ telephone/ mobile number you agree to receive communications via email/ telephone/ post from MyTimeMedia Ltd. and other relevant 3rd parties. Please tick here if you DO NOT wish to receive communications from

MyTimeMedia Ltd: Email 🔲 Phone 🔲 Post 🔲 or other relevant 3rd parties: Email 🔲 Phone 🔲 Post 🔲

The Barclay Well Tanks of the Great War

Terence
Holland
describes
and
constructs
two appealing, century
old locomotives.

Continued from p.786 M.E. 4626, 22 November 2019 This constructional series addresses Andrew Barclay 0-4-0 and 0-6-0 narrow gauge locomotives supplied for use in the First World War. Built without the use of castings, the 0-4-0 design is described as two versions; asbuilt for the British Admiralty in 1918 and as rebuilt and currently running on the Talyllyn Railway as their locomotive No.6, Douglas. The 0-6-0 engines described were built in 1917 and operated on 60 centimetre gauge track at the Western Front in France. These were small, spartan machines of which only 25 were supplied and none have survived into preservation.

Driver's injector on ACC No.1.

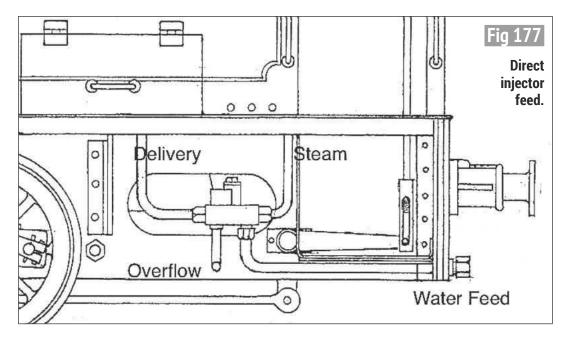
Airservice Constructional Corps No.1

Fitting up the injectors on ACC No.1 is a lot easier than those on Douglas. In addition, things look a lot more attractive (although beauty, of course, is in the eye of the beholder!).

Photographs 257 and 258 show the injectors on my engine before the rebuild.

In photo 257, which shows the driver's injector, the original screw-down clack had suffered from dezincification and had been replaced with a 'normal'

ACC No.1 cab view.



Fireman's side of ACC No.1.

non-return valve. It's a bit difficult to see but the injector suction is fitted with a brass standpipe that sits directly on the water cock. In this position it is very easy to remove the injector for cleaning — even when the engine is in steam.

Both injectors were fed from the driver's tank (topped up from the pump bypass) and the tender supply was fed to the feed pump only. The water cocks' operating levers were installed in the cab at a slight angle to open and close the cocks, which were fitted each side of the firebox front. The injectors were mounted each side and part way up the tank/bunker front, at a height corresponding to the base of the water tank; this provided an approximate head of four inches. Both operating levers can be seen in photo 258.

In photo 259, the original screw-down clack is in place and the crosshead feed pump is prominent. The engine at this time was fitted with an American-type chime whistle (tuned to E minor) on the front of the cab and a small bell whistle was fitted to the steam dome. Note also the incorrect drain cock arrangement - there is no centre steam chest drain - and the conventional Walschaert's expansion link instead of the Barclay-designed link. Even though the engine is fitted with a mechanical oil pump, tallow cocks are fitted to the outer cylinder covers, along with displacement lubricators on the steam chest covers, as

these were prominent features of the original design.

Douglas

As mentioned above, on Douglas the injectors are mounted below the footplate. This provides the best possible head of feed water, so normal injector arrangements can be applied. Douglas has two injectors situated one each side of the cab; a large unit on the driver's side and small one on the fireman's side. I was tempted during the rebuild to reinstall the injectors to where they were on ACC No.1, but this would still have required a fair bit of work. So eventually common sense prevailed, I 'bit the bullet' and went for the correct location under the rear footplate. Mounting in this position, however, means that the feed pipework to the boiler

is considerably longer but previous experience has shown that this is not a problem.

The simplest arrangement is shown in **fig 177** where the fireman's injector is fed directly from the driving tender. This arrangement is possible if no feedpump is fitted. In this case the stop valve for the injector feed is located in the tender.

When a tender is used things get a bit more complicated, as can be seen in **photo 260**, which shows the injector pipework on the driver's side, before fitting the side tank. Note that there is no water supply at this stage, as that is supplied from the driver's bunker. **Photograph 261** shows a close-up of the water connection with the bunker installed. The shaft for the driver's water cock runs horizontally to the cab and the

operating handle is situated below the drain cock lever.

Photograph 262 shows the fireman's side complete with injector water supply, which tees off from the water feed to the feed pump – see the close-up view in photo 263.

When the locomotive is fitted with the fireman's injector stopcock, the pipe from the tender also feeds the crosshead pump; it feeds directly to the pump as it is not throttled on its inlet. See photos 262 and 263. Space is at a premium on both sides of the locomotive, so connecting the injector to its water supply gets a bit tricky. Hence the use of flexible rubber tube for the water feed from each injector stop valve. This does. however, simplify injector removal for cleaning but it is important to ensure that no

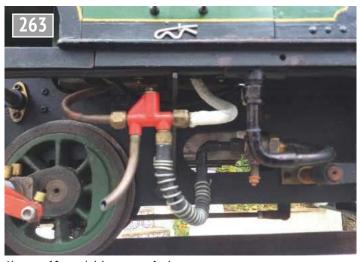
Driver's injector pipework.

Close-up of driver's injector water feed.

Fireman's injector pipework.

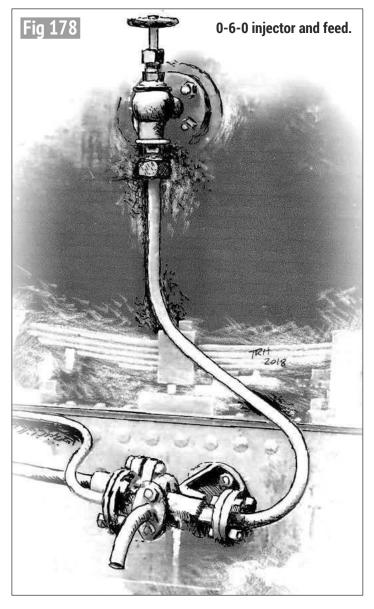
air can leak in on the suction side. The ideal piping sizes for the injectors are as follows: steam ¼ inch, feed 5/16 inch and water 3/8 inch, all outside diameter. Where possible thin walled tube should be used. Steam should be supplied via fairly large valves and the water cocks should have decent size passageways similar to that of the feed pipework. Care must be taken to prevent air ingress into the water supply or the injector will not work reliably. Strainers should be fitted to all water supplies to prevent foreign bodies, such as coal dust, entering the injector cones.

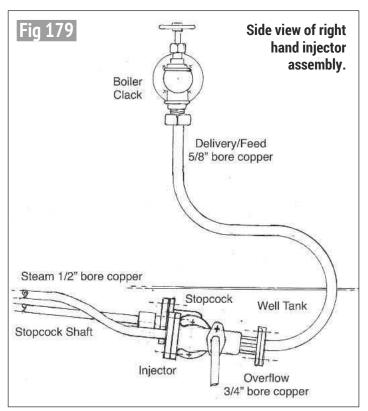
In photos 260 and 262 the steam pipes are lagged with string, covered with white filler rubbed in by hand and then painted gloss white. If you don't like the ostentatious look use gloss black – they end up pretty dirty anyway on the real thing.


The locomotive is connected to the tender via a flexible tube – see **photo 264**. If the feed pump is fitted it could be fed from a bulkhead fitting/strainer in the base of the well tank and the tender supply used for the fireman's injector only. It is better, however, if the pump is fed from the tender, which contains some two gallons of water.

Spooky Goings-On

I have a bit more encouraging information regarding the performance of the screwdown, non-return valves on the 5 inch gauge barclay engines (see fig 123, p. 524, M.E. 4596, 28th September 2018). Recent experience, when lighting up in the dark for a 'ghost train' special on Hallowe'en night, gave credence to the inference by Martin Rickers (ref 56) in his injector series that a working injector, which is well supplied with water and steam. will have

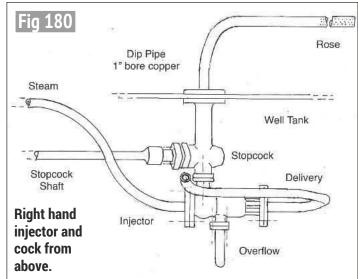


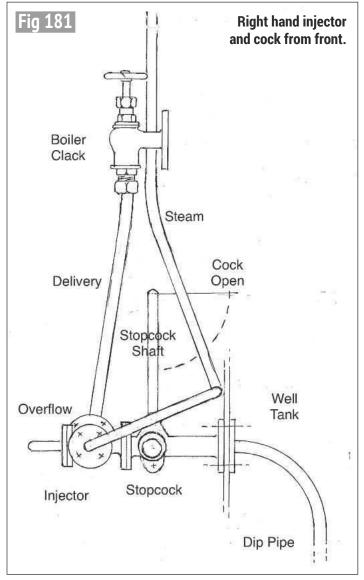

Connection to tender.

Close-up of fireman's injector water feed.

no problems delivering against a restricted feed. But, more importantly for me, it verified that my design of boiler clack worked well, despite being somewhat restrictive. I was attempting to top up the boiler before taking off into the unknown but couldn't get either injector to work. Eventually the penny dropped – I hadn't opened the screw-

down boiler clacks (this is one of the problems with being driver, fireman and locomotive superintendent!). However, before realising this, the driver's injector started working spooky! - not particularly well but it was definitely feeding into the boiler. On inspection, although both clacks were shut, it was apparent that the right-hand unit had not been completely tightened down - but just enough to bed the 'O'-ring and stop water draining back through the injector overflow in storage.


The only logical explanation I can come up with in the real world (avoiding quantum tunnelling and the supernatural...) is that the pressurised outlet from the injector was displacing the 'O'-ring sufficiently to allow water to pass. Once the valves were manually opened both injectors functioned perfectly. It was a bit hair-raising at the time though!


The War Department 0-6-0s

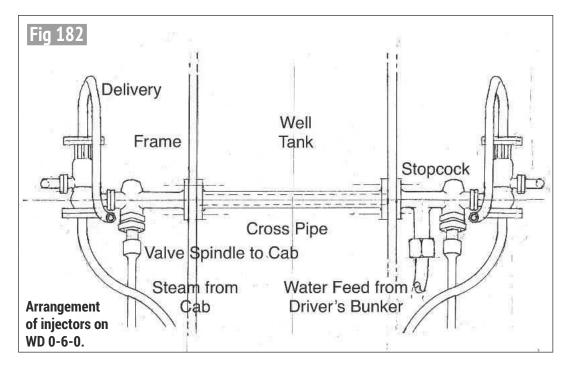
On the War Department locomotives, a loop in the injector feed pipe is necessary. This allows the lifting injector to be fitted clear of the gear frame and far enough forwards so that the feed pipe can enter the rear of the well tank. See **fig 178**, which shows the Barclay injector and its water cock, as fitted to the Class F engines – right hand unit drawn.

If the injectors are fed from the right hand bunker, there is no reason why the position shown in fig 178 cannot be used on the model, as this will provide sufficient head of water. The valve flange (which on the Barclay locomotives connects the water cock to the dip tube in the well tank) can be used to connect to a pipe that crosses the frame to a similar flange on the right hand side. Water can then be supplied to both injectors from the bunker via the water cocks. Provision will need to be made for easy removal of the injectors for cleaning.

According to the Barclay drawings of the 0-6-0, the strainer on the end of the suction pipe was a simple affair. The end of the dip pipe into the well tank was blanked off and ½ inch diameter holes were drilled around the pipe for a distance of 6 inches – I wonder how many injector problems this caused in the Flanders mud?

Schematics of the Barclay injector and its water cock, taken from the original 1916 drawings for the 0-6-0, are presented in figs 179, 180 and 181.

Inspection of figs 179 to 181 indicates that the installation of conventional miniature injectors would not be too difficult on the 0-6-0. In fact, fig 182 shows that the injector


assembly would be quite conspicuous and it would add a bit of technical interest to an otherwise Spartan machine.

Slight modification would be needed to the injector body to bring out the water connection to the side and handed units would result. Connection to the pipework would have to be via union nuts to make the injectors easy to remove for cleaning. Dummy flanges could be screwed on the bodies as a compromise.

Figure 182 gives some idea of the water supply arrangements using the same flange penetration of the well tank, which would result in the injectors being at the correct height. The tee-piece connects the cross pipe to the driver's bunker via a strainer fitted in the bunker.

Some idea of scale is given by the four inch measurement between the frames.

■To be continued.

REFERENCE

56. Martin Rickers, *Some Performance Data for an Unusual Injector*, Model Engineers 3691, 3693 and 3695, October 1982.

NEXT TIME

I shall discuss fittings for these locomotives, both commercial and home-made.

ISSUE NEXT ISSUE NEXT ISSUE NEXT ISSUE NEXT I E NEXT ISSUE NEXT ISSUE NEXT ISSUE NEXT ISSUE

Wheel Profiles

Hiroyuki Watanabe explains how the correct profiles may be achieved on locomotive wheels and brake blocks.

Midlands Show

John Arrowsmith completes his tour of the Midlands exhibition with a look at the club stands.

M.E. Beam Engine

David Haythornthwaite makes the crossbar and crosshead for the *Model Engineer* beam engine.

Brill Tram Truck

Ashley Best makes the cross beam for the Brill 22E tram truck.

Slot Cars

Henk de Ruiter revisits slot cars, with a look this time at some vintage 1960's/70's chassis.

Content may be subject to change.

MODEL ENGINEER

Incorporating Mechanics, English Mechanics and Ships & Ship Models

EDITORIAL PAGES INDEX		
21st June 2019 - 4th July 2019	4615	12-59
5th July 2019 - 18th July 2019	4616	80-127
19th July 2019 - 1st August 2019	4617	148-195
2nd August 2019 - 15th August 2019	4618	216-263
16th August 2019 - 29th August 2019	4619	284-331
30th August 2019 - 12th September 2019	4620	352-399
13th September 2019 - 26th September 2019	4621	420-467
27th September 2019 - 10th October 2019	4622	488-535
11th October 2019 - 24th October 2019	4623	556-603
25th October 2019 - 7th November 2019	4624	624-671
8th November 2019 - 21st November 2019	4625	692-739
22nd November 2019 - 5th December 2019	4626	760-807
6th December 2019 - 19th December 2019	4627	828-875

COVER	PHOTOGRAPHS
4615	Norman Smedley's Foden 'Speed Six' steam wagon
4616	General Gough, Mike Robinson's 6 inch Burrell showman's engine
4617	The 18 inch tramway at the Cardiff MES
4618	John Ollerenshaw's 'Sweet Pea' locomotive, Sweet Sue
4619	Nigel Potter's <i>Hustler</i> , a Berkshire 2-8-4 locomotive
4620	Joanne Flippance drives a BR proposed 2-8-2 locomotive at IMLEC
4621	Suffolk steam dredging tractor in 4 inch scale
4622	Jonathan Kennaugh drives <i>Otter</i> at the Groudle Glen railway
4623	Manchester trams depicted by Ashley Best
4624	The NRM's Chris Binks cleans one of the models in their collection
4625	Steve Carter steams up GWR 7822 Foxcote Manor in 5 inch gauge
4626	Steam launch Chimera II on the River Wey, near Guildford
4627	Ruston Proctor SD tractor in 6 inch scale owned by Ian Morris

INDEX		
Index to volume 222	4615	33

MAIN AUTHOR INC	EX		
Arrowsmith	John	National Model Engineering Exhibition 2019	13, 121, 178, 257
Arrowsmith	John	We Visit - South Cheshire MES	30
Arrowsmith	John	Sweet Pea Rally	217
Arrowsmith	John	We Visit - Oswestry and North Shropshire MES	292
Arrowsmith	John	Welland Steam Rally	421
Arrowsmith	John	We Visit - City of Oxford SME	577
Arrowsmith	John	7¼ inch Society AGM	645
Arrowsmith	John	We Visit - Wrexham and District SME	693
Arrowsmith	John	Midlands Model Engineering Exhibition 2019	770, 829
Arrowsmith	John	We Visit - Nottingham SMEE	868
Astbury	Graham	Mission Impossible	720
Backhouse	Roger	Engineer's Day Out - Drax Power Station	162
Backhouse	Roger	Engineer's Day Out - New Lanark	302
Backhouse	Roger	Engineer's Day Out - Poppleton Community Nursery	452
Backhouse	Roger	Model Engineering's Heroes - James C. Crebbin	489
Backhouse	Roger	Book Review - Technology in the Country House	708
Backhouse	Roger	Engineer's Day Out - Farnborough Air Sciences Trust	731
Baker	Brian	Workshop Tips - GWR Safety Valves	167
Baker	Mick	Lions Meet 2019	590
Ballamy	Jason	Muncaster's Entablature Engine	254, 285, 372, 456, 520, 563, 638
Barnes	Alan	Derek Finch - My First Traction Engine	170
Best	Ashley	Brill 22E Tram Truck	557, 714, 842

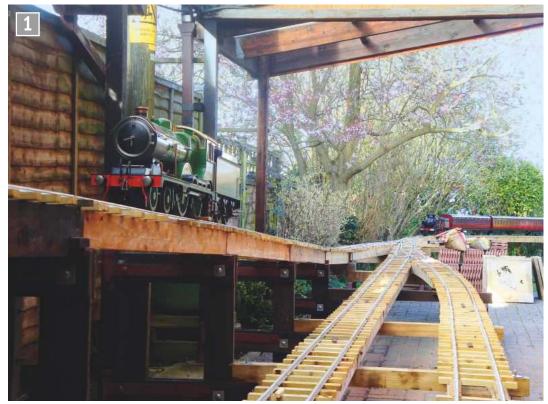
MAIN AUTHOR IND Birchall	Frank	Walschaert's Valve Gear	709, 850
טווכוומנו	ITALIK	for Sweet Pea	<u> </u>
Bird	Tony	Wax Chucks	567, 658 728
Bowditch	Simon	Showcase - Kempton Park Kerr-Stuart locomotives	491
Carney	Diane	Brass, Steel and Fire	625
Chugg	Chris	Golden Celebration for Bracknell	82
Chugg	Chris	LittleLEC 2019	238
Coles	Tim	Showcase - 7¼ inch Adams radial tank	790
Crossfield	Alan	IMLEC Preview 2019	81
Crossfield	Alan	Showcase - Lancashire and Yorkshire 2-4-2T locomotive	231
Crossfield	Alan	IMLEC 2019	316, 359
Denman	Michael	Earth Moves at Cardiff	149
Eaton	Steve	LBSC Rose Bowl Competition	288
Edney	Jon	Bridget	313, 450 598, 724 834
Evans	Martin	Wind and Steam in Whissendine	102
Evans	Martin	Garden Railway	380
Feast	Nick	Four Bar Linkage Hinges	573, 649
Freeman	Jon	Brushless Brute	17, 108, 190, 242 306, 355 460, 524 560
Gardner	Graham	Abbey Hill Steam Rally	353
Gardner	Graham	Usk Show Steam Corner 2019	705
Gearing	Martin	ME Vertical Boiler	47
Gunn	Chris	Garrett 4CD Tractor	90, 228, 365, 504 627, 778
Guthrie	Richard	NAME Editors' Cup 2018	220
Hart	Stewart	Beam Compass	501, 654
Hayter	Bob	Obituary - Richard Guthrie	852
Haythornthwaite	David	ME Beam Engine	26, 156, 308, 443 587, 701 864
Hendra	Patrick	Eastleigh Young Engineers Club	173
Herbert	Dennis	Showcase - 7¼ inch GWR King Class locomotive	120
Hewson	Doug	GWR Pannier	95, 234, 394, 508 641, 796
High	Malcolm	Book Review - Digital Model Making	849
Holland	Terence	Barclay Well Tanks	110, 251 388, 492 662, 764
Hotspur		Wenford	853
Kerr	Les	Soldering Timer	376, 512
Knights	Mick	Bentley BR2 Rotary Aero Engine	40, 150, 322, 425 582, 718

MAIN AUTHOR IN	DEX		
Luker		Seven Foot Stirling Single	37, 84
Luker		Backyard Foundry	781, 837
Marchant	Brian	3D Printing for Model Engineers	118
Moorhouse	John	Bird Automaton	792, 860
Muggleton	Brian	Showcase - 1923 compound condensing marine engine	643
Nicholson	Michael	Seabourne Alpha	767
Olsen	John	Henry Ford Museum	44
Owen	Rhys	Locomotive Boiler Explosions	20
Owen	Rhys	Brecon Mountain Railway	856
Parham	Tom	Southern Federation Rally 2019	301
Phillips	Les	NSWGR C38 Pacific Locomotive	182, 224, 289
Pickering	Alan	Wimshurst Machine	656
Rayward	Chris	LNWR D Tank	53, 153, 325, 446, 570
Rudall	Mark	Upscaling Can Change the Game	761
Russell	Peter	Adding Variable Speed to the Warco VMC	186
Sadler	Graham	Lathes for Beginners	50, 88, 176, 232, 295, 392, 433, 514, 592, 630
Sadler	Graham	Sieg SX2 CNC Conversion	105, 246, 383, 498, 665, 773
Smithers	Mark	Brand New Bagnall for Groudle Glen	430, 517
Theasby	Geoff	Club News	56, 124, 192, 260, 328, 396, 464, 532, 600, 668, 736, 804, 872
Theasby	Geoff	Steamy Weekend	310
Tilby	Mike	Steam Turbines	98, 221, 368, 527, 632, 799
Walker	Robert	Backplate ftor the Myford 254 Lathe	712
Wells	James	Men in Sheds	166
Wells	James	Oscillating Beam Engine	442
Wessel	Stephen	Garden Railway Design	438, 495, 594, 660, 696
Williams	Julie	Lowestoft Model Engineering Exhibition 2019	786
Williams	Patrick	Synchronome Clock Revisited	115, 159
Worden	Peter	FOCAS Oil Pump	298, 436
Wright	Tony	Dairy Engine	23

MAIN SUBJECT INDEX	110
3D Printing for Model Engineers	118
7¼ inch Society AGM	645
Abbey Hill Steam Rally	353
Adding Variable Speed to the Warco VMC	186
Backplate for the Myford 254 Lathe	712
Backyard Foundry	781, 837
Barclay Well Tanks	110, 251, 388, 492, 662, 764
Beam Compass	501, 654
Bentley BR2 Rotary Aero Engine	40, 150, 322, 425, 582, 718
Bird Automaton	792, 860
Book Review - Digital Model Making	849
Book Review - Technology in the Country House	708
Brand New Bagnall for Groudle Glen	430, 517
Brass, Steel and Fire	625
Brecon Mountain Railway	856
Bridget	313, 450, 598, 724, 834
Brill 22E Tram Truck	557, 714, 842
Brushless Brute	17, 108, 190, 242, 306, 355, 460, 524, 560
Club News	56, 124, 192, 260, 328, 396, 464, 532, 600, 668, 736, 804, 872
Dairy Engine	23
Derek Finch - My First Traction Engine	170
Earth Moves at Cardiff	149
Eastleigh Young Engineers Club	173
Engineer's Day Out - Drax Power Station	162
Engineer's Day Out - Farnborough Air Sciences Trust	731
Engineer's Day Out - New Lanark	302
Engineer's Day Out - Poppleton Community Nursery	452
FOCAS Oil Pump	298, 436
Four Bar Linkage Hinges	573, 649
Garden Railway	380
Garden Railway Design	438, 495, 594, 660, 696
Garrett 4CD Tractor	90, 228, 365, 504, 627, 778
Golden Celebration for Bracknell	82
GWR Pannier	95, 234, 394, 508, 641, 796
Henry Ford Museum	44
IMLEC 2019	316, 359
IMLEC Preview 2019	81
Lathes for Beginners	50, 88, 176, 232, 295, 392, 433, 514, 592, 630
LBSC Rose Bowl Competition	288
Lions Meet 2019	590
LittleLEC 2019	238
	53, 153, 325, 446, 570
LNWR D Tank	

MAIN SUBJECT INDEX	
Locomotive Boiler Explosions	20
Lowestoft Model Engineering Exhibition 2019	786
ME Beam Engine	26, 156, 308, 443, 587, 701, 864
ME Vertical Boiler	47
Men in Sheds	166
Midlands Model Engineering Exhibition 2019	770, 829
Mission Impossible	720
Model Engineering's Heroes - James C. Crebbin	489
Muncaster's Entablature Engine	254, 285, 372, 456, 520, 563, 638
NAME Editors' Cup 2018	220
National Model Engineering Exhibition 2019	13, 121, 178, 257
NSWGR C38 Pacific Locomotive	182, 224, 289
Obituary - Richard Guthrie	852
Oscillating Beam Engine	442
Seabourne Alpha	767
Seven Foot Stirling Single	37, 84
Showcase - 71⁄4 inch GWR King Class locomotive	120
Showcase - Lancashire and Yorkshire 2-4-2T locomotive	231
Showcase - Kempton Park Kerr-Stuart locomotives	491
Showcase - 1923 compound condensing marine engine	643
Showcase - 71/4 inch Adams radial tank	790
Sieg SX2 CNC Conversion	105, 246, 383, 498, 665, 773
Soldering Timer	376, 512
Southern Federation Rally 2019	301
Steam Turbines	98, 221, 368, 527, 632, 799
Steamy Weekend	310
Sweet Pea Rally	217
Synchronome Clock Revisited	115, 159
Upscaling Can Change the Game	761
Usk Show Steam Corner 2019	705
Walschaert's Valve Gear for Sweet Pea	709, 850
Wax Chucks	567, 658, 728
We Visit - City of Oxford SME	577
We Visit - Nottingham SMEE	868
We Visit - Oswestry and North Shropshire MES	292
We Visit - South Cheshire MES	30
We Visit - Wrexham and District SME	693
Welland Steam Rally	421
Wenford	853
Wimshurst Machine	656
Wind and Steam in Whissendine	102
	167
Workshop Tips - GWR Safety Valves	10/

POSTBAG INDEX Aero Engines Rousseau, Andre 72 Albula Pool, Richard 23 Alzheimer's Phipps, Laura 38	
Albula Pool, Richard 23	
Atzneimer's Phipps, Laura 38	
Beam Engine Milliner, Barry 84	
	30
· ·	26
· ·	33
Content of Model Engineer Reeve, Tony 84	
Content of Model Engineer Tilby, Mike 84	48
Corporation Tax Anon 73	33
Craftsmanship Johns, Richard 29	9
Doncaster Show Punter, George 16	58
Efficiency Mount, Anthony 73	33
Efficiency Webster, Duncan 73	33
EMCO Williams, Patrick 23	36
Engines of War Jolliffe, Ted 58	31
Ford Museum Collier, P. W. 23	36
Ford Museum Olsen, John 52	26
Ford Museum Read, Bill 23	36
Free Energy Backhouse, Roger 16	69
Free Energy Hendra, Patrick 16	69
Huge Boy Baker, Chris 65	53
Huge Boy Croasdale, Victor 65	53
Huge Locos Boardman, Evan 58	31
Huge Locos McFiggans, Bob 58	30
Huge LocosMount, Anthony58	30
Isle of Man Croasdale, Victor 38	37
Locomotive Oddity Bell, Duncan 84	47
Midlands Show Hayter, Bob 84	46
Model Boilers Bramson, Bob 16	59
Model Boilers Johnson, Martin 16	68
Model Boilers Luxmoore, Robin 16	68
Model Boilers Wells, James 16	58
Mystery Object Saxton, Robin 94	4
One Giant Leap Gray, Mike 52	26
One Giant Leap Wells, James 72	22
Perpetual Motion King, Peter 38	37
Perpetual Motion Rousseau, Andre 94	4
Q1 Tank Johns, Mike 84	47
Role of Model Engineer Dart, Martin 16	69
Rotary Engines Feast, Nick 29	9
Routing Pipes Chuter, Vernon 38	36
Steam Turbines Coles, Tim 65	52
Track Construction Buck, Jeremy 84	46
Turbines Wells, James 84	48
US/UK Lexicon King, Peter 23	37
US/UK Lexicon Miller, Philip 23	36
US/UK Lexicon Widin, Greg 84	46
VMC Invertor Gearing, Martin 65	52
Young Engineers Norris, William 38	36
Young Engineers Rollinson, David 58	31


MODEL ENGINEER

SMOKE RINGS INDEX	
3D Head Start	284
A New Bandsaw for Model Engineers	420
Alexandra Palace	828
Autumn Approaches!	284
Book Information	624
Brass, Steel and Fire	556
Broomy Hill Flood	760
Christmas Again!	760
Christmas Gift Cards	828
Club Secretaries	556
Cock-up Corner	12
Crebbin Reunion	624
Crich Tramway Exhibition	216
DRAX	284
Editorial Steam Plant	12
Etchings	148
Garrett Tractor	80
Gilling Main Line Rally	216
Gloucestershire	148
Guildford Gala Weekend	148
Gun Article	828
Health and Safety	692
Hot Air	80
How Big?	352
LBSC Rally LOWMEX	216
	352 692
LOWMEX and MMEX	
Machine Mart Catalogue	420
Midlands Show	420
Model Boat Show	556 148
One Giant Leap	284
Places To Go	
Richard Guthrie	828
Scaling Models	488
Staines Open Day	216
Taunton Club	12
WARCO and the Midlands Show	216
Weeting Rally	80
Wenford	828
Whissendine	80
Young Engineers Award	760
Vertical Boiler	80
What's in Store	80
Whissendine Rally	692
Wilton Show	420

PART 1

Magdalen Road Revisited

Jeremy
Buck invites
us back for
a further
tour of the
Magdalen Road garden
railway.

Siding as originally configured with No. 8783 leaving the running shed. The steep gradient is apparent, as are the unsatisfactory transitions between track panels.

Introduction

It has been commented by a reader of my description of my 5 inch gauge garden railway (M.E. 4528, 19th February 2016) that the narrative ended rather abruptly and that there was, perhaps, more of the story to tell. Accordingly, readers may be interested to read about my locomotives, embracing as they do secondhand purchase, overhaul, kit bashing, building from scratch, their operation, my workshop arrangements and recent improvements to the garden railway infrastructure.

Railway developments

The railway was comprehensively described in my previous article and the installation of signals, mooted in that article, remains an unfulfilled aspiration. For those who do not have access to that article, the railway is ground level although for

topographical reasons much of it is actually elevated. It comprises a covered terminal station with turntable and run-around loop with a siding giving access to the workshop.

The main line is out and back, reversal being effected by a 'balloon' loop. The basic layout remains unchanged. What has changed is the means of access to and from the locomotive storage sidings in the workshop. The original arrangement comprised a steep incline, reminiscent of those required for access to elevated coaling stages at South African Railways locomotive sheds, from the 'main line' up to two bench level sidings (photo 1). In practice, this proved unsatisfactory at the vertical transitions for locomotives of even guite modest wheelbase. There was also a risk of the locomotive running away when traversing (not in steam) the incline which was, in any case, of no value as a siding for parking rolling stock in normal operation.

I had, some years ago, purchased a lifting table to eliminate the need for lifting locomotives manually but had found its value somewhat compromised by its relatively poor mobility inside and outside the workshop. However, replacement of its original wheels by heavy duty castors transformed its mobility. With this, and some other minor modifications, the table became suitable for providing the change in level of the hitherto inclined siding (photos 2 and 3), thereby bringing into play an operationally useful siding with approximately level alignment. Although not visible in the photographs, the table is latched onto vertical guide rails at each end. These maintain the table in its correct

The lifting table at running shed level.

plan position during raising and lowering and assure stability. As part of the same project the vertical alignments of the main and loop lines were reconfigured to reduce the change in gradient at the station throat and a head shunt off the loop line was added (photo 4).

Operation

The railway is normally operated on a 'one engine in steam' basis which obviates the need for the signals that we presently do not have. Although normally the railway is operated by my son and me, one-person operation is possible and not inconvenient. This is because the driver can complete a normal out and back run without need to dismount to change the points, which are spring controlled. The switch rails of the main to loop point in the station and the 'balloon' loop (photo 5) out in the country are sprung so that a locomotive or train can pass

through the diverging track only in the trailing direction.

Four LMS liveried (LNER teak would be better but I cannot have everything) Aristocraft coaches provide the principal rolling stock and it is very satisfying to see, smell and hear one of our locomotives tackling the maximum 1 in 60 gradients with all four behind the drawbar (photo 6). We do not do passenger hauling - the ventilators on the coach roofs would, in any case, make the ride rather uncomfortable. A small selection of wagons allows us to run a goods train. Having rolling stock to provide suitable loading for whichever locomotive is steamed certainly makes for a more interesting operating experience.

Of course, the elevated track in the station area does not make for a realistic background to locomotive and train but neither does the grossly overscale driver. The eye needs to be, and is, selective.

The lifting table at main line level.

The reconfigured siding and a new head shunt on the loop.

Point at the entrance to the 'balloon' loop, showing the spring control.

Maximum load on 1 in 70 gradient approaching the station and with steam to spare.

North side of workshop showing running shed. The nearest line is taken down, because it conflicts with the turntable parked below, when the railway is in operation and doubles as the head shunt.

South side of workshop showing the fixed bench, with traverser, and mobile bench beyond.

Mobile bench with rolling road installed and A4 being set up for valve setting.

There are also positives. One of the drawbacks of a ground level 5 inch gauge railway, especially as one gets older, is gaining access between the frames where necessary for preparation and disposal of steam locomotives. Carrying out these activities with the locomotive on the bench level elevated track within the workshop is certainly kinder on the back, and as much preparation as possible is done here, but I prefer to keep smoke, ash and water outside as far as possible. Steam raising is therefore done after the locomotive has been lowered to track level in the station.

The head shunt may not be visually attractive but, at 18 inches above ground level, it does provide a tolerable access to facilitate lubrication of inside motion during preparation, and for dumping the contents of the ashpan and cleaning between the frames

during disposal.

Workshop

I built the garage/workshop some thirty years ago and remember thinking how spacious it seemed to be when completed. Thirty years on it seems far too small and there is no room for a car. However, by careful planning I have been able to fit my workshop in along with a growing collection of rolling stock. Benches sufficient to accommodate two 5 inch gauge tracks extend along both sides. That on the north side is fixed and serves as the running shed with accommodation for up to four, but more usually three, locomotives (photo 7).

An additional demountable track on this side provides siding space for up to two locomotives, and doubles as the aformentioned headshunt. On the south side is the erecting bench (photo 8). This

Chain block in use during assembly of the A4.

comprises a fixed bench, below which the Aristocraft coaches are stored. The two tracks on the fixed bench comprise a traverser so that both than be accessed from a mobile bench which, among other things, facilitates the transfer of stock from the running (north) side to the south side for assembly/maintenance – as well as allowing access to both sides and under locomotives under construction or repair.

Originally configured with 5 inch gauge rails welded down to steel box section longitudinal bearers, the bench was later modified to allow a rolling road, with the necessary flexibility to accommodate one, two or three coupled axles, to be inserted (photo 9). Suspended from the roof above the outer track and mobile bench (in its parked position) is a runway beam and chain block which facilitates the single-handed lifting of the boiler on and off a locomotive chassis (photo 10). The roof, runway beam and chain block are more than capable of supporting the largest locomotive, although I do not normally have a need for this.

The workshop proper (photo 11) is equipped with workbench, Myford ML7-R lathe, Meddings ½ inch bench drill, Tom Senior Type E milling machine, bench grinder, air compressor, brazing hearth and Sievert propane torch, MIG welder and the usual hand tools.

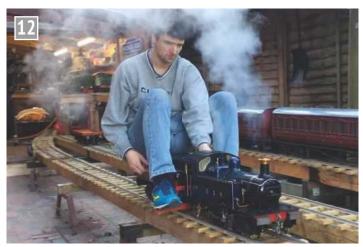
View of workshop proper.

Locomotives

Although I am a chartered civil engineer by profession, albeit now retired, and have derived much pleasure from designing and building the railway infrastructure, my real passion and the reason for it all are the steam locomotives which reflect my interest in the Great Eastern, Great Northern, and London and North Eastern Railways, and the Beyer Garratt Locomotive.

The notes that follow are not in any way offered as instructions on how to do things but rather as the experiences of one man working, largely alone, on miniature steam locomotives. I have deliberately concentrated on the problems encountered and overcome - an area which

appears to me to be somewhat neglected in the model engineering press.


Y4 No 226

The first locomotive, which has now been in my care for over fifty years, was the ex GFR 0-4-0 tank class B74. later LNER class Y4 (photo 12). I described the origins of this in my earlier article and I would only add that until the superheater, which is non radiant and of conventional copper return flue construction, warms up water consumption is quite heavy, which requires frequent filling of the side tanks which feed the injector. The twin axle driven feed pumps are not so effective on our railway which involves repeated starting and

stopping, but they will, at least, reliably feed water from the tanks, the contents of which sometimes get too hot for reliable injector operation.

I long ago removed the hand pump from the nearside tank (in order to install the prototypical coal bunker) and installed it in the driving truck (photo 13) which carries supplies of coal and cold water. All moving parts of the locomotive are easily accessible for inspection and lubrication. A reliable performer for many years and deceptively powerful for its size, this is ideal motive power for the railway.

To be continued

Y4 0-4-0 No. 226. Over 50 years old (the locomotive, not the driver) and still going strong.

The Y4 driving truck in front with water tank (hand pump feed only) and coal bunker. The driving truck behind was built for the Stirling Single but can be used with all of the tender locomotives. It has no water or coal capacity.

Garrett 4CD Tractor in 6 inch scale

Chris Gunn paints the belly tank and fits the ashpan.

Continued from p.780 M.E. 4626, 22 November 2019 This article has been written to guide the builder through the construction of the 6 inch scale Garrett 4CD tractor designed by Chris d'Alquen. The writer has previously built a 4 inch scale Garrett and a 6 inch scale Foden wagon so has the benefit of considerable experience in larger scale modelling. Most machining can be done in the average home workshop but the supplier from whom the castings and drawings are currently available is able to provide a machining service for the largest items if required.

Belly tank

The next major item to be painted was the belly tank. In an earlier episode I described how the tank had been sand blasted and primed and now it was time to continue with it.

I blew the dust out with an airline and applied some Black Jack to the inside of the tank, a job made easier as the top was still open at this stage. Then I applied, or perhaps slathered is a more accurate word, several coats of Black Jack on top of the primer, allowing several days between coats to let it seep into any gaps. As I went along, I used white spirit to clean off any Black Jack that had run through any of the holes. At this stage I was a bit complacent as I thought the tank was sealed, purely by examining it visually. I elected not to assemble everything and test it with water as more or less everything I put on it would have to come off again before the tank was painted.

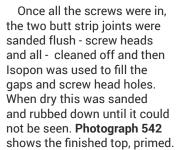
As I am writing this after the engine has been completed, I can tell you that the tank was not water-tight when finally assembled and I had to try and seal the leak with the tank in situ, with access only through the two hand holes in the side. This took several attempts, mainly because I could not see what I was doing. I had one seam that was not closed and found the Black Jack was running out through the gap. After several attempts I sealed the outside with insulating tape, which stopped the sealant flowing through the hole, and let it harden.

I thought long and hard about how to proceed with painting the belly tank and in the end I decided to paint it and line it with none of the items that bolt to it fitted. I reasoned that the lining would be a lot easier that way. After that was completed I would add the fittings utilising the open top, then mask the tank

and then add the curved top. I made a start by applying undercoat and adopted the same procedure as I did with the tender, namely painting a horizontal surface and turning the tank over. I did not touch the top as I would paint all of it when I added the curved top.

I studied some pictures of the belly tank lining on full size engines and found quite a few had a thick black line that went from the tank edge and past the rivet line giving a very wide black line. I thought this would be a bit overbearing in half size. In the end I decided to settle for a single yellow line with an inverted corner. There was not room for much more in the space available above and below the manholes in each side of the tank.

I proceeded as I did with the toolbox mentioned in the first section, by cutting some corners from the frisket film and applying them, painting the corners and then joining


Drawings, castings and machining services are available from A. N. Engineering: Email: a.nutting@hotmail.co.uk

Finished belly tank end.

up the corners with the lining tape. **Photograph 540** shows the completed belly tank end (apologies for the flash reflection).

Once the bottom section was painted and lined, I added the fitments accessing everything through the top. In the meantime the curved top had been slathered on the inside face with Black Jack. Lused M5 button head socket screws instead of rivets to fit the top to the tank along the front and back edges of the tank and I used M5 countersunk screws to join the top to the butt joint strips along the other edges. Photograph 541 shows the top fitted and being cleaned up. The piece of angle held in place with masking tape is to stop me sanding the button head screws by mistake.

The top of the tank was painted with primer, undercoat and top coat but no lining was applied as the top of the tanks would carry duckboards.

Once painted the M5 button head screws look like rivets unless one looks very closely indeed. Most of them are under the boiler and the duckboards cover the few that are not. I felt that this method of construction was a reasonable compromise and making the top in one piece

Top primed.

Fitting the belly tank top.

would have restricted access in this scale. It probably would be a different story in full size.

I am still not sure if sealing and testing the tank off the engine would have been more time consuming than my way, bearing in mind the amount of dismantling that would have been needed. However this was a first for me and if I did another I might do it differently.

Make and fit the ashpan

If I can backtrack again to the point before the tender was re-fitted and when the engine was on its wheels, that was the time to make and fit the ashpan. The pan itself was made to the drawing, as were the grate supports and the grate itself.

When I was employed we used to make gas heated pallet branders and the only material we could use for the branding plate supports was a heat resistant stainless steel that we bought in 150mm wide x 6mm sheared bars. I had some off-cuts and this was ideal for the job. The only problem was cutting and drilling it. In the end I cut it into strips just over 25mm wide using a grinder with a 1mm thick cutting disc. Then I held ten pieces on edge in the vice on the Bridgeport and skimmed the edges with my carbide tipped fly-cutter, which was the only cutter that would look at it! Once it was cleaned up all I had to do was to drill it, which was a nightmare. I got through

a few drills until I flooded it with suds and drilled it really slowly. All I had to do then was make spacers from some freecutting stainless and I adapted some stainless steel air cylinder tie rods to hold it all together. It was hard work for a simple item, but I am sure it will stand up to the heat when the time comes.

I deviated slightly, I think, from the ashpan mounting. I had seen what had been done on another 4CD, which was to fit a hinge pin to the rear of the foundation ring and a matching receptacle on the end of the ashpan which would allow the ash pan to be dropped when the pin was pulled, yet leave the ashpan still attached to the boiler so it could easily be swung back into position with the grate still inside.

The whole ashpan and grate drop right away when the pins are pulled on my 4 inch Garrett, but it is a horrible job to get it back together; one needs two pairs of hands ... if not three!

To create the hinge, I took a piece of % inch EN3B about 4 inches long and turned 2 inches of it down to 3/8 inch with a really generous chamfer on the end. Then another piece 2 inches long was drilled ¹³/₆₄ inch diameter right through. The piece with the hole in was tack welded to the ashpan flush to the top of the pan, then I set the ashpan under the boiler in the correct position and welded the section with the pin onto

Ashpan support pin.

Damper lever.

the rear of the foundation ring. It was much easier to do this while the tender was off the engine. This allows the pan to drop in an emergency and also to be moved sideways to be completely removed. The front end of the ashpan is held up by a pin which passes through the top of the ashpan and is located in a couple of straps attached to the bottom of the boiler. **Photograph 543** shows the ashpan support pin.

The damper is fitted to the front of the ashpan and this way it can be made a good fit. The flap is supported by

a pair of supports which can be screwed or riveted to the ashpan. I made these from a piece of 12 x 16mm steel cut to length. The two bolt holes and the bearing hole were drilled and then the support was mounted on an arbor made from an 8mm bolt, the web thinned down and the boss formed on the lathe.

The hinge pivots were made from ½ inch bar and drilled for a ¾6 inch rod which forms the axle. The flap, hinges and flap supports were assembled and held with G-clamps so the holes could be spotted through.

Damper complete.

Damper rod.

The hinges were then welded to the damper flap, the operating lever was made from a short chunk of 2 inch angle - the holes were marked out and drilled first - then the profile was cut to match the holes and fitted to the damper flap. The whole thing was assembled as shown in **photo 544**.

Next, I made a pin to screw into the operating lever which would then connect to the damper operating lever. When I came to fit the operating rod, I found the left hand side of the engine (from the driver's position) very cluttered with the steering shaft and the flywheel brake brackets in the way. There was more room on the right side so I made another bracket and fitted it to the other side of the damper flap. Photograph 545 shows the ashpan in position with the pin to connect to the operating rod.

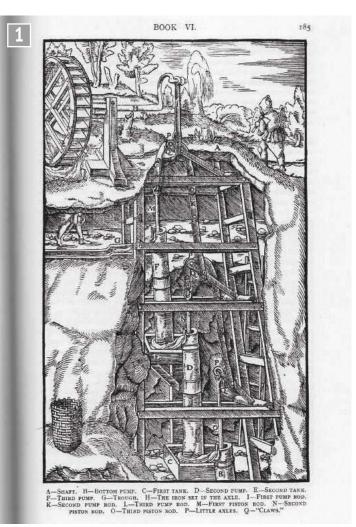
The operating rod is threaded behind the gears and I brought it up just above the reversing lever pivot. I modified the end of the pivot to create a pin for the rod to notch onto and the end of the rod was fitted to a brass handle that can be easily operated from the tender. **Photograph 546** shows the lever end of the damper rod.

I can report that in practice the ashpan is a joy to empty. I pull two split pins and then the retaining pin and the pan drops down on its hinge; the grate and all the ash can be removed and the procedure reversed in a matter of minutes so I always start with a clean ashpan.

This seems a good stopping point, next time I will carry on with some of the final details.

●To be continued

The Stationary Steam Engine PART 1


Ron Fitzgerald takes a look at the history and development of the stationary steam engine.

Preface

Writers have been chronicling the history of the stationary steam engine for almost as long as the machine has existed. In the seventeenthirties, J. T. Desaguliers (ref 1) was amongst the first, not only to give a historical summary of the development of the steam engine but also to introduce a clutch of misconceptions and unwarranted speculations, a tradition that took firm root subsequently.

Over the next two-hundredand-fifty years an extensive literature grew up, some knowledgeable and reliable but often tending to partisanship and hagiography sprinkled with a dose of technical and thermodynamic nonsense. This copious bibliography tends to become unwieldy from the point of view of those interested in the subject but not inclined to pursue a full course of study. The short articles that follow are intended to bridge this gap whilst at the same time clarifying some issues that have tended to be distorted or misrepresented in the past. It is also an attempt to give an insight into the interaction between the rising science of thermodynamics and the business of steam engine building. The comfortable supposition that the two existed in separate bubbles is woefully incorrect.

I would like to take this opportunity to offer the following articles as a memorial to the contribution that my friend the Reverend Dr. Richard L. Hills made to the history of the steam engine and to the history of

Agricola's De Re Metallica. Book VI. Hoover Edition, p. 185.

technology generally. Richard died in May 2019 before he could proof read my script. It is poorer for this loss.

Mine water pumping before steam

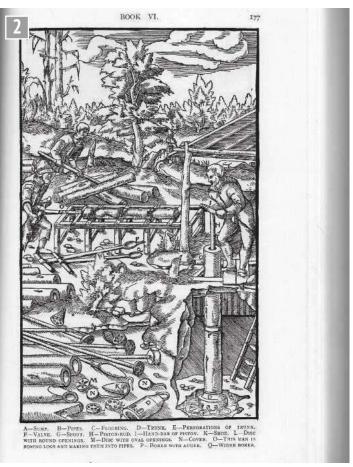
The industrial revolution in the coal industry was already two hundred years old when the first practical steam-powered water pumping engines appeared. The dissolution of the monasteries in 1538 led

to a huge transfer of landed estates and the first concerted exploitation of England's mineral wealth. Burgeoning demand for coal to replace the nation's failing wood supplies was met by a generation of coal owners who radically changed mining from an appendage of farming into a large scale, heavily capitalised industry.

John Neff (ref 2), who first drew attention to this

revolution in 1932, identified changes in technology as central to everything that happened, an empathy with technology that has not generally been matched by later economic historians. With few exceptions, most writing in this area is characterised by a high degree of technological sub-literacy, a failing that is particularly apparent in works on the coal industry. Significant technological developments which were essential to growth have been inadequately understood, especially in regard to need for pumps to clear water from the ever-deepening pits.

Amongst the more egregious sins is the repeated statement that pumps making use of suction in their lifting phase were incapable of raising water beyond the limit imposed by atmospheric pressure. This ignores the fact that majority of these suction pumps were bucket pumps (ref 3). The true potential of the bucket pump is overlooked because of the failure to appreciate that it relies upon suction for only part of its water raising action.


The feature that enables it to exceed the limit of atmospheric lift is the incorporation of flap valves into the body of the piston. During the up-stroke of the pump, atmospheric pressure acting upon the surface of the water external to the pump barrel drives it into the vacuum that forms below the rising piston. During the down-stroke the pressure under the piston opens the flap valves allowing the water to flow through the piston valve ports until, at the lower limit of the stroke, the water entrained during the suction stroke will have been transferred from below to above the piston. During the subsequent up-stroke the weight of water above the piston keeps the valves closed and the water on the top side of the piston is lifted.

Successive strokes of the piston add to the column of water in the upper part of the pump barrel which acts as a rising main connecting the

pump barrel with the surface. At a convenient point the level of the water in the rising main reaches an off-take where it flows away.

In the mid-sixteenth century, Georgius Agricola in his De Re Metallica discusses the bucket pump in two forms (ref 4), one using a leather piston and the other using a perforated solid piston with a plate valve covering its top surface (photo 1). Although the component parts are clearly detailed the operating cycle is less well dealt with. Because of this confusion later writers have failed to recognise that Agricola is describing a bucket pump, an error that might have been rectified by a closer observation of the evidence of the illustrations. several of which show pumps discharging water from the top of the pump barrel. This implies that the water has passed from below the piston to above the piston and the pump barrel above the piston must be entirely filled by a column of water. Hence, it must be assumed that the piston has a transfer valve and that the pump is working as a bucket pump. Disassembled pump parts are shown in a further plate (photo 2) and scattered around the surface are pump barrels, pump rods with mounted pistons and perforated pistons with valve parts which are clearly the constituents of bucket pistons (ref 5).

De Re Metallica was written in Latin, the international language of technology. It spread rapidly through a knowledge hungry Europe. The Willoughbys, the greatest coal mining family in Nottingham, had a copy in their library by 1611. Whether it introduced new pumping technology to such experienced mining engineers is questionable. The Willoughbys were at the forefront of the radical change in mining technique that was to be fundamental to Neff's revolution in coal mining, change that centred upon the replacement of bell pit mining by gallery mining and

Agricola's De Re Metallica. Book VI. Hoover Edition, p.

with it, the demand for more sophisticated ways of handling mine water disposal.

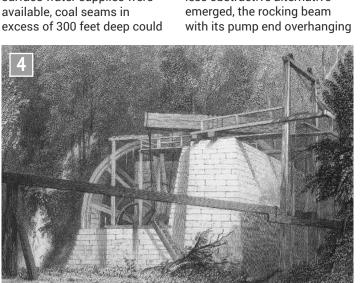
Early mining was predominantly carried out by sinking clusters of bell pits. The individual working comprised an inverted cone shaped excavation of sufficient depth to reach the shallowest coal seams. Drainage was a matter of bailing the water with a bucket from a sump.

As the scale of mining grew the scattered pattern of bell pits was supplanted by vertical shafts from which galleries were projected within the coal seam. Coal extraction progressed up the dip of the coal so that water could flow by gravity to the lowest point of the mine where a water gallery conducted the runoff to a sump beneath a dedicated drainage shaft. In a wet pit the quantity of water far exceeded the capacity of hand bailing and from the earliest times of gallery working powered pumps were essential. These might take various forms but the bucket pump was

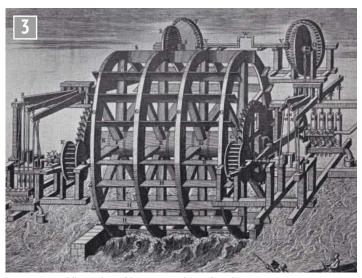
gaining in importance as its construction was improved by the introduction of metal barrels and pistons.

The illustrations in De Re Metallica all show pumps bodies and pistons made almost entirely of wood. Mention of metallic construction is also absent in Agricola's text. From this it is reasonable to assume that metal pumps had not acquired currency in mining at the time that he was writing. Fifty years later Nuremburg craftsmen had introduced brass and bronze for pump work. One of the first recorded uses of metal bodied pumps in England is associated with fire fighting engines (ref 6). In 1625, the Londoner, Roger Jones, imported the idea from Nuremberg, patenting it in the same year as his death. William Burroughs, a foundry owner of Lothbury, who may have been a partner of Jones, continued to develop the appliance until, according to Fuller's Worthies, it amounted to a new invention. John

Bate in his *Mysteries of Art* and Nature published in 1654 had probably also seen the brass Nuremburg pumps. He used them in his own water pumping engines and recommended their more general use whilst the wellknown pumps of Sir Samuel Morland were made of brass according to his advertisement of 1675. There can be little doubt that the brass pump had become widely adopted in mining by the third quarter of the seventeenth-century.


Cast-iron as an alternative to brass seems to have been uncommon until Darby's work at Coalbrookdale improved both iron smelting and moulding technology. Coalbrookdale was a pioneer of thin-walled iron castings and was producing cast iron pipes from 1715 (ref 7). Cast iron pipes bolted together by flanged couplings replaced the earlier bored elm timber pipes with tapered spigot and socket joints. The improved hydraulic integrity that resulted allowed the continuous riser pipe to replace the tandem pump lifts shown by Agricola.

The main factor limiting the depth to which these pumps could work was the power available to raise the pump load. Horse powered pumps were common but where water sources were available the waterwheel was the preferred power source. If adequate surface water supplies were available, coal seams in excess of 300 feet deep could


be worked by waterwheel powered pumps.

A water drift or sough located part way up the shaft, into which the pump could discharge, might reduce the lift of the pumping machinery to only a third of half of the total shaft depth. For a century after 1620 a good half of the Tyne's output came from collieries which were being de-watered by water powered pumping engines (ref 8). At least 25 'coalmills' were in use in the seventeenth century South Tyne coalfield and from 1670 Sir Thomas Liddel at Ravensworth on the Tees was using three wheels in cascade formation, the last of which was below ground. By the sixteen-forties, the Gascoigne's collieries at Garforth near Leeds were taking water from the Cock Beck to dams which supplied the wheels and pumping engines (ref 9) and the Outwood pits north of Wakefield (ref 10) had a water powered pumping system.

At the time of Agricola it was commonly the practice to locate the water wheel alongside the pit with its axle extending over the shaft. A crank attached to the end of the axle drove the pump rods directly. Complex, heavily timbered, supporting structures were needed over the shaft eye to support the axle bearing and the crank but at some point a less obstructive alternative emerged, the rocking beam with its pump end overhanging

The Beamish Mine water powered pumping engine possibly dated 1763.

George Sorocold's London Bridge Waterworks Engine of 1701.

the shaft. The origin of this type of beam pump is unclear but George Sorocold, who had been heavily involved in mine pumping engines in his career, used rocking beams, commonly known as bobs, for the London Bridge Waterworks engine in 1701-2 (photo 3). There is nothing to show that they were a novelty at this time.

Up until the mid-eighteenth century only the deepest and more heavily water-logged coal pits were beyond the capability of a good water-wheel driven

pumping system. Both in Britain and on the continent there is ample evidence to show that sophisticated water powered beam pumps continued in use long after the steam engine became available (photo 4).

■To be continued.

NEXT TIME

We turn our attention to the Newcomen engine.

REFERENCES

- **1.** A Course of Experimental Philosophy. J.T. Desaguliers. 2nd edition, 1744.
- **2.** The Rise of the British Coal Industry. John W. Neff. First published 1932 Reprinted by Frank Cass 1966.
- **3.** The History of the British Coal Industry. Vol.1 Before 1700. John Hatcher. Pub. O.U.P.1992
- **4.** *De Re Metallica*. Georgius Agricola.1556. Trans. H.C. Hoover and L.H. Hoover. Dover paperback ed. 1950. p. 176.
- **5.** This seems to have escaped attention of the otherwise dependable Arthur Wolf in his *History of Science, Technology and Philosophy in the 16^{th} and 17^{th} Century. A. Wolf. Pub. Allen and Unwin 1968. p. 512.*
- **6.** Fire extinguishing Engines in England 1625-1725. Rhys Jenkins. T.N.S. Vol. XI 1930-31. p. 15.
- **7.** There is some evidence that they were available in France in the sixteen-eighties.
- **8.** Waterwheels for Mine Drainage. Eric Clavering in Mining Before Powder. Ed. Trevor D. Ford and Lynn Willies. Pub. Peak District Mines Historical Society 1994. P. 124
- **9.** The Aberford Railway and the History of the Garforth Collieries. Graham S. Hudson. Pub: David and Charles, 1971. P. 19. Additional research by the author.
- **10.** *The Coal Kings of Yorkshire.* John Goodchild. Wakefield District Historical Society Publication.

A New GWR Pannier PART 13

Doug Hewson decides that LBSC's well-known GWR pannier tank design needs a make-over.

Continued from p.798 M.E. 4626. 22 November 2019

s you might expect I have provided a small laser cut set of parts for the reverser (fig 22), not only to save a bit of time but so that vou know that it is accurate - not that I don't trust you to make it accurately. (Anyway, stop digging Hewson!) There are also the two trunnions included to sit it on.

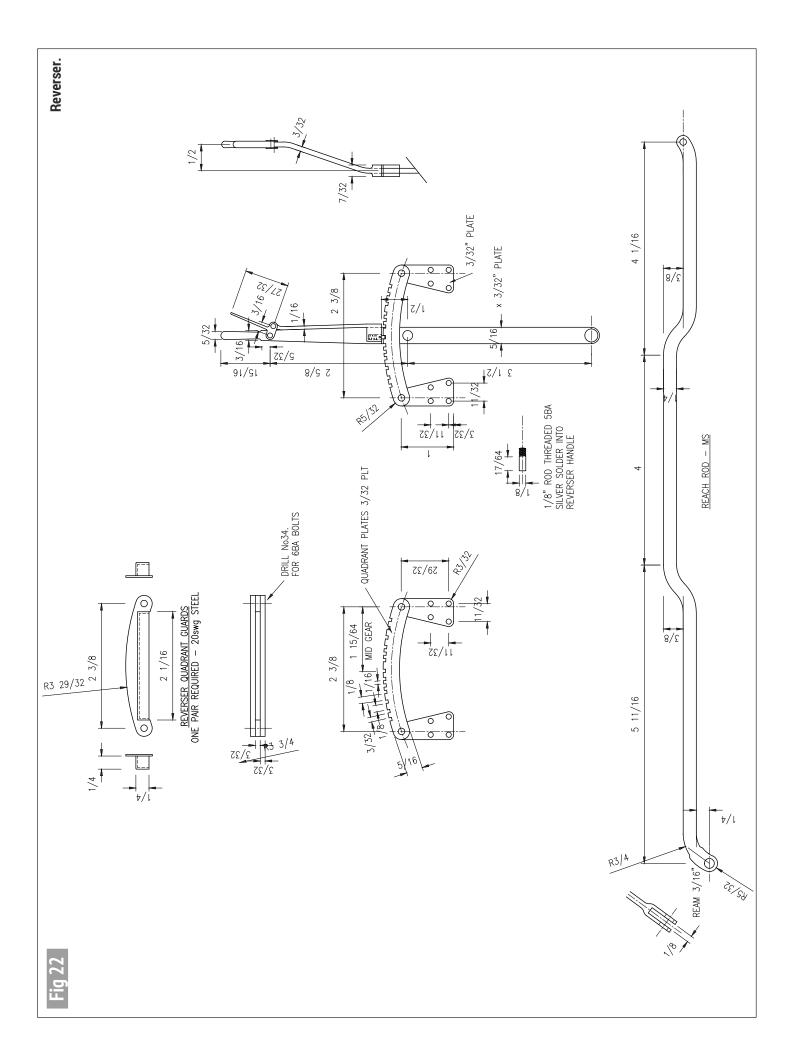
Now, if you want to make a proper job you will need to do a little bit of watch making to form the proper hinged latch spring. This will involve making a little plunger and drilling upwards into the reverser.

Bottom end of the reversing lever.

Top end of the reversing lever.

The location of the reverser in the cab.

Photograph 95 shows part of the reversing lever and photo 96 shows the rest of it. I have also shown Frank's reverser on his own engine (photo 97) but it is just a pity about the spring! I don't think I had finished the drawing when he made that.


As you will see, the lever requires bending out to give room to operate it without the driver crashing his knuckles on the coil springs which have now appeared in the cab. Anyway, even if you are building Pansy it would still be very nice to put the bend in it to make it look that bit more authentic. The rest of it can be made following my drawings.

The pin for the bottom of the lever needs to be made from 1/4 inch diameter rod and it will of course need to be a smidgen over 1/2 inch. You can pop a 5 or 6BA nut on the end just to give it a very slight gap to the shoulder so that when you tighten it, it will not hold the lever tight.

For the top end you need to turn a nice little handle out of stainless steel. You use 3/16 inch bar. Turn it to the shape shown on the drawing and tap it 5BA so that it can be screwed on to the handle. Once you have done that you will then need to silver solder it on to the main lever. Hopefully you will have enough of a fillet on the underside to form it to the shape shown.

I have also shown the two little guards which fit on the cab floor to cloak the two sides of the lever. They just require a couple of bends along them. They also appear in one of the laser cut kits which I have provided. There is also a reach rod in the laser cut kit. This connects the reverser to the arm on the valve gear (for those who may be building a locomotive for the first time). I have shown one of Guy Harding's photographs (photo 98) and it shows the far end of the reach rod (in black, at the back of the photograph) mainly to show how this end has a fork joint on it. As the reach rod is 1/8 inch thick it means that all you need do is to cut the end off and silver solder a piece of 3/8 inch x 16swg steel on to either side to form a fork and then file it to a similar shape to the one vou had earlier.

Now, I think it is time to make the lubricator. One thing that any hard-working locomotive needs is a good reliable lubrication system and once we get that working you can run your pannier in on the bench. When I

The forked end of the reach rod.

Using a specially made plate to get the size and shape right.

Wrapping up the tank for the lubricator.

Checking the tank is square.

built my original Y4 I used a standard oscillating cylinder LBSC type lubricator which is generally quite reliable. When it was nearly completed (but unpainted) it was in steam at least twice a week as I was building my railway in the garden at the time, so it was always hard at work shifting muck and ballast as everything had to go by rail.

At the time, Jim Ewins had just described making a new type of uniflo lubricator pump in one of the first issues of Engineering In Miniature so I made one like that. This was a vast improvement, so it is what I am using here (fig 23). It took half the time to make but I have modified it further to do away with the Scotch crank - the cam now works directly on top of the piston with a return spring, as you will see later.

Another very useful feature with this design is that it means that a cross shaft can be used across the tank, allowing a priming wheel to be fitted to the other end. This really is a useful feature as the handwheel can be used to pump some oil into the system when lighting up. When you first open the regulator you get an immediate slug of oil going

straight into the cylinders.

Anyway, enough waffle for now. I have shown roller clutches in this design and these can be supplied off the shelf by any good bearing supplier. They generally also stock silver steel rod as well so you can also buy a length of that whilst you are at it. 3 or 4mm (preferably 3mm) will do fine and then you can make the housings to suit. However, I just happened to have a brand-new ratchet mechanism sitting in a drawer so I used that. You therefore have the choice as the photographs and description show the ratchet type and the drawings show the roller clutch type.

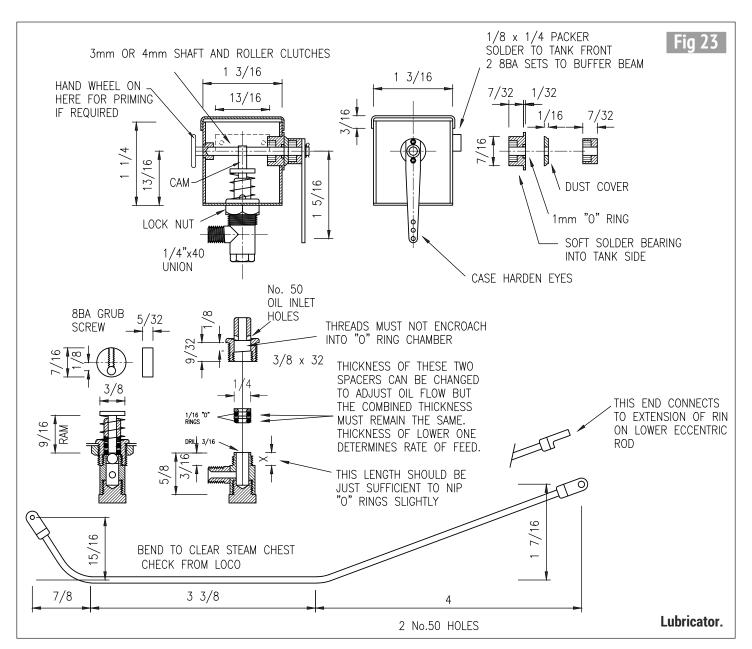
For some reason everyone seems to design lubricators with brass tanks but why on

earth this should be I have no idea. They are hardly likely to rust away! Steel makes a far better job for taking paint and nothing looks worse than a work worn locomotive with paint chipped off showing bare brass all over.

Anyway, this one is hidden away nicely. Furthermore, there are some disgusting designs around with great lumps of brass prominently displayed on the side platforms (not 'footplates' please!) with little attempt to make them look like part of the locomotive or - heaven forbid - that they should ever look anything like a scale lubricator. On a full-size locomotive there will be multiple pumps delivering oil to various parts and on an 8F, for instance, the pumps

are set to deliver 2oz per hundred miles and I think most model engineers use that in an afternoon! I spent a day on 9681 on the Dean Forest Railway and was watching the sight feed lubricator as we were on the way up the line. I was quite amazed to see that there was only one blob of oil going up the pipe about every telegraph pole. Furthermore, these cylinders are 17½ inches diameter whereas our little ones are only 11/2 inches so think about that.

To make the tank you can use 20swg steel plate 11/4 inches deep and 13/16 inches square, with a fairly tight-fitting lid. Photograph 99 shows a Y4 lubricator being made using a piece of 1/4 inch round bar to wrap the plate around. I would wrap it round so you get a seam down one side as you wouldn't really want it where you are going to fit any bushes in it. Photograph 100 shows the next stage, where I used a specially made plate to form the inside of the tank, and photos 101 to 103 show the following steps. Next, silver solder the bottom in by leaving a small overlap all around it and then you can file it flush all round to complete the job. In the top you will need a small filler cap made from 3/8 inch tube or similar. Photograph 104 shows the plate I used for the bottom of the tank.


Now, if you are using the roller clutches you need to make the bosses and the clutches need to be a made a light press fit in the housings. You might also have to grind a small boring tool to make these. They need to be such that you can just press the

Trimming the tank.

Soldering the seam.

Soldering the bottom of the tank.

clutches in with a good thumb pressure even if it means two or three attempts to get them right. Once you have mastered that, the rest is fairly plain sailing and similar to the ratchet system, except that with the clutch system the arm is bolted to the outer housing.

I began by marking and drilling a couple of holes in the sides of the tank and making some brass fittings for the bearings. These holes must be dead square across the tank, of course, and it will depend on whether you choose to use the roller clutch design or the ratchet. Some ¼ inch brass hexagon is what you now require so centre and drill down No.41 for a depth of about 1/4 inch or so. Turn down the outside to 3/16 inch diameter for 3/16 inch length and thread 3/16 x 40. Part off to leave a hexagon head 3/32 inch thick. Make another one the same and then chamfer the end of the rod, centre and drill down No.22 to a depth of 5/16 inch or so and tap 3/16 x 40. Part off a

3/32 inch slice, chamfer again and part off another slice. If you now thread a piece of 3/32 inch silver steel across through the fittings it should be a nice free fit.

The mechanism I had in stock was for the LBSC type lubricator so the shaft was too short. I made a new one from \(^3\)_{32} inch silver steel rod and if you choose not to buy the complete mechanism you can at least buy a ratchet from one of our various suppliers. They are a good push fit on the shaft, so I pressed mine off the old one and then pressed it on to the new one.

The new shaft for the roller clutches needs to be 134 inch long with one end turned down to 0.075 inch for

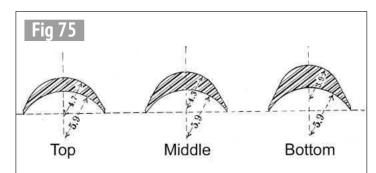
about ¼ inch and threaded 8BA and the other end just needs a hole through for a ¾4 inch split pin. For the ratchet mechanism the shaft needs to be 2¾6 inches long with a similar thread on one end and ¾6 inch of 7BA thread on the other. However, it is best to press the ratchet on first otherwise you will ruin the thread. The ratchet needs to be ¾6 inch from the end of the shaft.

●To be continued

NEXT TIME

We'll complete the lubricator.

Steam Turbines Large and Miniature


Design and manufacture of blades

Mike Tilby explores the technology, history and modelling of steam turbines.

Continued from p.803 M.E. 4626, 22 November 2019 The blades designed by De Laval for his impulse turbines had cross-sections as shown in fig 75. This general shape was used for many decades by builders of single stage, multi-stage and velocity compounded impulse turbines and can probably be referred to as the classic form of impulse blade. An approximation to this blade shape has also been adopted by most builders of model bladed turbines.

This basic shape can be varied in a number of ways but, to attain best efficiency, the design details must conform to certain principles. These will be described below. It will also be explained why, in some full-size turbines, it can be impossible to attain an ideal blade shape for all conditions (and why this is especially difficult in model turbines).

To overcome this problem, a new and markedly different form of turbine blade was invented in the 1920's by the Swedish engineer Alf Lysholm. This development was made initially for application to railway locomotives and was later used in Nigel Gresley's famous LMS 6202 (Turbomotive). However, the important contributions by Lysholm and the British **Engineer Rupert Alexander** Struthers to the design of the turbines in LMS 6202 have been completely overlooked in two recent books about this locomotive. The background to and details of Lysholm's invention will be described in the next article, after we

Cross-sections at 3 positions through the blade of a 20 hp De Laval turbine built about 1905. Dimensions are in mm.

have considered the more commonly encountered blade designs.

Blades for reaction turbines underwent a gradual development in form but, from the start, their shape was very different to De Laval's impulse blading. As discussed previously, reaction blading does not seem appropriate for model turbines. However, no account of steam turbines would be complete without a summary of what, I think, were very interesting developments in the shape of and the manufacturing methods used for these blades.

Manufacturing methods

Turbine blades have complex shapes, must be very smoothly finished and were needed in very large numbers. These factors posed particular challenges for developing practical methods of manufacture. There are two basic approaches and both were used right from the very first successful steam

turbines. One method is to machine blades and rotor out of a solid piece of metal and the other is to make the blades separately and then attach them to the rotor.

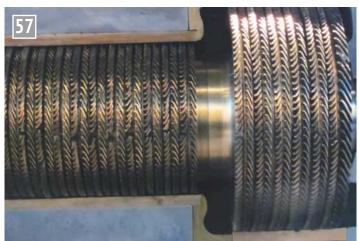
For many years now, manufacture of full-sized turbines has made use of sophisticated CNC machining centres and fascinating examples of these in action, cutting individual turbine blades or whole small rotors as can be seen on-line (ref 70). Even more recently, additive machining (i.e. 3D printing) has been applied by Siemens to the manufacture of blades.

Back in the 1880's the early Parsons turbines each required many hundreds of very small blades (often less than ¼ inch high) and so it was impractical to make and then attach them individually. In contrast, the early De Laval turbines comprised a single disc with fewer, larger blades. Therefore, it was feasible to make individual blades and then attach them.

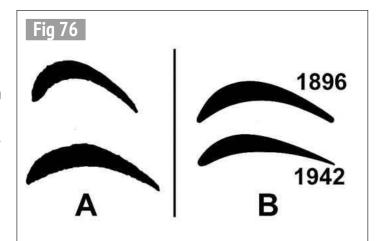
>>

Blades of Parson's first turbine, made in 1884 and now in the London Science Museum (image from Science and Society Picture Library).

Small reaction blades


The blades in Parson's first turbine were crudely made by cutting slots at a 45 degree angle into the periphery of the rotor discs (see photo 56). Similar slots were cut into the inner edge of half-rings to form the rings of stationary blades. It seems likely that Parsons always realised that straight slots were not ideal but they were a practical compromise. Small turbo-generators made using this method were mainly used on ships, including those of the Royal Navy. An early improvement in blade design, made in 1888, was to undercut the leading edges of the blades with a groove. Then each of these leading edges was bent with pliers to give a slightly curved shape (photo 57). This gave a 25% improvement in efficiency. Over 300 turbogenerators of up to 75 kW were made with blades cut from the solid.

Medium sized reaction blades


As the size of his turbines increased, Parsons and his colleagues invented alternative methods of making blades. These developments enabled an accompanying change in shape of the blades. As has been mentioned in previous articles, Charles Parsons had an amazing engineering instinct. An anecdote that demonstrates this very well concerns the choice of shape that should to be adopted for blades made by the new method.

In 1896, during a discussion of this topic, Sir Charles was asked what blade shape would be the best. He thought and then sketched, on a scrap of paper, a shape that he said would have the highest intrinsic efficiency. That shape resembled what we would now call an aerofoil although, at that time, the concept of aerofoil had not been invented and, initially, there was no experimental evidence to support Parsons' belief in his blade sketch.

In the early years of turbine development Parsons devised variations on the same basic shape to suit various circumstances (fig 76(A)). That basic blade form remained the standard profile in the Parsons works for over 40 years. During this period, a very large amount of money was spent on research involving a team of scientists to develop improved blade profiles, but

Blades in turbine No. 261 made in 1889 by Clarke, Chapman, Parsons & Co. It was originally installed in HMS Gleaner and is now in the National Museum of Scotland, Edinburgh (photograph is included by kind permission of the museum).

A: Two examples of the numerous Parsons blade profiles. These illustrate different degrees of blade curvature and are ink stampings made about 1900 as a record of the actual blade shapes. B: Comparison of the basic profile drawn by Parsons in 1896 with the basic profile of blades as made in 1942.

the resulting profile differed only slightly from Parsons' early sketch (**fig 76**(B)) and showed only a slight improvement in efficiency.

The blade shop

Manufacture of blades was a major part of the construction of a turbine and, at Parsons, the various specialised processes entailed were located in a large area known as the blade shop. As far as the production engineer was concerned, two key features were of particular importance regarding turbine blades. First was their complex shape and, second, was the prodigious numbers in which they were required. For example, the blades in the turbines powering a single large ship could easily total well over a million.

The first method that was used routinely was to stamp

blades out of thin metal. They were formed with the curved shape and with notches and serrations at one end which enabled that end to be securely held in a matching groove machined in the body of the rotor. Later the blade profile was created in long strips of metal by drawing through specially made sets of dies. The strips were then cut up to the desired lengths. Correct gaps between adjacent blades were created by inserting specially made spacer blocks into the grooves in the rotors. The very large number of blades required is illustrated by photo 58 which shows a small section of a rotor partly bladed by this method and destined for one of the first Parsons' turbines to be installed in Lots Road power station in about 1908 (see part 8). Rolling was also used to prepare the

Partially bladed Parsons rotor for Lots Road power station, about 1908.

Section of Parsons rotor blading photographed from both faces. This was constructed by brazing together blades and spacers cut from drawn strips. The wires that can be seen passing through the blades are lacing wires and were brazed to each blade to improve stability. Note the thinned tips to reduce effects of any rubbing that may occur against the cylinder.

strips prior to drawing and in both procedures special precautions were required because of problems due to the curved tapering edge of the blade form and the need to ensure a good surface finish.

Inserting blades one at a time into the rotor grooves was a very slow process and a major improvement in speed of manufacturing was achieved by assembling groups of blades and spacers in special jigs. This was called the rosary method because the components of each group were held together by a length of wire that was threaded through holes in their bases. Many of these groups could

be made while the rest of the rotor was being machined. It was then a much quicker task to insert the assembled groups into the rotor grooves and secure them by caulking.

Photograph 59 shows a group of blades made by a later modification of this process in which the components were brazed together. After carefully cleaning their bases, a group of blades was assembled in a jig and the bases of the assembly were dipped into molten flux and then into molten brass. Later this process was replaced by heating the assembled blades with gas torches and applying

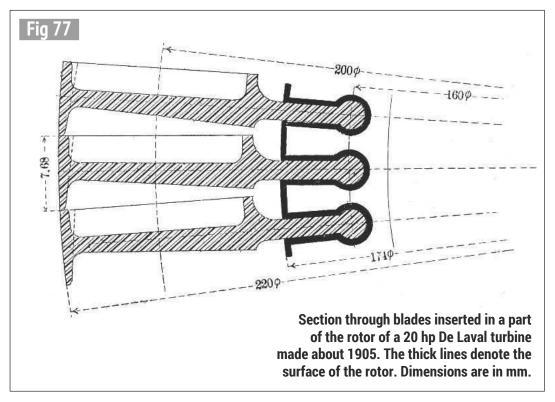
brass spelter. Later still, vacuum brazing was used. A few years ago I saw this last method still in routine use at Siemen's (ex-Parson's) Heaton factory in Newcastle but I gather that blade manufacture at those works where it all started in 1889 has now been terminated.

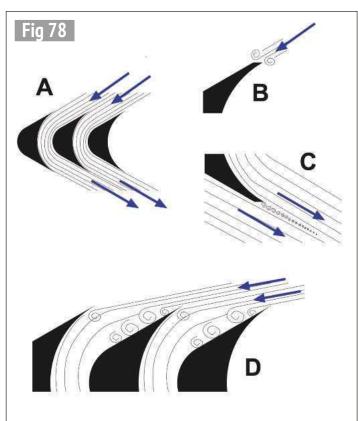
After brazing, the root section of the assembly was finished by milling the bottom and side surfaces. The latter were specially contoured to fit matching grooves around the rotor and all the machining was done on a curvature to match the radius of the rotor groove for which it was destined.

The methods of blade manufacture just described were used for small to medium size blades (up to about 10 inches long). For larger blades completely different methods were used and these will be outlined in a later article. For now, we'll switch to impulse blades.

Impulse blades

Part 6 described how, when Gustav De Laval first made his impulse turbines in the 1880s, he designed the rotor with a thickened hub so as to reduce the stresses that result from the high centrifugal forces generated by high rotational speeds. He also faced the double challenge of making very concave blades shaped as shown in fig 75 and of attaching them to a rotor in a way that could withstand very high centrifugal forces.


To create blades with the correct shape, initially each was made by drop forging. Then an accurately shaped root was machined on the base of each blade so that it would fit accurately and tightly into a matching slot in the periphery of the disc (fig 77).


Impulse blade profiles

Maximum efficiency for impulse blades is attained when they cause the steam to change direction with minimal frictional loss of absolute velocity. This requires that smooth flow of steam is disrupted as little as possible by turbulence as it passes around and between the blades (fig 78(A)). To achieve this smooth flow it is important that a number of details in the design of the classic impulse blade shape should follow some wellestablished principles.

Firstly, the inlet edge should be thin so as to present as small a hindrance as possible to the flow of steam. A thick edge causes more turbulence in steam as it meets the blade (fig 78(B)). Secondly, the exit edge should also made thin. When the trailing edge is thick, a wake of turbulence arises in the steam (see fig 78(C)) and this also reduces efficiency. There is, of course, a limit to the extent to which the blade edges can be made thin because the metal must resist stresses arising from machining processes and they must be reasonably resistant to later damage. Also, as will be described later, some methods used to machine the blades of model turbines place restrictions on the exact shape that can be cut.

The third design feature (discussed in detail below) is that the surface of the blade at the inlet edge should be as well

Diagrams to show problems with steam flow around impulse blades. A: Ideal smooth flow; B: Turbulence at thick inlet edges; C: Trailing wake at thick outlet edges; D: Turbulence and flow separation resulting from poor alignment of steam flow with blade inlet surfaces.

aligned as possible with the direction of the flowing steam. Poor alignment leads to losses due to formation of turbulence and eddies etc (fig 78(D)). Fourthly, the surfaces of the blades should be smooth so as to minimise frictional losses as the steam flows across them (see part 11).

The fifth design feature is that the gap between adjacent blades should be the same at entrance and exit and should either be of constant width along the passage or should be slightly narrower in the middle so as to discourage eddy formation (see part 11). Finally, the width of the gap between blades should be optimal. This last aspect will be discussed in the next instalment.

Alignment of steam flow with the blade surface

This topic warrants some further explanation, especially if the blade shapes developed by Alf Lysholm are to be understood properly. The angle at which steam approaches the plane of a rotor is determined by the angle of the outlet of the nozzle (although there is slight uncertainty about the actual angle of the steam jet because the sloping end of a typical nozzle causes the direction of the steam to change slightly). However, the effective angle at which steam enters the blades is very different to the angle at which steam approaches the plane of the rotor.

When we see things as a typical observer we are stationary relative to the turbine casing and both the blade and the steam are moving but at different speeds and in different directions to each other. In fig 79, a very short time after steam leaves the nozzle at point A it meets the rotor blades at point O. In the same time, point P on the rotor also moves to point

O. The distance PO is shorter than AO because the blade moves more slowly than the steam. However, if we could view things while sitting on the moving blade the steam would simply appear to flow from point A to point P. So. relative to the blade. the steam flows from the nozzle along the line AP. The distance along AP is shorter than distance AO and this shows that the steam velocity measured relative to the blade is slower than when measured relative to the nozzle. Also, AP is at a different angle relative to the rotor than is AO. Since the steam enters the blades along line AP, it is the angle between AP and the plane of the rotor that matters and with which the blade surfaces at their entrance must be aligned in order to give the smooth flow of steam that is necessary for best turbine efficiency.

Finding the entry angle

The blade entry angle can be determined using trigonometry or graphically using pencil and paper or a CAD program. In all cases lines are used to represent movement, with length of lines being proportional to speed and orientation of the lines representing direction of movement. We start by drawing the black line AO (fig 79) representing the steam velocity relative to the casing. We then draw the horizontal red line AB representing the velocity of the rotor blades relative to the casing. Then, the dashed blue line **BO** represents the speed and direction of steam relative to the moving

In fig 79 the steam speed is about twice the blade speed. The steam flows from the nozzle at an angle of 18 degrees relative to the plane of the rotor but it enters the blades at an effective angle of 34 degrees. This is the most efficient ratio of blade to steam velocity and so it is unlikely this ratio would ever be exceeded. In fact, for single stage turbines, especially

model turbines, the maximum blade velocity is generally much less than half the steam velocity (see parts 6 and 7).

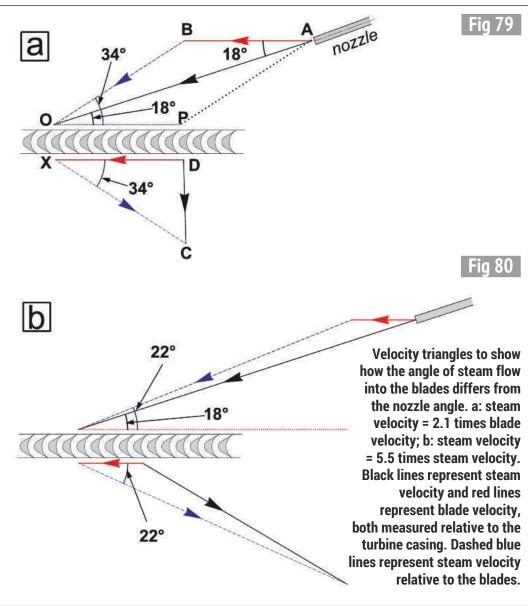
If the rotor speed is decreased (or the steam speed is increased), then the effective entry angle changes as illustrated in fig. 80 where the steam is 5.5 times faster than the blades. With the same nozzle angle of 18 degrees, this condition gives an effective entry angle of 22 degrees. If the rotor were stationary the entry angle would be the same as the nozzle angle, so in this example the maximum possible range of entry angle is between 18 and 34 degrees.

Exit angles

Velocity diagrams can also be used to predict the velocity of steam as it leaves the rotor at point X. In the examples in figs 79 and 80, for simplicity, we assume the steam does not experience any friction as it flows through the blades. Therefore, its absolute speed is undiminished as it leaves the rotor. We also assume that the blades are symmetrical which means the angle of the leaving edge equals that of the entry edge (although this does not need to be the case) and that the steam flows out at the same angle as the exit edge of the blade. Using these assumptions we can draw the dashed blue line XC representing the speed and direction of steam leaving the rotor as measured relative to the rotor.

We can also draw the red line **XD** representing the blade velocity. Then we draw the black line **CD** that represents the steam flow relative to the turbine casing. Figure 79 shows that when blade velocity is about half the steam velocity, the steam leaves the rotor flowing much slower and almost all its movement is in the axial direction. In contrast, when the blade speed is much lower than half the steam speed, it leaves the rotor with considerable velocity and flows largely in the

circumferential direction (fig 80), showing that the rotor has utilised only a small fraction of the available kinetic energy.


A good illustration of how impulse blades were designed to match steam velocities can be found in velocitycompounded (Curtis) turbines. The steam slows down as it passes through each velocity stage. Since the blades in all these stages move at the same speed, this causes the angle of the steam path relative to the blade to increase. The blades are designed so that their entry angles increase to match the steam direction. as can be seen in the blade profiles shown in fig 81. (In part 20 it was explained that volume flow rate equals velocity multiplied by flow area. Since steam slows down as it passes through the Curtis blades the flow area needs to increase. This was achieved by progressively increasing the length of the blades moving from right to left in fig 81).

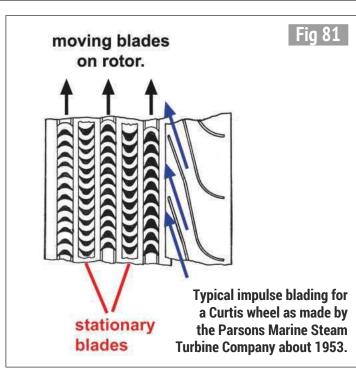
Implications for model turbines

The key point to remember is that the ideal blade entry angle depends on rotor speed and steam speed as well as the nozzle angle. In full size turbines, these speeds are likely to be known to a reasonable degree of accuracy, especially for turbines that spend most time running at a fixed rpm, as in turbogenerators. However, turbines in ships often had to run at a range of speeds and this was especially so in turbine-powered railway locomotives. The situation with model turbines is even worse because, not only do we generally require a range of rotor speeds for model boats and locomotives, but also we are not sure of the velocity of steam as it leaves our nozzle(s) or what rotor speeds will actually be attained when we have built our turbine.

Acknowledgement

I thank Frederick Graham for telling me much about blade

manufacture and for casting his expert eye over a draft version of this article.


To be continued.

REFERENCE

70. CNC machining of turbine blades: www.youtube.com/watch?v=xZOiNdkJ8SUwww.youtube.com/

NEXT TIME

The next article will describe the alternative blade form that Alf Lysholm invented in order to overcome these problems.

B NEWS CANS CLUB NEWS CLUB

Geoff
Theasby
reports
on the
latest
news from the Clubs.

irst of all, I wish to apologise to both John Beddows and John Billard for misattributing the photo of the firebox loo in M.E. 4622. John Billard, Editor of Reading SME, took it and not John Beddows.

On visiting Newark recently, for an amateur radio event, we drove past an evocativelynamed company, Shed World. Is that not redolent of cobwebby premises full of spades and mowers, or a heated 'Man Cave' equipped with comfortable seats, hi fi and kettle, or maybe a work bench, component stocks and test equipment; a forge. machine tools, welding gear, toolkit for building beach buggies (that dates me!) boats etc. ? A place where one may think, write poetry, music, or, dare I say it, magazine articles?

The piece below about Sheffield SMEE set me thinking. (That's my first time this week and its only Thursday!) Maybe we are perceiving a decline in model engineering because there are no more steam locomotives being manufactured? When there was a huge variety (BR acquired 400 different types on its formation in 1948) we were spoilt for choice. Now, locomotives look like powered coaches with no visible activity. Discuss.

Onwards and Shedwards... In this issue: Corliss valves, vexed, an exhibition, a popular meeting, a silent knight, an automatic monorail and a Gala.

The Oily Rag, October, From City of Sunderland Model Engineering Society has little to report, since no one has submitted an article. Consequently, only Editor, Peter Russell has been anywhere, or made anything - unless, of course, you know better...? Peter visited the Science Museum to see their Corliss valve engine in operation. He is building a model of this type and watching it moving gives him a better idea than

NFS fire tender interior.

studving the drawings. He also visited Bletchley Park, of codebreaking fame, and noticed the amateur radio station there. He was in awe of the aerial - a rotating beam, on a tower. President, Noel Maw was invited to Wylam for lunch with friends. This gave him the opportunity to visit a National Trust property, currently closed. It is very small, more like a croft, but is where George Stephenson was born in 1781. A tailpiece refers us to a YouTube video about '11 mad engines....' starting with the DB605, running, as fitted to the Bf109 of WWII (a very rare engine in the 21st Century) followed by a Napier Deltic in locomotive D9009 and a ship's diesel engine. The other link wouldn't work, so I am still ignorant of how an engineer cracks an egg.

W. www.csmes.co.uk

I visited the National **Emergency Services Museum** at an off-site location, which could have been much better signposted, in the middle of a huge industrial estate 'somewhere in Sheffield'. Directions were not on the website, but available by personal enquiry. www. emergencymuseum.co.uk A memorabilia fair was scheduled for the same event, which was okay if you collected fire hydrant fittings or helmets.... They also store their spare vehicles there. This 1941 NFS fire tender has a very spartan interior (photo

1) but has a great Turk's Head or, more accurately. Monkey's Fist attached to the bell above the cab in an early version of 'Blues and Twos' (that takes me back to my Scouting days and the Ashley book of knots - Geoff). The Bedford turntable ladder dates from 1943, with a Merryweather ladder. Only 50 were made and almost all have GXN or GXM registrations (the location of the Home Office?) and a Bradshaw Electric tow truck also attracted my eye. It is probably used for moving the vehicles around, as it would be impractical to keep them all in charged batteries and fuelled/oiled just to move a few yards. Bradshaw is the UKs biggest industrial electric vehicle maker; their products use lead-acid batteries and current models can tow up to 25 tonnes.

W. www.bradshawev.com

The Frimley Flier, October, Journal of the Frimley & Ascot Locomotive Club also has not much to report due to lack of copy. Plans for winter maintenance are in hand so there is no need to be idle. get down to the club site and help! A peeved, not say vexed, Editor, Andrew Douglass, regularly clears the site of scrap and found two tins of paint in the bin. This is not 'scrap', especially when one loses its lid and spills white paint all over the black interior of his car!

W. www.flmr.org

Sheffield & District Society of Model & Experimental Engineers' Steam Whistle included with the October issue a reproduction of their 1949. 6th Exhibition catalogue (Vice President, J. N. Maskelyne, one judge being E. T. Westbury - both names known to me). It runs to 32 pages! As well as adverts from local engineering businesses, including two lathe makers, several tool suppliers and Percival Marshall, publishers of Model Engineer, it refers to its track of 380 feet, then at Mosborough Moor. Among the exibitors are I. Law (who he?) and Arnold Throp. Also included are contributions from the local Aeromodellers' Society, Ship Model Society and Model Yacht Club. In Steam Whistle proper, Pete Nash writes of his visit to America to see the restored 'Big Boy', but also of visiting Promontory Point, where the two railway companies, Central Pacific and Union Pacific, met and joined up the first transcontinental route across the US. One of the leading suppliers of rail, he informs us, was Wilson Cammell of Dronfield, making 700 tons per week, each rail marked. Some of it still exists on the Nevada North Railway. now a tourist railway in a former copper mining area. W. www.sheffieldmodel engineers.com

On Track, October, from Richmond Hill Live Steamers. has this rather different aspect of a locomotive view; Gary Lewellyn seen through the 'Electric Henge' atop his 1950s Fairbanks-Morse GF-6C of which only 59 were ever made (photo 2). https://www.youtube.com/ watch?v=RbvWbn0R-Po It is hauling forty-five 80 ton wagons, that's 3,600 tons! Its horn would not be out of place on a ship (see 4½ minutes in). The club has been given a BR lamp in memory of David A. Churchill.

W. www.richmond-hill-livesteamers.tripod.com

I have received, via the Newcomen Society, the

Engineering Heritage Australia magazine for September. Items include the Melbourne Suburban Railway electrification, a review of the Timber Truss Bridge Book. There were once 420 such bridges in NSW alone. This is followed by an account of the building of the concrete Gladesville bridge, Sydney. When opened in 1964, it was the longest such bridge in the world. It also includes an article on Lighting the Streets with Electricity, covering several Australian cities. Then an item on Honeysuckle Creek communications station, near Canberra, set up specially for the moon landings, https:// www.engineersaustralia.org. au/Communities-And-Groups/ Special-Interest-Groups/ **Engineering-Heritage-**Australia/Previous-Magazines

St Albans & District

Model Engineering Society, October Newsletter has gone paperless! Only electronic copies will be published from now on. Its appearance is rather fine, lots of white space. pale blue type for emphasis and a grey background for some items. A recent club night produced over 40 attendees, more than many meetings heretofore. The club exhibition went well, with 122 responses to a questionnaire issued to visitors. This is very gratifying and they are now being analysed. Then follows an uncommon item. 'An introduction to Facebook' - a simple guide to getting set up as a FB-er. It's not the devil incarnate, nor will you be led astray if you are sensible. A mystery object previously pictured has been identified and a short video exists. https://www.youtube. com/watch?v=GgS3LNI3H3 M&feature=voutu.be Beware of backgrounds! No prizes but for the adulation of an admiring audience...

W. www.stalbansmes.com

Grimsby & Cleethorpes Model Engineering Society sends The Blower, September, from which I see that I missed the Garden Railway Show in Elsecar. I do not receive

Electric henge. (Photo courtesy of Amy McLellan.)

missives from this fraternity, for some reason. I should be more proactive. Editor, Neil Chamberlain provides an item on matters which often go unremarked, planning for the Annual Gala, which begins at least four months previously and covers safety, emergency services, noise, lost children, litter, evacuation, etc., not to mention a flypast, which needs a year's notice and airspace clearance too. Then, publicity, printing, catering and so on. All done in spare time, after work or by neglecting model making! So, Thank You. The actualité was a great success, hot and sunny all through and results are expected to be favourable. The flypasts were by a Dakota and a Spitfire, on different days. The Lancaster was booked, but its take-off was delayed by fog, as it

was overnighting in Wales. Uncle Wainwright sold over £1,000 worth of goods raising £207 for the club. After the Gala finished, a swift half of lemonade was called for so a small convoy set off for the House of Easement, with a fine roller leading the way. Steve Cooper was invited aboard and took this fine shot from his privileged position (photo 3).

W. www.gcmes.com

Ryedale Society of Model Engineers, September Newsletter reports that the 1st September meeting was offered 'showers' in the weather forecast. Several people were caught unawares when seemingly the UK's entire rainfall for the day landed on Gilling! A week later, the steaming bays were full but passengers were there none. Adlestrop revisited!

Pilot's eye view from a steamroller. (Photo courtesy of Steve Cooper.)

A photo from the Mainline Rally shows half a dozen spectators seated and just watching. Is this some sort of Holiday Camp? Later in the month, a group of bikers arrived and took tea with the membership. A gentleman who did driver training now wants to volunteer. He has no locomotive, but does posses a 1909 Daimler with a Knight double sleeve valve engine. A useful idea, the 'Silent Knight', but disposing of the extra heat limited its development in terms of increased power output. Editor, Bill Putman requests more copy, either e-mail him or accost him at the club with thy mighty tomes. ('Twas brillig and the mighty tomes did thus assemble in the Clubhouse -Geoff)

W. www.rsme.org.uk

Plymouth Miniature Steam's Goodwin Park News, Autumn, says club locomotive Hernia broke a piston rod so they have been lent a Class 66 by Plym Valley Railway for as long as is required. What generosity and neighbourliness! Tim and Max Symons write on the Birth of the Wickham Trolley. Not the 'real' one but a 71/4 inch gauge version for young Max, inspired by the Ride on Railways version. Tim should have checked earlier, but was lucky in that it fitted in his car with one inch to spare... At a local fete, the portable track gave a ride to Blackmore Vale

Brass, 'Band on the Run' says author Anne Malleson. W. www.plymouthminiature

steam.co.uk

Prospectus, October, from **Reading Society of Model** Engineers, relates that Editor, John Billard and members visited the private Spinney Railway, a 74 inch gauge track in Surrey. Track circuits, deep tunnels, branch lines and full interlocking from four signal boxes! David and Lilv Scott, in a tour of the North, called at Polly Models for a look round. They noted the warm family atmosphere and picked up some goodies for David's 'Jinty'.

W. www.prospect parkrailway.co.uk

City of Oxford Society of Model Engineers' CoSME Link, autumn, says that Secretary, David Price was very pleased and surprised at the success of the new extension. He was closing up the site one day when the last of the visitors departed. "Quick now, or you will have to stay until next week". "Sorry, I can't do that, as I am flying home to Kathmandu tomorrow!" There's no answer to that. The Dreaming Spires Rally brought 23 locomotives from 16 clubs over three days. The Tanat Valley Railway near Oswestry has the collection of one gentleman, now residing in a home, of industrial monorail equipment intended for temporary use on building sites etc. Some locomotives,

1943 Austin turntable ladder.

powered by JAP, Simplex, BSA or Lister engines, are driven but some have a simple automatic stop mechanism at each end of the track. Thus, a train of bricks, concrete mix etc. can be despatched to stop without further action at its destination. Ian Varty has driven some of these locomotives and savs that the ride - with no suspension of any sort and the inevitable damage caused by its very temporary and oft-relocated use - was spine-jarring, nay, injurious. I have written before of seeing this type of railway in use during the construction of the Aire Valley main sewer in the 1950s or '60s.

https://www.irsociety.co.uk/ Archives/16/Monorail.htm W. www.cosme.org.uk

More fire appliances for pyromaniacs, this is an Austin K2 with Merryweather turntable ladder (photo 4) and here is Wentworth Woodhouse's fire pump trailer. Note the extinguisher on the wall, in case it catches fire... (photo 5).

And finally, I showed my Facebook feed to my psychiatrist. He wants to talk to all of them.

Contact: geofftheasby@gmail.com

Wentworth Woodhouse fire pump trailer.

RY DIARY **DIARY** DIARY **DIARY** DIARY **DIARY** DIARY **DIA**RY **DIARY** DIARY DIARY DIARY DIARY DIARY DIARY DIARY

DECEMBER

- 22 Newton Abbot & District MES. Running day at Lindridge Hill. Contact Ted Head: 07941 504498.
- 22 North Wiltshire MES.
 Public running, Coate
 Water Country Park,
 Swindon, 11am-dusk.
 Contact Ken Parker:
 07710 515507.
- 22 Rugby MES. Public running 3-6pm visiting locos welcome with boiler certificate. More info. at rugbymes.co.uk.
- Tiverton & District
 MES. Running day
 at Rackenford track.
 Contact Chris Catley:
 01884 798370.
- 24 Romney Marsh MES.

 Members' social
 afternoon, 2pm.
 Contact Adrian Parker.
 01303 894187.
- 26 Sutton MEC. Boxing Day run, 10am-4pm. Contact Paul Harding 0208 2544749.
- 27 Bradford MES. Mince pie steam-up, 11 am until frostbite sets in, Northcliff track. Contact: Russ Coppin, 07815 048999.

29 Newton Abbot & District MES. Running day

MES. Running day at Lindridge Hill. Contact Ted Head: 07941 504498.

29 North Wiltshire MES.
Public running, Coate
Water Country Park,
Swindon, 11am-dusk.
Contact Ken Parker.
07710 515507.

JANUARY

- 1 Plymouth Miniature Steam. Members' day, 10.30am onwards. Contact Rob Hitchcock: 01822 852479.
- 3 North London SME.
 Members' videos, slides
 and photographs.
 Contact Ian Johnston:
 0208 4490693.
- 7 Romney Marsh MES. An evening with Andy Nash, 7.30pm. Contact Adrian Parker. 01303 894187.
- 8 Bradford MES. Bits and pieces evening, 7:30-10pm, Saltaire Methodist Church. Contact: Russ Coppin, 07815 048999.
- 8 Brandon DSME.
 Meeting at The Ram
 Hotel, Brandon, 7.45pm.
 Contact Mick Wickens:
 01842 813707.

8 Leeds SMEE.

Members' current projects. Contact Geoff Shackleton: 01977 798138.

- 15 Bristol SMEE. Talk: 'TSR2, the Grandfather of Tornado' – Jock Heron. Contact Dave Gray: 01275 857746.
- Members' social afternoon, 2pm.
 Contact Adrian Parker.
 01303 894187.
- 17-19 London Model
 Engineering
 Exhibition, Alexandra
 Palace. See www.
 meridienneexhibitions.
 co.uk/events/londonmodel-engineeringexhibition
- Parker: 01303 894187.

 Romney Marsh MES.
 Talk: 'The Silver City
 Story' Paul Ross,
 7.30pm. Contact Adrian
 Parker: 01303 894187.
- 22 Leeds SMEE. Meeting night 'The First Train in Spain from Warrington' Richard Gibbon. Contact Geoff Shackleton: 01977 798138.
- 28 Romney Marsh MES.
 Members' social
 afternoon, 2pm.
 Contact Adrian Parker:
 01303 894187.

FEBRUARY

- 4 Romney Marsh MES.
 Talk: 'Judging Models
 at Exhibitions' Harry
 Paviour, 7.30pm.
 Contact Adrian Parker.
 01303 894187.
- 5 Brandon DSME.

 Meeting at The Ram
 Hotel, Brandon, 7.45pm.
 Contact Mick Wickens:
 01842 813707.
- 5 Bradford MES. Film evening, 7.30pm, Saltaire Methodist Church. Contact: Russ Coppin, 07815 048999.
- 5 Leeds SMEE.

 Meeting night —

 'Drill Sharpening' —

 D.A.G. Brown. Contact

 Geoff Shackleton:

 01977 798138.
- 11 Romney Marsh MES. Members' social afternoon, 2pm. Contact Adrian Parker. 01303 894187.
- 15 Brandon DSME.
 Running day.
 Contact Mick Wickens:
 01842 813707.
- 18 Romney Marsh MES.
 Talk: 'Narrow Gauge
 Railway Visits' Mike
 Jackson, 7.30pm.
 Contact Adrian Parker:
 01303 894187.

The December issue, number 288, has some great features:

Andy Prior makes a DRO Switching Box

A Tailstock Tapping Device from

MODEL ENGINEERS'

Terry Cleife's Lathe Dividing Attachment.

Pick up your copy today!

Ex- display items now for sale. Check our End of

Visit Our Aylesford Show Room! Open Monday-Friday 10am-4:30pm & 1st Saturday of the month 11am-4pm

Garden Railways

Request

your FREE Catalogue today!

0800 022 4473 www.dream-steam.com

PayPal VISA

G Scale Figures

Curve Setters

Upgrades

Fixing kits & Washers

Chuffers

BRAND OF THE MONTH: PIKO

Santa Fe Freight Starter Set White Pass & Yukon Starter Set (Analogue-Sound/Smoke) DB BR80 Freight Starter Set III (Analogue-Sound/Smoke) Mighty Hauler GE-25t Starter Set GE 25t Diesel Industrial Starter Set

Battery Powered Clean Machine GE-25Ton Track Cleaning Loco

37104 £279.95 37106 £379.95 37120 £379.95 £239.95 37150 £239.95 37151 38501 £225.00

'In stock as of 28/11/19, please note these loco's may no longer be available, check stocks online or call. Please note basic range takes 12 weeks from inital order and other locomotives are in batches. Batch dates will be in product description. Locomotives in stock will state instant dispatch available.

£72.00 Percy and the Troublesome Trucks Set 90069

29.00 Thomas with Annie & Clarabel Set 445.00 Thomas Christmas Delivery 229.00 Toby the Tram 238.00 Thomas the Tank Engine 44.00 James the Red Engine

James the Red Engi £4.20 Annie Coach £5.20 Clarabel Coach £3.10 Emily's Coach £12.00 Emily's Brake Coach £12.50 Troublesome Truck1 £9.40 Troublesome Truck2 £3.00

Ice Cream Wagon Tidmouth Milk Tank S.C. Ruffey Explosives Box Van

Open Wagon Blue

£390.00

£390.00

£410.00 £230.00 £225.00

£280.00

£80.00

£80.00

£59.50

£59.50

£70.00 £70.00 £70.00 £70.00

£70.00

£70.00

90068

90087 91405 91401

91403

97001

97002 97003 97004

98001

98001

98015

98017

98013

PECO 32mm (SM32) Track Pack SL600x12 SL600x1 SL600x1 SL600x1 Flexi Track - 12 Pack Flexi Track - 4 Pack Flexi Track - Single £110.00 Setrack Curve - 6 Pack £48.00 Setrack Curve - Single Setrack 38 Radius Curve - Single Setrack 38 Radius Curve - Six Pack Right Hand Point ST605x1 €8.50 ST607 £8.50 Left Hand Point SLE696 £45.00 Y Point SLE697 £45.00 Small Radius Right Hand Turnout SI F691 £45 00 Small Radius Regit Hand Turnout Wagon Turntable and Crossing Rail Joiners - 24 Pack 45mm (G45) Trace SLE692 SL627 £45.00 SL810 €3.50 Flexi Track - Six Pack SL900x6 £85.00 Flexi Track - Single Setrack Curve - Six Pack Setrack Curve - Single Setrack Straight - Six Pack SL900x1 £16.00 ST905x6 ST905x1 645.00 ST902x6 Setrack Straight - Single ST902x1 Right Hand Point SL995 £60.00 Left Hand Point SL996 £60.00 Point Motor Mounting Plate Metal Rail Joiners - 18 Pack PL8 SL910 Insulating Rail Joiners - 12 Pack Dual Rail Joiners - 6 Pack £6.00

SUMMERLANDS CHUFFER

These highly developed and precision engineered chuff pipes that can bring the real sound of a working steam loco
A wide range always in stock! Specials can be ordered on request

inc. P&P

DON'T FORGET OL	R MAMOD ELECTRIC L	OCO CHARGE	R £35
Telford	MTELG0		£452.00
MKIII	MK3 From		E353.00
Saddle Tank	MST From		£353.00
Brunel	MBrunelOG		£460.00
Boulton	1351BO		From £32
Tram	1351TR		£520.00
Tender	MTDR		£45.00
Tanker	MTNK		£42.00
Goods Wagon	MGWN		£49.50
Guards Van	MGVAN		£75.00
Telford Tender	MTDR-T		£45.00
	MSS		
Maroon Tender (32m	m/45mm)	911403	£55.00
Green Tender (32mm/45mm)		911405	£55.00
Black Tender (32mm/45mm)		911401-BL	£55.00
Blue Tender (32mm/45mm)		911402-BL	£55.00
Maroon Passenger Coach (32mm/45mm)		911201	£55.00
Blue Passenger Coch (32mm/45mm)		911201BL	€55.00
Log Wagon (32mm/45mm)		911501	£55.00
Goods Van (32mm/45mm)		911101	€55.00
Guards Van (32mm/45mm)		911001	£55.00
Coal Wagon Grey (32mm/45mm)		911505	£55.00
Coal Wagon Unpainted (32mm/45mm)		911505-1	£55.00
Pair of Flat Bed Wagons (32mm/45mm)		911301	£55.00
Straight Track		910003	£35.50
Curved Track		910005	£35.50
Left Hand Point		910001	£25.40
Dishalls of Deiet		040000	COE AD

MAMOD

Blue Tender (32mm/45mm)	911402-BL	£55.00
Maroon Passenger Coach (32mm/45mm)	911201	£55.00
Blue Passenger Coch (32mm/45mm)	911201BL	£55.00
.og Wagon (32mm/45mm)	911501	£55.00
Goods Van (32mm/45mm)	911101	£55.00
Suards Van (32mm/45mm)	911001	£55.00
Coal Wagon Grey (32mm/45mm)	911505	£55.00
Coal Wagon Unpainted (32mm/45mm)	911505-1	£55.00
Pair of Flat Bed Wagons (32mm/45mm)	911301	£55.00
Straight Track	910003	£35.50
Curved Track	910005	£35.50
eft Hand Point	910001	£25.40
Right Hand Point	910002	£25.40
Side Tank Locomotive (32mm/45mm)	909003	£210.00
Saddle Tank Locomotive (32mm/45mm)	909013	£240.00
Side Tank Locomotive Kit (32mm/45mm)	909011	£200.00

SLAIERS	
estiniog Railway Ashbury First Class 4-Wheel Carriage Kit	16C01
estiniog Railway Third Class Ashbury 4-Wheel Carriage Kit	16C02
inorwic State Wagon Kit	16W01
estiniog Railway 2 Ton Braked State Wagon Kit	16W03
estiniog Railway 2 Ton Unbraked Slate Wagon Kit	16W04
/ar Department Light Railways K Class Skip Wagon Kit	16W06
inorwic Quarry Slab Wagon Kit	16W08
inorwic Quarry "rubbish" Wagon Kit	16W09
laster's Mek-Pak	0502
laster's Mek-Pak Brush	0505

Upgrade Cylinders Ceramic Gas Burner Set Three Wick Meths Burner Dead Leg Lubricator Steam Regulator Kit Small Brass Chimney Cowl Brass Cab Hand Rails Brass Side Tank Hand Rails Brass Smoke Box Hand Rails

Cylinder Covers
Brass Sand Boxes
Brass Tank Tops
Lubricating Oil
Meths Burner Wick
Curve Tipped Syringe
460 Steam Oil 500ml
220 Steam oil 500ml
Solid Fuel Tablets
Water Filler Bottle
Meths Filler Bottle
ROUND
In Stock Now*
Sammie 45mm

Maroon 45r

Bertie

Bertie Millie

Jennie

Lady An Billy Lilla

Silver La

Russel

£73.50 £73.50

£20.00 £27.00

£25.50

£25.50

	DSWCIS
	DSW460SO500
	DSW220SO500
	980001
	DSWWFB
	DSWMFB
IDHO	USE
	£660
nm	£660

NEW!

MSS 3/4 SIDE TANK - £300 MSS TANKER - £55

MSS TANKER KIT - £53

DSUPCYL DSUPGBS

DSENCH

DSENSTHR

DSENWTT

SWLUB30

DSWWK6

DSWCTS

DSENSBXHR DSENCYCV DSENSBX

DSUP3WMB

DSUPDLDL DSUPSRK DSENSMCWL

	Due 12 weeks
	Due 12 weeks
	Due 12 weeks
ne	Due Jan 2020
	Due Aug 2020
	Due Aug 2020
dy	Due Aug 2020
500	Due July 2020

specification requirements

can be altered to your own Deposit of only £200 required

£3.00

£1.90

£3.50

£4.00

Open Wagon Red Sodor Fruit & Vegetable Co. Box Van Sodor Fuel Tank Spiteful Brake Wagon £70.00 £70.00 £70.00 98004 98021 V Dump Car (Oxide Red) G' Flat Wagon with Logs 98470 £79.00 "LS" Skeleton Log Car "LS" Speeder Orange "LS" Speeder PRR "LS" Speeder Santa Fe 98490 £79 00 £90.00 £90.00 £90.00 96253 Set-a-Curve Available in 32mm and 45mm

FE FE W DI SI SI SI

Dream Steam Ltd, Ground Floor Suite, Vanguard House, Mills Road, Aylesford, Kent, ME20 7NA

Call us: 01622 793 700 or send an email to sales@dream-steam.com

www.parksiderailways.co.uk 01282 613646 Southfield St, Nelson, Lancs, BB9 0LD

Manufacturer and supplier of

Motor speed controllers, Motors, sprockets and chains, gears, bearings, springs, bespoke control panels, pneumatics. Bespoke electric and IC loco - complete and part - design

New range of 5" gauge bogies, chassis and locos

All chassis and locos are ready to run just add batteries Powder coated with choice of body colours Parvalux 150W motor on each axle 60 or 100A controller fitted as needed Roller bearings in the axle boxes

All can be operated from either end and be run as multiple units

Folded Bogie - £440

Powered starter chassis £670

2x motors 60A controller

3x motors 100A controller

"Imp" £1650 4x motors 4x batteries 100A controller

POLLY MODEL ENGINEERING LIMITED

Build and drive your own 'POLLY Loco'!

British Made with a Proven Track Record

'MOLLY ANN' 0-6-0 Saddle Tank

Fully machined kit to build our latest coal fired 5" gauge loco. Easily assembled by novice builder with hand tools only.

With 10 other distinctive Polly kit build locos to choose from there is something for everyone (and we also sell drawings and castings for fine scale models).

Kit price £7044 inc VAT & UK delivery, other 5" gauge kit locos from £5716

The rugged POLLY designs provide for reliability and longevity, with performance to match the experts. Manufactured using state of the art CNC machinery in our own Nottingham workshops.

With over 30 years of POLLY locomotive manufacturing experience, you need have no concerns regarding support or spares availability. Customers are

welcome to visit our Nottingham workshop to meet the team, discuss requirements and see our facilities.

Don't forget Polly is one of the largest suppliers of fittings, drawings, castings, materials, parts etc to model engineers. See us at exhibitions, worldwide mail order.

website where you will find other Polly Locos, rehensive ME Supplies.

Polly Model Engineering Limited www.pollymodelengineering.co.uk Atlas Mills, Birchwood Avenue, Long Eaton, Nottingham, NG10 3ND

Tel: 0115 9736700 email:sales@pollymodelengineering.co.uk

PRODUCTS

- Taps and Dies
- Centre Drills
- Clearance Bargains
 Reamers
- Diestocks
- Drill sets (HSS) boxed
- Drills
- Drill set (loose) HS

- Endmills
- Lathe Tooling
- Slot Drills
- Specials
- Tailstock Die Holder
- Tap Wrenches
- Thread Chasers

Tel: **01803 328 603** Fax: 01803 328 157 Email: info@tracytools.com www.tracytools.com

Yup - Mr. Tesla is back

Barrow Farm Rode Frome Somerset BAII 6PS Tel: 01373-830151

The Inventions, Researches and Writings of Nikola Tesla (1894) • £16.84

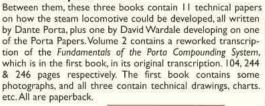
Forty-three chapters, of which forty are based around papers or other presentations by Nikola Tesla on his electricity based researches, theories and inventions. An invaluable technical look at Tesla's work and thoughts. Originally published in 1894, we used to sell a reprint of this, but it has been unavailable for quite some time. 497 pages with 312 illustrations. Paperback.

Tesla - the wizard of electricity Kent • £11.94

One of the truly remarkable men of the 19th & 20th centuries, Nikola Tesla was responsible for many of the things we take for granted today, very largely connected with electricity. At least in style, this is a somewhat lightweight biography of Tesla and a nontechnical description of his major inventions, but it is interesting, enjoyable and good value for anyone wanting to find out more

about this extraordinary genius. 248 extremely well illustrated pages. Hardback

The Tesla Disc Turbine • Cairns • £ 8.00


Tesla's Disc Turbine does not feature in the books above, being mechanical, but he claimed that a very small, but very powerful machine was possible - his aim was to produce a 25 hp turbine that would fit inside a bowler hat. He succeeded but like others of Tesla's ideas, it was ahead of the technology of the time Here are plans and building instructions for a small Tesla turbine which any model engineer can make. 34 A4 format pages.

Numerous drawings and sketches, including 6 pages of drawings specifically for a small Tesla turbine. Paperback.

and from the last great genius of steam power:-

Advanced Steam Locomotive Development • Porta • £12.60 Selection of Papers by L.D. Porta Volume | Tribology and Lubrication • £30.85 Selection of Papers by L.D. Porta Volume 2 Adhesion, Compounding and the Tornado Proposal • £30.85

The Railways of Sir Arthur Percival Heywood Volume I - Duffield Bank and Dove Leys Waterfield • £53.45

Not seen as we go to Press, due in early December, this is the long awaited first volume of the new work on Sir Arthur Heywood by James Waterfield. James has spent many years studying and researching the work

of Sir Arthur Heywood, and has also built fine full-size working replicas of the locomotives and items of Heywood rolling stock. A large hardbound book with 336 pages, over 300 photographs, 42 modellers' scale drawings, 40 drawings, diagrams, maps and plans.

Painting and Lining Model Locomotives and Coaches • Haynes • £22.64

Essentially aimed at railway modellers in 00 and 0 gauges, but also applicable to smaller and larger gauges, this is a very good book for anyone wanting to paint metal or plastic models, be they hand built, kit built or repainting a commercial model. Nine chapters in all, including ones on Preparation, Using an Airbrush,

Bow pens and other lining pens, adding lettering and numbers, and Varnishing and Weathering. Good, solid and succinct guidance and advice. 186 pages, extremely well illustrated with colour photographs. Paperback.

items and SAVE, often considerably, on postage. Savings, and overseas postage automatically calculated if you order online. If ordering by post and paying by cheque or Postal Order, please make this payable to: Camden Miniature Steam Services

Prices shown INCLUDE U.K. Post & Packing; buy two or more

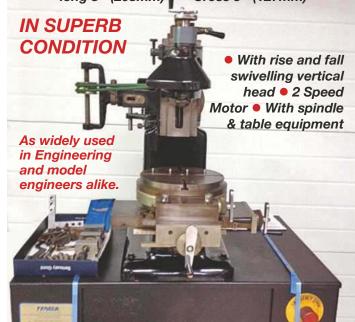
Buy online at: www.camdenmin.co.uk or phone 01373 830151 to order

MODEL MAKING METALS

1/32in. to 12in. dia. bright steel, stainless steel, bronze, spring steel, brass, aluminium, silver steel, steel tubes, bolts, nuts & screws, tap dies + drills, white metal casting alloys. Fine materials, chain, plastic.

Lathe milling machines and equipment, new and secondhand.

Mail order nationwide and worldwide callers Mon.-Fri. 9 - 5pm. All cards welcome. Send now for a **FREE** catalogue or phone Milton Keynes Metals, Dept. ME, Ridge Hill Farm, Little Horwood Road, Nash, Milton Keynes MK17 0EH.

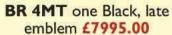

Tel: (01296) 713631 Fax: (01296) 713032

www.mkmetals.co.uk

email: sales@mkmetals.co.uk

• 8" dia (203mm) 360 degree indexing rotary table mounted on X&Y • Compound slides travels long 8" (203mm) • Cross 5" (127mm)

Further information or more photos on request. Inspection under power, **TENGA** • Tel: +44 (0)1425 622567


Tel: +44 (0)1425 622567 Email: tenga.eng@homeuser.net

Garden Railway Specialists

Exclusive to GRS, the last available stock of these ready to run, 5 Inch Gauge, Coal-Fired, Kingscale Locos

45xx 3 GWR, I x BR Green NOW ONLY £5995.00

Commission Sale Kingscale 5 inch 14xx 0-4-2T This item is offered in great condition, and comes with a hydraulic lifting trolley, for only £4500.00

Available late 2019

'Evening Star' £13995.00

1366 Pannier £4995.00

Orders taken Now!

Garden Railway Specialists Ltd Station Studio, 6 Summerleys Road, Princes Risborough, Bucks, HP27 9DT E-mail: sales@grsuk.com Website: www.grsuk.com Tel: 01844 - 345158 Monday - Friday 09:00 - 17:30hrs Saturday 10:00 - 16:00hrs

MOTOR CONTROL PACKAGES FOR THE HOME WORKSHOP

Suitable for most lathes and milling machines including Myford, Boxford, Colchester, Harrison, Warco, Chester

the majority of applications. Four sizes

available from 0.4kW/0.5hp to 2.2kW/3hp

MODEL ENGINEER & WOODWORKER

See us at the 2019 London, Doncaster & Leamington Model Engineering Exhibitions

XKL iDrive 2 INVERTERS from £146 inc VAT

2-YEAR WARRANTY/MONEY BACK GUARANTEE

240-volt 1-phase input, 240-volt 3-phase output (i.e. dual voltage motor required). SOFT START-STOP, SPEED CONTROL, BRAKING, MOTOR PROTECTION and JOG FUNCTIONS. Low-Cost, general purpose simplified torque vector control. Entry level performance suitable for

JAGUAR CUB INVERTERS from £200 inc VAT

5-YEAR WARRANTY/MONEY BACK GUARANTEE

240-volt 1-phase input, 240-volt 3-phase output (i.e. dual voltage motor required). SOFT START-STOP, SPEED CONTROL, BRAKING, MOTOR PROTECTION and JOG FUNCTIONS. Simplified torque vector

control giving enhanced performance at low RPM. Four sizes from 0.4kW/0.5hp to 2.2kW/3hp.

Inverter-Metric Motor-RCS Packages from £282 including VAT Inverter-Imperial Motor-RCS Packages from £350 including VAT

2-YEAR WARRANTY/MONEY BACK GUARANTEE

Suitable for all IMO inverters, this remote pendant allows you to access the software of the inverter remotely, bypassing the buttons on the inverter itself. START, STOP, FORWARD, REVERSE, RUN, JOG, SPEED POTENTIOMETER. NO-VOLT RELEASE safety feature and two metre length of 7-core

Transwave

flex as standard.

BS EN 9001:2015 QUALITY ASSURED MANUFACTURING ENVIRONMENT; CE MARKED PRODUCTS COMPLIANT WITH FMC REGULATIONS. THE LOW VOLTAGE DIRECTIVE and BS EN ISO 61000-3-2:2018

FREEPHONE 0800 035 2027 or 0121 708 4522 transwave@powercapacitors.co.uk www.transwave.co.uk

Model Engineer Classified

Wishing to sell your Lathe, Mill or Complete Workshop? Full clearances carefully undertaken

Speak to:
Malcolm Bason of MB Tools
01993 882102

Re-homing workshop machinery for 20 years!

Complete home Workshops Purchased

Essex/Nottinghamshire locations
Distance no object!

Tel: Mike Bidwell 01245 222743

m: 07801 343850 bidwells1@btconnect.com

To advertise please email dayidholden@ mytimemedia.com

THINKING OF SELLING YOUR LATHE, MILL OR COMPLETE WORKSHOP?

and want it handled in a quick professional no fuss manner? Contact Dave Anchell, Quillstar (Nottingham)

Tel: 0115 9206123 Mob: 07779432060 Email: david@quillstar.co.uk

Injection moulding manufacture in China

Reasonable price with good quality and best service

Contact us at email: bravo@abbaele.com - "Bravo Wong"

any age, size or condition considered - any distance, any time

ALL STEAM LOCO'S WANTED

ALL **PART BUILT** MODELS WANTED ALL **WORKSHOPS CLEARED** SWEPT (

All 5" Gauge Loco's Wanted

Hunselt, Simplex, Speedy, BR Classs 2, Horwich Crab, BR 8400 tank, Maid of Kent, Black Five, Jubilee, Royal Engineer, B1 Springbok, Torquay Manor. All 7¼" Gauge Loco's Wanted

Hunselt, Hercules, Jessie, Romulus, Dart, Bridget, Holmeside, Paddington, GWR Mogul 43xx, GWR King, Black Five, A3, B1, etc. All 3½" Gauge Loco's Wanted

Titch, Juliet, Rob Roy, Firefly, Jubilee, Maisie, Doris, GWR Hall, Britannia, Hielan Lassie, Etc.

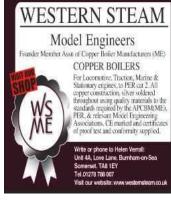
ALL TRACTION ENGINES WANTED

Minnie, Burrell, Royal Chester, etc.

For a professional friendly service, please contact:

Graham Jones M.Sc. graham@antiquesteam.com

0121 358 4320


antiquesteam.com

Model Engineer Classified

Manufacturers of 5"gauge diesel outline battery electric locos and accesssories

Telephone: 01424 223702 Mobile: 07704 256004

email:modelengineerssupplies@gmail.com

17 Sea Road, Bexhill-On-Sea, East Sussex TN40 1EE

www.model-engineering.co.uk Cowells Small Machine Tool Ltd.

Cowells Small Mathine Tools Ltd. londring Road, Little Bentley, Colchester CO7 85H Essex England TeUFax +44 (0)1206 251 792 e-mail sales@cowells.com

www.cowells.com

ctures of high precision screwcutting lo 8mm horological collet lathes and achines, plus comprehensive accessory Talk directly to the manufacturer

www.model-engineer.co.uk

LASER CUTTING CNC Folding and Machining Fabrication and Welding

All Locomotive & Traction Engine parts.

Your drawings, E-files & Sketches.

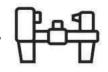
m: 0754 200 1823 • t: 01423 734899

New Reproduction and Pre-owned Original Meccano Parts. www.meccanospares.com

sales@meccanospares.com Tel: 01299 660 097

COPPER BOILERS FOR LOCOMOTIVES AND TRACTION ENGINES etc.

MADE TO ORDER



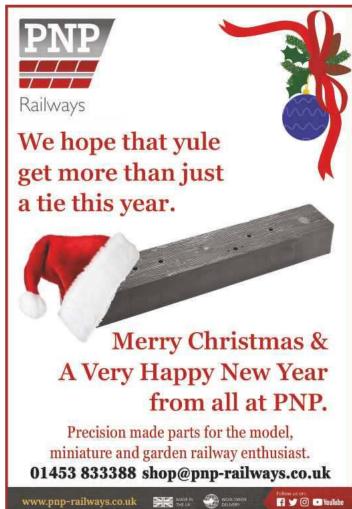
webuyanyworkshop.com

Looking to sell? Send photos to value@webuyanyworkshop.com to see what we would pay

Or call us on 0115 677 0347

MODEL MAKING METALS

1/32in. to 12in. dia. bright steel, stainless steel, bronze, spring steel, brass, aluminium, silver steel, steel tubes, bolts, nuts & screws, tap dies + drills, white metal casting alloys. Fine materials, chain, plastic.


Lathe milling machines and equipment, new and secondhand.

Mail order nationwide and worldwide callers Mon.-Fri. 9 - 5pm. All cards welcome. Send now for a **FREE** catalogue or phone Milton Keynes Metals, Dept. ME, Ridge Hill Farm, Little Horwood Road, Nash, Milton Keynes MK17 0EH. Tel: (01296) 713631 Fax: (01296) 713032

www.mkmetals.co.uk

email: sales@mkmetals.co.uk

NEWTON TESLA

SMOOTH, QUIET, HIGH PERFORMANCE VARIABLE SPEED CONTROL FOR LATHES AND MILLING MACHINES

Supplier to industry since 1987 of high power speed control systems from 100W to 2,200,000W,

MITSUBISHI INVERTERS from £122 inc VAT

AVIORI DIO

HIGH PERFORMANCE INVERTERS

For serious machining duty. 240V 1-phase input, 220V 3-phase output, for you to run a dual voltage (Delta wired) three phase motor off your 1-phase supply. Six sizes from 0.1kW (0.12hp) to 2.2kW(3hp). Built-in user keypad, display and Speed Dial. Unique Integrated Emergency Stop Function. Advanced Torque Vector control for optimum performance. High Reliability.

Fully CE Marked and RoSH Compliant.
Compatible with our Remote Control station Pendants.
Supplied pre-programmed at no extra cost.

REMOTE CONTROL STATIONS from £66 inc VAT

Remote control station Pendants suitable for use with all our Mitsubishi Electric and IMO iDrive Inverters. Industrial grade push buttons and controls. Featuring START, STOP, FORWARD, REVERSE, RUN/JOG, & Variable Speed potentiometer.

3-wire control - Behaves like a No-Volt-Release. Beware of low quality copies of our original tried and tested controls.

Fitted with 2-metre length of control cable ready for connection to drive, and supplied with wiring diagram.

VARIABLE SPEED CONTROL PACKAGES

The 'original' & best lathe speed control system.

Pre-wired systems, and Inverter, Motor, Remote packages available to suit wide a range of metal and wood turning lathes, including;

MYFORD ML7, Super 7, BOXFORD, & RAGLAN lathes, Wood turning lathes including; ML8 and MYSTRO and UNION GRADUATE.

Pre-wired ready to go! Power Range: 1/2hp, 1hp, 2hp and 3hp.

Super smooth control across entire speed range, giving chatter free machining and excellent finish unattainable with 1PH motors! Powered from domestic 240V Single Phase mains supply.

Made in the UK, ISO9001:2008 Quality Assured.

Our Pre-wired Lathe Speed Controllers are now covered by a 10-Year Warranty

Newton Tesla (Electric Drives) Ltd,

Warrington Business Park, Long Lane, Warrington, Cheshire WA2 8TX, Tel: 01925 444773 Fax: 01925 241477

E-mail: info@newton-tesla.com

Visit www.lathespeedcontrol.com for more information.

AMADEAL Ltd.

www.amadeal.co.uk

Syil X5+ Combo CNC Milling Machine Including 4th axis Only £11,114 inc.vat and delivery*

*Free delivery for all machines to most of mainland UK (except Northern Ireland and some Scottish postcode areas)

The AMA250AVF-550 Variable Speed Bench Lathe

Excellent quality - Terrific price! With power cross feed Available with or without 2-axis DRO Only £1630 /with DRO £1999 including VAT and delivery* AMAT25LV Milling Machine Available in MT3 or R8

Available in MT3 or R8 High/low 2 Speed belt drive Powerful Brushless DC motor 1.0 KW Only £1250 inc.vat and delivery*

 $See \ our \ website \ for \ full \ specification \ of \ these \ and \ other \ machines \ and \ accessories \ that \ we \ stock.$

Tel: (+44) 0208 558 4615 or 07887 945717 or (+44) 0208 558 9055Unit 20 The Sidings, Hainault Road, Leytonstone, London E11 1 HD

Monday - Friday (11am - 4pm) or at other times by calling for prior arrangement.

www.miniaturesteammodels.com

Miniature Steam Pty Ltd

Specialist Producer of Model Marine Steam Plants
We thought supplying Custom Steam Plants would be easy!

We were wrong!

Our customers require variations we have never dreamed about!

How about our very powerful 4" Boiler being used to power a TVR1?

There are more, but we are working to provide a more flexible way of helping you to find the combination of **your & our** products to get the model you desire.

See "Custom Steam Plant Requirements" on our website

We have the components to make good steam plants for lonesome engines or to update aged steam or electric marine installations.

Also see website for special international freight prices:

our website: www.miniaturesteammodels.com or email: info@miniaturesteammodels.com

Australian agent for JotiKa

£1,549.95 inc. vat

Swing Over Bed	250mm
Swing Over Cross Slide	150mm
Distance Between Centres	750mm
Width of Bed	100mm
Spindle Bore	26mm
Spindle Taper	MT4
Speed Range	50 - 2500rpm
Longitudinal Feed Range	0.07 - 0.2mm/r
Metric Threads	0.2 - 3.5mm
Cross Slide Travel	115mm
Top Slide Travel	70mm
Tailstock Quill Travel	70mm
Tailstock Taper	MT2
Motor	0.75kW (1hp)
Weight	145kg
Dimensions	1350 x 560 x 570mm

Features: Digital Spindle Readout • Powered Crossfeed • Variable Spindle Speed

For more information contact our Sales Team,

call us on 01244 531631, email us at sales@chesterhobbystore.com or visit www.chesterhobbystore.com

Includes:

- 125mm 3 & 4 Jaw Chucks
- · Fixed and Travelling Steadies
- Machine Tray
- Machine Stand
- · Rear Splash Guard
- · Lathe Tool Set

