

Visit our **NEW** website at: www.greatnorthernsteam.co.uk

Model Tasker Traction Engine

Full Set of Castings From: £5950.00 >>> Full Machining Service Available! <<<

Fully Built Tenders/Canopys & Belly Tanks Can Supplied Ready to Fit!
Boilers Supplied from only £3530.00
3 Shaft - 2 Speed Engine

Scale Model Trailers also now available - supplied ready to assemble and paint!

24 Stage Payments from £395.00 - INTEREST FREE! (Stage Payments includes supply of Boiler)

Dimensions:

Length: 76" (193cm) Rear Wheel Dia: 28" (71cm)
Width: 32" (81cm) Front Wheel Dia: 21" (53cm)
Height: 60" (153cm) Weight: 3/4 TONNES

71/4" Gauge 'EFFIE' Locomotive

Full Set of
>>> Fully Machined Parts <<<
Ready to Assemble!

Build your own LARGE 71/4" Gauge Locomotive From Only £9950.00

INCLUDES COMPLETE READY TO FIT BOILER!

Drivers Truck also available - supplied ready to assemble!

Ask for details

24 Stage Payments from £395.00 - INTEREST FREE!

Dimensions:

Length: 42" (107cm) Width: 14" (36cm) Height: 36" (92cm) Wheel Dia: 7 1/2" (19cm)

Boiler Dia: 11" O/D Bore: 2" Stroke: 3"

MODEL ENGINEER

Published by MyHobbyStore Ltd. Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0EL Email: customer.services@myhobbystore.com Tel: 0844 412 2262

www.myhobbystore.com www.model-engineer.co.uk

SUBSCRIPTIONS

UK - New, Renewals & Enquiries Tel: 08456 777 807 Email: modelengineer@subscription.co.uk

USA & CANADA - New, Renewals & Enquiries Tel: (001) 732 424 7811 Email: subs@ewamags.com

REST OF WORLD - New, Renewals & Enquiries Tel: +44 (0)1858 438798

BACK ISSUES & BINDERS Tel: 0844 848 8822

Email: customer.services@myhobbystore.com

EDITORIAL

Editor: David Clark Tel: +44 (0)1847 821136 Email: david.clark@myhobbystore.com Production Editor: Kelvin Barber

PRODUCTION

Designer: Yvette Masson Illustrator: Grahame Chambers Retouching Manager: Brian Vickers Ad Production: Robin Gray

ADVERTISING

Display Sales: Duncan Armstrong Email: duncan.armstrong@myhobbystore.com Tel: 0844 848 5238

Classified Sales: Katie Kelleher Email: Katie.Kelleher@myhobbystore.com Tel: 0844 848 5239

Online Sales: Ben Rayment Email: ben.rayment@myhobbystore.com Tel: 0844 848 5240

MARKETING & SUBSCRIPTIONS

Subscriptions Marketing Manager: Heather Morrison

Online Marketing Manager: Kate Barrett

MANAGEMENT

Special Projects Publisher: Nikki Parker Head of Design & Production: Nikki Coffey Deputy Head of Design & Production:

Julie Hewett
Group Sales Manager: Gary Davidson-Guild
Head of Events & Retail: Daniel Webb
Subscriptions Director: Rebecca Blighton
Chief Executive: Owen Davies
Chairman: Peter Harkness

© MyHobbyStore Ltd. 2009 All rights reserved ISSN 0026-7325

The Publisher's written consent must be obtained before any part of this publication may be reproduced in any form whatscever, including photocopiers, and information retrieval systems. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from negligence of our staff. Reliance placed upon the contents of this magazine is at reader's own risk.

Paper supplied from wood grown in forests managed in a sustainable way.

ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS

Vol. 203 No. 4361 25 September - 8 October 2009

383 SMOKE RINGS

Malcolm Stride 28/01/1944 - 27/08/2009

384 POST BAG

Letters to the editor.

386 STOCKPORT VACUUM ENGINE

Anthony Mount describes the wooden base and other small parts.

391 THE ENGINE THAT MADE RUDOLF DIESEL WORLD-FAMOUS

Johan van Zanten describes his model of an early diesel engine.

394 FOLLOWING ALONG BEHIND

Brian Baker builds and modifies a LNER/BR brake van kit.

398 CHARLIE - A SOUTHERN RAILWAY Q1 LOCOMOTIVE IN 3½in. GAUGE

Nick Feast makes the connecting rods.

402 SHAND MASON STEAM FIRE ENGINE IN 1:6 SCALE

Gunter Kallies makes the wheels.

404 THE MODEL ENGINEER EXHIBITION

A request from the editor.

405 BEGINNERS START HERE

In the workshop with the editor.

406 IMLEC 2009

Bernard North concludes his report on this successful event.

410 STEAM CALLIOPES, WHISTLES AND WIND CHIMES

Terence Holland looks at some LBSC projects from the 1950s.

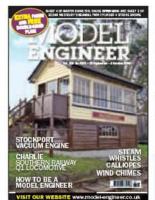
414 KEITH'S COLUMN

Keith Wilson looks at filler caps and air-vents on tanks plus a look at scale headlamps.

417 HOW TO BE A MODEL ENGINEER IN SEVEN EASY STEPS

Andy Stait gives a step by step guide.

420 MODEL ENGINEER EXHIBITION ENTRY FORMS


Send your entries in now.

422 STEAM RAILWAYS

A mini gala and the Steam Railway magazine photo competition.

424 DIARY

Forthcoming events.

ON THE COVER...

This signal box was originally at Raydon Wood Station on the Great Bentiey to Hadleigh branch line. It was originally built in 1894. It has been moved and re-erected at Bressingham Steam & Gardens near Diss in Norfolk.

(Photo by Rosemary Martin)

PLEASE SEE PAGE 382 FOR OUR LATEST SUBSCRIPTION OFFER

Chronos Engineering Supplies

All prices include VAT and Carriage

Online Catalogue - www.chronos.ltd.uk

12MM 16MM

XC53

XC54

GLANZE DCMT INDEXABLE LATHE TOOLS INC THREADING TOOL, BORING TOOL & 2 TURNING TOOLS CODE SHANK PRICE XC55 8MM \$55.50 XC56 10MM \$54.00 XC57 12MM \$62.00

£74.00 £ 4.00

XC58

XC59

16MM

INSERT

NEW – GLANZE CLAMP TYPE INDEXABLE PARTING TOOLS! Complete with special grade aluminia coated insert – for a superior finish!

NEW - GLANZE INDEXABLE PARTING TOOLS! Complete with special grade aluminia coated insert - for a superior finish! CODE **GX67** 10 X 10MM £26,95 GX68 12 X 12MM £28.95 GX69 16 X 16MM £32.95 **GX70** 20 X 20MM € 4.25 GX71 SPARE INSERT FOR 10, 12 & 16MM € 4.25 GX72 SPARE INSERT FOR 20MM

INDIVIDUAL GLANZE THREADING TOOLS 60' METRIC

COMPLETE WITH ONE THREE SIDED CABIDE INSERT & TORX KEY

CODE	TYPE		PRICE
722100	INTERNAL	10MM SQ	£24.00
722210	INTERNAL	12MM SQ	£24.00
SIR0016	INTERNAL	16MM SQ	£28.95
775100	EXTERNAL	10MM SQ	£24.00
775118	EXTERNAL	12MM SQ	£24.00
SER16K16	EXTERNAL	16MM SQ	£28.95
INSERTS			
1116160	INT FOR 10 & 12MM TOOLS		€ 7.25
1116A60S	SET OF 10 ABOVE		£69.50

NEW BRAZED CARBIDE THREADING & BORING LATHE TOOLSETS

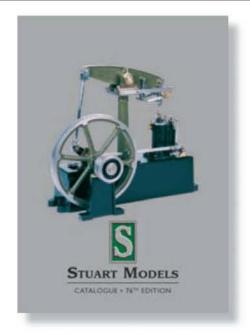
INCLUDES 55 & 60 DEGREE INTERNAL & EXTERNAL THREADING, A BORING

NEW PROFESSIONAL PARTING SYSTEM

FOR UP TO 41/2 CENTRE LATHES
- THE SHANK IS ON THE SIDE AND
IS 1/2 THICK SUPPLIED WITH A
HSS BLADE 4MM THICK, 24MM
WIDE & 150MM LONG

WIDE & 15	OMM LONG	
CODE	ITEM	-
GX88	HOLDER & BLADE	3
GX89	SPAREBLADE	

ALL PRICES INCLUDE VAT & CARRIAGE (UK MAINLAND)
(Prices are correct at time of going to press and are only available while stocks last)



22.00

STUART MODELS

FOUNDED 1906

NEW STUART MODELS CATALOGUE NOW AVAILABLE

The new 76th Edition of the Stuart Models catalogue is our largest ever at 224 pages. This full colour catalogue has been fully revised, showing our entire range of stationary and marine steam engines.

The catalogue also details our selection of boilers, steam and gas fittings, materials, fixings and books.

Also showcased are our ranges of ready to run models and steam plants, including the new ranges of marine steam engines and 16mm garden gauge locomotives.

CATALOGUE - £6.00

Please send £6.00 for our 224 page full colour catalogue covering our entire range of models and accessories.

Puffin Vertical Steam Plant

STUART MODELS

- DEPT. ME, BRAYE ROAD, VALE, GUERNSEY, UK, GY3 5XA •
- TEL 01481 242041 Fax 01481 247912 www.stuartmodels.com •

WARCO

SPECIAL OFFERS THAT REALLY MEASURE UP!

Our next exhibition Midlands Model Engineering Exhibition Leamington Spa 16th to 20th October '09 See you there!

MINI LATHE

available in metric or imperial

- Distance between centres: 300mm
- Tailstock taper: 2MT
- 100mm long tailstock base for added rigidity.
- Over centre clamp quick action locking
- Digital rev counter
- · Speed memory buttons
- Hardened & ground bedways
 Each lathe supplied with individual accuracy test report

WMT 500

The Ultimate Combination Machine

- Centre height: 150mm
- · Distance between centres: 500mm · Power cross feed
- Imperial/metric threadcutting
- Thread dial indicator
- · Fine feed handle and calibrated dial
- for accurate milling
- Machine can be used immediately using standard accessories supplied

WM16 VARIABLE SPEED MILLING MACHINE

- Table size: 700 x 180mm
- Maximum drilling capacity: 16mm
 Cross travel 175 mm
- Range of spindle speeds: 50 2,250 rpm
- · Locks to head, column and slideways
- · Digital rev. counter
- Captive, self ejecting draw bar
 Digital depth gauge

available in metric or imperial

£780.00

WMT240 VARIABLE SPEED LATHE

MINI MILL

 Powerful 550w motor
 3MT with draw bar · Fine spindle feed

 Unique spring loaded plunger to locate column in vertical position Table: 460 x 112 mm Distance spindle to table 290mm

- Metric or imperial leadscrews and dials
 Centre height: 105mm
- · Distance between centres: 400mm
- Tailstock guill: 2MT
- Range of spindle speeds: 50 2,200 rpm
 Supplied with 3 / 4 jaw chucks, fixed and

£410 00

- travelling steadies, faceplate
- Precision spindle on taper roller bearings
 Metric/Imperial threadcutting
- · Individual accuracy test report

Including free of charge drill chuck, arbor, live centre and 5 piece lathe tool set.

New DIGITAL SCALE

Digital scale. Inch, metric and fractions. Magnetic counter. 575mm alloy scale, easily cut to suit specific requirements.

New POLISHER GRINDER

DI-3 BACK PLATE

. 125mm. Will suit Myford, Harrison and Colchester lathes. £42.00 Also available 160mm £45.00

ER-25 COLLET CHUCK

. To suit ML7. Internal thread for minimum overhang. £45.00

ML7 BACK PLATE

• 100mm €12.50+63.50 P&P 125mm €13.00+63.50 P&P

All prices include VAT and U.K. manland delivery • Please ring for our latest info packed brochure!

WARCO, FISHER LANE, CHIDDINGFOLD, SURREY GUS 4TD Tel: 01428 682929 warco@warco.co.uk

Phone 01924 869616 or email sales@cutwel.net CUTWEL

10% OFF Your First Order

& Next Day UK Delivery On All Items

For Your 100% FREE Catalogue

(A) KORLOY Inc.

Plunging, Ramping & Drilling

'YG-1' Hand Tap Sets Set of 3 High Quality Hand Taps

M2 £12.37 M6 £7.66 100 M2.5 £10.23 M8 £9.98 M3 £7.24 M10 £12.75 M4 £7.24 M12 £15.96 --MS £7.43 M16 £27.17

Coated Screw Cutting Inserts All Sizes £9.84 each 60°& 55° External Coated Inserts (16ER) 60°& 55° Internal Coated Inserts (16NR)

Sawman Part Off System £39.00! coated inserts Part off blocks from Part Off Block

'Part Off Like a Professional'

£49.35 each

Cutwel's YG-1 & Korlov brands of cutting tools are used by over 3,000 Precision Engineers, Toolmakers & Production Engineers across the

Our Model Engineering Catalogue has taken the most suitable tools from our high quality range of over 9.000 lines & condensed it into an easy to use catalogue dedicated to model engineering.

Our buying power means we can pass on the very best prices for tools that stand up to the rigours of production & model machining. GIVE US A TRY, YOU WON'T BE DISAPPOINTEDI

All Turning Tools & Boring Bars £27.50(Inc Vat) SDJCR/L TURNING TOOLS

93" APPROACH
DCMT07 Inserts £2.84 each

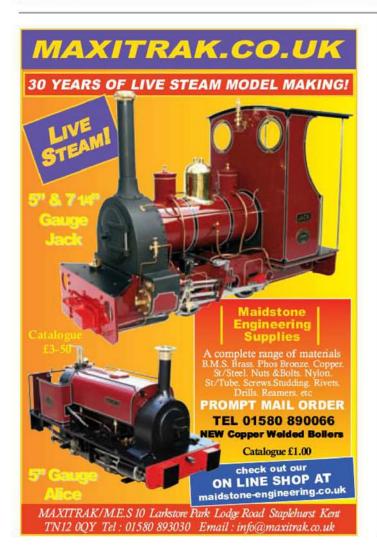
SCLCR/L TURNING TOOLS 95° APPROACH CCMT06 Inserts £2.50 each CCMT09 Inserts £2.86 each

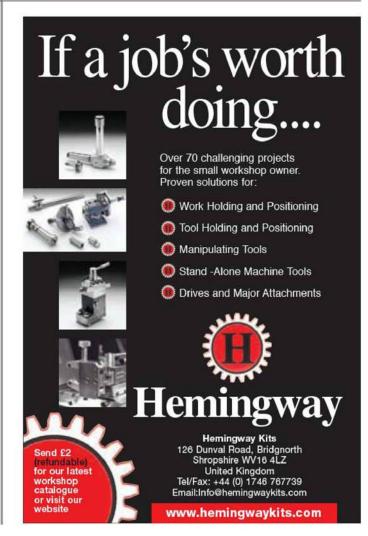
Are Available In Qty's Of 1, Coate

SDNCN TURNING TOOLS

SCLCR/L BORING BARS

95° APPROACH CCMT06 Inserts £2.50 each


CCMT09 Inserts £2.86 each



Cutwel Ltd, Central Offices, Central Steet, Dewsbury, West Yorkshire, WF13 2LZ Tel 01924 869616 Fax 01924 869611 e:mail sales@cutwel.net www.cutwelmodeltools.co.uk All Prices Are Inclusive Of VAT at 15%. Delivery Charge Is £2.00 per order.

SVJCR/L TURNING TOOLS

93* APPROACH VCGT11 Inserts £6.10 each

LNER/BR 20ton Guards Brake Van

Quick-build, machined kits available in 5" and 71/4"

Laser cut and welded chassis CNC wheels, axles and axleboxes Roller bearings CNC Steel Buffers

Precision cut plywood body Rolled steel removable roof Lamp irons and brackets Roof detailing

The Guards Vans are the first of a range of scale rolling stock.

All kits can be built in days rather than weeks and most are currently available from stock.

5" Gauge Kit : £495 (inc VAT) 71/4" Gauge Kit ; £585 (inc VAT)

Free Catalogue available on request

Phoenix Locomotives Ltd 1 Colchester Road, Southport, PR8 6XJ 01704 546 957 or 07973 207 014 www.phoenixlocos.com

STEAM & DIESEL CAST

Featured rolling stock from Dan Jeavons range: 10 TON WAGON

email: steamanddieselcastings@yahoo.co.uk For details send 9x61/2, lst Class £1.00 S.A.E. to:

Drawings, castings, fibreglass mouldings, motors and electronic control systems available for the following 5" Gauge locos:

- Class 10*
- Class 20 (Chopper)
- Class 35 (Hymek)
- Class 37 Class 40 (Whistler)
- Class 42/43 (Warship)
- Class 45 (Peak)
- Class 47 Class 51 (Prairie Tank)
- Class 52 (Western)
- Class 55 (Deltic) Completely built locas, pre-r
- De-Winton (Puffin) Planet Diesel • Metropolitan *
- Dock Shunter
- Mk I Coach Mk II Coach
- 10 Ton Wagon
- Driving TrolleyRiding Wagon
- Available in 5" & 71/4" Gauge

ed kits, castings or drawings sup Steam & Diesel Castings, 59 The Foxholes, Kidderminster, Worcestershire DY10 2QR

Convert scanned drawings to CAD!

NEW FREE TRIAL

Full-working evaluation!

Use it with your own scans! Download it from:

www.softcover.com

364 Milton Road, Cambridge, CB4 1LW England. Tel: +44 (0) 1223 424342

Polly Model Engineering Limited

Whether you are a complete beginner or an experienced engineer seeking the highest possible standards. Polly has the answer.

Choose from our famous easy kit build 5" gauge locos, the classic Stuart Models engines, the fascinating stationary engines from Anthony Mount,

from the Practical Scale range of 5" gauge loco designs from Neville Evans to the prototypical accuracy of the GWR Collett Goods loco in

7 ¼ gauge designed in collaboration with David Aitken. Other fine scale loco designs from Pete Rich

All supported by the most comprehensive service of model engineers supplies.

See us at major rally events or visit us in Long Faton Catalogue available by post (UK) £1.75 (Overseas) \$5 (Download free!)

Mail Order Worldwide all major cards accepted

Polly Model Engineering Limited Bridge Court, Bridge Street, Long Eaton, Nottingham, NG10 4QQ Tel: 0115 9736700 Fax: 0115 9727251 WWW.pollymodelengineering.co.uk

Enter your work - be part of THE show!

Individuals can enter their work in competition or display classes.

Sponsored by

Call 01926 614101 or see our website for an entry form

Admission-Adults £9.00 Seniors £8.00 Children £5.00 Family £14.00 (1 adult 3 children) Family £23.00


(2 adults 3 children)

Save £££'s

BY BOOKING IN ADVANCE BEFORE 25th SEPTEMBER 2009

FOR FURTHER INFORMATION OR TICKETS VISIT www.midlandsmodelengineering.co.uk

Organised by Meridienne Exhibitions Ltd, The Fosse, Fosse Way, Learnington Spa, Warwickshire, CV31 1XN Tel: 01926 614101 Fax: 01926 614293 Info@meridienneexhibitions.co.uk www.meridienneexhibitions.co.uk

- SAVE UP TO 23%
- DELIVERED TO YOUR DOOR
- 26 ISSUES JUST £55.00 EVERY 12 MONTHS

BY PHONE: 08456 777 807 quote ref. SD27 **ONLINE: www.model-engineer.co.uk/subscribe Alternatively, you can complete the form below and return, with payment, to the address provided.

UK ONLY SUBSCRIPTIONS:

■ I would like to subscribe to Model Engineer for 1 year (26 issues) with a one-off payment of £59.95, SAVING 16%.

OVERSEAS SUBSCRIPTIONS:

F-mail

■ I would like to subscribe to *Model Engineer* for 1 year (26 issues) with a one-off payment: ■ Europe (incl Eire) £78.00 ■ ROW Airmail £85.00

For all Canadian, North and South American subscriptions please call 001 732 424 7811 or go to www.ewamags.com

PAYMENT DETAILS	S:		
Postal Order/Che	eque Visa/Mas payable to MyHobby	stercard Maestro Store Ltd and write code S	SD27 on the back
Cardholder's name			
Card no:			(Maestro)
Valid from	Expiry date	Maestro issue no	
Signature		Date	
YOUR DETAILS:			
Mr/Mrs/Miss/Ms	Initial	Surname	
Section to the base of the section of the			
Postcode		Country	
		Mobile	
Postcode		Country	

D.O.B.

DIRECT DEBIT SUBSCRIPTIONS (UK ONLY):

I would like to subscribe to Model Engineer paying £55.00 every 12 months by Direct Debit (UK ONLY).

Please complete form below

SAVING 23%

Instructions to your bank or building society to pay by Direct Debit.
Originator's reference 422562

Pay £55.00 every 12 months by Direct Debit (please tick).

ise tick).	Debit
tcode	

CODE SD27

Account holder....

Name of bank

Address of bank.....

Signature

Sort code Account number

Instructions to your bank or building society: Please pay My Hobby Store Ltd.
Direct Debits from the account detailed in this instruction subject to the safeguards assured by the
Direct Debit Guarantee. I understand that this instruction may remain with My Hobby Store Ltd and
if so, details will be passed electronically to my bank/building society.

Reference Number (Official use only)

Please note that banks and building societies may not accept Direct Debit instructions from some types of account. TERMS & CONDITIONS: Offer ends 9th October 2009. Subscriptions will begin with the first available issue. Please continue to buy your magazine until you receive your acknowledgement letter. Refund requests must be in writing to the Publisher and will not be given on accounts with less than £20 credit. A £5 admin charge will apply and will be deducted from any refund. Refunds will only be given at the Publisher's sole discretion. We will use the contact details supplied to communicate with you regarding your Model Engineer subscription. By supplying your email/ address/ telephone/ mobile number you are happy to receive information and/or products and services via email/ telephone/ post from or in association with MyHobbyStore Ltd or its agents who may mail, email or phone you with information and/or products and services reflecting your preferences. Tick if you don't want offers from us ill third parties ill third parties.

SEND TO: MODEL ENGINEER SUBSCRIPTIONS, TOWER HOUSE, SOVEREIGN PARK, MARKET HARBOROUGH, LEICS LE16 9EF

CLARK

Malcolm Stride 28/01/1944 - 27/08/2009

alcolm Stride was an extremely popular freelance colleague and everybody at Model Engineer was shocked and upset to hear of his death and also of his partner Rosina Tillyer. Malcolm wrote extensively for the magazine for many years until just a few months ago when he told us he was ill and would have to give up his journalism.

Malcolm's special interest was internal combustion engines and he designed several engines which readers could build for themselves - and he was delighted that many did. He also reported widely on model shows and events as well as penning one of the magazine's most popular columns. He had a good sense of humour in his writing and wrote his main column under the pen-name Nemett, which was a loose translation of the ancient Egyptian for 'Stride' - a little pun which Malcolm enjoyed as Rosina, his partner, was an Egyptologist. His engine designs also went under the name Nemett.

Malcolm started his working life as an engineer with Brush Electrical. Later he worked

for ICL, later Fujitsu, as an IT consultant. It was after retiring early from that, he started to write for Model Engineer, and was an irreplaceable contributor and Associate Editor until early this year. He continued to enjoy meeting up with former colleagues after leaving the magazine. His colleagues would like to extend their sympathies to Malcolm and Rosina's family. If you would like to make a donation to Remap in Malcolm's name, please send to MyHobbyStore Ltd. at the usual editorial address and we will be pleased to forward it on.

Two Nemett engines on display at the 2007 Ascot Exhibition. (Photo: Dave Fenner)

FIRST CLASS POST

Write to us

Views and opinions expressed in letters published in Post Bag should not be assumed to be in accordance with those of the Editors, other contributors, or MyHobbyStore Ltd.

Correspondence for Post Bag should be sent to:

David Clark, The Editor, Model Engineer, MyHobbyStore Ltd. Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0EL. F. 01689-899266.

E. david.clark@myhobbystore.com Publication is at the discretion of the Editor.

The content of letters may be edited to suit the magazine style and space available.

Correspondents should note that production schedules normally involve a minimum lead time of six weeks for material submitted for publication. In the interests of security, correspondents' details are not published unless specific instructions to do so are given.

Responses to published letters are forwarded as appropriate.

Vale of Rheidol locomotive

SIRS. - After spending a considerable amount of time trying to find a supplier of drawings for 3½in. Vale of Rheidol locomotive Owain Glyndwr and being unsuccessful, I am hoping that you may be able to inform me of any suppliers that may be able to help me. I already have what I believe to be a partial set but need to purchase any missing ones. Can any reader help? Ian Wilson, by email.

Springbok errors - a reply

SIRS, - I decided to use Martin Evans' drawings as a base from which to work and although I wanted a club track locomotive for frequent use, rather than a scale model used infrequently, I decided to add detail as I went along if I felt that the time and effort required was not disproportionate to my objective. I worked by comparing the Martin Evans' drawings with the general arrangement drawing of the full-size engine. I also took large numbers of photographs of the two surviving B1s and referred to them extensively. The modifications which I incorporated were:

- remove the running board mounted lubricator and fit two lubricators under the front valance in front of the smokebox driven by an eccentric on the front axle.
- add lamp brackets, number plate, maker's plates and shed code to front of locomotive.
- · add cladding to cylinder end
- reduce the size of the angle on the edge of the running boards to ¼in. to be closer to scale size.
- reduce running boards in width by ¼in. each side of locomotive. Similarly reduce width of tender baseplate, tank width and buffer beams.
- change angle of steam pipes to cylinders.
- reduce locomotive cab height and width.
- fit wooden window surrounds and glazed windows.

- raise height of running board to reflect full-size.
 This requires assessment of position of smokebox, top edge of saddle, height of front section of frames and top edge of driving wheel flange.
 I decided to raise the board about 0.340 inch.
- rework the piston valve guide to be like the actual. A trickier job but well worth the effort.
- rework the motion brackets to be like the actual.
- add the missing weighshaft supports to the inner expansion link support brackets.
- add scale size Wakefield lubricators on the running boards.
- add oil boxes to sides of locomotive for axleboxes.
- add sand box fillers for front and driving wheel sanders and sand boxes complete for rear wheels.
- ·add detail to brake hangers.
- rework the safety valves to a modern proven design. There is only one choice for me, that of Gordon Smith of Burton upon Trent whose 'mild pop' valves are legend. Make the outer shape as full-size.
- relocate injectors beneath cab floor so that they are not an unsightly alien feature below the cab sides.
- the tender toolboxes, water tanks, tender dome and coal space internals completely reworked to reflect the full-size variant I decided upon.
- add lots of rivets in the appropriate places!

Now to answer Mr. Harper's specific queries from *M.E.* 4360, 11 September 2009:

- 1. "top drag beam" should have read "top of the drag beam". i.e. the plate at the rear of the frames to which the tender is attached. There needs to be an additional plate on top of the existing drag beam to bring the beam level with the top of the locomotive frames and also to support the rear edge of the cab floor. The cab floor needs to be level with the tender floor which itself is a raised platform only shown in outline on the drawings. The additional plate needs to be at least 0.5in. tall depending upon the precise level at which you set the floor and the actual construction of the floor plate. The floor plate should be easily removable for access to pipework etc. The new piece fits inside the sides of the cab and is thus shorter than the drag beam itself.
- 2. Bogie wheelbase: The original design seems to cope on tracks with a minimum radius of 70ft. or greater. However, a number of club tracks have radii less than this with some being as tight as 50 feet. At 50ft. there is a tendency for the bogie to rub the cylinder end covers. Adding ¼in. to the mid position of the bogie and relocating slightly the wheel arches on the main frames to suit eases the problem.
- 3. Type of regulator: A matter for much debate! I don't like disc regulators. If made to a high standard and lapped in well they may work satisfactorily and facing the disc with PTFE or similar material can lead to success. However, a screw or ball valve in my mind is

Tich

SIRS, - Would it be possible that some time in the future one of your construction series could be for the 3½in. Locomotive Tich.

I feel that this is still the locomotive that a lot of us beginners will make and having read the construction manual for Tich, I personally would benefit from this locomotive being brought into the 21st century.

I am like a lot of people in my 50s and as yet have not got the time or the workshop equipped to make anything, but if that time comes then I am sure that Tich is the one that I will be making. **Paul Chipchase, by email.**

What do other readers think? Would an updated Tich appeal to readers? Ed.

potentially a much more reliable option. A miniature locomotive could follow full size steam engineering practice and have the regulator wide open and the pressure drop and throttling taken across the piston valve only. This is an argument against using a screw regulator in a large powerful locomotive but in practice unless it is intended to pull very heavy loads and win IMLEC the screw regulator will pass plenty of steam and has supporters. Regarding ball valves there are two types to my knowledge. One design has a rod actuated stainless steel ball for the valve seat and was designed by Gordon Smith and was described in detail in Engineering in Miniature in May 2008. The second type of design has been used in several boilers within my own Club, although we are unsure of its origin. It utilises a commercially available 8mm bore miniature gas control valve. This high quality valve has a stainless steel ball and PTFE seats and is small enough to be inserted through the dome flange of a 5in, gauge locomotive. Connection to the operating rod and wet header require careful consideration but the end result gives reliable and precise control.

Geoff Shackleton, by email.

Night classes

SIRS, - Scarborough & District
Model Engineering Group
who meet at Yorkshire Coast
College on Tuesday evening
7 - 9 are short of members for
the autumn session. For further
details: T. 01723 362537 or
g4egb@yahoo.com Please do
not contact the college direct.
Ted Fletcher, Scarborough.

Judging standards at ME - a reader's view

SIRS, - I was quite disturbed by both the contributors' comments in *M.E.* 4355, 3 July 2009. I've been mistaken all these years in believing the best Model wins the competition. As I see it, there is a means to an end, the end being the model and the means being how you arrived

at it. From comments it seems that not only are we favouring the means, not the end but, it would also appear that a person who uses this centuries skills and intelligence to produce a part, by computer aided design, turning it into machine files, and down loading to a 3D machining centre, or laser cutter, would be marked down against someone who 'did more work' and 'crafted' his parts on the kitchen table.

Surely this is a judgment based on which century you are judging the skill levels at.

Further, with regard to a readers view, it's the first time I've heard someone advocating that using a crafted inferior piece of work is preferable to using a commercial accurate piece?

It looks as though the locomotives of 99.5% of colleagues with laser cut frames, commercial couplings and back head fittings, lost wax moulding, etched numbers, i.e. using technologies from this century will not be entering for competition?

If I was told someone had spent 300 hours hand crafting their frames on the kitchen table against someone who had his laser cut, although I could admire the hand crafted skills, I would probably mark him down for having more time than sense and being a bad example to emulate.

We need to ascertain exactly what we think we are judging, and if it's to reflect current modelling attitudes and practices. 'Best handcrafted work 1898' or 'Best model 2010'. Time to catch up?

David White, Warwickshire.

Judging at the ME Exhibition

SIRS, - Judging from some of the correspondence that has appeared in the letter pages of *Model Engineer*, we feel that misunderstandings may exist in the principles behind the marking of competitors' exhibits at the Model Engineer Exhibition. It is basically quite simple. Marks are awarded for the quality and quantity of the competitor's own work. It

Excellent service

SIRS, - From time to time you report exceptional service from one of our respected suppliers. My experience today is well worth telling to your readers, if you have the space.

I phoned G.L.R Distributors Ltd., one of your regular advertisers, in search of a steel sheet, roughly 12in. square by $\frac{3}{16}$ in. thick and not of course listed in their catalogue. As they pointed out, this was going to cost an arm and a leg to cut from a large sheet, but they found their last piece of 6in. wide strip and suggested that with a bit of manipulation this would do the job. They posted it last night and it arrived this morning at 9.00am.

What makes the story of their service so remarkable is that I told them that I had found a forgotten credit note from them in a five year-old catalogue, and without hesitation they accepted my word for it.

Result: no charge and one delighted and most impressed customer. It is so nice to be trusted.

Allan Mountfield, Suffolk.

follows therefore that marks cannot be given for work not done by him; this is normal with any examination.

Thus, for example, a fine locomotive beautifully finished and all the competitor's own work may warrant a Gold Medal. Fitted with a purchased boiler, for which marks cannot be awarded, it would be difficult for the model to gain sufficient marks to warrant a Gold Medal, but it may receive silver. It is a matter of being fair to all competitors.

Quantity of work can be assessed objectively. Quality is more subjective, which is one reason for having more than one judge

Competitors are free to take any short cuts they may wish, such as commercial laser cut items, but they must declare this fact on the entry form and should not expect to receive as high a mark as someone who has used their skill to produce those items from basic materials.

For some years consideration has been given to the introduction of a section for kit built models in the competition listing, but should this be so, then using the criteria outlined above, they would be a great disadvantage when compared with the normal designed and built entries. The ME competition is known and highly respected for the high standards that it demands and it is the intention of all those connected with it to keep it that way. This does not mean

that the judges have little regard for exhibits that are not up to a high competitive standard, far from it. Everything must be done to inspire, encourage and enthuse these builders to improve their skills. It is from this section of the movement that tomorrow's Gold Medals and D.O.E. winners will emerge.

Ivan Law, Chief Judge and Dennis Monk.

Cutting gears

SIRS, - Somewhere in my collection of *Model Engineers* (Dating back to 1960) I recall an article on the machining of spur gears using fly cutters. The article also had details of how the cutters were profiled using a plate with two hardened buttons inserted into it with a groove between them. The buttons and the pitch between them were calculated to suit the D.P. required.

The material for the cutters (in its unhardened condition) was then mounted in a mandrel and rotated while the plate, mounted in the tool post was fed forward to form the profile of the cutter. This could then be hardened and mounted in a separate mandrel to fly cut gears.

Can anyone remember this article, and when it was published as I would like to have a go at making the gears for a 'Congreve Clock'? Any help in this matter would be very much appreciated.

Jim Robertson, Irvine.

Stockport Vacuum Engine

ANTHONY MOUNT

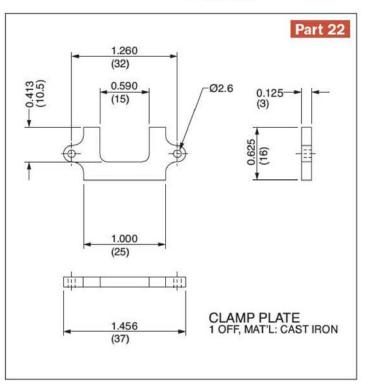
Anthony Mount describes the clamp plate, guide arm, wooden base and other small parts.

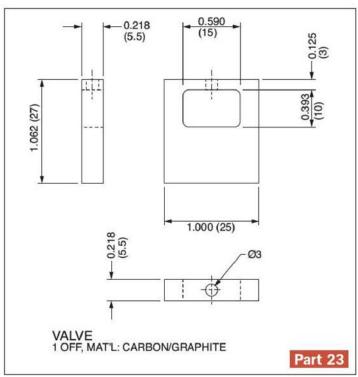
PART 6

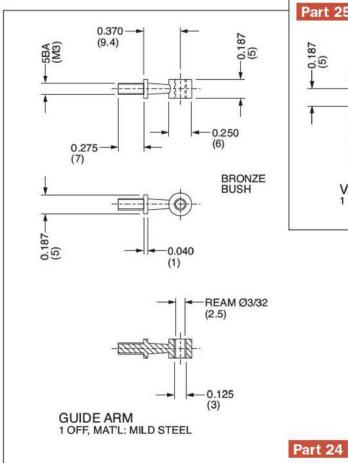
Continued from page 261 (M.E. 4359, 28 August 2009) hough threaded, the two parts of the guide block (Part 21) should still be silver-soldered together as firstly, the heat from the flame could, over time, destroy the Loctited and threaded joint and secondly, the thread could allow air to enter and destroy the vacuum; silver-soldering will stop both.

As the guide block is cast iron, instead of using silver solder Easy-flo No. 2 use either Argobraze 49H or Easy-flo No. 3 as described when silver-soldering the piston.

The block and guides are bolted to the column using the shouldered studs already in position. Use a semi hardening gasket material such as Red Hermetite between block and column. This will enable the removal of the block for refacing should it ever need it in the future.


Clamp plate (Part 22)


This can be machined from another length of cast iron bar 3mm (1/sin.) thick. Clamp in the machine vice on the milling machine to mill to width and length. Drill the two stud holes and then another two holes at the ends of the slot joining them together with a slot drill as for the guide block. The upper section can then be sawn out to form the U-shaped cut out. Do not be tempted to use just a slot as the upper section will stop the flame curling over the top of the valve.


Mill the ends to form the ears around the stud holes; this can also be done in the machine vice with the plate held flat, the side of the end mill forming the top and bottom curves. The

ears can be rounded on the ends by filing or use a small vertical band sander. Finish off the plate by lapping both sides. It does not seal anything but it will allow the valve to slide more easily and looks better.

For parts 21 and 22 you may wonder at the use of cast iron instead of mild steel. Firstly, it is a better bearing material for the valve to slide on and secondly, some builders of hot air engines I have spoken to feel that cast iron does not 'cool' the gas flame to the same extent as

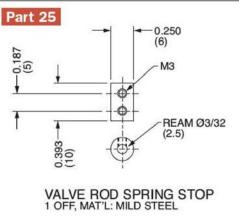
mild steel does. I do not know if there is any truth in this but it seemed worth a try and the engine does work okay. If any of you try mild steel let us know how you get on.

Valve (Part 23)

For the valve we are using a special material, carbon/ graphite. This material slides nicely and is self-lubricating and as it wears, graphite enters the cylinder where it acts as a dry lubricant.

It machines easily but, as you can imagine, it is a very dirty material and emits a fine dust when machined, so it would be as well to wear a face mask during the machining operations. It is supplied as a block so first saw it almost to size then hold it in the machine vice on the milling machine to mill all over, and put in the slot.

The material is prone to chip on the edge so take shallow cuts with the cutter rotating into the edge. Machine the slot from both sides so as not to break the material when the cutter breaks


through. Up end and drill a clearance hole for the push rod. The thickness needs to be made a little oversize so that the clamp plate will be able to force the sliding surfaces together.

to be made flat to mate against the guide block. The old standard as used for slide valves was to rub the surface on a very fine abrasive paper

The sliding surface needs

then silver solder the two parts

The finished valve.

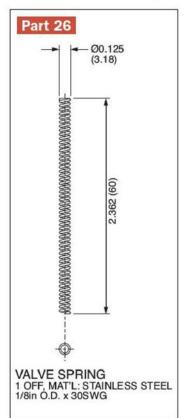
laid on a flat surface and this should suffice. Though it proved incredibly messy a wet surface gave the best finish without clogging the abrasive paper. The completed valve can be seen in photo 44.

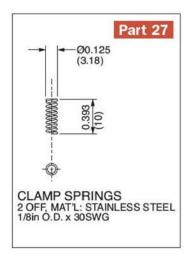
Guide arm (Part 24)

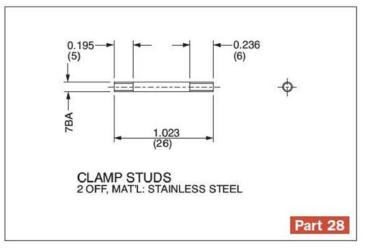
As a little light relief the guide arm can be made next and is a small turning job. Drill and ream for the bush on the end of a length of stock material and then using the machine vice and edge finder to locate the hole centrally, cross drill and tap 7BA halfway through in the mill and then part off in the lathe.

Turn down and thread the stem 5BA, form the shoulder using a small parting tool and turn the rest of the stem to a slight taper. Recess for the end thread and part off, reverse in the chuck and thread 7BA to screw into the bush. Screw in

together. A small bronze bush is added to provide a good bearing and sliding surface for the push rod. Pass a reamer through after pressing in the bush to give a sliding fit to the push rod.


It is tempting to use just a touch of Loctite to hold the two parts together but the thread is short and it would be easy to strip the thread when screwing the guide arm into the column. I would recommend that you screw the two parts together rather than just a pin in a hole as you will be sure by using a thread that the two parts will not fly apart with the expansion of the flux.


Valve rod spring stop (Part 25)


This is a simple drill, turn, part off, drill and tap job.

Springs (Parts 26 and 27)

A long quite light spring is required for the push rod and two shorter springs for the clamp plate. Hopefully they will be supplied with the kit and will come as one length in stainless steel. Cut to length using a fine carbide or diamond file. Do not attempt to >>>

(50)WOODEN BASE 1 OFF, MAT'L: HARDWOOD R140 VACUUM ENGINE A. N. OTHER 2008 4 (100) (52)R3 (75)Part 29

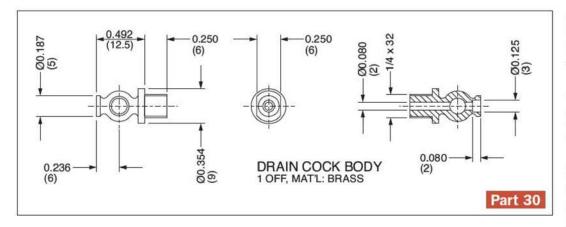
grind the ends; the springs are very flexible and could easily be grabbed by the grinder.

Clamp studs (Part 28)

For the clamp studs, stainless steel rod can be used threaded each end 7BA. For appearance sake lightly dome the ends.

Wooden base (Part 29)

Now for a complete change we will make the wooden base. Nearly all model engines require a baseplate of some sort to make them stable. It is a big visible part of the engine and I think should be made to complement the model rather than just be an afterthought.


For my Benson engine, which had an engine bed plate of three intersecting disks connected with intersecting curves, I made a round wooden base which I felt was simple but followed the design principles of the engine. However, one visitor who saw my engine at an exhibition thought using a round wooden base was being pretentious.

I do not agree with him and was pleased to see at a recent exhibition that a model of the Benson engine was presented mounted on a burr walnut wooden base profiled with intersecting curves to mirror the base plate of the engine, I thought it looked super.

For the Stockport engine we have a round base casting for the engine and a round gas tank, so setting these two at a suitable distance apart it seemed logical to make the wooden base under these two pieces round as well, so it followed that to join them together two more curves would complete a very pleasant shape.

Obtain a suitable piece of hardwood from your local wood yard, an offcut will do and it can be stained and polished to the desired colour. Traditionally mahogany would have been used but in these days of care for the environment a homegrown hardwood would be just as suitable.

First, plane to the required thickness and then mark out the shape. I know that many model engineers have problems working with wood but it need

not be so. Do not forget many early engineers graduated from millwrighting which involved much use of wood.

You have all used a smoothing plane so planing the wood to thickness should not present any problems. Cutting out the shape requires a coping saw. This is like a piercing/fret saw only a bit heavier. To plane the edge requires a spokeshave, an easy tool to use.

The moulding is more difficult if done by hand but I expect there are not many who do not have an electric router or have access to one. A suitable moulding cutter can soon be run around the edge to finish off the base. If you are using a router then you can machine the base to profile by making up a suitable plywood template.

To be safety conscious the wooden base should be screwed down to the bench before you start work on it with the router. You could utilise a couple of the holes to be used to bolt the engine to the base. to save spoiling the wooden base with further holes.

Clean up the face and edge with glass paper and then stain and polish. Bear in mind that a water-based stain will raise the grain; it was traditional in fine class joinery to damp down the wood beforehand. The work was cleaned up with glass paper then wiped over with a damp cloth, this also raised the grain and when dry it was rubbed down again and a further wipe over with a damp cloth again raised the grain. It was once more rubbed down and this was usually enough to stop the grain from rising when the water stain was applied. An oil stain does

not raise the grain but is more likely to stay on the surface than penetrate into the wood.

It is a nice touch to make up a brass nameplate with a few details about the engine and your name and date. Who knows where your masterpiece will end up in say a hundred years? It looks even better if the nameplate is let in flush and this is easily done on the milling machine; an end mill cuts wood very nicely.

Place the nameplate in position and mark around it with a sharp knife to break the grain and avoid it chipping. Clamp down on the milling machine table and mill out the seating a little deeper than the thickness of the plate to allow for the thickness of glue. The rounded corners can be cleaned out with a sharp chisel. Araldite is a suitable adhesive.

Drain cock body (Part 30) After you have finished running

the engine you will want to drain

off the water from the water jacket and a little drain cock will do the job nicely and look good to boot. An alternative is to use a screw down valve and this and the lever operated valve are available ready made, but if you are using a commercial valve. check the thread before you tap the column as the threads used by different manufactures are not standardised.

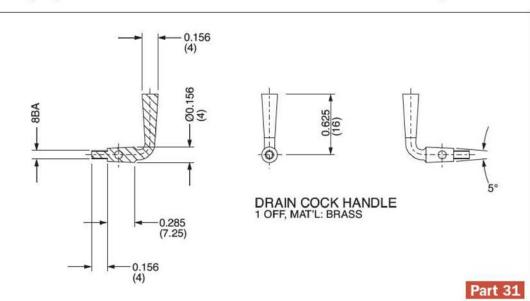
Place a length of 9mm (%in.) dia, brass rod in the lathe and face off the end. Change to the milling machine and cross drill the lever hole, then using a taper reamer form the tapered socket.

Such a taper reamer is not available commercially so you will need to make one detailed as Part 33. Turn the 5deg. included angle on a suitable piece of silver steel; no need to go to a point, just a little under the size of pilot hole used.

Now file away to half the thickness along the length of the taper. A filing jig is most useful in cases like this as is

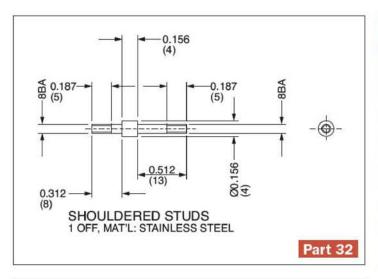
the ability to be able to lock the lathe headstock, try engaging back gear without disengaging the bull wheel.

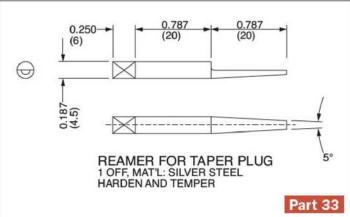
A square can be filed on the end for the use of a tap wrench should the need arise. Harden and temper the tool and we are ready to start cutting tapers.


Replace in the lathe and turn a ball centred on the cross hole; a form tool will be the most convenient method of turning the ball. Turn down the end and thread 1/4 in. x 32tpi. drill through and part off.

Drain cock handle (Part 31)

The drain cock handle is also made from brass. First turn down and thread the end 8BA. then set over the top slide and turn the taper. Turn down the neck to a smaller diameter to make bending of the handle easier, then turn the taper of the handle.


Using a short length of waste material drill through and use the taper reamer to form a socket for the handle, grip the socket in the bench vice and heat up the neck of the handle with a gas torch. Drop the handle into the socket and apply gentle pressure sideways to bend the handle over.


Due to the small area heated the heat will rapidly dissipate and the handle will stop bending. Reheat and continue the process until the handle has been bent over to 90 degrees. Do not rush the process or the handle will snap off.

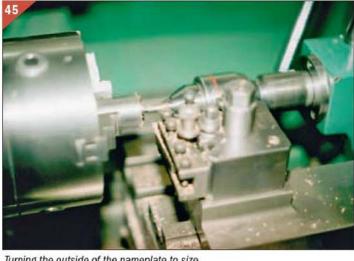
VACUUM ENGINE

Saw off the handle from the parent bar and insert into the body where the cross hole can be drilled through the handle after locking it in place with a nut on the end thread. It is usual to have the valve open with the handle inline with the body of the valve. It will improve the appearance of the model if the drain cock is polished.

A short length of copper tube can be soldered into the cock and bent at 90deg, to bring the outlet position into a downwards direction.

Shouldered studs (Part 32)

Four shouldered studs in stainless steel are needed to fix the guide block to the column. They are simple turned items. Turn and thread the long part of the stud first, reduce the diameter behind the flange. then part off and reverse in the chuck to thread the other end.


Engine nameplate (Part 34)

A small elliptical nameplate is fixed to the engine and replicates that used on the

original engine except that the word 'VACUUM' has been used instead of 'GAS'. It might be possible to supply this in the kit as an acid etched brass plate: failing this there are a number of advertisers in this magazine who will oblige. It is fixed to the column with two small round head screws.

Base nameplate (Part 35)

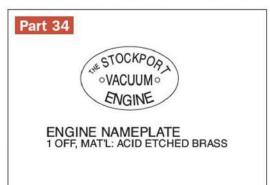
I have already mentioned fixing a nameplate to the engine when describing the wooden base. I do recommend it as I have in the past repaired a number of old models or been

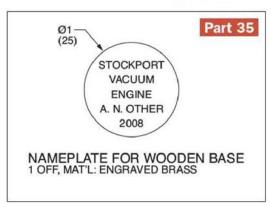
Turning the outside of the nameplate to size.

asked to date them and without a nameplate or a distinguishing feature it is almost impossible.

Use engraving brass as it is far better than the half hard brass usually supplied to model engineers as it cuts so easily and crisply. I usually use material of 16swg thickness. If you do not have your own engraver, look in Yellow Pages for your nearest trophy supplier or jeweller. Prepare the plate, polishing it to remove all marks and type out the words you want to use to the same size as will be used on the plate, so that the engraver knows exactly what you want to achieve.

I have shown a round plate as there is only a small amount of spare space on the wooden base. It is also very easy to drill a shallow hole in the wooden base with a Forstner bit or even an end mill, with the wooden base clamped down of course.


The engraver would much prefer a rectangular plate as it will be much easier for him to clamp it down against his stops, and to have the clamps clear the cutter.


Once you have got the plate home it can be made round by drawing in pencil around the words using a template and then cutting out with a saw and finally rounding it by file or band sander. Protect the polished surface with a cardboard cover or masking tape while working on the plate.

After sawing out it could be machined on the edge if you face off the end of a stub of 25mm (1in.) diameter mild steel and fix the plate to it with double-sided sticky tape. You cannot rely just on the tape to hold the plate in place but very lightly, with the end of a centre drill, just make a small centre with the point of the centre drill on the back of the plate and then use a running centre in the tailstock to push the plate against the double-sided tape.

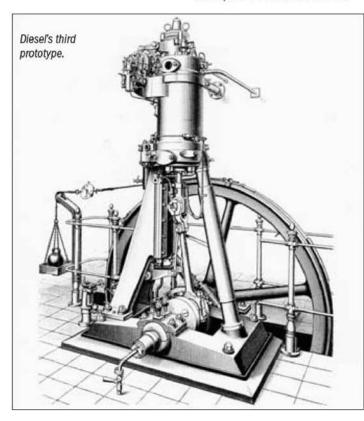
The outside edge of the plate can now be machined to finished diameter, this operation being shown in photo 45. Take care in setting up that the wording is kept in the centre of the plate.

To be continued.

The engine that made Rudolf Diesel world-famous

JOHAN VAI ZANTEN

Johan van Zanten of Utrecht in the Netherlands concludes the description of his early diesel engine model.


PART 2

Continued from Page 283 (M.E. 4359, 28 August 2009)

ne experiments with injector and pumps took me about one year. Now only some small problems were left to be solved. The stroke of the printer pump was fixed to about 0.1mm by a set screw so it was impossible to regulate its capacity. This resulted in an over-speeding engine. I found that it was possible to slow down the engine by retarding the injection point. Only when starting from cold, do I inject at top dead centre. This gives a hotter engine but until now this did not appear to be a problem (cooling water temperature between 70 and 90deg. C). The second problem to be solved was the rather wet and smelly exhaust. Instead of normal diesel fuel, I was advised to use aromatic free lamp oil (from the DIY store) with an addition of 2%

The finished engine.

The output shaft.

The large drip lubricator.

Technical details of the model

Type of engine: 1 cylinder 4-stroke stationary diesel

engine with supercharging

 Scale:
 1:10

 Bore:
 30mm

 Stroke:
 40mm

 Swept volume:
 28cc

 Comp. ratio:
 about 22:1

Cooling: Tank cooling with plunger type cooling

pump.

Fuel: Aromatic free lamp oil with 2%

Polypropylene Oxide.

Injection pump: Modified electric pump from printing

machine with fixed capacity. I have been told over 150 bar.

Injector: Home-made from propane torch.

Speed control: By altering injection timing

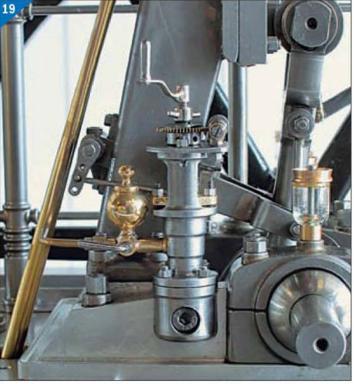
Nominal speed: 25rpm (when warm.)

Max. speed: 600rpm
Power: About 0.25hp

Building time: Three years (in hobby hours)

Polypropylene Oxide. This gives a much better combustion, with a dry, smoke free, exhaust and does not smell so terrible.

Engine behaviour


Pump pressure:

The engine has run now for several days at model engineer shows and is problem free to date (photo 15). It uses 0.4 litres of fuel per day and starts the first time when warm. When cold I have to crank about 10 times before it picks up. The battery lasts for about eight hours on one charge. The normal speed is 350rpm when cold and 250rpm warm. When the engine freed up it

was becoming unstable. When I set it for a certain speed, say 250rpm, it very slowly dies until it stops. When I set it a bit faster, it very slowly over runs. I haven't found the reason yet (any suggestions?) but it can be cured by running the engine without supercharging. I made a small hole in the bottom of the receiver to let the charging air escape. When I start the diesel I close the hole with my finger to allow the supercharger to build up pressure. Diesel also removed the receiver and the valves of the supercharger later on in his experiments. My engine is not designed to do

The drip oilers.

The Molerupp oil press.

A close-up view of the finished engine.

work and that means it has very conservative valve timing with no overlap. I like a soft running engine, which it is, and a brake is added because it is a model of a test engine. The full-speed (600rpm) output is about 0.25hp (photo 16). Lubrication of the bearings and crosshead is by drip oilers (photos 17 and 18). The cylinder is lubricated by a Molerupp oil press (photo 19). This is a cylinder filled with oil which is very slowly pressed to the working cylinder. After about 20 minutes the oil cylinder is empty and needs to be filled with fresh oil from the round reservoir.

Future experiments

I am satisfied with the engine as it is now (photos 20 and

21). The last experiment which I have in mind is starting by air pressure. The compressor is ready and all I need is an auxiliary air bottle under the floor because the bottle on the stairs is much too small (photo 22).

ME

Bibliography

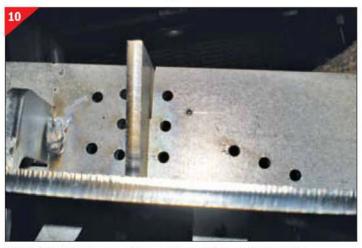
Diesel's Engine by Cummins ISBN: 0-917308-03-4, 1993. Geschichte des Deutschen verbrennungsmotorenbaues by Sass, 1920. Internal Fire by Cummins ISBN: 0-917308-05-0, 2000. Beautiful Engines by Grayson ISBN: 1-928862-03-9. Diesel's Powerful Idea by Bahr (free MAN publication), 2008. Verbrennungskraftmaschinen by Gultner 1920.

An overall view of the finished engine.

The air bottle on the stairs.

Following along behind

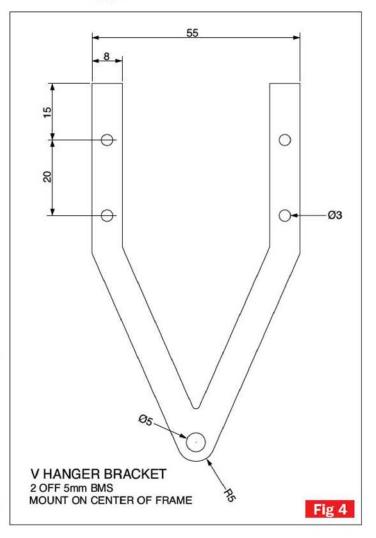
BAKER


BRIAN

Brian Baker assembles, modifies and details a 7¼in. gauge LNER/BR brake van from a Phoenix Locomotives kit.

PART 2

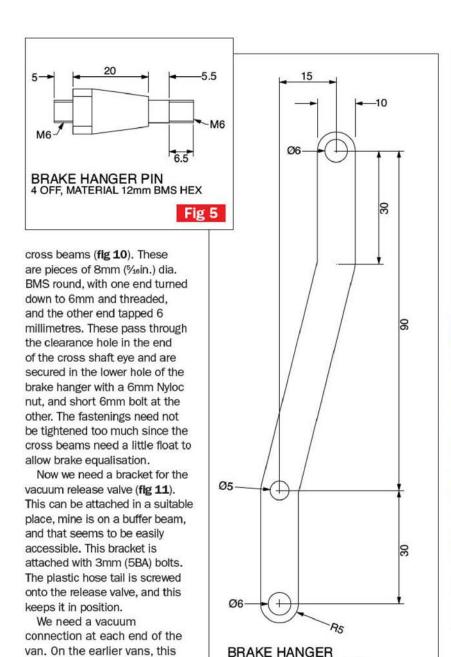
Continued from page 269 (M.E. 4359, 28 August 2009)

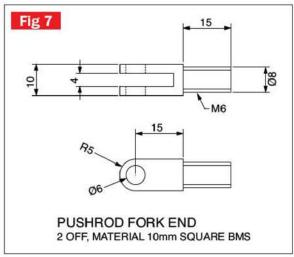

he Vee hanger brackets are shown in flg 4. The brake hanger brackets (fig 5) are simply turned from 12mm (1/2in.) hexagonal mild steel, and you will need four of them. They are screwed into 6mm tapped holes in the frames, located as shown in photo 10. The brake hangers are made from 5mm (3/16in.) mild steel as shown in fig 6 and in photo 11, which also shows the brake shoes and the retaining pin. The pin is a 12mm long piece of 5mm (3/16in.) mild steel, gently tapered at one end with a smooth file whilst turning in the lathe. The file, used in this way, must have a handle, to

This centre punch mark locates the 6mm tapped hole in the frames into which is screwed the brake hanger bracket.

The components that make up one brake shoe assembly together with an undrilled shoe.

alleviate a visit to your local casualty department!

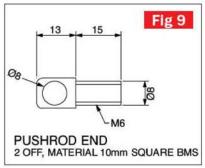

The brakes shoes have a 4.9mm hole drilled right through both sides, and one side only is opened out to 5mm to allow the pin to be push fitted into the shoe.

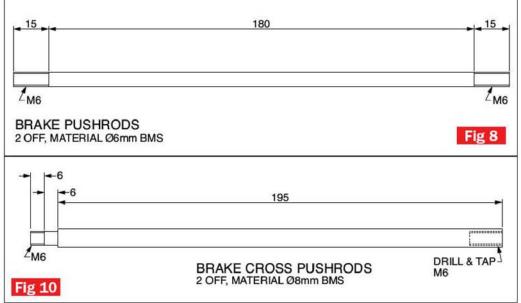

Don't forget to put the pin through the brake hanger as well as the shoe, or be prepared to push the pin out again! I have used this method of securing this type of shoe for many years and it works fine. You could use a nut and bolt instead if you wish. The shoe must be free to pivot about the pin, so that it can take up the best position when rubbing against the wheel. The completed hanger is secured to the hanger pin with a 6mm nut and I prefer Nyloc nuts

to stop the assembly being vibrated undone over the years. **Photograph 12** shows this assembly in place.

Next we need the forks (fig 7) and push rods, (fig 8) as shown in photo 13. The push rods are threaded 6mm as are the forks, and are attached to the cross shaft with a clevis pin, and a split pin. They can be adjusted by screwing the push rods in and out of the forks to give even contact of all four shoes on the wheels, when we complete the chassis assembly.

The other end of the push rod is attached to the cross shaft eye (**fig 9**). This too is threaded 6mm, and can be adjusted in the same way (**photo 14**). Both ends of the push rod should be secured with a locknut. Finally, we need two brake hanger





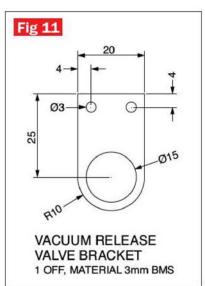

The complete hanger assembly in place, secured with a 6mm Nyloc nut.

Fig 6

4 OFF, MATERIAL 5mm BMS

was a swan neck type, whilst later vehicles had the carriage

type connection. I made two

The push rod forks, attached with clevis pins to the central operating shaft.

The two swan neck brake connections. The stub on the left closes the open end of the brake pipe when not in use.

The push rod eye, through which is passed the brake cross beams.

The vacuum system piped up with reinforced plastic tube.

swan necks from copper pipe, but these are not quite correct because there should be an elbow fitting at the bottom end, at the bracket, as well as the top (photo 15). This would allow the upright pipe to be supported by the bracket, and not left waving in the wind as I have made it. I will probably replace them soon. The vacuum reservoir is attached to a bracket screwed onto the main chassis, and its drainpipe clip attached to it. I piped up my brake system after final assembly and painting of the chassis and I used cable ties to secure the plastic pipework (photo 16).

Rivet counting!

If you have decided not to fit vacuum brakes then you can start assembling the kit directly, and the first task is to fit all the dummy rivets into their pre-drilled holes. Because the process of laser cutting leaves a slightly tapered cut, I found one or two of the holes needed clearing with a 3.3mm drill to take the rivets supplied. Then I shortened them with

side cutters so that they just protruded through the frames. and fixed them in place with Loctite 638 retaining compound. I know that many will raise their hands in horror at such a suggestion, but I have used this technique before with complete success. However, if you want to, you could countersink the holes and fit them by hammering the ends into the countersink. This would be quite a task, and "life's too short". Photograph 17 shows some rivets in place, as well as the coupling reinforcement plate. These plates, and the buffer stocks, can be bolted in place.

Photograph 18 was taken after the chassis was primed and also shows the masking tape used to protect the few places, such as the inside machined bore of the buffer stock, where paint is not wanted.

I decided to use Epicote metal primer, and gloss black aerosol cans from my friendly DIY store to paint the chassis. The many nooks and crannies of the chassis did require a bit of touching in, since missed bits kept appearing, but this job was soon completed, and I went on to complete the running gear, which was assembled with the components supplied.

Wheels

These were nicely CNC turned, with tapered wheel treads and it did seem a pity to paint all that shiny steel but that's exactly what I did after Loctiting the axles into the wheels. Again some people are nervous of this method of fixing, but again I have used it with success for many years. Firstly, use the correct Loctite cleaner, not some odd solvent from the workshop, and definitely NOT petrol. Because of the method of manufacture, fractional distillation, most solvents have tiny traces of heavier oil present, and this will remain on our surfaces to reduce the strength of the Loctite bond after the solvent has evaporated, I used Loctite 638 retaining compound, but several types are available.

Another problem found with Loctited wheels is that they wobble after gluing. This is because a clearance has to be left for the adhesive, and thus the wheel can flop whilst the joint is curing. Phoenix get round this problem, by leaving a register at each end of the wheel seat, on which the wheel sits, keeping the wheel square, but machining away the centre of the axle seat to allow clearance for the adhesive. When you fit the wheels, don't touch the cleaned surfaces. Apply sufficient adhesive to completely coat the joint, spin the wheel to spread the adhesive evenly, then push the wheel right up to the register. Leave undisturbed for 24-hours. preferably with the axle vertical, after which they can be painted. However, unless you specify otherwise, Phoenix Locomotives

The buffer beam with some of the dummy rivets in place.

The chassis after the second primer coat had been applied.

The door with hinges fitted, and the glazing bead visible as a brown edge to the windows.

will carry out this wheel/axle gluing task for you.

I used Phoenix Precision Paints two-pack etch primer and gloss black as primer and topcoat for the wheels and other loose items. Isn't it strange how most of my suppliers have 'risen from the ashes'.

Axleboxes

The ball races can be secured into the axleboxes in the same way, but you have to make a decision about the axlebox clearance. As supplied they are a close fit in the frames. and Keith makes them this way because, he tells me, some customers suggest that the machining quality is poor if he allows the axlebox more clearance to float. Me, I like the axleboxes to slide freely in the horns to allow the wheels to follow the undulations of our tracks so I filed some more clearance in the axlebox slot. as much as 1/2 millimetre.

After painting the axleboxes, they are Loctited to the axles, but only after checking their correct position, and that they slide freely in the frames. The springs supplied fit onto pegs in the top of the horns, and which serve to locate the springs correctly, after which the previously painted horn stays hold the axleboxes in position. The dummy springs screw into holes in the frames. Some of these later brake vans were fitted with Timkin roller bearing axleboxes, so if you wish to fit dummy covers, this is the time to do so. The draw hooks are retained with a bolt. Some of

For photographic purposes I used blue masking tape.

these vans had triangular shaped instanter coupling chains, and a few had screw couplings. With the buffers and their springs screwed into position, our chassis is complete.

Doors and windows

I had decided to hinge my doors, and fit glazing to the windows. Small brass hinges from B&Q were fitted to the door (photo 19). I struggled to find very thin wood to act as a glazing bar, but eventually my local model shop came up with some 3mm by 5mm hardwood strip used in the production of model boats. This was glued onto the window edges with waterproof PVA woodworking glue. Some 1mm Perspex sheet from the same source was carefully cut to fit each window and I could then start assembling the body.

This is laser cut from 9mm plywood, a very strong material. This fact, coupled with the rigid construction produced by the use of tabs, convinced me that this vehicle would be fine as a ride-on van. However, the choice of adhesive might affect the overall strength and the van's durability. It could be glued together with waterproof PVA woodworking glue, and I have heard of some bodies being assembled with UHU. Because I wanted to be sure of the joint, I decided to use an epoxy adhesive of the type normally used on yachts and boats. This would also give me the

opportunity to reinforce the joint internally with some fibreglass woven cloth. I feel this is belt and braces, but I am a bit overweight, so the Soup Dragon says anyway!

So epoxy it was, and I used SP 106, made by Curit UK on the Isle of Wight, from my friendly yacht chandlers, but I have included the address of a supplier of the West System, which would work just as well.

The big problem with using epoxy is that it can be very messy, and overspill would look out of place on the wooden body. as well as taking paint badly. So to keep the glue where it should be I put masking tape where I didn't want epoxy staining the plywood. This was done after a dry run assembly which enabled me to GENTLY sand the tabs,

and remove any 'nibs' that might stop the body going together well. These are usually found where the laser has started/ finished cutting. Photograph 20 shows the blue masking tape applied, and cut with a sharp knife around the locating holes. Photograph 21 shows the whole body trial assembled.

To be continued.

Suppliers

Brake van kit:

Phoenix Locomotives Ltd., 1 Colchester Road, Southport PR8 6XJ. T. 01704 546957.

W. www.phoenixlocos.com

Vacuum Brake components:

Paul Norman Plastics Ltd., Unit S5. Inchbrook Trading Estate. Bath Road, Woodchester, Stroud, Glos. GL5 5EY. T. 01453 833388.

W. www.pnp-railways.co.uk

Railway Paint:

Phoenix Precision Paints Ltd., PO Box 8238, Chelmsford, Essex CM1 7WY.

W. www.phoenix-paints.co.uk

CYB Ltd.:

2 Mulberry Road, Canvey Island, Essex SS8 OPR. T. 01268 696094. Can supply a West System Junior Epoxy Adhesive pack by mail order, and can also supply

small amounts of fibreglass reinforcing if required.

The van body assembled for a dry run standing on polythene to catch epoxy drips.

FEAS

Nick Feast tackles the coupling rods.

PART 6

Continued from page 274 (M.E. 4359, 28 August 2009)

CHARLIE

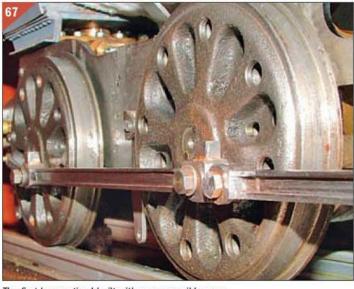
A Southern Railway Q1 for 31/2in. gauge

ow that I have checked the dimensions of the full-size Q1 in the NRM at York, I have found that the rods I have designed for this locomotive are slightly over scale. Photograph 64 shows the left centre crankpin arrangement of C1 at York seen from the rear. I have made the fork in the rear rod symmetrical for simplicity but it could be made offset by a little redesign. Walking forward a couple of metres gives this view (photo 65). I imagine the large vertical bolt secures the bronze bush in the rod. We will rely on a press fit.

At the time of building the prototype model, C1 was in daily use on the Bluebell Railway so measuring oily rods was not practical. Photograph 66 shows the full-size locomotive while at the Bluebell Railway. As well as the rods this photo shows useful pipe information for the detail enthusiasts. We shall be fitting the whistle in the space above this plumbing. Accurate scale rods would be too flimsy for the power of our locomotive and it would have the potential for fierce slipping if not driven with care

The left centre crankpin at York seen from the rear.

Anyone wishing to build finer scale rods should reduce the thickness of the rods to 4.5mm and the crankpin joints to 6 millimetres. The knuckle joint is true to scale at 8mm overall width. I think the heavy rods look in keeping with the locomotive and give us some useful extra bearing surface. If you're planning to give your engine real work then stick with the heavier rods. Photograph

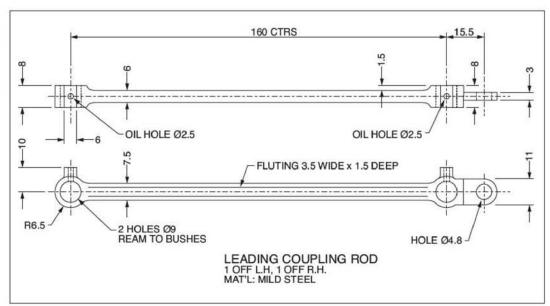

This view is of the large vertical retaining bolt.

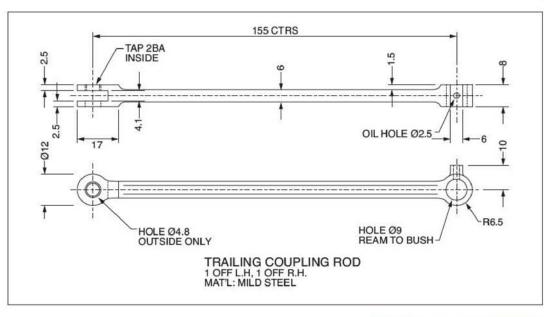
67 shows a view of the first locomotive I built with the oil bosses not the full width of the rod. The drawings now show the correct arrangement of the full width boss.

If you have decided to purchase laser cut blanks, a lot of time is saved but not much money. A set of laser cut blanks with blind bushes pressed in is shown in **photo** 68. It is not really necessary

The full-size locomotive while at the Bluebell Railway.

The first locomotive I built with narrower oil bosses.


The set of laser cut blanks.


to bush the knuckle pin joint. Once the centres have been marked out the remaining holes can be drilled.

There is still plenty of work to do in the profiling, fluting, bushing and finishing. If you want to start from first principles then the process of milling the rods will require a jig to take the section down to the required depth. The same iig will serve for other operations on the rods later on. You will save a lot of time and metal by silver-soldering the oil bosses on rather than milling the whole profile.

I noticed the correspondence in the magazine about the 'honesty' of a model built using laser cut items. In fact full-size locomotive rods for the Brighton Atlantic project have now been produced using water jet cutting and even in the days of steam. forgings of the approximate finished shape were used. There is plenty of opportunity to show your skill, or lack of it, during the finishing operations required on laser cut blanks. Building a complete tender from laser cut parts 'tabbed' together is a different argument I feel.

I had some rods cut with just one hole burnt out as a bit of an experiment. I shouldn't have bothered really because the laser hardened the surrounding area making it difficult to finish the hole to size. While on the subject of laser cutting, don't assume that you need to have electronic drawings to have parts made. My local company will scan hand drawings and produce excellent quality items at a very reasonable price, I am sure there are plenty of others around the country looking for work at the moment. The only snags are that you get what you draw, so your drawing needs to be good, and there is usually a minimum order charge. As this

can be £100 or so you need a significant requirement for parts.

As with all other parts on the locomotive it is best to stamp them up at an early stage as left and right. Then with the wheels installed in the locomotive take the measurement from the back edge of each axle, i.e. the join between the axle and the wheel. Of course the measurements should be the same each side, but a small discrepancy can be tolerated. perhaps 0.1 - 0.2 millimetres.

The front rod is simplest as the measurement can be transferred straight on from the locomotive. It should be 160mm but I convinced myself it was 158.8, marked out the rod, drilled the holes, fitted and reamed the bushes and

then tried it on the locomotive. The tightness in the midway position showed the centres were short. I pushed out a bush and fitted a new one, drilled at 160mm centres and you can guess the rest.

It is essential to hold the piece in a vice when centre drilling the bushes (photo 69). The position of these holes needs to be precise. One of these centre drills whizzed past my ear during this sequence, they seem to disintegrate more violently than British ones when they find a hard spot, it shattered. and sent miniature shrapnel in my direction, so as with all drilling and milling, safety first, wear eye protection on any and all machine work. During my training in the pump industry in the 1970s I spent some

Centre drilling the bushes.

months on the test plant. Water and electricity were in close proximity but provided earthing was sound everybody survived. Unfortunately an apprentice was >>>

The milling jig is secured to the table.

Files are used to tidy up the rough slot.

given the job of wiring up the temporary leads used to connect 3-phase motors to the test rig and connected the earth wire to a live feed. I was looking straight down the cable gland of a pump motor as the power was turned on to this booby trap, and got molten solder in the face at high velocity. The bang brought the works manager out of his office at high speed but fortunately for all concerned the only permanent damage was a chip out of the middle of one of my spectacle lenses. It was still some years before safety glasses became the norm in industry.

The rear rod is trickier as there is a knuckle joint to set out involving a 15.5mm distance from the centre bush. I made blind bushes and pressed them into the rods so that the centres could be positioned later. It is possible to bore all the holes in the rods and make the bushes on the lathe, but sooner or later you will need to make a bush with a hole not quite in the middle and lathes don't do this very well. Photograph 70 is of the jig for much of the milling and is simply a piece of at least 6mm plate with tapped holes at the appropriate centres to fix the rods, secured to the table with nuts, studs and Tee Nuts.

I like to get all the bushes fitted and get the rods assembled onto the locomotive

Cutting out the forked end of the rear rods.

The knuckle joint bolt before silver-soldering.

before the fluting and tidying up. We need to cut the slot for the tongue of the knuckle joint, which I did with a saw this time (photo 71). Cutting out the forked end of the rear rods is a good test of your hacksawing skills. First drill a hole where the end of the fork will be and carefully make two cuts down to it.

A variety of files are used to tidy up the resultant rough slot, again because the laser cutting hardened the rod and I didn't fancy breaking an expensive thin milling cutter, which I would rather use for steam ports etc. (photo 72). We are still in austere times!

These abrasive coated mini files came from the local street market for a few pounds and are less likely to clog up than ordinary files. Make sure you get ones with handles fitted.

We have a small turning job next to make the bolts for the knuckle joint. This is basically a 2BA stud with a bored out 4BA nut silver-soldered on to form a fixed nut. **Photograph 73** shows the knuckle joint bolt before silver-soldering the head. The thread should be almost flush with the bolt head after finishing. (See photo of the centre driving wheel in the article on the wheels, page 271, M.E. 4359, 28 August 2009.)

Cut the thread just long enough to screw into the threaded inside part of the forked end of the rod. We cannot fully tighten this bolt or the joint will bind. Therefore we need to use locking compound on final assembly and I also centre punch the end of the thread for good measure. This is one bolt on the locomotive we want to stay put.

The geometry of a locomotive suspension is a terrible compromise as for it to work at all there needs to be slack in the rod joints. Ream the bushes very slightly oval in the vertical plane to allow the wheels to rise and fall without binding. The full-size needed some clearance here and it was better to make a bit of noise than have a failure with a seized rod. Those of us that were around at the end of BR steam all remember the terrible

Heavy duty Dexion was adequate to hold the rods.

din from certain locomotives coasting to station stops. BR standard 4 2-6-0s seemed particularly bad, creating a sound like two men with sledgehammers hitting a very large steel girder. These are the sounds you will never hear in preservation!

Fortunately on the locomotive being built for this series the wheels rotated with just a trace of tightness at the 3 o'clock position on one side but with no perceptible play in the rods. This tightness will disappear during running in. This is as much the result of using jigs wherever possible to set the critical distances as to any skill on my part. If you have unacceptable binding check the following. If it is with the crankpins at 3 o'clock and 9 o'clock on either side you have got the centre distance wrong somewhere so dismantle the front and rear parts of the rods and see which pair of bushes is at fault. You should be able to see a small amount of movement of the axlebox in the hornguide to indicate if the distance is too long or too short. If the binding is at any other position try reaming a little more out of the bushes, and check that all the crankpins are dead square to the wheels. It is possible to bend them when pressing them in.

Once we are happy that the wheels will rotate with the rods fitted we need to give the rods their distinctive appearance. The first operation is to relieve the front face and a simple bracket is needed to hold the rod vertically in the mill.

A piece of heavy duty Dexion seemed adequate to hold the rods for this operation (**photo 74**). I felt I had made enough jigs for the moment!

We need to take 1.5mm of this face, leaving a rounded profile at each end.

You will produce some evil metal shavings, which will inevitably become embedded in your fingers. Short sighted people like me have no difficulty in seeing these tiny spears with specs removed but for those with normal eyesight you will need a magnifying glass, and of course a pair of flat bladed tweezers.

Next we need to mill the slot in the face of the rod and do the finishing touches to get the correct appearance to the ends of the fluting. Some care is needed here to match everything up (photo 75).

I made two or three passes to get down to about 1.5mm deep with a two fluted end mill just below the 3.5mm width required. It can be tricky to position this in exactly the right place, so just lower the mill carefully onto the

Care is needed at the ends of the fluting.

rod somewhere near the mid point to see if the cut is in the middle. I am sure it is possible to set this up on the lathe also, but as I have said earlier in the series if we are serious about building model locomotives, a mill is well worth the expense. I notice that the mini-mill that I have is now less to buy new than it was six years ago!

Don't go right to the end of the fluting, as we need to finish off with a cutting wheel to get the correct profile. We could do the whole job with this tool but my end mill seemed to cut better.

The final job is to set the rods up in the mill vertically again to relieve the small amount of metal off the backs. We leave this till last as it helps stop the rods shuffling about during the fluting operation.

Once all the swarf and cuttings have been cleared away the oil holes can be drilled. The holes have two diameters and as long as there is a restricted flow to the bearing it doesn't matter how you achieve this.

The rods can be given a cursory polish with emery cloth, not a mirror finish please as this is not a royal train engine. **Photograph** 76 shows a finished pair of rods, lightly polished with the sharp edges removed.

A finished pair of rods lightly polished.

I used my recently acquired linisher to get rid of most of the burn marks on the edges of the rods. An abrasive wheel in a hand held battery drill would also work but if using the Dremel type mini drill beware that they run at very high speed even on the slow setting. Debris is shot everywhere at high velocity so do be aware of the risk to the lungs and eyes during this operation, not to mention anything else within range.

To be continued.

Shand Mason Steam Fire Engine in 1:6 scale

KALLIES

Günter Kallies continues the description with the

wheels for his horsedrawn fire engine of 1890.

PART 5

Continued from page 141 (M.E. 4357, 31 July 2009)

he wheels for the full-size engine are made of wood with an iron tyre in the old tradition of coach wheel making, Personally I prefer to do it in a similar manner, but with some exceptions due to scale limitations. This work is somewhat outside the normal run of model engineering operations but will give a large amount of satisfaction when finished. The main components of the wheel are the rim. spokes and hub. I have made all these parts of wood as per the original. However, readers may decide to make all the components from aluminum alloy or even brass. After all, upon completion when the model is fully painted nobody will see the difference. (Drawings for the wheels were in M.E. 4357, 31 July 2009.)

In normal wooden wheel construction the components are the hub, also known as the nave, individual formed spokes, and felloes, or circumferential

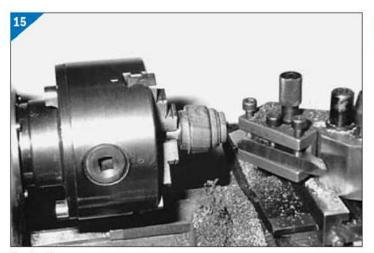
A view of the finished model.

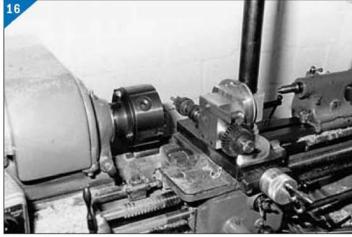
segments. The parts are fitted together by mortise and tenon joints. The full-size assembly is held together by a shrunk-on iron or steel tyre.

One can build the wheels in the same way as the original or, as I have decided, make it somewhat lighter, because the model version is not planned for hard street application, therefore the construction can be simplified.

Nave (307)

This is made from well-dried hardwood and may be a small section of mahogany from any old piece of furniture that can be found. First of all drill the hole, turn to length and fix to a suitable mandrel. Now turn the outside contour carefully according to the drawing. Make sure that the portions where the spokes will be installed are slightly tapered. The naves for

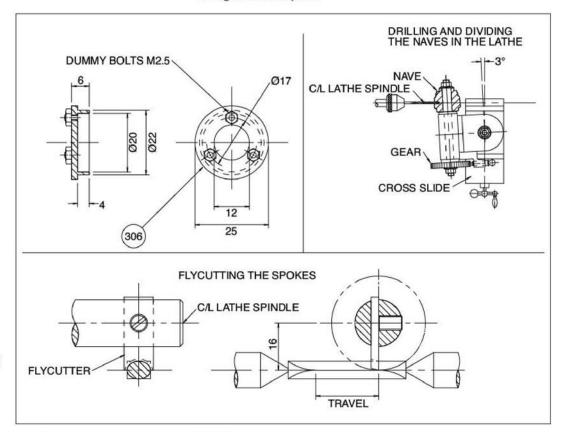

the forward wheels need 12 mortises, or dowel holes, while in the nave for the rear wheels 14 are needed. Use some sort of dividing attachment on the lathe setting this to 87deg. out of centre. The holes can now be easily drilled with a 3mm bit as shown in the drawing.


The rims can be reproduced from multi-layered plywood. This mostly water-resistant glued plywood is typically very fine grained and can be turned on the lathe rather well. The rings should be sawn out roughly and glued on a circular carrier of waste plywood or similar. A layer of paper, e.g. from a newspaper, in the glue joint makes later removal much easier.

The circular carrier is fastened with screws to the faceplate of the lathe. With high speed and a sharp lathe tool the rim can be turned to size. Please notice the slightly

A pair of finished wheels.

Drilling the nave for spokes.

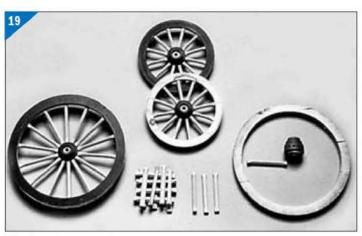

Turning the nave.

tapered shape. At the same setting a centre hole of 30mm dia. should be turned in the carrier plate. The hub will be inserted into this hole later for assembly of the wheel; this will help with exact centering.

The spokes are slightly stronger than they would be with a correct scale reduction. This additional strength is strongly recommended and will not destroy the overall model's effect. The spokes are cut precisely to length from a strip of fine-grained hardwood with a 6 x 8mm cross section. Each spoke has a 3mm dia. dowel hole on both sides.

To provide a realistic appearance for the spokes, these must be profiled. The middle area of the spokes should receive a lozenge shaped cross section that changes over at the ends to a square cross section. This work can be carried out, either laboriously by hand with a file and emery, or with a profile cutter in the lathe. In the latter case a simple device is needed to hold the spoke temporarily to the milling device on the lathe. The middle area is removed with a flycutter, or any other sort of form cutter, by moving the cross slide. Stops should be installed to limit the cross slide travel. This will generate equal spokes with smooth arched shaped run outs at the spoke ends.

To prepare the wheel assembly insert a 3mm hardwood dowel at one end of each spoke with a drop of glue. It should stick out approx. 4 millimetres. This



Turning a wheel rim.

Wheels and components.

end will be glued into the holes of the hub like a star. If everything is precisely made the rim will fit exactly over the spokes. Other hardwood dowels are now fitted with a drop of glue from outside of the rim through the spokes and the excess ends sawn off. If the outside diameter of the rim was made slightly oversized it can now be machined down to final diameter, though it is wise to produce the tyre first as described next. With the tyres in hand one is able to make the wheels to a really good fit. Carefully remove the wheel from the support board using a sharp knife to split the bond line where the paper layer was inserted.

Tyres (302 and 303)

Some 1.6mm thick stainless steel sheet metal is specified for these and I asked a small local company to cut 10mm wide strips on their guillotine for me. The length of the strips can be determined from the formula 'diameter multiplied with pi'. (From memory: the number 'pi' corresponds to about 3.14.) The strip should be somewhat longer because this can be helpful with the bending and

A finished rear wheel.

forming process. The tyres are best formed in a 3-roll bending machine. However, they can also be bent with a mallet or plastic hammer on a piece of round steel material. The formed strip must be cut to precise length and accurately squared at the end faces using a file. Either welding or brazing the joints is suitable.

The tyre should fit the rims as close as possible without forcing them on. In this case it is permissible to make the rims slightly tapered to make fitting easier.

Bush (305) and Hubcaps (306)

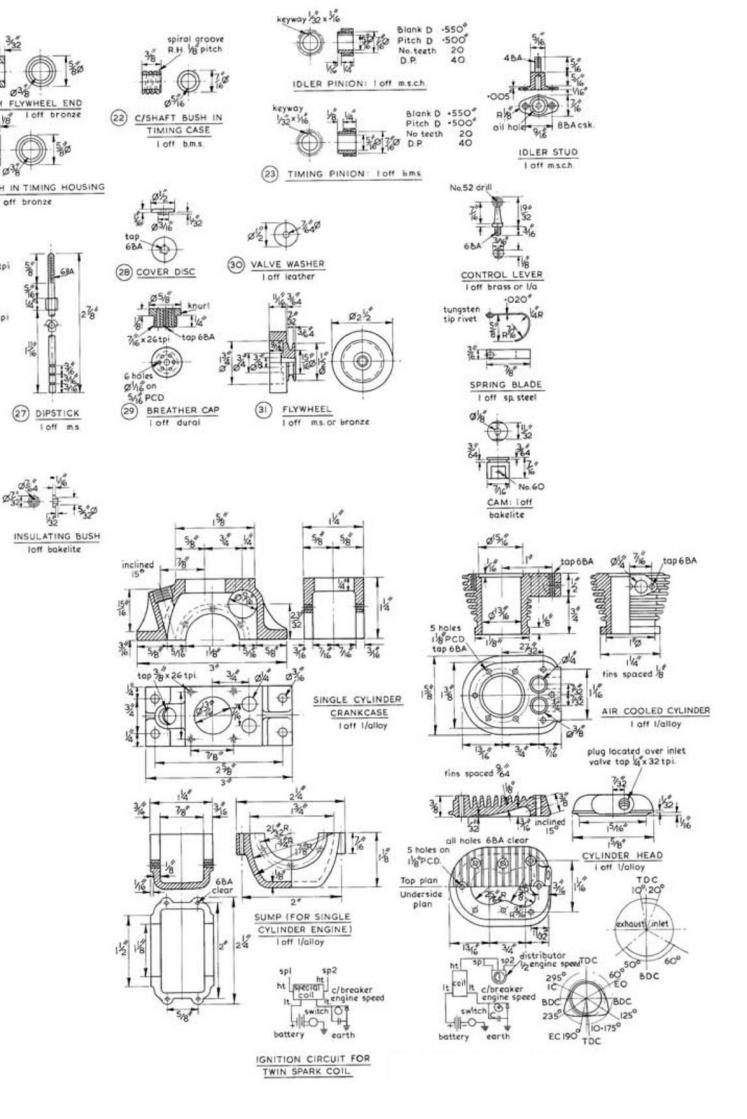
Finally, the nave receives a bush and a hubcap, which are made out of gunmetal, bronze or from brass. They should be installed with a small amount of 2-part epoxy resin adhesive. It is recommended you install the hubcaps after painting the wheels.

To be continued.

THE MODEL ENGINEER EXHIBITION A request from the editor

have started to receive entries to the Model Engineer Exhibition. Please supply your phone number so I can phone you to say your entry has arrived. I will be sending out information packs to all entrants a bit closer to the Exhibition. You should hear from me within two weeks to say your entry has arrived. (I say two weeks because the entries are forwarded to me from the office.) If you don't hear from me within two weeks feel free to phone me.

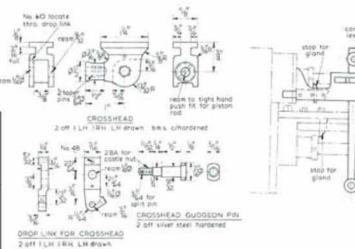
Where photographs have been supplied, several have been from a computer printer. Although they are often superb photos, usually these are not very suitable for reproduction in the magazine. This is because printers print out as thousands of tiny dots. The photo to the right is probably from a printer rather than a photograph. It is included here as a test to see if it reproduces okay.

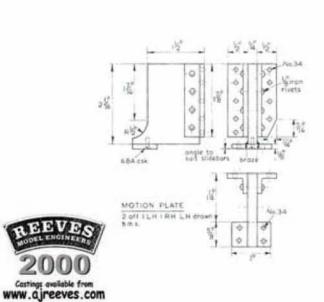

If at all possible, please supply a selection of photos on CD (or email them to me) to accompany your entry. They may be used in the magazine or show guide prior to the exhibition. We will, of course, be taking photographs of all the entries during the exhibition.

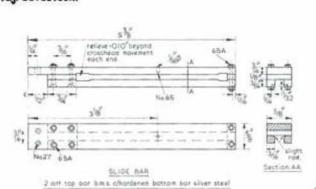
Please send in your entries as early as possible. As you can imagine, there is a lot of paperwork to do and judges like to see all entry forms

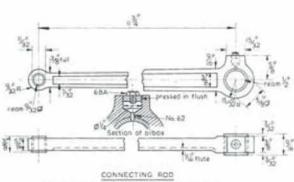
about two weeks before the exhibition so they can research the model if necessary.

Oh, the photograph. It is a 1:8 scale model of a Buda Velocipede manually propelled track inspection vehicle (Circa 1900) the originals of which are at the NRM in York. It has been entered by Roger Curtis of the Guildford Model Engineering Society.

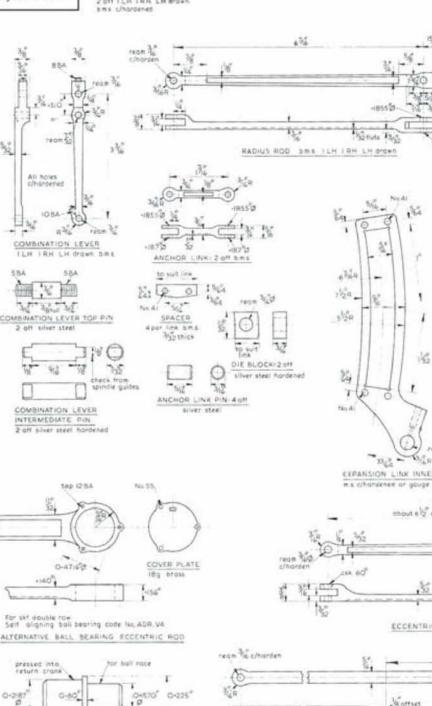


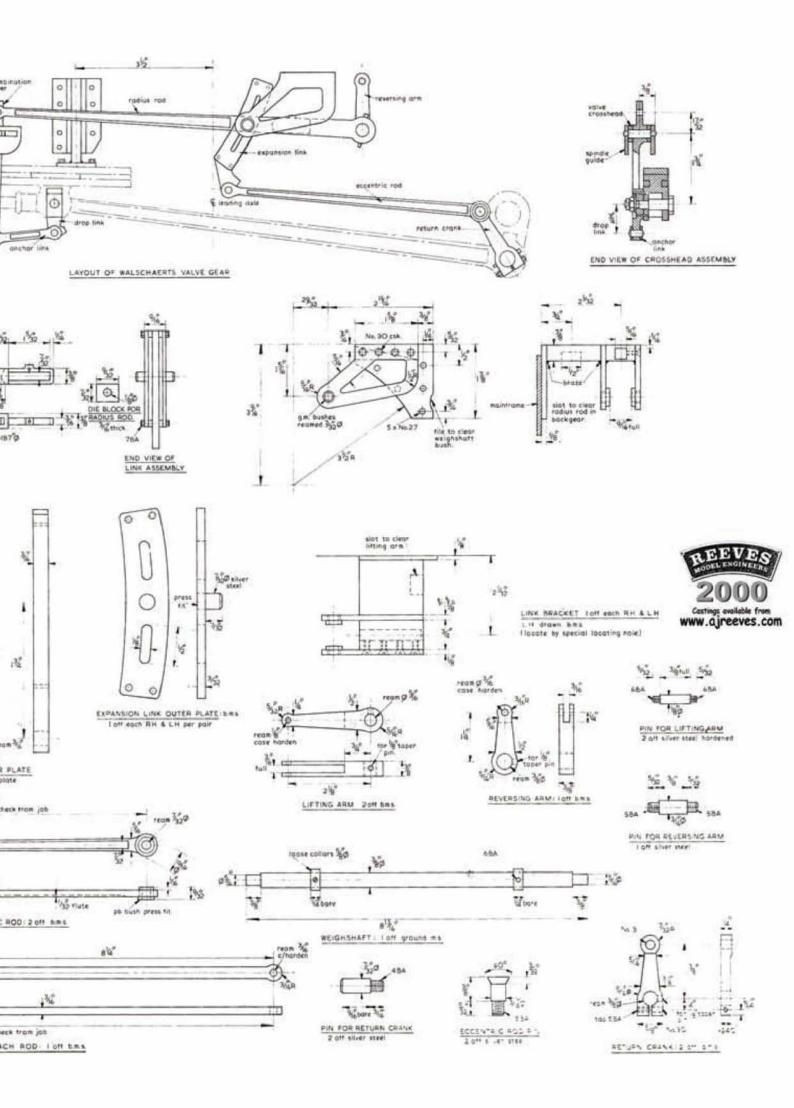

SHEET 4 OF 12

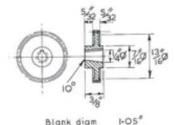

PLAN: SPRINGBOK 5inch GAUGE 4-6-0 B1 LNER LOCOMOTIVE by Martin Evans


my lobbystore

MODEL ENGINEERS PLAN SERVICE, PO Box 718, Orpington, Kent BR6 1AP Tel: 0844 848 8822. Email: customerservices@myhobbystore.com



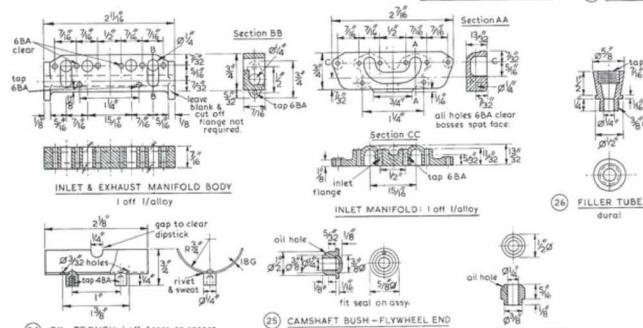



PIN FOR RETURN CRANK FOR BALL BEARINGS 2 off silver steel

PLAN: **THE 'SEAGULL'** by Edgar T Westbury

my lobbystore

MODEL ENGINEERS PLAN SERVICE, PO Box 718, Orpington, Kent BR6 1AP Tel: 0844 848 8822. Email: customerservices@myhobbystore.com

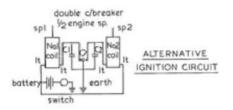


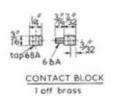
Blank diam I-05" Pitch diam I-00" No. teeth 40 D.P. 40

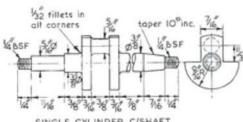
(21) C/SHFT BUS

(20) CISHFT.

TIMING GEAR: Loff bronze

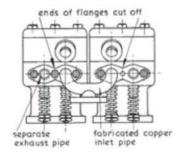


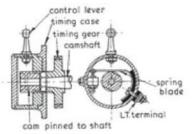

off bronze



(24) OIL TROUGH: I off brass or copper

CARBURETTOR & DETAILS





CAMSHAFT BUSH TIMING GEAR END

SINGLE CYLINDER C/SHAFT

I off m.s.

Note: —
For single cylinder engine
or twin call only one break
is required on cams.

Beginners start here

CLARK Editor

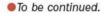
In the workshop with the editor.

PART 4

Continued from page 213 (M.E. 4358, 14 August 2009)

his time we make a start on machining the bearing blanks then we set the 10H bedplate and soleplate castings true on the mill. I was going to machine the bearing housings in the soleplate but due to an accident (hand in plaster) I can't tighten the cutter up or turn the machine handles.

Photograph 16 shows the bearing blank held in the vice to true up the sides. First, lap the top of the bearing on a sheet of wet and dry to clean it up and ensure it is flat. Then deburr carefully all over. Place the bearing on a parallel and up against the face of the vice. (I actually placed a thick parallel up against the vice jaw for the bearing to back onto.) You need a piece of material to rest against the front of the bearing on the radius to push the moving vice jaw against. Lightly tap the bearing blank down onto the parallel. If the parallel won't move the bearing should be touching the parallel all the way along.

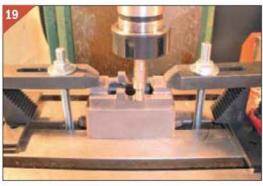

You need to clean the underside of the bearing blank up so you have a clean true face but you don't need to take much of the side of the bearing. Aim just to clean up the underside face and take a scraping of the side to ensure a sharp edge where the two faces join. Then turn the blank over, deburr the edges just machined and tap it down onto the parallel and machine the other side. If you are lucky, the underside will clean up. I machined two blanks at the same time: one cleaned up but the other needed another 10 thou, off the underside so I turned it back over and remachined the first side. It is important that both underside faces are the same size. I checked the width over the main bearing part and they both measured 0.437 (1/16in.) which is drawing measurement. It won't matter if they are slightly undersize (up to 5 thou.) for reasons I will mention next time.

Next we need to set the bed plate and soleplate true on the milling machine table. The

soleplate needs to be central on the bed plate and square to the mill travel. I did this by putting a central clamp through the two castings to clamp it lightly to the mill. I placed a parallel against the side of the bedplate with the other side of the parallel at the edge of a Tee slot. I checked by using my fingertips that the parallel was in line with the edge of the Tee slots. It is amazing how accurate you can get something by using the feel of your fingertips. I consistently used to get a 6in, machine vice true to 2 thou, over 6in. (I still clocked the vice up to a tenth of a thou but 2 thou, was a good starting point.) Then I gently tapped the soleplate casting so it was centrally placed on the bedplate. I measured the offset with the vemier until it was within 5 thou. This will be near enough as there will be slight clearance in the holes when finally clamping down. Then I clocked the side of the soleplate to make sure it was true with the machine table. Tap the soleplate gently until it is. Check the soleplate is still central then clamp down at the ends of the soleplate (photo 17) and then remove the central clamp.

Now we need to centralise the mill spindle to the centre of the soleplate casting. To do this is easiest with a digital readout. If you don't have a readout, it can still be done but more about this next time.

Right, now we will set zero using a readout. Wobble off the back of the casting (photo 18) and zero the readout. Use a stop for the depth as the casting is tapered. Wind to the front of the job and wobble of the front (photo 19). This gives you the exact width of the casting plus the wobbler diameter on the readout. Halve the measurement and wind to the halfway reading. Zero the readout and you are exactly on centre line. Do the same using the outer sides of the bearing lugs and you will be on the exact centre in the X and Y axes.


Machining the underside of the bearings.

Wobbling up the back of the casting.

Clocking up the vertical base and soleplate.

Wobbling the front of the casting.

Charles Weatherly for A. Britton - Worthing & District MES.

Run 22

Tony Guerrier - North London MES.

IMLEC 2009

NORTH

Bernard North
concludes his report
on this year's
International Model
Locomotive Efficiency
Trials hosted by
Bristol SMEE.

PART 3

Continued from page 357 (M.E. 4360, 11 September 2009)

harles Weatherly of the Worthing & District MES was Run 21 driving fellow club member A. Britton's 5in. gauge freelance 2-4-2 Tender Engine The Columbian. This locomotive was originally built by Al Thorpe of the Beechurst club. Construction started in Canada in 1961 and the locomotive has an Anglo Canadian flavour to its design. The locomotive has piston valves driven by Walschaerts valve gear. The cylinders were originally sold by Wilwaugh for a 5in. gauge Doris and there is also some added weight to increase adhesion. Nigel Gettings acquired the locomotive in 1989 and fitted a new boiler and Mr. Britton bought the locomotive from him in 1997.

Storm clouds were gathering as Charles' run commenced and very shortly after the start, the heavens opening and the rain poured down. The passenger load at the start was eight including the driver but after a difficult first lap, Charles dropped three passengers and things settled down to a more regular pace despite the rain. Towards the end, the rain eased off, but clearly this run was compromised

Roy Gregson - Prescott & District MES.

by the weather. Charles did well to keep going in the conditions.

Run 22, Tony Guerrier -North London MES

5in. gauge GWR 4-6-0 Manor Class 7801 Anthony Manor Built to Martin Evans classic Torquay Manor design, this locomotive had a major rebuild last winter and a repaint in GWR colours to a fine exhibition standard. Boiler feed is from two injectors, crosshead pump and a tender hand pump.

Tony took a modest load of eight passengers which was probable a wise move as the track was still wet from the downpour during the previous run. The run soon settled into a steady rhythm with very regular

lap times. A total of 12 laps were completed in fine style, but the coal consumption was a little high for the total work done and Tony returned an efficiency of only 0.68%.

Run 23, Roy Gregson -Prescott & District MES

5in. gauge LMS 4-6-2 Princess Coronation Class Princess Alice

This locomotive is one of four Duchess locomotives built by Geoff Gregson from Urmston (no relation to Roy). Built as a 'Semi', the smokebox has the characteristic shape from its earlier streamlined days. The locomotive uses some of Michael Breeze's drawings and patterns and is well finished and

Photographs by Clem Culverhouse and Bernard North.

Andy Siddall - Harlington Locomotive Society.

nicely detailed. It was painted in BR experimental blue livery which the prototype carried for only a very short time in its life between 1950 and 1952.

The run commenced in fine style for the first three laps with a load of 18 passengers. However, water feed was a significant problem as the high pressure injector failed to work and Roy had to rely on the low pressure injector and had to keep the boiler pressure down. Roy told me that he had taken off the injectors during the week previous to IMLEC to clean them and with hindsight wishes he had left them alone.

After a long stand during the fourth lap in the middle of the long straight trying to recover water and pressure, Roy eventually dropped off all his passengers and proceeded with just the passenger cars back to the station to complete the run.

Run 24, Andy Siddall -Harlington Locomotive Society

5in. gauge LNER 4-6-0 B1 Class 'Springbok'

Another of Martin Evans classic designs, this engine was built by Mr. A. Baker. It was acquired a couple of years ago by Andrew and was extensively rebuilt over the past winter and finished in LNER Apple Green livery. It has been in IMLEC on a couple of occasions before finishing in 2nd place at Northampton in 1999 and 3rd place at Southport last year.

Based on the previous success of this locomotive, this run also showed lots of promise in the early stages. However, the run was blighted by a blocked water gauge and the attendant uncertainty of the boiler water level. A particularly long stand during lap 6 used up a lot of time and the run was finally concluded after eight laps.

Run 25, Alan Crossfield -Leyland SME

5in. gauge GWR 41XX 2-6-2T Large Prairie No. 4156 Alan is another of the veterans of the IMLEC competition having won the Martin Evans Trophy on three previous occasions in 1985, 1986 and 1996 with two other locomotives. Alan has finished this particular locomotive over a 9-year period and finally completed it in 2005. It won the award for the Best Exhibit in Show at Harrogate in 2005. This engine has the loudest and clearest whistle I have ever heard on a model.

The run was also blighted by a very heavy shower of rain which lasted for about %rds of the run. Not to be out done by the weather, Alan put in a storming run after a slightly shaky first lap and some reductions in load. Alan completed 12 laps with lap speeds in the high 8 to 9mph. Despite the difficult conditions, Alan was very careful with the coal and finished with an

Alan Crossfield - Leyland SME.

efficiency of 1.28% which put him into 3rd place.

Run 26, John Hurley -Kinver & West Midlands MES

5in. gauge LMS 4-6-0 Rebuilt Royal Scot Class No. 6141 The North Staffordshire Regiment
John is another of the IMLEC regulars and whilst he has never won the competition, he has been placed on a number of occasions. John has been a lifetime railwayman and was a fireman out on the 'big railway' working on both LMS and Western engines. He was also a driver on the Severn Valley Railway for a number of years.

John's entry this year was his Royal Scot which he built

from measurements taken from the full-size engine Scots Guardsman. Fitted with three double pass radiant superheaters and a double chimney, the locomotive is finished in post war LMS livery.

After a slow first lap, John dropped off four passengers and the run then settled to a more regular pattern with lap speeds around the 8mph mark. This run also suffered from wet rails due to the rain during the previous run which certainly compromised the engine's performance. The run completed a total of 9 laps and returned a respectable efficiency of 1.18% being one of the few to top 1% this year.

John Hurley - Kinver & West Midlands MES.

Run 27, Brian Remnant -Romney Marsh MES

5in. gauge Narrow Gauge Sweet Pea 0-4-2 Lady Margaret

This locomotive is based on Jack Buckler's Sweet Pea design but has many modifications from the original design made by Brian. It has a larger firebox with 32sq. in. grate area, 1%in. bore cylinders with outside Bremme valve gear. The engine has no axle or hand pumps and relies entirely on two injectors. The engine has appeared in IMLEC on a number of occasions and was the winner of the Martin Evans Trophy last year.

As last year's winner, it is now traditional that this becomes the last run of the event, just to add some tension to the finish! Brian elected to carry a total of 16 passengers, a mighty load for this engine type. However, the combination of driver and locomotive tackled the task admirably to complete a total of 12 laps without a stop. Apart from one slow lap towards the end, the train lapped the track in the 8 to 8.5mph speed range. There were some signs of slipping coming up to the crest of the two major climbs on the track, particularly the climb up to the station. The rain just about stayed off for this run, although there were a few spots about half way through.

Presentation of Awards

We were pleased to have Mike Chrisp in his role as President of the Society of Model and **Experimental Engineers to** be our guest of honour and to present the prizes. Mike is well known to the model engineering world and has been a supporter of IMLEC for many years. Introduced by club President Geoff Sheppard, Mike made a short address to the assembled masses at the end of the competition. His kind words of encouragement were most gratefully received by all the competitors and his thanks to the host club spoke volumes to all who had been at the 'sharp end'. Specifically he thanked the Bristol Club on behalf of everyone for the superb and seamless organisation of the

Brian Remnant - Romney Marsh MES.

event. The ladies of the catering team came in for a special mention as did the exhibition which included a collection of previous Bristol SMEE entries in IMLEC over the years.

So finally the awards were presented as follows:

First Place and Winner of the Martin Evans Trophy:

Neil Mortimer from Ickenham & District SME driving his Polly III locomotive.

Second Place:

Paul Tompkins from Guildford MES driving Dave Tompkins LNER B1 Class 'Gazelle'.

Third Place:

Alan Crossfield from Leyland MES driving his GWR 41XX Large Prairie No. 4156.

Best 3½in. gauge Entry:

Andrew Giffen from Reading SME driving his SAR Class 15F 4-8-2 locomotive. (Not present at award ceremony)

Best of Previous Winners:

Len Steel from Guildford MES driving his BR Britannia Class locomotive Coeur-De-Lion.

Comment

The results will provoke some debate as ever I am sure, but I think we have to take everything in context. This is not really a true scientific test, there are just too many variables and the unpredictable nature of things

conspires against too much serious analysis.

The results are affected by a number of factors, not least of all the weather. It was unfortunate that this year some of the runs were in the rain and I am sure it had an affect on the overall result.

The locomotive and driver combination is equally as important. Within our own club, we have run trials with the same engine and different drivers, the results can be significantly different depending on the skill of the driver and the load carried. A good driver will not win with a mediocre engine and vice versa.

Then there is the subject of coal. I am sure that since we ceased the full-scale mining of coal in this country, the quality of the coal we buy has varied enormously. That used in power stations is not necessarily suitable for locomotive type boilers either full-size or miniature. The noticeable downward trend in efficiencies I think is primarily due to this factor alone. The amount of coal used is possibly the most sensitive part of the calculation. Accuracy is required in the measurement and just one extra shovel full can make a noticeable difference to results.

Finally there is the selection of load. The choice of load is particularly important to the end result. Too little load and the engine does not work hard

enough to create a good overall work done figure. Too much load and the engine is always struggling and usually ends up coming to a stand on one of the rising gradients loosing valuable time and wasted energy. It is my impression that drivers often opt to carry too much load with the view that it is a heaw haulage rather than an efficiency competition. The load should be just enough so that the locomotive can comfortably handle it and keep the train moving up to the speed limit throughout the run. Distance travelled as well as drawbar pull make for a good work done figure. It is down to the skill and judgement of the driver on the day to select the right load for the locomotive, the track and the conditions of the run.

As for dynamometer cars, we opted to use our own car for a number of reasons. Primarily we were familiar with our own piece of kit and we thought that it was right to use it on such an occasion. If the club owns a car then why not use it provided that it is reliable and accurate. Before the event some considerable time was spent calibrating the car and making sure that it gave reliable and accurate readings. We were extremely grateful to the Guildford MES for the loan of their car as a back up facility.

At the end of the day whilst there are prizes and kudos to be won, IMLEC provides an opportunity for some light-hearted banter with a competitive element. It provides good camaraderie between clubs and it is a thoroughly enjoyable weekend. Our thanks from the Bristol SMEE go to all the competitors and the folk that supported the event in whatever way either as spectators or helpers.

So that's IMLEC for another year. Here's to next year at Bournemouth, when it will be good to be back with the spectators, or maybe even competitors again? My own SR Bullied Pacific West Country class locomotive is approaching completion and, with a Bournemouth Belle headboard, who knows?

	wN)	-	3		23	22	21		20	19	8	17		6	ជា		4	ដ	12	;	#	ō '	o 00	•	7	6	U	4 1	ω		N	-	Plac	
	11 //	3	20	LEC 200	5000	5	9	ದ		21	23	18	00		19	22		17	6	0	`	7	14	24		12	26	U	7 7	25		4	-	Place Run No	:
	Les Pritchard	,	Len Steel	9 - Previous W	D. Davidson W.	Marcus Peel	lan Grinter	George Winsall	C S Weatherley	A. Britton/	Roy Gregson	Ken Parker	Paul Pavier	Matthew Byatt	Fred Matthews/	Tony Guerrier		Ben Pavier	James Duncan	Ben Healey/	James Tilbury	Keith Tilbury/	Andrew Giffen	Shiart Duncan	· :	John Cottam	John Hurley	David Gregson	Geoffrey Symes	Alan Crossfield	Paul Tompkins	Dave Tompkins/	Neil Mortimer	Owner/Driver	
	Harlington Locomotive Society		Private entry	IMLEC 2009 - Previous Winners Competition - Final Results and Placings		Wigan MES	Taunton Model Engineers	Rugby MES	Worthing & District MES		Prescott DMES	North Wilts MES	Southport MEC	Harrow & Wembley SME		North London MES		Southport MEC	North Wilts MES	Comment Model Marine To	Urmston & District MES		Reading SME	Harlington Locomotive Society Bristol SMFF		Chesterfield MES	Kinver And West Midlands MES	Private Entry	Worthing & District MES	Leyland SME	Guildford MES		Ickenham & District SME	Society	
	Lancashire & Yorkshire Aspinall	"Coeur-De-Lion"	BR Britannia Class No. 70007	al Results and Placings		LNER Class B2 "Royal Sovereign"	"Argyll and Sutherland Highlander"	GWR 45XX Firefly	Freelance Tender Locomotive "The Colombian"		LMS Princess Coronation Class No. 46223 "Princess Alice"	GWR 45XX Small Prairie No. 4588	LMS Jubilee Class	Caledonian Railway Shunting		"Anthony Manor"	(Maisie)	GNR Atlantic "John C Bailey"	American Switcher "Upsy"	Francisco Trade at Ton Vince	Freelance Polly V		South African Railways Class 15F	LNER DA9 Hunt Class "The Percy"	"Peninsular & Oriental S N Co."	SR Merchant Navy Pacific	LMS Rebuilt Royal Scot No.6141	Mixed Traffic Engine	Hunslett NG Dholpur "Bolivia"	GWR 41XX Large Prairie No. 4156	LNER Class B1 "Gazelle"		Freelance Polly III	Locomotive Description	
n	U	ហ				31/2	л	31/2	u	1	ហ	51	UT C	л		5	31/2		31/2	n	51		31/2	JI U	ເປ	U	n	IJ	U	ı G	U		IJ	Gaug	
0-2-0	0-4-0	4-6-2				4-6-0	1-6-0	2-6-2T	2-4-2		4-6-2	2-6-2T	4-6-0	10-8-01		4-6-0	4-4-2		0-4-0	4	2-6-0T		4-8-2	4-4-0	4-6-2	0.0	4.6.0	4-6-0	2-8-41	2-6-21	4-6-0		0-6-0T	Gauge Wheel Arrang	
D T	ā	6				Retired	7	ω	œ	10	≅	4	ω (ν.		ω	ហ		٥ 5	5	9		7	9 5	5 5	-	1	72	22	4	12		9	Load Adults	
31 08	19.57	30.40				d 31.33	21 22	31.87	27.78		29.80	28.18	33.98	30.70		28.80	31.27		29.62	22 67	32.00		30.75	31 33	30.93	25.00	30.05	27.10	34.17	32.00	28.15		30.80	Load Run Adults Time (Mins)	
≓		ដ				U	л	10	œ		4	UT (00 0	œ		12	12		∞ =	1	12		= ;	, ∞	12	4	0	70	12	12	10		=	of Laps	
228 200	383,300	438,900				1002,011	115 200	49,950	100,000		140,000	115,100	125,100	119 000		197,100	111,500		174,900	200	205,800		364,300	252 200	428,400	401,400	401 400	254,100	693,100	208,400	243,800		195,900	Work Done (ft lbs)	
1,620	2.513	2.601				3.102	3703	1.279	2.425	j	3.175	2.172	2.039	1715		2.634	1.323		2.006	3	2.249		3.803	2.238	4.123	3.000	3006	1.874	5.104	1.477	1.653		1.323	Coal Used (lbs)	
18084	19778	21372				0220	8220	16440	13152		6576	8220	13152	13157		19728	19728		13152	1000	19728		18084	21372	19728	14770	14706	16440	19728	19728	16440		18084	Distance (ft)	
12.62	19.43	20.54				4.0	14 01	3.04	7.60		21.29	14.00	9.51	202		9.99	5.65		13.30	# 53	10.43		20.14	11.05	21.72	21.12	2712	15.46	35.13	10.56	14.83		10.83		
200	0.401	0.443				0.110	0113	0.049	0.112		0.146	0.125	0.115	017		0.213	0.109		0.183	2	0.195		0.368	0.252	0.433	0.419	0 410	0.285	0.618	0.197	0.264		0.198	Ave DB Ave Pull (lbs) DBHP	
14 056	186.71	11.734				03.020	869 69	50.699	48.015		44.904	37.364	32.272	28 535		26.46	23.494		22.709	3	21.638		20.67	20774	19.056	227.CI	fi 222	14.603	14.581	14.033	13.425		13.372	SFC	
1 28	1.39	1.54				0.20	96.0	0.36	0.38		0.4	0.48	0.56	0.63		0.68	0.77		0.79	9	0.83		0.87	0.91	0.95	50	100	123	1.24	1.28	1.34		1.35	Efficiency (%)	

HOLLAND

Terence Holland revisits some of LBSC's interesting projects from the 1950s.

Steam calliopes, whistles and wind chimes

Table 1 - Pipe frequencies and lengths

Musical note	Name	Frequency (Hz) cycles per second	Pipe length inches uncorrected
D sharp		1244.51	3.20
D6		1174.66	3.39
C sharp		1108.73	3.59
C6	Soprano C	1046.50	3.81
B5		987.77	4.03
A sharp		932.33	4.27
A5		880.00	4.53
G sharp		830.61	4.80
G5		783.99	5.08
F sharp		739.99	5.38
F5		698.46	5.70
E5		659.25	6.04
D sharp		622.25	6.40
D5		587.33	6.78
C sharp		554.65	7.18
C5	Tenor C	523.25	7.61
B4		493.88	8.07
A sharp		466.16	8.55
A4		440.00	9.05
G sharp		415.30	9.59
G4		391.99	10.16
F sharp		369.99	10.77
F4		349.23	11.41
E4		329.63	12.09
D sharp		311.13	12.80
D4		293.66	13.57
C sharp		277.18	14.37
C4	Middle C	261.63	15.23
B3		246.94	16.13
A sharp		233.08	17.09
A3		220.00	18.11
G sharp		207.65	19.19
G3		196.00	20.33
F sharp		185.00	21.53

ummaging through old copies of the Model Engineer recently I noted that for Christmas 1952, LBSC offered a design for a steam organ otherwise known as a calliope. If you are familiar with old American films featuring Mississippi river boats you will probably have seen and heard one being played - the instrument is very spectacular with puffs of steam escaping all over the place and it has a very pleasant and distinctive mellow sound. Curly called his scaleddown version a 'Calliopette' and the article was published in the Model Engineer in mid-October 1952 - "with plenty of time for the average worker to make the box of tricks set out below"!! - His words, my exclamation marks - and all that before Christmas Day... The job consisted of a copper boiler with fittings and plumbing, a spirit burner (poison gas plant!) and a whistle manifold with 25 steam valves! And, of course, a similar number of carefully tuned steam whistles of various lengths and diameters. Further to that "the operator should be able to play simple tunes after only a few minutes practice"!! (again my exclamation marks). Typical LBSC - who was capable of a prodigious work output unlike many of the rest of us. And all this in just four pages of text!

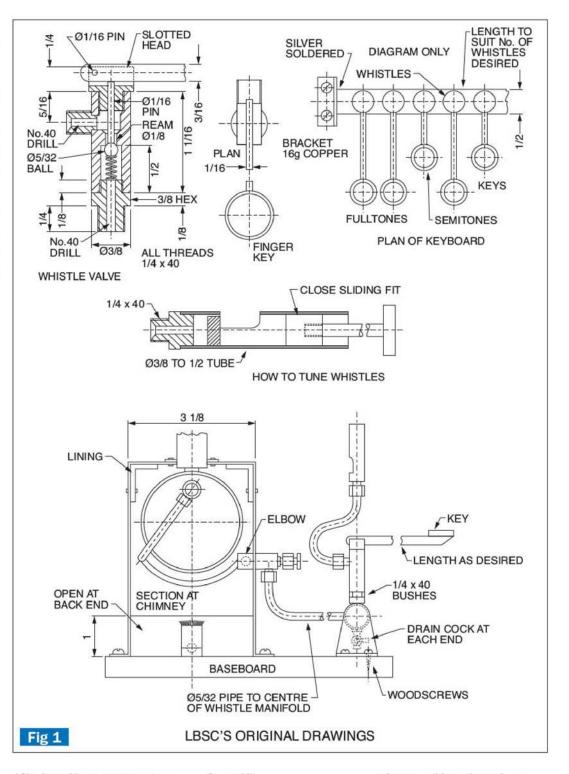
I don't intend to provide a complete description of how to make a modernized version of the Calliopette, but will give some guidelines before moving on to something which is also musical but much easier to make - life's too short as they say and wind chimes are fun to

make and listen to on a breezy summer's day. They also make ideal presents for friends and relations - soon the local hills will be alive with the sound of music! This reminds me of my octogenarian Uncle Victor in Australia who is a wind chime fanatic - he ended up having so many in his garden that he got an ASBO from his neighbours and had to take them down. The last time I saw him he gave me a couple and got me hooked on the things. It's all his fault!

Calliopette

To be honest, Curly's article was very brief and referred to his 'regulation' items such as valves, whistles etc. previously published, without going into any great detail. I doubt if many Calliopettes were actually made and would be surprised if he himself had made one. Musically, he proposed a full octave of eight notes along with five semitones - with five or six additional notes above and below the range of the octave. This amounts to about 25 notes in all - a mammoth piece of metalwork, but it also demonstrated Curly's comprehensive knowledge of subjects other than the construction of miniature railway locomotives.

Now, Curly's article included the construction of a boiler and "poison gas plant" (his words for the spirit burner, not mine) but I don't propose to reiterate this because in this 21st century most of us model engineers have a workshop steam plant or, if not, some engine or other which will be able to supply the necessary steam or failing


Table 2.- End corrections for various pipe diameters

Pipe diameter inches	End correction inches
3/8	0.11
1/2	0.15
0.59in. (15mm)	0.18
5/8	0.19
3/4	0.23
0.87in. (22mm)	0.26
1	0.30
1.5	0.45
2	0.60

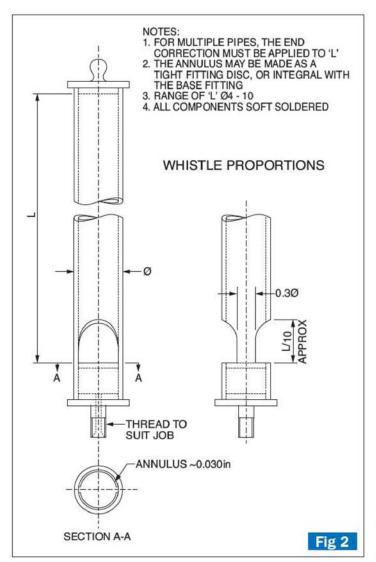
that a small air compressor. Figure 1, taken from Curly's original article, gives a general idea of the main components. Curly's distinctive general arrangement drawing entitled 'Chimney end of the calliope how to connect up', shows the relative positions of the boiler, the keyboard and the steam whistles. Figure 1 also show his design for the steam valves which would most certainly benefit from PTFE washers fitted between the stainless ball and the main body of the valves. These could guite easily be made in bulk from a length of 1/4 in. dia. PTFE stock but would need to be a tight push fit in the body. Apart from this slight modification the design should be quite adequate today.

Steam whistles

Figure 1 also shows his rudimentary design for the whistle or pipe entitled 'How to tune whistles'. He provided little other detail but I have shown a more detailed design in fig 2. with some suggestions as to the proportions and Table 1 gives details of the frequencies and lengths required for a suitable range of pipes. If piano-based 'middle C' (or C4) is taken as the start of the octave then the pipe will need to be about 15in. long, taking the end correction into account, so it might be better to base the Calliopette around 'Tenor C' (or C5), which is the next highest octave, in which case the pipe will be about 7in. long. The biggest pipe in this case (six notes below C5, that is F sharp) would be about

10in. long. You pays yer money and you takes yer chance! Note that these data are for steam in closed pipes and the lengths would be a bit shorter for organ pipes operating in air as the speed of sound in air is less at 13,510in. per second.

A closed pipe has a fundamental frequency which is an octave lower than that of an open pipe; that is, half the frequency. The formula for the acoustics of a closed pipe is as follows:

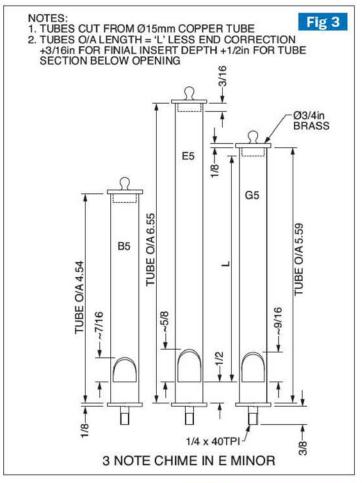

f = nv/4l

where f is the frequency in hertz (cycles per second), v is the velocity of sound in steam (15,936in. per second), and I is the length of the closed pipe in inches, without taking the end correction into account. For our purposes we can ignore the harmonics and n therefore becomes unity for the fundamental frequency; that is n = 1. Higher values of n relate to the harmonics which in a closed

pipe are odd numbers; i.e. n is 1, 3, 5 etc. (note that steam whistles do have harmonics and that harmonics are responsible for the characteristic sound of any musical instrument). The length of the closed pipe for the fundamental is therefore as follows:

I = v/4f

An end correction must be subtracted from the figures in Table 1 according to the pipe


diameter chosen. This end correction is equivalent to the tube diameter multiplied by 0.3, as detailed in **Table 2**. An end correction is necessary because the air immediately outside of the open end of the pipe takes part in the acoustic oscillation. This makes the pipe appear to be acoustically longer than its physical length. The end correction must therefore be subtracted from the calculated length to achieve the correct frequency.

Details of pipe length and other parameters for closed pipes are presented in fig 2. The data in Tables 1 and 2, of course, would be of value to anyone wishing to reproduce an authentic locomotive sound, providing that the original note is known. They also allow the manufacture of twin or multiple chime whistles which would be musically in tune.

As a matter of interest, the White Star liner RMS *Titanic* was provided with a chime consisting of three separate whistles of 9, 12 and 15in. diameter. These pipes have been salvaged and a video of them operating on compressed air is viewable on YouTube. Typical musical note combinations for a selection of chords are presented in **Table 3**.

Table 3: - Typical chords

Chord	Major	Minor
С	C, E, G	C, D sharp, G
D	D, F sharp, A	D, F, A
E	E, G sharp, B	E, G, B
A	A, C sharp, E	A, C, E

These would provide a suitable starting point for making chime whistles. A three-note chime, based on the chord of E minor, is detailed in fig 3 and shown under test in photo 1.

Before leaving steam whistles, I would like to mention the subject of tuning whistles to give a good note. As far as I can see any frequency is acceptable for a single note. I remember having a Swanee (Suwannee or slide) whistle as a child and that gave a clear, constant note throughout its range. Any length of pipe must therefore be acceptable as a whistle, unless of course you wish to be at 'concert pitch'; but how many steam locomotives ever got involved in the Proms at the Royal Albert Hall? Musical notes are relative to each other, and as long as you are not playing with other musicians all will be okay.

It is, however, important to take the end correction into account when constructing a series of pipes, as the end effect will be greater proportionately for a shorter pipe than the correction for a longer one. I also note that

the diameter of a pipe does not affect the pitch, it merely changes the volume; the bigger the pipe diameter the louder the volume. But if a pipe is long and of too small a diameter, it is possible for the harmonics to take over. The pipe will then be 'over blown' and will screech. with loss of the fundamental. The ideal ratio is that the pipe should be about four times longer than the diameter, although there is much leeway in this and lengths of up to about ten diameters are acceptable.

Wind chimes

Continuing with the subject of 'model-engineered music', I think we'll leave the Calliopette for the time being (the maths are too complicated for one thing!) and we will proceed with constructing the wind chime. It's far less work than a calliope and you don't have to learn how to play it! Ah! Music of the Spheres I hear you say - well Tubular Bells actually!

I have always fancied one of those really big wind chimes like the ones you see in the garden centres (not to annoy the neighbours of course!) but found it difficult to part with the money to buy one, when the same money would buy an awful lot of model engineering materials. Eventually I gave a thought to making one myself from copper and brass, which are materials that most of us are familiar with handling.

Using conventional model engineering techniques it proved quite easy and I have since made several of various sizes. The key to making a wind chime with a pleasant sound is, surprise, surprise, to get the thing in tune and this is not difficult as long as the tube lengths are correct and the tubes are suspended at the correct point on their length - more of which later. As only individual notes are played. it makes little difference which notes are chosen. However, longer tubes tend to produce a mellow, more interesting sound, as they are influenced more by the harmonics than the shorter lengths; that is, pipes in the range C2 to C4 will produce the best sounds but will be more expensive to make because of their extra length.

Wind chime construction

Now the ideal sized tube for a big one is about 1in. dia., but the nearest I had was a couple of lengths of 22mm copper plumbing tube left over from that last central heating job. Most of you DIYers out there probably have a small stock of this which 'will come in handy one day'. If not, it's fairly cheap and easily available at the local DIY store. My first port of call in my quest for knowledge was the internet where I found a wealth of

Table 4: - Lengths for 22mm copper chimes

Musical note	Frequency Hz	Tube length mm	Hang point mm	Musical note	Frequency Hz	Tube length mm	Hang point
C7	2093	222	49.8	F4	349.3	544	122
B6	1975.5	229	51.3	E4	329.6	561	126
A sharp	1864.7	236	52.8	D sharp	311.1	577	129
A6	1760	243	54.4	D4	293.7	594	133
G sharp	1661.2	250	55.9	C sharp	277.2	611	137
G6	1568	257	57.6	C4	261.6	629	141
F sharp	1480	264	59.2	B3	246.9	647	145
F6	1397	272	61.0	A sharp	233.1	667	149
E6	1318.5	280	62.7	АЗ	220	686	154
D sharp	1244.5	288	64.5	G sharp	207.7	706	158
D6	1174.6	297	66.5	G3	196	727	163
C sharp	1108.7	306	68.6	Fsharp	185	748	168
C6	1046.5	314	70.3	F3	174.6	770	173
B5	987.8	324	72.6	E3	164.8	793	178
A sharp	932.3	333	74.6	D sharp	155.6	816	183
A5	880	343	76.8	D3	146.8	840	188
G sharp	830.6	353	79.2	C sharp	138.6	864	194
G5	784	363	81.3	С3	130.8	890	199
Fsharp	740	374	83.8	B2	123.5	916	205
F5	698.5	385	86.2	A sharp	116. 5	943	211
E5	659.3	396	88.7	A2	110	970	217
D sharp	622.3	408	91.4	G sharp	103.8	999	224
D5	587.3	420	94.2	G2	98.0	1028	230
C sharp	554.4	432	96.8	F sharp	92.5	1058	237
C5	523.3	445	99.7	F2	87.3	1089	244
B4	493.9	458	103	E2	82.4	1121	251
A sharp	466.2	471	106	D sharp	77.8	1154	259
A4	440.0	485	109	D2	73.4	1188	266
G sharp	415.3	499	112	C sharp	69.3	1222	274
G4	392	514	115	C2	65.4	1258	282
F sharp	370	529	118	B1	61.7	1295	290

information about construction and, most importantly, tube length and tuning information.

The wind chime design I propose to describe consists of a set of tubes, a suspension plate, a striker, two support spigots, a wind vane and the suspension cord.

The lengths of the tubes are taken from **Table 4** which presents data for 22mm dia. copper tube. There are no hard and fast rules about which sizes to use except that, as stated above, the longer sizes make for a better sound.

Table 4 lists the sizes required for a series of chimes along with the point at which the chime should be suspended. This suspension point is at a node and therefore the sound of the chime is not damped when suspended at this distance from the top. Note that there is a node at each end of the tube and therefore it would be possible to make a double chime with two sets of five or six pipes and two strikers. The bottom set of pipes would be suspended from the bottom node point of the top tube. I don't know what this would sound like as I have yet to make one. The node points are situated at 22.4% of the total length from each end. The suspension holes in the base of the top tube and the top of

the bottom tube would need plastic bushes to prevent the suspension cords from touching the pipes.

The lengths are specified in millimetres, as it is much easier to mark out the copper tubes using metric dimensions and plus or minus 0.5mm is plenty accurate enough; particularly with the longer tubes.

Other metals can, of course, be used and chimes have been made from steel conduit and aluminium tube with each metal, apparently, contributing its own characteristics. However, note that Table 4 is specific for 22mm copper tube.

To be continued.

AN KEITH'S COLUMN KEI

Keith Wilson looks at filler caps and air-vents on tanks and water scoops.

WILSON'S WORDS

OF WISDOM

As long as human beings divide themselves into groups marked off by trivial culture differences and consider these differences worth dying for... we shall have wars.

Isaac Asimov.

Bob Symes' Electric Garratt/Swiss 'kroc' on the gauge 1 track.

mentioned a little time ago that all prime numbers (numbers indivisible except by 1 or themselves) were in the form (6 x N) ± 1. But, being almost human, I missed the one exception. The prime number 3 is the exception. I would like to think that most readers noticed this. Sorry! In some ways, 2 could be an exception too. but since the series of natural numbers is infinite and 2 is the only even prime, it follows that the odds against it are 1/infinity, showing that 2 cannot exist for the odds against its existence are infinite! You just can't win!

The formula works out as Six times N plus or minus 1 where N is any whole number.

So if we take N as the number 5, six times 5 is 30. Add or subtract 1 and we get 29 and 31; in this case both are primes.

Taking N as 4 we get 24 plus or minus 1, giving 23 and 25. 25 is not prime, but 23 is.

N as 7 gives $42 = \pm 1$, and this gives 41 and 43, both primes.

N as 20 gives 119 and 121. Neither is prime. 121 is the square of 11 while 119 is 7×17 .

The point is that if a possible prime (primes must all end in 1, 3, 7, or 9, apart from the first few; 2,3,5 and 7) and if the

possible prime is of the form 6N \pm 1 then it may be a prime but if it is not, then it cannot be prime.

As you will note from the above examples, all primes are $6N \pm 1$, but not all $6N \pm 1$ are primes.

"Next train's gone"!

Mathematics and astronomy are about the only two sciences where amateurs can be materially useful. Incidentally, the famous film comedian Will Hay was an amateur astronomer. His most famous film (to railwaymen) was Oh, Mr. Porter! together with Graham Moffatt and Moore Marriott. A notable scene in this film is when the heroes are trapped in a windmill and escape by clambering out onto the sails. Just once, all four sails can be seen one after the other, and all four are showing bodies on them! The opening scenes (on the 'lead-in') were taken from the back of a train, and then shown back-to-front so it looked like looking ahead, on the wrong line! Some scenes on the 'chase' before the end took some very careful posing of rolling stock; in fact one scene was shot and shown six times (from different viewpoints). In none of them can the camera(s) filming the other five

Not that it matters, but one of Will's films (*The Goose Steps Out*) just before WW2 had the first ever screen appearance of the late Peter Ustinov.

Tender topics

The matter of filler caps and air-vents on tanks arises itself. On tanks the vents are not so important for tank locomotives were not generally fitted with water scoops. The experiment was a failure, not so much of the need for scoops to be 'twoway' but for the fact that either vents were not fitted, or were too small. One or two cases occurred where tanks suddenly grew much bigger and at least in one case exploded. Twenty gallons per second requires adequate provision of a way-out for entrapped air! However, it can result that without a vent the extraction of water from the tanks by the injectors requires some ventilation for it is possible (although not very likely!) that the tender or tanks could be airtight or nearly so.

On GWR tenders, as the size increased - 2,000 gallons; 2,500 ditto; 3,000; 3,500; 4,000 from 3,000 upwards the vents increased in size (I don't know about the two smallest sizes); 3,000 vents were round, 3,500 were round but larger, the big 4,000 gallons had semi-rectangular vents. I don't know the reason(s) for this but possibly the belief that bigger engines had the bigger tenders and travelled at higher speeds might have applied.

Many years ago I had a car that would go steadily for many miles (I think it was about 50) and then pack up. I eventually traced the problem to lack of vent, but it was not apparent at first. For on short trips the tiny air-leaks in the petrol tank would have time to equalize pressure; for longer trips this would not be sufficient. Drilling a small hole in the filler cap solved the problem.

Around about 1955. somebody, not over-brilliant in mathematics, wrote in these pages that for a scoop to work the speed must be over 18 miles per hour. Therefore, to attempt using scoops and troughs is impossible for our sizes. However, the effect is scaleable, for operation depends on speed as well as size. Fluid dynamics are mighty queer cattle, but an approximation suggests that the critical speed for a 7.25in. tender is about 5mph. This is only a guess, empirical methods must prevail. Empirical - basically, suck 'em and see - try it out.

Anyway, they are probably unnecessary for us, but they look well and are easy enough to make. They could be dummies, but there is hardly much point as it is not hard to make them work.

Filler caps are self-evidently essential. Some had clamps of a sort to hold the lids down, but I have only noticed these on tanks. I have noted two types on the big tank locomotives; one with a screw handle and one with a form of toggle lever which was much quicker to operate. On the big Prairies, the filler caps were oval in shape, on tenders some had two fillers;

one each side at the back. They were 'Squircular' in shape; later one round one on the centre-line of the tender was common. As far as I know, tender filler caps had no locking devices. In the case of that ugly Great Bear tender, there was an access plate, in theory bolted down, that was located immediately over the top of the scoop. Need I say more, but 'oops'?

In some cases (our sizes now) a large filler unit can well be used - I write here mainly of narrow-gauge locomotive tenders - about 4in. diameter is not rare - and in such a case no hinges are really necessary because the weight of the cap is sufficient to hold it down, but for 'scale' or main-line locomotives the hinge type is not only 'scale' but advisable - it would be only two easily 'lost' for not all people have non-stick fingers.

Scale headlamps

The same argument applies to headlamps - they look very nice especially when made with LEDs and a small battery. Many GWR lamps had attachable coloured glasses available to show white or red so they could be used for head or taillights. I understand that all headlight 'codes' could be displayed with two lights, the exception being four lamps for a Royal train. I forget when I started supplying lamps with locomotives, but it must have been at least by the late 1970s. It paid off once; a King in Los Angeles was running with public trains, when the British

Some 101/4in. gauge locomotives.

Ambassador had a ride. Since he represented the Queen, the driver and a friend used all four lamps in front to be a Royal Train.

Whilst I am at it; when you make Perspex or similar lenses for your lamps do not paint the outsides red or white, but after polishing outside and inside paint the inside red or white as desired, they will look infinitely more realistic.

Headlamps can 'grow legs' quite easily; there are two fairly obvious 'cures' for this. One is a bolt from underneath the running plates; the other is to drill a small hole through the bracket and the lamp 'mount'. A split cotter through this hole makes it somewhat harder to 'come loose'.

This reminds me of a little incident at Walsall Arboretum. I had uncoupled from the train

prior to turning the engine round. An interested member of the public complete with obnoxious son was looking closely. As I opened the regulator to drive to the turntable obnoxious leant forward and tried to push the engine over. This was very short-lived, for he pushed hard against the smokebox with both hands! Oops! Father told him off in no uncertain terms! The locomotive was my own largest Prairie.

'Scale' day at Leyland

Weather was very fine - no blazing sunshine to cause ultra-violet skin burning and very little wind. Ideal for 'playing trains' and for giving rides to the public, who surprisingly were present in queue-forming numbers. Whilst on the matter

A 15in. big one!

A GWR/ British Rail Prairie tank.

KEITH'S COLUMN

The GWR, LNER and LMS working together.

of the public, the coming of the £1 coin has been a godsend to public running, for you can charge for rides of course or give them free, with two or three 'donation' boxes prominently displayed - locked and fixed firmly to a railing or something similar. From my experience at various tracks - it pays.

I would like to have pictures of all locomotives operating, but could hardly ask for six pages. Even with that privilege. it would take up a lot of space that would probably be better used. Also, when one can only get around on an electric chair, finding the right place to get reasonable photos without filming against the sun, or with highly distracting backgrounds is not quite as easy as writing about it is. I took one shot of a nearly-finished locomotive that looks much unfinished because the dark green of leaves in the background complete with 'black holes' between leaves made the chimneys very hard to see. This was not obvious at the time of photographing.

Pulling passengers on the main line (7½in. gauge) were a Tinkerbell, a well finished B1, a Royal Scot, an 0-8-0 (not sure of prototype, but could be an American switcher), a good looking Isle of Man 0-6-0 'Caledonia' and running but not generally taking passengers

(under test) two good-looking 'Dean Goods'. They did not run at the same time (double-heading) but were none the worse for that. Near the end of the day all steamers went down to the yard to clean up, but many potential passengers were still queuing so a couple of diesels took over.

Pulling passengers on the 'el' (elevated 31/2 and 5in.) were some very interesting locomotives, of types not often seen. A Garratt in 3½in. gauge took my attention, a couple of Metropolitan 'Growlers' (5in.) did their stuff, and what looked like two of Edgar T. Westbury's 1831 Diesel Shunters (0-6-0) were running in tandem (doubleheading) controlled by one person. A Saint, a B1, some big prototype Diesels, a Prairie (not GWR), a 'Jeannie Deans' and even that number of engines does not complete the list.

I only managed to get a distant picture of the Garratt; alas when I got to it one of the pillars of the steaming-bay's giant parasol was smack in the viewfinder; in the few seconds it took for me to move for a good shot the locomotive was in two parts, seconds later it was in three!

On the matter of the 'growlers' it might not be too well-known that Hornby did one of these for gauge O. What is possibly less well-known is the fact some early

ones were for full mains voltage, 240 volts! I can visualize the HSE foaming at the mouth at the very idea! How many were sold is unknown to me, how many severe burns resulted is also not known, perhaps just as well. Complete electrocutions were not too likely because the two poles of the voltage were only about 5% in. apart and unless two hands landed, one on each rail, then shocks and burns were more probable.

A little matter that amuses me is the use of 'scientifically proved' that so-and-so is the best in TV advertising. Apart from some mathematical matters, Science does not and cannot 'prove' anything; it can verify matters indefinitely, getting the same result every time, but that is not proof. Science can sometimes disprove something, but never the other.


A little puzzle

I have been intrigued by a little mathematical 'puzzle' that has been going around emails for a few weeks. You are invited to choose a two-digit number, subtract the sum of the two digits, then think of your number for a while, when the screen will flash up a small picture that somehow or other is relevant to your number. It seems incredible at first.

However, an alert mind will notice that every two-digit number (10a+b) minus the sum of its digits (10a+b)-(a+b) results in 9a, a multiple of 9. So all the composer needs to do is to put the same picture on each multiple of 9 and that's it.

Another mathematical trick of similar style is to write down the first 9 digits omitting the 8, and then ask someone which digit they find hardest to write. Silently multiply this digit by 9, then tell them to multiply those first 9 less the 8 by the number you have just calculated. They will be only too pleased to find that the result is a line of their difficult digit! Example, 7 x 9 = 63. 12345679 x 63 = 777777777.

The key in this case is that % is .111111111, and this number again divided by 9 is .012345679. The multiplication by 9 hides the 'secret'. .111 etc. being a repeating decimal, the trick could be carried on indefinitely.

Bob Symes' large Great Western tank locomotive.

How to be a model engineer in seven easy steps

Andy Stait looks back to when he started model engineering.

s someone who has taken up model engineering comparatively recently, I thought my experiences might help potential beginners avoid some of the mistakes I have made. These are obviously my own personal opinions and may court controversy, but I can't see why some of these ideas won't be applicable to other readers.

As our traditional manufacturing industries have disappeared from the UK, a model engineer may no longer be a time served, tool room engineer. You may be like myself and have an electronics/IT background and the only metalwork you have done was 40 years ago at school.

I've always had an interest in British steam locomotives and was aware at an early age, that my father had a cousin who built live steam models. This seemed to be a quite incredible achievement, but I kept alive the dream of one day owning or building my own locomotive. I had dabbled with OO model railways and moved on to scratchbuilding in brass and solder. A desire for something bigger made me briefly consider O gauge, but I thought it better to go for a larger live steam model, like those I had seen at fetes in my childhood.

A step in the wrong direction

Like a lot of people with a young family, money was always tight, so I became adept at car repair and pretty handy at DIY. I thought my extensive collection of tools would only need supplementing with a lathe. About 15 years ago a Myford ML4 was advertised in our local paper. Remembering that I had used Myfords at school, it seemed just what I needed and a bargain at £200, especially as two of the three chucks were still in the packing grease. I now thought I was a model engineer.

I know that good work can be done on an ML4, but not by someone as inexperienced as myself. I tried some simple metal cutting exercises, but in the end only used it to machine some bolts to length for a lawn mower repair - a job I could have done with a hacksaw! It might be a case of a bad workman blaming his tools, but I couldn't cope with the lack of any graduations on the handles.

I didn't know how to get started. The few books in the local library seemed very advanced and most dealt with clock making. I was aware that there was a magazine called *Model Engineer*, but I presumed that it had ceased publication as I could never find it in the newsagents. I bought a copy of LBSC's Simple Model

Locomotive building - Tich, from a model railway shop and this seemed to tell me some of what I needed to know, but I had no idea where to get materials from, especially the castings that were called for.

Help

I realised I was never going to get anywhere without some help. An engineering course at an evening class would have been nice, but where can one find these nowadays? A house move 10 years ago, made me determined to join a local model engineering group, but even this wasn't easy. There was nothing in the society list at my local library. The local model shop thought there was a group in Hereford, but didn't know where. There was nothing at the time in the Hereford library. Of course this should now be a lot easier with the widespread use of the internet.

It was only by chance that I saw an advertisement in the local paper for an open day at the Hereford Society of Model Engineers. I went along and was made to feel very welcome. At the first Friday evening meeting I went to, I was introduced to Stan, who readily acts as a mentor to newcomers to the hobby. He invited me to his house, showed me around his workshop and discussed suitable projects to get me started.

It was immediately apparent that a more suitable lathe was required and that amongst my tool collection, two files, a centre punch and a hacksaw isn't much of a metalworking shop!

First lesson learned

If you have little or no metalworking experience, join your local model engineering club. You will have access to a huge source of knowledge that most members will readily share.

A full-size GWR handrail.

Workshop upgrade

I subsequently found a Myford Super 7 for sale on a website bulletin board. The cost of this was offset by selling the ML4 for what I had paid for it and I kept the two new chucks.

Shortly after I had joined the Hereford SME, the club put on a coach trip to the Model Engineer Exhibition in London. This was a revelation. It was here that I realised what model engineering was all about. It provided inspiration, a source of materials and I was able to build up a good collection of tools at a very reasonable price.

Second lesson

I make no apology for repeating an oft-quoted adage: "buy the best tools you can afford". More of this later.

Making a start

I was given a locomotive chassis to get me started and I bought the wheel castings and some axle material. I quickly foresaw that I wouldn't make much progress with the free time I had available, so I bought a nearly completed LBSC Molly. I had this for about a year and made very little progress. It wasn't until I had a broken leg

and managed to spend four weeks perched on a bar stool in the workshop that it began to look any different. I had kind of assumed that having a workshop was enough and models and locomotives would almost make themselves. I hadn't factored in the time required. I was told very early on, that it takes 1,000 hours to build a locomotive i.e. 10 hours a week for two years. I think that only applies to small models built when you are experienced; be prepared to put in some hours.

I also discovered that you can't complete someone else's model just by following the drawings. When I make a part, I always mark any small error on the part with an indelible pen; you can then make a corresponding allowance on the mating part.

Third lesson

Make time. Most weekday evenings, I come home from work and now go straight into the workshop for about two hours. This still leaves me time and weekends for the family and the normal household duties and has become an accepted part of my daily routine.

Building up experience and knowledge

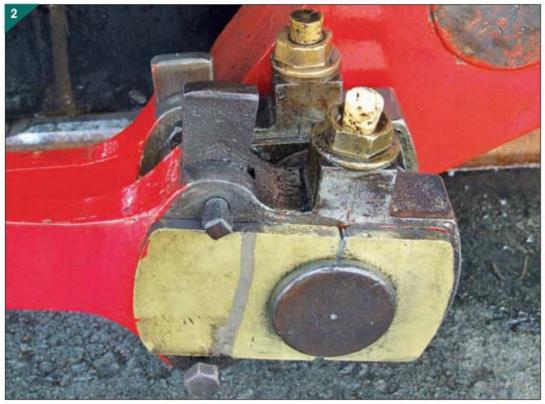
I'm a great believer in reading. Since joining the club I have become aware of vast amounts of literature on model engineering. When you are a beginner, if you are not in your workshop, use any free moments you have to read about techniques and constructional projects. My favourites are the early editions of Model Engineers' Workshop (No offence David, it is still a great magazine!). I think these are a winner, because everything was new at the time. A new magazine with new writers writing about new experiences. They are full of tips and the articles have more of a bias towards beginners.

Reading also helps you plan to be productive with your precious workshop time. I like to go into the workshop with the intention of knowing exactly what I am going to do. But, more important is to do something. If I can't produce what I intended i.e. because I discover I don't have the correct size material, I will do something else, rather than waste time.

I have found that I make the best use of time, when I go into

the workshop to perform the next operation on a piece I was working on yesterday.

Fourth lesson


Do something every time you go into the workshop, even if it is only to tidy up and prepare for the next job. Don't be disappointed by how long some operations take - it can sometimes take two hours to drill one hole.

Making the same mistake - again!

I got to the point, four years ago, where a milling machine would be useful, but fell into the same trap that I'd made with the ML4. I bought a small milling machine that had been converted from a small horizontal machine. It quickly became apparent that it wasn't suitable for anything but the smallest workpieces. I wasted no time in looking for a bigger machine. I considered the popular Far Eastern machines but discovered that a dealer could provide a fully equipped Bridgeport for similar money. At £600 plus £20 for delivery, it became the most expensive machine I own. I get a real sense of pleasure every time I use it and now I can't blame my tools.

For my money, I think a quality second-hand, British made tool or machine, beats an oriental offering nearly every time. There are a couple of exceptions; the universal bandsaw is a very useful machine as long as you modify the stand, either to your own design or copy one of the ideas published over the years. Tools by Vertex seem to be very well made and offer very good value. I think it is a question of recognising quality when you see it; experience and visits to model engineering shows is invaluable here. Anything by Mitutoyo, is to be highly recommended. A £10 pair of digital callipers are a great asset and they are cheap enough to add to machines as DROs.

Car boot sales are the place to get the best tool bargains, particularly if the seller does not appreciate their worth. Ebay is another good source, but expect to pay more. If you can

A full-size connecting rod bearing.

BECOMING A MODEL ENGINEER

find a bankruptcy auction, all your dreams will come true.

I once went to a clearance sale of a small engineering firm, where I was bidding against a few enthusiasts and dealers. Dealers are looking at their mark-up, so won't want to pay as much as an amateur. Most lathes, fully equipped with chucks and collets sold for around £150. Not a single machine cost more than £200 and these weren't all large industrial machines either, some would have been very at home in a small workshop. Smaller tools, like vices and grinders went under the hammer for between £10 and £20.

Fifth lesson

Learn to recognise quality in tooling. Expect cheap tools to have limited life and precision. If you have the space, industrial machines offer the best value.

Standards

Model engineers seem to have their own etiquette and are never critical of your work; at least not to your face! Don't be too disappointed of the quality of your earlier work, we all have to start somewhere and we aren't going to produce work to exhibition standard immediately unless we discover a latent talent. To make progress, you need to accept that a part you have made is 'good enough'. I have a very small scrap bin. as most of what others would regard as scrap is on a model somewhere. It may not look pretty, but it functions okay. There is a danger of being 'too close' to a part whilst it is being manufactured. Parts I was disappointed with when completed, now look perfectly acceptable a year later. You have only to look closely at a lot of models to see that these have imperfections. Remember, most of the prototypes we try to recreate were made in Victorian times with techniques closer to Blacksmithing. Photograph 1 shows detail of a handrail on a full-size GWR locomotive: look at the neck. These tool marks are very easy to recreate as

most readers will be aware. It is not too difficult to improve on this finish.

Sixth lesson

There is no right or wrong way to make a part. By all means take advice, but at the end of the day do whatever works for you and the facilities you have to hand.

Rectifying mistakes

It is very frustrating to spend hours making a part, only to wind the milling machine handle in the wrong direction or even turn the wrong handle as I have done in the past. Likewise, too much cut can easily be put on a tool. Don't be ashamed to use some car body filler to cover these mishaps; that nice shiny paint finish on your lathe has only been obtained by covering the castings in filler.

If the part is finished as bare steel, a welder is very useful for putting a bit of metal back. I once obtained some laser cut connecting rods that had a deep wound at the end of the cut. I should have returned them, but time and postal costs dictated it was expedient to put a blob of weld over the mark. As long as there are no slag inclusions or you use a MIG welder, this technique is surprisingly versatile. I have also used it for fabricating parts, rather than perform a lot of machining from a solid billet.

Bronze and brass parts are easily built up or repaired with silver solder or even soft solder if it isn't taking a load. **Photograph 2** shows a connecting rod bearing on a full-size quarry Hunslet. This again is the sort of repair that any modeller could improve upon.

Seventh lesson

The only standard you have to work to is the one that gives you satisfaction. We are all in this fascinating and rewarding hobby for our own pleasure. Any appreciation we get from our peers is an added bonus, but most importantly enjoy yourself.

ISSUE NEXT ISSUE NEXT ISSUE NEXT ISSUE NEXT I JE NEXT ISSUE NEXT ISSUE NEXT ISSUE NEXT ISSUE

- Northumbrian locomotive
- Empire Building making the tender
- Edwardian Elegance
- Fair Rosamund GWR 0-4-2
- Shand Mason fire engine
- Gun Drilling
- PTFE piston valves
- A knife sharpener for Christmas

Dave Fenner builds a basic tram engine.

Tony Meeks makes headlamps for a 5in. gauge *Princess of Wales*.

ON SALE 9 OCTOBER 2009

Contents subject to alteration

To help you get the best from The Model Engineer exhibition

These notes are written purely for guidance. Full information is contained in the Competitors' Information booklet which is sent to every entrant as part of the information package. If you have an item and are unsure as to the Class into which it should be entered, leave that section blank and we will take care of it. The Judges have the right to move any competition exhibit into another class if they feel that by doing so its chances of gaining higher marks or a more appropriate award are improved.

f the item is offered as a Loan exhibit please indicate this by writing Loan on the form in the box identifying the Class. Loan models are not judged but carry all other privileges associated with competition entries.

Part built models are particularly welcome in the Loan Section; visitors like to see work in progress, and entry does not preclude the item being entered in competition when completed.

The classes listed below are those associated with mainstream model engineering.

Club exhibits

Where a club is exhibiting, each model should be entered on a separate entry form and clearly identified as a club exhibit by entering Loan/Club in the class section box. This ensures that we have a full record of all models on display during the show and facilitates matters of administration and insurance.

Additional forms

If you do not wish to deface your copy of the magazine we are happy to receive photocopies of the entry form, one for each model. We will be pleased to send out extra forms if required, so if you know of a modeller who is not a reader of one of our magazines but who you think may wish to participate, please advise them to contact our Exhibitions Office, or simply photocopy the entry form for them. The success of the show depends largely on the number of models on display. Your work could well be the stimulus which inspires someone else to start in the hobby. There can be no doubt that this event is our showcase on the world of modelling in all its aspects. Every modelling discipline needs more and more participants, and it is by displaying not only the crème-de-la-crème, but also examples of work of a more achieveable standard, that people are encouraged to join into the wonderful world of modelling, in whatever aspect. We look forward to seeing a sample of your work at the show!

Engineering Section

- Hot air engines.
- General engineering models (including stationary and marine engines).
- Internal combustion engines.
- A4 Mechanical propelled road vehicles (including tractors).
- Tools and workshop appliances. A5
- Horological, scientific and optical apparatus.
- A7 General engineering exhibits - not covered

- Railway Section
 B1 Working steam locomotives 1" scale and over.
- Working steam locomotives under 1" scale.
- Locomotives of any scale, experimental, freelance or based on any published design and not necessarily replicas of full size prototypes, intended for track duties.
- Scratchbuilt model locomotives of any scale, not covered by classes B1, B2, B3, including working models of non-steam, electrically or clockwork powered steam prototypes.
- Scratchbuilt model locomotives gauge 1 (10mm scale) and under.
- **B6** Kitbuilt model locomotives gauge 1 (10mm scale)and under.
- Scratchbuilt rolling stock, gauge 1 B7 (10mm scale) and under.
- R8 Kitbuilt rolling stock, gauge 1 (10mm scale) and under.
- Passenger or goods rolling stock, above 1" scale. R9
- Passenger or goods rolling stock, under 1" scale.
- Railway buildings and lineside accessories to any recognised model railway scale.
- Tramway vehicles.

Marine Models

- Working scale models of powered vessels (from any period). Scale 1:1 to 1:48
- Working scale models of powered vessels (from any period). Scale 1:49 to 1:384

- Non-working scale models (from any period). Scale 1:1 to 1:48
- C4 Non-working scale models (from any period). Scale 1:49 to 1:384
- C5 Sailing ships and oared vessels of any period - working.
- Sailing ships and oared vessels of any C6
- period nonworking. Non-scale powered functional models including C7
- **C8** Miniatures. Length of hull not to exceed 15in for 1:32 scale, 12in for 1:25 scale, 10in for 1:16 scale; 9in for 1:8 scale. No limit for smaller scales.
- For any model boat built from a commercial kit. Before acceptance in this class the kit must have been readily available for at least 3 months prior to the opening date of the exhibition and at least 20 kits must have been sold either by mail order or through the retail trade.

Scale Aircraft Section

- Scale radio control flying models
- Scale flying control-line and free flight
- Scale non-flying models, including kit
- and scratch-built Scale flying radio controlled helicopters

Model Horse Drawn Vehicle Section

Carriages & other sprung vehicles. (Omnibuses, trade vans etc.) Wagons, carts and farm implements. Caravans.

Junior Section

- For any type of model, mechanical or engineering work, by an under 14 year old.
- For any type of model, mechanical or engineering work, by an under 16 year old.
- J3 For any type of model, mechanical or engineering work, by an under 18 year old.

All entries will be judged for standard of craftsmanship, regardless of the modelling discipline, i.e. a boat will not be competing against a military figure. Providing a model attains sufficient marks it will be awarded a gold, silver or bronze medal.

Model Vehicle Section

- Non-working cars, including small commercial vehicles (e.g. Ford Transit) all scales down to 1/42.
- Non-working trucks, articulated tractor and trailer units, plus other large commercial vehicles based on truck-type chassis, all scales down to 1/42.
- Non-working motor bikes, including push bikes, all **K3** scales down to 1/42.
- Non-working emergency vehicles, fire, police and ambulance, all scales down to 1/42.
- Non-working vehicles including small commercial vehicles (e.g. Ford Transit,) scale from 1/43 or smaller.
- Any available body shells including Concours, in any scale or material, to be judged on appearance only.
- Functional model cars/vehicles which must be able to move under their own power of any type. Can be either free-running, tethered, radio controlled or slot car, but must represent a reasonable full size replica.

DUKE OF EDINBURGH CHALLENGE TROPHY

Rules and Particulars

- The Duke of Edinburgh Challenge Trophy is awarded to the winner of the Championship Award at the Model Engineer Exhibition.
- The trophy remains at all times the property of MyHobbyStore Ltd.
 - The name of the winner and the date of the year in which the award is made will be engraved on the trophy, which may remain, at the discretion of MyHobbyStore Ltd., in his/her possession

- until required for renovation and display at the following Model Engineer Exhibition.
- Any piece of model engineering work will be eligible for this Championship Award after it has been awarded, at The Model Engineer Exhibition, a Gold or Silver medal by MyHobbyStore Ltd
- No model may be entered more than once.
- Entry shall be free. Competitors must state on the entry form:
 - (a) That exhibits are their own bona-fide work.
 - (b) Any parts or kits which were purchased or were not the outcome of their own work.
 - (c) That the model has not been structurally altered since winning the qualifying award.
- MyHobbyStore Ltd. may at their sole discretion vary the conditions of entry without notice.

COMPETITION RULES

- Each entry shall be made separately on the official form and every question must be answered.
- Competition Application Forms must be received by the stated closing date. LATE ENTRIES WILL ONLY BE ACCEPTED AT THE DISCRETION OF THE ORGANISERS.
- Competitors must state on their form the following:
 - (a) Insured value of their model.
 - (b) The exhibit is their own work and property.
 - (c) Parts or kits purchased.
 - (d) Parts not the outcome of their own work.
 - (e) The origin of the design, in the case of a model that has been made by more than one person.

NOTE: Entry in the competition can only be made by one of the parties and only their work will be eligible for judging

- Models will be insured for the period during which they are in the custody of MyHobbyStore Ltd.
- 5. A junior shall mean a person under 18 years of age on December 31st in the year of entry.
- Past Gold and Silver medal award winners at any of the exhibitions promoted by MyHobbyStore Ltd. are eligible to re-enter their model for the 'Duke of Edinburgh Challenge Trophy'. Past winners at any of the exhibitions promoted by MyHobbyStore Ltd. will not be eligible for re-entry into the competition unless it has been substantially altered in any way.
- MyHobbyStore Ltd reserve the right to:
 - (a) Transfer an entry to a more appropriate class.
 - (b) Describe and photograph any models entered for competition or display and to make use of any such photographs and descriptions in any way they may think fit.
 - (c) Refuse any entry or model on arrival at the exhibition and shall not be required to furnish a reason for doing so.
- Entry into the competition sections is not permitted by:
 - (a) Professional model makers.
 - (b) Anyone who has a financial interest in the direct supply of materials and designs to the

NOTE: If unsure, please contact the Competition organisers prior to the show.

- The judges' decision is final. All awards are at the discretion of the judges and no correspondence regarding the awards will be entered into.
- Exhibitors must present their model receipt for all models collected at the end of the exhibition and sign as retrieved.
- The signed release for each model must be presented to security staff when leaving the exhibition complex with display model(s) after the close of the exhibition.

IMPORTANT NOTE: PLEASE MAKE COPIES, INCLUDING PHOTOGRAPHS, OF ALL INFORMATION RELATING TO YOUR MODEL, AS MYHOBBYSTORE LTD WILL NOT ACCEPT LIABILITY FOR ANY LOSS.

THE MODEL ENGINEER EXHIBITION

11th - 13th December 2009

Please return completed form to: Model Engineer Competition, MyHobbyStore Ltd., Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0EL

ENTRY NO.	OFFICE	USE ONLY
	CLASS	ENTRY NO.

ENITRY FORM COMPETITION 9, LOAN MODEL C

Surname	ase print) Forename(s)	Age
		Post Code
Home Tel No	Daytime Tel No	
Model Club or Association		
lave you entered before? Y N]	
o you purchase or subscribe to a My	HobbyStore Ltd magazine? Y N N	
low many years have you been a mo	deller?	
Mail Order Protection - please tick this	box if you would prefer not to receive mail from other	companies which may be of interest to you
	and display card)	
	and display card)	
Model Description		
Model Description		HeightWeight
Model Description Model Scale Leng Type of construction	gth Width H	HeightWeight
Model DescriptionLeng Type of construction	gth Width H	HeightWeight
Model DescriptionLeng Model ScaleLeng Type of construction Parts not made by you and commercial Have you supplied a photograph? Y	gth Width H	HeightWeight
Model DescriptionLeng Model ScaleLeng Type of construction Parts not made by you and commercial Have you supplied a photograph? Y [gth Width H	HeightWeight

Steam Railway magazine Engineering news from the big railway

Danny Hopkins, Editor of Steam Railway magazine.

team Railway readers' engine No. 70013 Oliver Cromwell will be back at the Great Central Railway for its threeday 'heavy metal' autumn gala from October 9-11 and Steam Railway can reveal that it will be banked by Fairburn No. 42085 passenger turns over the weekend. A 'first' since 1967, this end of steam recreation will be added to by the expected presence of 'Black Five' No. 45767 George Stephenson on shed at Loughborough after its overhaul.

The 'Brit' and 'Fairburn' will be sharing services with 'WD' 2-8-0 No. 90733 on its first visit from the Keighley & Worth Valley Railway, and David Shepherd's '9F' 2-10-0 No. 92203 Black Prince from the Gloucestershire Warwickshire creating with resident Stanier '8F' No. 48305 a North West end of steam gala that was sorely missing from 2008. With Robinson '04' No. 63601 double-heading with the 'WD' on freight duties, the event will also feature the Lakeside & Haverthwaite's Fairburn 2-6-4T No. 42085 on two-coach local services. Photograph 1 shows the 'Fairburn' 2-6-4T No. 42085 and GNR 0-6-2 tank No. 1744.

Both the GNR N2 and Fairburn tanks have undergone major repairs and paintwork at the Great Central Railway and a mini gala was held to celebrate their return to service. Both engines were doubled up on the final departure of the day on Saturday August 15. (Photo: Rick Eborall)

The first replica Mountsorrel Granite Company private owner wagon is seen outside the shed at Rothley on September 6. (Photo: Steve Cramp)

Steam Railway Gala - Photographic Competition

We are running an informal photography competition at this year's Steam Railway Gala. Simply send in your three favourite shots by email or surface mail to: Steam Railway, Bauer Media, Media House, Lynchwood Business Park, Lynchwood, Peterborough PE2 6EA. E. danny.hopkins@bauermedia.co.uk Please mark your entry '30th Gala competition'. Also, please state whether you are over or under 16 years of age.

The under 16 winner will receive a year's subscription to the magazine, a goody bag and a footplate ride on one of the GC's fleet - as well as having their image reproduced in the magazine. The over 16 winner will get dinner for two on the Great Central legendary Sunday lunch dining train, a free subscription and their shot used prominently in the magazine. Entries by October 16 please - and good luck!

"It's certainly an exciting line up" said GCR president Bill Ford. "We've extended the event to three days and on Saturday night we'll have our usual twilight steam show. We have made a number of improvements to the railway's infrastructure this year including a canopy at Leicester North and a new lift and wheeled access toilet at Loughborough. Naturally we're delighted to be continuing our partnership with Steam Railway magazine."

Plans are in hand to arrange tours of the newly-ballasted

Mountsorrel branch line which, we are told might have some track down by the time the gala takes place. Visitors can take a bus shuttle to the branch and take a guided tour on foot with project volunteers. What will be on view is a newly painted original Mountsorrel mineral wagon (photo 2).

The shed band will play in the evening on the Saturday night at Quorn and the Steam Railway quiz will also be taking place. Get a team together.

ME

MODEL

MODEL ENGINEERS'

Subscribers, see these adverts five days early!

SUBSCRIBE TODAY AND SAVE £££'S

Machines & tools offered

- Free to collector Colchester Bantam Lathe (needs 2-speed motor) with chucks, collets, faceplate, adjustable tool posts, revolving back centre, free to collector. T. 01747 826657 Gillingham.
- Southbend 4½in. lathe with 4-jaw self centering chuck, tailstock chuck and set of change gears, perfect condition, £280. T. 0161 7989478

 Manchester
- Edwards 4ft. pedestal guillotine model 4' x 16G in good condition, £575 ONO, buyer collects.

 T. 01270 568506 Crewe.
- Emco Unimat 3 with four x chucks, taper tool post, V.slide, steady, face and clamp plates ETC. Perfecto Shaper 230V 6 x 6 table with powered cross travel to left and right, best offer secures. T. 0191 2764073 Newcastle upon Tyne.
- Myford ML10 lathe on cabinet stand, imperial and metric screwcutting, 3 and 4-jaw chucks, faceplate, drill chuck, live and fixed centres, only had light use and in very good condition, £850, buyer collects.
- T. 01525 875595 Bedford.
- Clarke 6in. hand shear and 24in. bench folder, hardly used, £60 the pair. T. 01789 778174
 South Warks.
- Complete contents of workshop,S/C lathe, milling machine, %in. capacity drilling machine, nuts, bolts, materials, small tools etc. T. 01330 824162 Aberdeenshire.
- Capstan turret to fit Harrison M300 lathe, Akron No. 720 with 6 tool stations, as new, £495.
- T. 01744 612119 St Helens.
- Eagle Surface grinder with Eclipse magnetic chuck, single-phase, buyer collects, £325. **T. 01603 702456 Norwich.**

- Warco BV20-1 screwcutting lathe with imperial and metric change gears, in near new condition, £400 ONO. Portass lathe on cast iron stand, offers? T. 0161 4392021 Stockport.
- Senior horizontal milling machine, table 15in. x 6in., single-phase with coolant, vice and clamp kit, £4,650 ONO. T. 01582 529287 Luton.
- Myford ML2 3½in. lathe with 3-jaw and 4-jaw chucks, faceplate, change gears, drill chuck, fixed steady and travelling steady, 6 speeds, £275.

 T. 01279 723088 Harlow.
- New leadscrew and half nuts for Conquest lathe, new 4in. 3-jaw chuck with internal and external jaws and backplate for Conquest lathe, £35 + P&P.
- T. 0161 6522404 Oldham.

Machines wanted

- Lienen lathe model LZ4S with accessories.
- T. 01603 787834 Norwich.
- Cutter grinder that will sharpen milling cutters, any make, type including homemade considered.

 T. 01206 393420 Colchester.

Models offered

- Burrell 2in. traction engine castings including cylinder (26) + fittings (25). **T. 01493 369269 Great Yarmouth.**
- 7¼in. gauge 0-4-0 narrow gauge locomotive and driving truck, air cooled diesel engine coupled to Eaton hydraulics. Vacuum braking on locomotive and truck, battery charging system, lights and horn, £4,000 ONO. T. 01245 401326 Chelmsford.
- LBSC Speedy, full set of drawings, chassis complete and run on air, boiler 80% complete, photocopies of words and music, £1,200.
- T. 01293 519087 Crawley.
- Simplex castings, chimney, water pump, brake shoes, coupling and

- connecting rods, best offer.

 T. 01962 734696 Hampshire.
- 7¼in. gauge sit in diesel outline locomotive powered by a Villiers 2-stroke engine complete with 4 seat double bogie carriage, both in good condition. **T. 0161 2859053**
- Minnie boiler kit, £70. No. 9 injector for Charles, £90. No. 8 injector £40. All + P&P.
- T. 01257 793379 Chorley.

Stockport.

- GWR small Prairie and BR 07 shunter, both 5in. gauge with electric drive, new, test driven only, with driving and battery car.

 Tel. 01302 773556 Doncaster.
- Stuart boiler feed pump kit for D10, complete and unused, £48.50 post paid. E. patzak@primus.ca
 T. 1 250 656 5953 (Note Canada 8 hours behind UK.)
- 101/4in. gauge locomotives, LNWR 0-6-0 coal locomotive, chassis working on air, freelance narrow gauge 0-4-0 locomotive, chassis working on air, offers?
- T. 01827 713663 Coventry.
- Set of drawings for 5in. gauge Dougal, Welshpool and Llanfair 0-4-0 plus wheel castings and outer dome casting, £50 + P&P.
- T. 01949 842958 Grantham.

Models wanted

- GWR 5700 running chassis or more for 5in. gauge.
- T. 01652 688408 Lincolnshire.

Models Wanted

- Paddington 71/4in. gauge tank locomotive. T. 0114 2693950 Sheffield
- Drawings for 5in. gauge 0-4-0 Aiax tank locomotive.
- T. 01923 670162 Watford.
- Midland single Princess of Wales, drawings, castings, boiler and any other parts. T. 01926 511570 Kenilworth.

Miscellaneous offered

- 15in. x 9in. surface plate, unused. Wartime steel 5 pint blowlamp with flexible extension for burner, both free to a good home, collection only. **T. 01275 845010 Bristol.**
- Variac 0-275V @20 Amp, £85. Rotary Switches from £5. T. 01582 529287 Luton.

Books & magazines offered

- Model Engineer magazines, approx. 400 will not split, buyer collects, £30. T. 01493 369269 Great Yarmouth.
- The Model Steam Locomotive by Martin Evans. **T. 0292 0639353**Cardiff.
- Simplex tank locomotive book by Martin Evans, £30 inc. P&P.
 T. 0785 2115947 Barnsley.
- Rob Roy and William book by Martin Evans and complete set of Rob Roy drawings, both as new, £25. **T. 01253 738631 Blackpool.**
- Model Engineer 1950 to 2007, virtually complete set of Engineering in Miniature 1980 to 2005, free to collector. **T. 01473 255676 lpswich.**
- Model Engineer magazines Vols. 113 to 117 1955 to 1958, Vols. 145 and 146, 1979 and 1980 plus 57 miscellaneous copies from 1955 to 1978, £40. **T. 01252 874622** Camberley.
- Model Engineers' Workshop magazines, from Nos. 20 to 99, £25. T. 01275 375398 Somerset.
- Model Engineers' Workshop magazines, Nos. 7, 13, 14, 26, £25 + P&P. T. 01245 321457 Chelmsford.

Books & magazines wanted

Model Engineers' Workshop No.
 132 in good clean condition.
 T. 0161 4375666 Stockport.

RY DIARY DIARY DIARY DIARY DIARY DIARY DIARY DIA **DIARY** DIARY **DIARY** DIARY **DIARY** DIARY **DIAR**

- SEPTEMBER 24-28 Leyland SME. 7%" Gauge Society AGM. Contact A. P. Bibby: 01254 812049.
- Hereford SME. Stan Compton: My Tower Clock. Contact Nigel Linwood: 01432 880649.
- 25-27 Isle of Wight MES. Exhibition at the Riverside Centre. Contact Malcolm Hollyman: 01983 564568.
- Newton Abbot & District MES. AGM. Contact Graham Day: 01626 772739.
- 25-28 74" Gauge Soc. AGM. Contact John Nicholson: 01274 564215.
- Brighton & Hove SMLE. Public Running. Contact Mick Funnell: 01323 892042.
- Maxitrak Owners Club. Factory Open Day & AGM. Contact
- Eric Penn 0208 979 4335.
 Romney Marsh MES. Boiler
 Testing. Contact John Wimble: 01797 362295.
- 26/27 Saffron Walden DSME. Public Running. Contact Jack Setterfield: 01843 852165.
- 26/27 St. Albans DMES. Annual Club Exhibition at Francis Bacon School. Contact Roy Verden: 01923 220590.
- Adelaide Miniature SRS. Public Running. Contact Peter Cooper: 8264 3471. Bristol SMEE. Annual 3½"
- 27 Gauge Rally. Contact Trevor
- Chambers: 0145 441 5085. Chichester DSME. Steam on Sunday. Contact Bill Gage:
- 01243 824473.

 Hereford SME. Public Open
 Day. Contact Nigel Linwood: 01432 880649.
- Lancaster & Morecambe
- MES. Running Day. Contact Mike Glegg: 01995 606767. Leicester SME. Public Running. Contact John Lowe: 27 01455 272047.
- MELSA. Sunday in the Park. Contact Graham Chadbone: 07 4121 4341.
- Nottingham SMEE. Running Day. Contact Pete Towle: 0115 987 9865.
- Ryedale SME. Public Running. Contact David Myers:
- 01388 661255. Stockport South MES. Running Day. Contact Mark C Pybus: 0161 973 2086.
- Taunton ME. Public Running. Contact Nick Nicholls: 01404 891238.

- Worthing & District SME. Public Running. Contact Brian Trickey: 01903 235102.
 - York City & DSME. Running Day. Contact Pat Martindale: 01262 676291. Bedford MES. Meeting.
- 28 Contact Ted Jolliffe: 01234 327791.
- Canterbury & District MES (UK). Pub & Inn Signs. Contact 28 Gina Pearson: 01227 830081.
- Romney Marsh MES. Track Meeting. Contact John Wimble: 01797 362295. Stafford DMES. David
- Bradbury: History of Fodens. Contact Chris Dobbs: 01889 270533.
- Wigan DMES. Bring & Buy. Contact John Chamberlain: 01744 882255.
- Hull DSME. Members' Current Projects. Contact Tony Finn: 01482 898434.

OCTOBER

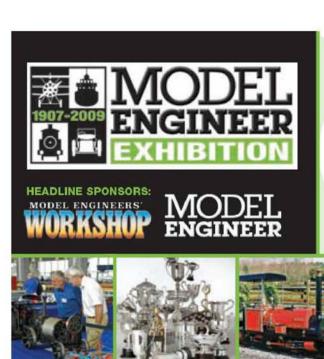
- Bournemouth DSME. Tech-Chat. Contact Dave Finn:
- 01202 474599. Cardiff MES. Bring & Buy. Contact Don Norman: 01656 784530.
- Leyland SME. Meeting. Vic Whittacker: Photography Hints & Tips. Contact A. P. Bibby: 01254 812049.
- South Lakeland MES. Contact Adrian Dixon: 01229 869915.
- Sutton MEC. Bits & Pieces. Contact Bob Wood: 020 8641 6258.
- 1 Warrington DMES. Malcolm High: Laser Cutting. Contact Duncan Webster: 01925 262525.
- Auckland SME. 50th Jubilee Model Engineering Exhibition. Contact Brian Cotton: 820 3381.
- Romford MEC. Competition Night. Contact Colin Hunt: 01708 709302.
- Hereford SME. Club Running Day. Contact Nigel Linwood: 01432 880649.
- Ickenham DSME. Public Running, Contact Phil Wimbush: 07759 275353.
- Nottingham SMEE. Traction Engine Rally. Contact Pete Towle: 0115 987 9865.
- Ryedale SME. Driver Training. Contact David Myers: 01388 661255.

- Saffron Walden DSME. Public Running. Contact Jack Setterfield: 01843 852165.
- 71/4" Gauge Soc. Diesel Gala. Contact John Nicholson: 01274 564215.
- SM&EE. Gareth Jones: Steam 3 Cars. Contact Maurice Fagg: 020 8669 1480.
- Southern FMES. Welling & District MES - Autumn Open Day. Contact Brian Thompson:
- 01920 830629 (eve). Welling DMES. Open Day & Gauge One Get-together. Contact Bob Underwood:
- 020 8859 6919. York City & DSME. 3 Andrew Carter: George Newey Clockmaker. Contact Pat Martindale: 01262 676291.
- Ascot Locomotive Society. ALS Members' Steam-Up. Contact Derek Alford: 01344 482485.
- **Bristol SMEE.** Running Days. Contact Trevor Chambers: 0145 441 5085.
- Frimley & Ascot LC. Public Running. Contact Bob Dowman: 01252 835042.
- Leicester SME. Public Running, Contact John Lowe: 01455 272047. Model Steam Road Vehicle
- Soc. Prescott Hill Climb. Contact John Bagwell: 01452 304876.
- Northampton SME. Public Running. Contact Pete Jarman: 01234 708501 (eve).
- Norwich DSME. Public Running. Contact Shirley Berry: 01379 740578.
- Pinewood MRS. Members' Running. Contact Paul Archer: 0118 989 4516. Reading SME. Public Running.
- Contact Ian Fothergill: 0118 9421679.
- Steam LS of Victoria. Public Running. Contact Graham Plaskett: (03) 9750 5022.
- Taunton ME. Public Running. Contact Nick Nicholls: 01404 891238.
- Warrington DMES. Running Day. Contact Duncan Webster: 01925 262525.
- Welling DMES. Public Running. Contact Bob Underwood: 020 8859 6919.
 - Lancaster & Morecambe MES. AGM. Contact Mike Glegg: 01995 606767.

- Leicester SME. Mike Cobley: Loco 61264. Contact John Lowe: 01455 272047. Peterborough SME. Bits &
- Pieces. Contact R. A. Meek: 01778 345142. Romney Marsh MES. Track
- Meeting. Contact John Wimble: 01797 362295.
- Taunton ME. F. Stops & D. Hartland: Screw-Cutting. Contact Nick Nicholls: 01404 891238.
- **Bradford MES. Michael Gray:** Continuing 100 years of BMES. Contact John Mills: 01943 467844.
- Bristol SMEE. David Cheesley: The Railways of East Bristol. Contact Trevor Chambers: 0145 441 5085.
- Guildford MES. M. Burt: Paint Your Model. Contact Brian Jones: 01483 531485.
- Leeds SMEE. David Beale: **Building 3 Locomotives.** Contact Geoff Shackleton:
- 01977 798138.
 Tyneside SMEE. Bits & Pieces. Contact Linda Nicholls: 01670 816972.
- Cardiff MES. Chris Tuthill: Victory to Vanguard 6. Contact Don Norman: 01656 784530.
- NW Leicestershire SME. Work in Progress. Contact Jamie Wilde: 01530 273270.
- Sutton MEC. Stan Holwill: The First Business Computer. Contact Bob Wood: 020 8641 6258.
- Worthing & District SME.
 Meeting. Contact Brian Trickey: 01903 235102.
- Chichester DSME. Talk: Steaming Through Essex. Contact Bill Gage: 01243 824473.
- Polegate & District MEC. John Bishop: Black Sea Discoveries. Contact D. F. Pratt: 01323 645872.
- 10 Glasgow & S.W. Rly Ass'n. lan Lothian: 12 months of the camera lens. Contact Bruce Steven: 0141 810 3871.
- 10/11 Nottingham SMEE. Diesel Gala. Contact Pete Towle: 0115 987 9865.
- 10/11 Saffron Walden DSME. Public Running. Contact Jack Setterfield: 01843 852165.
- 10/11 71/4" Gauge Soc. East Herts MR Autumn Steam-Up. Contact John Nicholson: 01274 564215.

odel-engineer.co.uk/events/ www.model-engineer.co.uk/events/ www.model-engineer.co.uk/ er.co.uk/events/ www.model-engineer.co.uk/events/ www.model-engineer.co.uk/events/ w

102 years


By popular demand this year's Model Engineer Exhibition will be returning to Sandown Park Exhibition Centre. The event promises to be the premier event in the model engineer's diary for 2009, with hundreds of world class models on display and entered in the world famous Model Engineer Competition. We also offer you the chance to come along and visit the UK's leading specialist suppliers, plus the opportunity to meet the clubs and societies who help and support those wishing to take up this fascinating hobby.

COME AND ENJOY:

- O The world class Model Engineer Competition
- O The SMEE Lectures
- The wide range of Club and Society model displays and working demonstrations
- The UK's leading trade specialist suppliers
- The workshop tools and equipment made by model engineers
- The railway, traction engine and stationary steam models
- The Stirling, IC and gas turbine engine models
- The aircraft and marine models
- The boat pool organised by The Surface Warship Association

11-13 December 2009 Sandown Park Racecourse

FOR ADVANCED TICKETS:

01689 899 210

TICKET HOTLINES OPEN MON-FRI, 9.00 - 17.30

www.myhobbystore.com

EXHIBITION OPENING HOURS: 10.00 - 17.00 FRI & SAT / 10.00 - 16.00 SUN. LAST ADMISSION: 1 HOUR BEFORE SHOW CLOSES EACH DAY.
Please note all attractions are correct at time of going to press but may be altered or withdrawn without notice due to unforence indocumentations.

All prices include VAT UK Mainland kit delivery £12.00 (Excludes Scottish Highlands, Islands, and Northern Ireland).

Bird Industrial Park Long Marston Stratford upon Avon Warks CV37 8RP T 01789 721444 www.modelsteamenginesuk.com

Full colour catalogue Still only £5 UK Post Free

THE MOST VERSATILE TOOL FOR TURNING & FACING

It's easy to see why our best selling turning tool is the SCLCR. It can turn and face a bar without altering the toolpost, and the 80" nose angle gives much more strength than a 60" (triangular) insert. The NJ17 insert cuts steel, stainless, cast iron, phosphor bronze, aluminium, copper, brass etc. Please state shank size required - 8, 10 or 12mm square. Spare inserts £5.36 each for 8-10mm tools, £6.20 for 12mm.

SPECIAL OFFER PRICE £33.90 (MRRP = £64.04)

USE THE OTHER 2 CORNERS FOR ECONOMY!

Our SCRCR rough turning tool uses the same inserts as the 8 and 10mm sq SCLCR tools above, and the boring bar below. The good news is that it uses the other two corners! These very strong 100° corners are rigid enough for rough or intermittent turning. The insert is mounted at 75 deg to the lathe axis. 10mm sq section only.

SPECIAL OFFER PRICE £35.90 (MRRP = £64.04)

PROFILING WHEELS or SHAPING AXLES & PILLARS?

If you need to create complex shapes, our SRDCN button tool is invaluable. The 10mm square shank holds a 5mm dia cutting insert, and gives great versatility, superb strength and excellent tool life. The late Mr D Hudson of Bromsgrove SME used these tools for many years to profile the special form of tyre treads for his self-steering wheel sets with great consistency. Spare inserts just £4.55 each.

SPECIAL OFFER PRICE £33.90 (MRRP = £62.77)

TURN SMALL DIAMETERS with LIVE CENTRE IN PLACE!

The SDJCR tool uses a 55° insert, allowing access to small diameter components when using a tailstock centre. It can also profile back-angles.

The NJ17 insert cuts steel, stainless, cast iron, phosphor bronze, brass, copper, aluminium etc. Shank size 10mm square section. Spare inserts just £5.36 each.

SPECIAL OFFER PRICE £33.90 (MRRP = £64.04)

A TOP QUALITY BORING BAR FOR YOUR LATHE

Bar Dia.	Min Bore
8 mm	10 mm
10 mm	12 mm
12 mm	16 mm
16 mm	20 mm

Here's your chance to own a top quality boring bar which uses our standard CCMT06 insert. Steel shank bars can generally bore to a length of approx 5 times their diameter. Please state bar dia req'd - 8, 10, 12 or 16mm. Spare inserts just £5.36 each.

SPECIAL OFFER PRICE £36.90 (MRRP = £81.84)

WAKE UP FROM YOUR NIGHTMARE WITH KIT-Q-CUT!

The original and famous Kit-Q-Cut parting tool fits the vast majority of ME lathes including ML7 & ML10 machines, regardless of toolpost type. The tool careffortlessly part through 1.5/8" dia. bar. It comes complete with key to insert and eject the tough, wear resistant insert. Cuts virtually all materials. Spare inserts just £8.37 each.

SPECIAL OFFER PRICE £49.50 (MRRP = £79.90)

55° NEUTRAL THREADING and PROFILING TOOL

Our SDNCN tool with neutrally mounted 55° insert allows Whitworth, BSF & BSP threads to be generated, as well as profile turning - both towards and away from the chuck. The 10mm square shank comes as standard with 0.2mm point radius insert. Inserts also available with 0.4mm or 0.8mm radius at the same price of £5.36 each.

SPECIAL OFFER PRICE £35.90 (MRRP = £64.04)

EXTERNAL THREADCUTTING TOOL

Our external threading tools use the industry standard 16mm 'laydown' triangular (3-edge) inserts. With tough, fully ground HSS inserts, coated with titanium nitride for wear resistance and smooth cutting, threads can be cut at slow speeds - even by hand-revolving the chuck! Tools are right hand as shown in picture. Insert not included - order separately at £13.37. See our website formore information.

SPECIAL OFFER PRICE £39.00 (MRRP = £62.20)

INTERNAL THREADCUTTING TOOL

Our internal threading tools use the industry standard 11mm 'laydown' triangular (3-edge) inserts. With tough, fully ground carbide inserts, quality threads can be cut with ease. Tools are right hand as in picture. Choose shank dia. required - 10, 12 or 16mm. Insert not included - order separately at £11.13. See website for more information.

SPECIAL OFFER PRICE £39.00 (MRRP = £62.20)

TURNING/BORING/PARTING TOOLS COME COMPLETE WITH 1 INSERT

Please add £2.00 for p&p, irrespective of order size or value

GREENWOOD TOOLS

Greenwood Tools Limited
2a Middlefield Road, Bromsgrove, Worcs, B60 2PW
Phone: 01527 877576 - Fax: 01527 579365
Email: GreenwTool@aol.com

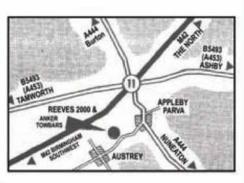
Buy securely online: www.greenwood-tools.co.uk

Introducing "Indy"

The 5" Gauge 0-4-0 Industrial Shunter

www.compass-house.co.uk

High Street, Rotherfield, East Sussex, TN6 3LH PHONE: 01892 852968 - 07711 717067 - 07811 048354 sales@compass-house.co.uk


New Online Shop at www.ajreeves.com Over 8000 different items available to order 24 hours a day, 7 days a week! The bit of the bit

Visit the Shop That's Got the Lot!

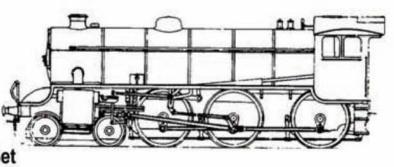
Castings,
Drawings,
Boiler Fittings,
Paint,
Transfers,
Drills,
Taps & Dies,
Bar Stock,
Rivets,
Bolts, Screws,
& Washers,
Spring Steel,
Brazing & Silver
Solders

and much more.

Reeves 2000, Appleby Hill Austrey, Warks, CV9 3ER

9:00am-4.30pm Monday - Friday 9:00am-12.00pm Saturday

The World's Largest Stockists of Model Engineering Supplies



As featured in 'Model Engineer...'

Springbok 4-6-0 Class B1 L.N.E.R Tender Loco in 5" Gauge

Castings available to order online or page 88 (26th Edition Catalogue), ref 19/0xx...

Main Horns
Main Axleboxes
Stretchers
D&C Wheels
Bogie Horns
Bogie Axleboxes
Bogie Wheels
Cylinder Casting Set
Saddle

Smokebox Door Chimney Dome Tender Horns Tender Cast Springs Tender Axleboxes Tender Wheels Cast Grate Handpump

Designed in 5" by Martin Evans, a most successful passenger hauler, the first series being named after breeds of antelope. Described in M.E. Vol. 121-123

Trade Counter Now Fully Stocked and Open to Callers - ALL WELCOME

Reeves 2000 Appleby Hill Austrey Warks CV9 3ER 9:00am-4.30pm Monday - Friday 9:00am-12.00pm Saturday Closed Sun, Bank Holiday Sat & Mon Tel: 01827 830894 sales@ajreeves.com Fax: 01827 830631 http://www.ajreeves.com 26th Edition Catalogue

UK: £7.00 inc p&p Europe: £8.00 inc p&p Rest of World: £12.00 inc p&p New Price List: 4 x 1st Class Stampa

Myford-Emporium

www.myford-emporium.com . myfordemporium@aol.com

For all your Myford needs

We stock used Myford lathes, parts, accessories and paint **WORKSHOPS CLEARED & SINGLE MACHINES WANTED** We buy anything to do with Myford - CASH WAITING PLEASE PHONE: 0844 44 11 777 (Local Rate)

TAKE A LOOK AT OUR WEBSITE

www.myford-emporium.com

ohn Winter & Co. Ltd. · MAKE YOUR OWN CASTINGS · Model Engineering and Small Scale Apply to Carol White for a FREE Catalogue/ Price List • Ingots • Safety wear • Casting fluxes • Refractories, thermal blankets & bricks Oil bonded sands/sands/binders P.O. BOX 21 Washer Lane Works, Halifax HX2 7DP. Tel: Halifax +44(0)1422 364213 Fax: +44(0)1422 330493 www.johnwinter.co.uk email: carol@johnwinter.co.uk

THE DESIGNS OF KOZO HIRAOKA

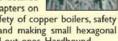
MODEL ENGINEERS! NO CASTINGS REQUIRED!

In our totally biased opinion, Kozo Hiraoka is the best model locomotive designer writing today. Because English is not his native tongue, Kozo makes extensive use of drawings, rather than text, to show machining or assembly operations and these make his books extremely clear, especially for the beginner. All his designs are for 31/2" gauge, but the books include aids to help building them in larger gauges, and the geared engines do not require castings. The Switcher design calls for wheel castings, but these can be fabricated. All of the books include full drawings, albeit in half size. Four of his five designs are based on American logging geared locomotives, but one is a conventional rod engine. Even if you have only just bought your first lathe, drilling machine and (ideally) milling machine, and have never used them before, with patience and time you can build a working model steam locomotive from any of these books. All are very well laid out and printed hardbound books, but it is the quality of the contents that sets them apart. Kozo's five designs are:

Building the Shay • £46.85

The author's home is a flat where hobby space is limited, which influenced his choice of gauge and prototype - a Shay consists of a number of small sub-assemblies, with the boiler being the largest individual item. Kozo also wanted a prototype that could be built without castings so everything on this engine is fabricated, or turned from the solid. The drawings are very detailed, but what sets this book apart are the instructions on how to build individual parts, often using

series of drawings to illustrate sequence etc. The main drawings are metric. 194 pages. Drawings, numerous photos of set ups, and numerous sketches.


Building the Heisler • £46.85 A geared engine like the Shay, the Heisler differs in that the power unit is a V twin driving a central drive shaft to the outer bogies, the axles of which are connected by driving rods. In quality and extent this book is the same as the Shay one - Great! Full drawings (Imperial measurements), numerous photos and sketches of set ups.

This is Kozo's manual on building the third (and prettiest) of the three geared engines - the Climax. Usual incredibly high quality presentation, and here including a description of how you can make your own skew-bevel gears - an operation previously thought impossible on an amateur model engineers equipment. The drawings are metric.

Building the New Shay • £46.85
In this latest book, Kozo comes full-circle, returning to his first locomotive type - the Shay geared locomotive. However this design is based on a much later design of Shay, from the 1920s, and is both slightly larger than his first design, but includes the improvements which were brought in during the 30 or so years since the previous prototype was built. If it is possible, this book is even more detailed than the earlier ones, and it also includes extra chapters on

building the design in 71/4" or 71/2" gauges, the safety of copper boilers, safety valves, tube joints, O-rings for live steam use, and making small hexagonal screws. 326 pages in all, including a number of fold out ones. Hardbound

The Pennsylvania A3 Switcher • £46.85

This design is a conventional locomotive, based on a small American prototype - an 0-4-0 tender locomotive the Pennsylvania Railroad used for shunting tightly curved locations. It shares common characteristics with Kozo's other designs in that it is designed for 31/2" gauge, but can be scaled up to 71/4" gauge, involves no castings other than possibly the driving wheels, everything being built from the solid or fabricated. The drawings are imperial, and the descriptions

are, as always brilliant, being mainly illustrative drawings rather than text. This engine is a great first project for the beginner, but will also be of interest to all model locomotive builders. 264 pages. Full drawings and numerous photographs. Hardbound.

Prices shown INCLUDE U.K. Post & Packing (overseas customers please allow 10% extra for delivery)

IF THESE BOOKS SEEM PRICEY, consider how much you would pay for drawing sets containing 60-70 sheets of drawings, and think again! And you get full construction details, hints, tips and ideas, not to mention photographs galore, all in a quality hardbound book.

Mail Order (no stamp required in the U.K.) to:-FREEPOST (BA 1502) Rode Frome Somerset BA11 6UB Tel: 01373-830151 Fax: 01373-830516

Secure on-line ordering: www.camdenmin.co.uk

CAMDEN MINIATURE STEAM SERVICES

Eccentric Engineering

The Diamond Tool Holder

· Versatile and easy to use

· Simple resharpening

 Roughing and finishing cuts

· Square shoulder facing

 Round nose work (using round HSS)

- · Point radius
- No special cutting tips needed
- 55° & 60° Thread cutting (using same jig)
- · Tool bits easy to replace

Designed and manufactured in Australia since 1985, the Diamond Lathe Tool Holder is unique in that it holds any standard piece of ¼" square or round High Speed Steel at a tangential angle to the work piece.

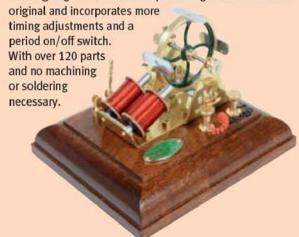
Due to its design, all the clearance angles for general purpose cutting are pre set; only the top face is sharpened. This is simple to achieve on any bench grinder using the grinding jig that comes with each tool.

Four sizes are available, from mini lathes up to full size tool room lathes. All holders come complete with grinding

jig, hex key, one square HSS tool blank and detailed instructions.

For more information and ordering, visit our website at

eccentricengineering.com.au

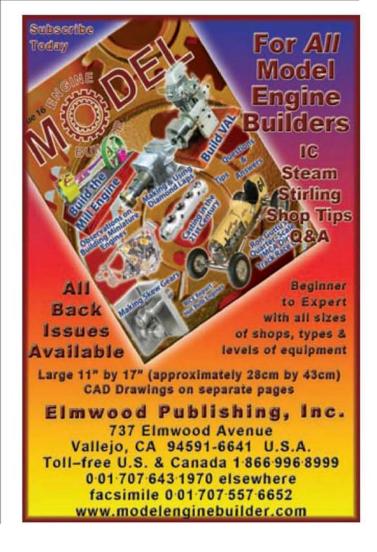


Grinding Jig

The First Electric Motors Build an Historic Model Engine Kit

Introducing the OMC-4 A Revolving Armature Engine

The latest in our continuing series of early electromagnetic engine kits. Based on designs of the 1800's, the OMC-4 fully working engine is a more compact design than Froment's



See the videos of all our engines on our new web site

www.oldmodels.co.uk

Tel: 01243 575403 Email: info@oldmodels.co.uk

The Old Model Company Limited, PO Box 455 Chichester, West Sussex UK PO18 9ZH

Model Engineer Classified

ALL LIVE STEAM ENGINES WANTED

including BROKEN or JUST WORN OUT PART BUILTS considered

- ALL LOCOS WANTED from GAUGE 1 to 10%" especially BRITANNIA, A4, A3, SADDLE TANK and anything large and unusual. - ALL TRACTION ENGINES WANTED from 1" to 6" including SHOWMANS, BURRELLS and PLOUGHING etc.
 - ALSO WANTED STATIONARY ENGINES, BEAM ENGINES, VERTICALS, HORIZONTALS, STUART TURNER etc.

ANY ENGINEERED SCALE BUSES, LORRIES, CARS etc considered.

for a fast friendly

TELEPHONE: 01507 606772 or 07717 753200 and ask for Kevin

possibly in your area today. www.railwaycottages.info

ANTIQUE STEAM

Buy all steam locomotives, traction engines, part built models and complete workshops (left swept clean) (Any distance - anytime)

For a Professional friendly service please telephone:

Graham Jones M.Sc. 0121 3584320 www.antiquesteam.com

BA FASTENERS IN BRASS STEEL & STAINLESS

SPLIT PINS, TAPER PINS, ROLL PINS, TAPS, DIES, DRILLS, NUTS WASHERS, RIVETS, MATERIALS

nps for 28 Page List (Overseas £2.50) 'Quote Me'

"ITEMS" MAIL ORDER LTD. Mayfield, Marsh Lane, Saundby, Nr Retford, Nottinghamshire, DN22 9ES Telephone 01427 848880 Fax 01427 848880

Breaking MYFORD ML7 & SUPER 7 lathes

• World wide shipping • ·We accept cards on mail order · (Mylord ML10, ML7 & Super 7 lathes always wanted) Sorry we do not stock parts for other makes of lathes We are open Monday-Friday 9 - 5pm.

NEW resiliant mounted motors from £165 inc. val

LATHE PARTS . lathe-parts@new-or-used.co.uk Tel: 01205 480 666 • Near Boston, Lines, UK, wta

GB BOILER SERVICES

COPPER BOILERS FOR LOCOMOTIVES AND TRACTION ENGINES etc. MADE TO ORDER

Constructed to latest European Standards 71/4" guage and P.E.D. category 2 Specialist Enquiries, Prices and Delivery to:

Telephone: Coventry 02476 733461 Mobile: 07817 269164 • Email: qb.boilers@sky.com

THINKING OF SELLING YOUR LATHE MILL OR COMPLETE WORKSHOP?

and want it handled in a quick, professional no fuss manner? Contact David Anchell, Quillstar (Nottingham).

0115 9206123 07779432060

DIESEL SOUND UNITS

Controls for idle speed. max. revs., turbo, cylinders, tone and volume.

DESS-12B for 12v, DESS-24 for 24v

£34.95 plus £3 p&p

TRAX CONTROLS, PO Box 419, Norwich NR1 3BZ. Tel: 01603 610956 SAE for details. www.traxcontrols.com

Samson Models

Machine eut gears including differential
Fully tested and certified ballers (Rell & AJB Ballers)
prehensive castings, name plates, spun brass chimney caps
All nermally in stock and posted by return
Cast wheel aptions as

LYNX MODEL WORKS LTD.

Units 5a Golf Road Industrial Estate, Enterprise Road, Mablethorpe, Lines LN12 1NB Tel/Fax: 01507-479666 Mobile: 07899-806689 Website: www.lynxmodelworks.co.uk

Email: info@lynxmodelworks.co.uk

PENNYFARTHING TOOLS Ltd. The Specialist Tool shop

Quality Secondhand Machine Tools at Sensible Prices

We purchase complete Workshops, Machines, Models and Hand Tools. Agreed settlement on inspection. Distance no object.

Tel: Salisbury 01722 410090 · www.pennyfarthingtools.co.uk

EXPANSION INTO A NEW ADDRESS

Lynx Model Works Ltd and our 3 Associated Wholly Owned Companies are pleased to announce that we have moved all of our business, including office facilities into 3 Industrial Units at Mablethorpe giving us over 3,500 sq feet of workspace. As a consequence we have also employed further staff and now have 12 Engineers and Fitters working to produce even more beautiful working live steam models.

We now have a specific hand machining workshop, dedicated CNC workshop with paintshop and a specific Fitting / Assembly Workshop with skilled and experienced staff operating in all areas. Our core staff of 5 engineers have now between 5 and 7 years experience with us which is being rapidly transferred to our newer members who are already producing high quality finished working locomotives and other steam engines for our clients.

Our workload has continued to grow throughout the difficult financial period that the country is experiencing and we have, therefore, decided to grow and provide our customers with a faster response to their needs.

We are also building a small batch of pre-sold 7 1/4" gauge GWR "CASTLE" Class 4-6-0 Tender Locomotives commencing in early 2010 and invite enquiries from clients wishing to buy one of these or any similar live steam locomotive.

Renowned Quality & Service From a Well Established and Successful Business

ALL MAJOR CREDIT AND DEBIT CARDS ACCEPTED

Call John Clarke on 01507-479666

NEW OFFICE ADDRESS: LYNX MODEL WORKS LTD, UNIT 5a GOLF ROAD INDUSTRIAL ESTATE, ENTERPRISE ROAD, MABLETHORPE, LINCS, LN12 1NB

BOOST PHASE CONVERTERS

The UK's most advanced phase converters with a unique 3 year guarantee. Never beaten on price.

Tel: 01344 303 311 Fax: 01344 303 312 Mob. 07952 717960 www.boost-energy.com info@boost-energy.com

BOOST HAS BEEN MANUFACTURING HIGH QUALITY PHASE CONVERTERS IN THE UK SINCE 1957

Model Engineer Classified

Model Engineers

Member Assa of Copper Boiler Manufacturers (ME)

COPPER BOILERS

For Locomotive, Traction, Marine & Stationary engines, to PER cat 2. All copper construction, silver soldered

ughout using quality materials to th

tandards required by the APCBM/S ER, & relevant Model Engineering

sociations. CE marked and cer errof test and conformity supplied.

COMPLETE HOME WORKSHOPS

AND MODELS PURCHASED. DISTANCE NO OBJECT

Model Engineering Products (Bexhill)

www.model-engineering.co.uk Email: mep1@btconnect.com

Manufacturers of 5" and 71/4" diesel outline battery electric locomotives and rolling stock. Visit our shop to see the stock. Colour brochure inc. p&p £1.75 PHONE/FAX. 01424 223702 MOBILE 07743 337243

> 17, SEA ROAD, BEXHILL ON SEA. EAST SUSSEX. TN40 1EE.

Lots of:

Machine Equipment, Tooling, Cutting Tools, Inspection Items etc. Details & list on request

TENGA

Tel: 01425 622567

NEIL GRIFFIN

COPPER TUBE,

SHEET, BAR and other non-ferrous metals

Send 9"x 4" SAE for lists.

R. Fardell.

4 Sandstone Close,

Honley, Holmfirth

HD9 6HA.

Tel: 01484 661081

Engineering Services Machining for Model Engineers From drawing, sketch, pattern etc. Friendly personal service. Telephone / Fax: 01727 752865 Mobile: 07966 195910

Tel: Mike Bidwell on 01245 222743

Cheddar Valley Steam

Bespoke copper boilers for the model engineer.

Handcrafted with over 25 years of experience. All boilers are tested & supplied with a certificate of conformity. Materials & kits also available.

Contact us for a no obligation quote: Cheddar Valley Steam Unit 4, Castle Mills Industrial Est, Biddisham, Somerset, BS26 2RE Telephone: 07789 681977 / 01934 751285

Don't know what it's worth?

- Good prices paid for all live steam models Locomotives from gauge 1 to 101/4 inch Traction engines to 6 inch scale Part-built or broken through to exhibition quality
- A no-obligation offer and firm decision over the telephone
- Fully-insured collection nationwide
- Payment in full on collection

Speak to the experts

STATIONROADSTEAM.COM

Build, buy & sell all types and sizes of locomotives, traction & stationary engines Call Mike or Jayne Palmer on 01526 328772

Station Road Steam Ltd, Unit 16 Moorlands Industrial Estate, Metheringham, Lincs LN4 3HX Open daily Monday to Friday from 8am to 6pm, visitors welcome by appointment

The Workshop Practice Series (WPS)

is a comprehensive list of new and recently revised titles which have become standard referenceworks for amateur and professional engineers.

Priced £6.95 each, plus p+p

- 1 Hardening, Tempering and Heat Treatment - Tubal Cair
- Vertical Milling In the Home Workshop - Arnold Throp
 - Screwcutting in the Lathe Martin Cleeve
- Foundrywork for the Amateur Terry Aspin
- Milling operations in the Lathe Tubal Cain
- Measuring & Marking Metals Ivan Law
- The Art of Welding W.A. Vause Sheet Metal Work R.E. Wakeford
- Soldering & Brazing Tubal Cain
- Saws & Sawing Ian Bradley
- 11 Electroplating J. Poyner
- 12 Drills, Taps and Dies Tubal Cain
- 13 Workshop Drawing 2nd Revised Edition - Tubal Cain
- 14 Making Small Workshop Tools Stan Bray 15 Workholding in the Lathe Tubal Cain
- 16 Electric Motors 2nd Edition Jim Cox
- 17 Gears & Gear Cutting Ivan Law
- Bask Benchwork Les Oldridge
- 19 Spring Design and Manufacture Tubal Cain
- 20 Metalwork & Machining Hints & Tips Ian Bradley

- 21 Adhesives and Sealants David Lamma
- 22 Workshop Electrics Alex Weiss
- 23 Workshop Construction Jim Forrest & Peter Jennings
- 24 Electric Motors in the Home Workshop lim Cox
- 25 The Backyard Foundry Terry Aspin
- 26 Home Workshop Hints & Tips Edited by Vic Smeed
- Spindles Harprit Sandhu
- 28 Simple Workshop Devices Tubal Cain
- 29 CAD for Model Engineers D.A.G. Brown
- 30 Workshop Materials Alex Weiss
- 31 Useful Workshop Tools Stan Bray
- 32 Unimat III Lathe Accessories Bob Loader
- 33 Making Clocks Stan Bray
- 34 Lathework: A complete Course Harold Hall
- 35 Milling: A complete Course Harold Hall
- 36 Photo Etching Brian King and Azien Watkin
- 37 Dividing Harold Hall38 Tool and Cutter Sharpening Harold Hall
- 39 Model Engineers' Workshop Projects Harold Hall
- 40 Bearings Alex Weiss
- 41 Grinding, Honing and Polishing Stan Bray
- 42 The Metal Workers' Data Book Harold Hall
- 43 The Mini-Lathe David Fenner

We also sell plans, tools, books, Model Engineer & Model Engineers Workshop back issues and binders please go to www.myhobbystore.com to see our full range of products

Order today at www.myhobbystore.com or call 0844 848 8822 PHONE LINES OPEN 10.00AM - 4.00PM (MON-FRI) my lobbystore

THE BEST OF

Featuring some of the best engine designs from the last 100 years

INSIDE VOLUME 1

- Plans for a hot air engine and 2 steam engines designed by Stan Bray
- A locomotive design from Martin Evans
- I/C and steam engines from Edgar Westbury
- Workshop articles from the pages of Model Engineer
- Key articles looking at workshop tools and techniques

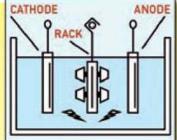
RDER YOUR COPY TO

buy online at my bbystore or call

Phone lines open Mon-Friday, 10am - 2pm

G.L.R. METAL FINISHING PRODUCTS

Why pay minimum charges for small quantities - Do it yourself - Do it now - Do it well


BRIGHT NICKEL PLATING KITS

Electro Plate directly on:

Copper - Brass - Iron - Steel

Welded Brazed or Soldered Joints "TEK-NICK" Workshop Kit £68.80 + Carr £8.50

Instructions given with kit.
Replacement components available

"KOOLBLAK"

Simple immersion at room temperature.
Permanent heavy duty blacking for:

Steel - Iron - Cast Iron

Professional finish, no dimentional changes. A superlative black oxide finish on steel.

"KOOLBLAK" Starter kit £32.00 + Carr £8.50
Instructions with all kits.

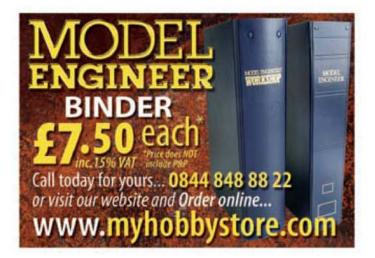
"TECHTRATE" Steel blackening in salts. Gives an uniform Jet Black finish or on a polished surface gives a Blue/Black finish.
The solution operates at 141C / 285F. Ideal for - tools, small arms, fasteners or fittings. £39.00 + £8.50 Carriage.

"ZINCFAST XL" Workshop kit £76.50 + £8.50 Carriage

Produces a bright zinc deposit on Steel & Iron. For Car & Motorcycle components. Zinc is highly valued as a rustproof finish, suitable for all types of fasteners. *Instructions with all kits - Replacement components available.*

"DRY ACID SALTS"

- £8.95 + £2.50 Carriage -

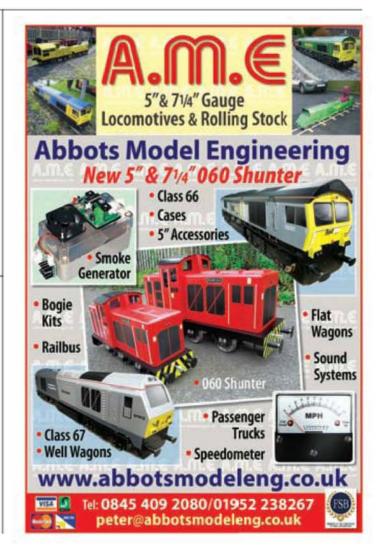

"DRY ACID SALTS"

500GMS-Makes up to 8 litres of acid dip solution

These dry acid pickling salts are a general purpose mixture of acid salts which when dissolved in water provide a convenient and effective alternative to acid solutions. Effective on many metal surfaces such as Steel, Copper, Copper alloys and Zinc Rubber, PVC Polythene or Polypropylene vessels are suitable to be used as containers for the Acids Salts Solution.

G.L.R. DISTRIBUTORS, UNIT 3, GRESLEY CLOSE, DRAYTON FIELDS, DAVENTRY, NORTHANTS. NN118RZ

• Tel: 01327 878988 • Fax: 01327 876396 • Mob: 07860 858717 • E-Mail: peteglr@btopenworld.com
Web site: www.modelmakingsupplies.co.uk Send 6 first class stamps for catalogue & Price List
OPEN TO CALLERS - Monday-Friday 9.00am - 5.00pm SATURDAY 9.00am - 11.00 am



12 & 24V MOTORS AND SPEED CONTROLLERS
SPROCKETS AND CHAIN . GEARS
SPEEDO'S . AMMETERS . BATTERY CHARGERS
PNEUMATICS INCLUDING VACUUM/PRESSURE PUMP
BATTERY CARE PRODUCTS . SPRINGS . BEARINGS
WHEEL BLANKS . SIGNALS . FUSES . LED'S . SWITCHES
TEL:0870 9089373 (national rate) . FAX:01282 613647

TEL:0870 9089373 (national rate) FAX:01282 613647
EMAIL: pselectronics@btinternet.com FOR YOUR FREE LIST

PARKSIDE RAILWAYS

UNIT 2e & 3J, VALLEY MILLS, SOUTHFIELD ST. NELSON. LANCS. BB9 OLD

IME AND WORKSHOP MACHINERY

Genuine Used Machines & Tooling

144 Maidstone Road, Foots Cray, Sidcup, Kent DA14 5HS

Telephone: 0208 300 9070 - Evenings: 01959 532199 - Facsimile: 0208 309 6311 www.homeandworkshop.co.uk • stevehwm@btopenworld.com

Opening Times: Monday-Friday 9am-5.30pm - Saturday Morning 9am-1pm

10 minutes from M25 - Junction 3 and South Circular - A205

Harrison M250 5" x 30 lathe

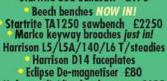
Beautiful selection

Myford Super 7

Colchester Chipmaster lathe

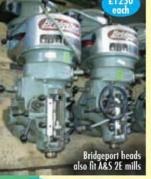
Milling/Drilling ground X-Y table


Harrison 140 lathe


earbox &

wer cross feed

Adcock & Shipley 2E vertical heads, slotting heads £625 / £495 / £625 J & S grinding wheel balancer + balance £395 J & S balance + bottom base only £80 Colchester Triumph 2000 lathe £4250 Elliot Sturdimill (coming in) £2250 **Colchester Mascot**


Boxford AUD Mk11 5" centre height + gearbox

Colchester Bantam lathe

£1250

Taylor Hobson Model K engraver

Emir 48" x 48" + 4 v

SIP **NEW** (old stock) drilling machines, better quality!

£745

Eagle 5W (wet)

Myford Super 7B lathe, almost spotless!

Myford ML10 / 18" centres + stand

Harrison / Colchester etc. D14 tooling toolpost grinder

Boxford AUD 4 1/2" gearbox, power cross feed

£2450

Criterion 12" x 9" swivel table

Crompton/Tyco NEW motor for ML7/Super 7

Prazimat lathe

9070 TO CHECK AVAILABILITY OR TO OBTAIN OUR LIST ALL PRICES EXCLUSIVE OF VAT DISTANCE NO PROBLEM! **DEFINITELY WORTH A VISIT**

RJH multiangle angle plate

J & S wheel balancer

SPS Minibar

Die head 20DX

Myford Speed 10 long bed

Dickson toolposts to suit Colchester Mascot (others available)

Lathe travelling steadies

HME fast burner melting pot

Edwards 12" pedestal guillotine

Alexander profile engraving grinder

Vanco rare 2" vertical belt linisher

Stent tool and cutter grinder + tooling

Abwood 6" older style swivel machine vice

Keyway broaches 7/16" 18mm

Crompton Parkinson Foot Mounted 2HP 240V / single phase 1400 revs as new.

English 7" rotary table

Astra tapping machine

Smart and Brown 3 1/4" dividing head

Jacobs 3MT 1" ball-bearing drill chuck

€345

Die heads 5/16" & 1/2"

4 jaw chucks

Q and S 6" power hacksaw + coolant

Norton

>>>>>>>>

dedicated to the model engineer

Eclipse 9" magnetic chuck

Denford Viceroy buffer's

We are still

£345 Imperial M300 Ainjest

SEE OUR WEBSITE

Chester Machine Tools

DB8VS LATHE

FEATURES

- Digital Speed Readout
- Variable Speed Spindle
- · Metric and Imperial Thread Cutting
- · Hardened and **Ground Bedways**
- Cast Iron Construction
- Centre Distance
- Swing Speeds Motor

DB11VS

Weight

- 210mm Variable 50-2000rpm

Centre Distance

Swing over Bed

Spindle Speeds

£1199.00

Net Weight

Spindle Bore

Motor

HV128 BANDSAW

700mm

280mm

26mm

1200w

180kgs

125-2500 rpm

FEATURES

Thread Cutting

4" x 6"/100 x 150mm 65/95/165fpm 1/3hp 62kgs

Digital Speed Readout • Variable

STANDARD ACCESSORIES

Tray . Rear Splash Guard

Spindle Speed . Metric & Imperial

3-Jaw Chuck • 4-Jaw Chuck • Coolant

CENTURY MILL

- · Digital Depth Readout
- · Fine Feed Quill
- · Heavy Duty Cast Iron Construction

Max Drilling Capacity Max End Mill Capacity Max Face Mill Capacity Table Size Cross Travel Long Travel Taper Speeds Size Weight

70mm 600x180mm 200mm

MT3 50-3000rpm 720x565x1020mm

CHAMPION 16VS

- Variable Speed Spindle
 Dovetail Column
- Tilting Head
 Wide Spindle Speed Range

MT2 Variable 50-2500rpm Spindle Taper Speeds

100mm 3-Jaw Chuck

£60.00

Boring

£35.00 £30.00

£64.00 £55.00

£128:00 £115.00

DT8300D Multi Meter £8.89 £7.00

£74.99 £69.00

0 0 0

£51.00

669.00 £60.00

£44.95 £40.00

£39.00

Bench Hand £54.95 £50.00

£10.00

MY64L Multi Meter £35.54 £15.00

£109.00 £89.99

Slip Rolls

12" £109.00 / 16" £199.00

T:+44 (0)1708 523916 email: machines@tphmachines.co.uk

Hoist £69.00 £60.00 250kgs

Max operating Distance

8 ton Press £134.95 £119.00

£177.00 £139.00

All prices include VAT. Delivery Free to UK mainland - excluding certain Scottish postcodes. (Unless otherwise stated) Prices valid for duration of this issue only.

Chester Machine Tools, Clwyd Close, Hawarden Industrial Park CHESTER CH5 3PZ
T:+44 (0) 1244 531631 F:+44 (0) 1244 531331 www.chestermachinetools.com email: sales@chestermachinetools.com Midlands Showroom: Unit 4 Plant Lane Business Park, Plant Lane, Burntwood, Staffs, WS7 3JQ Tel 01543 448940 Southern Showroom: TPH Machine Tools, Fairview Industrial Park, Rainham, Essex, RM13 8UA

