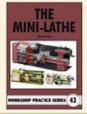
SHEET 2 FOR MARTIN EVANS METRO TANK AND FREE THE TROJAN STEAM ENGINE BY EDGAR WESTBURY DOUBLE SIDED PLAN Brother Sun... Vol. 202 No. 4347 13 - 26 March 2009 CAN \$8.95 | AUS \$8.95 | NZ \$10.90 3 EQUATORIAL
SUNDIAL 6 **EDWARDIAN ELEGANCE** PHOENIX CAR **PSEUDO STEAM** MAR TIDE CLOCK **IMLEC** FEB COMPETITION DETAILS MAKING TRACTION ENGINE LAMPS

Arc Euro Trade

Unbeatable Value Engineering Products by Mail Order

Limited Quantity Offer - Save £86.00 on the first 10 Imperial C3 Mini Lathes ordered and get a free Mini Lathe Book*



d entres ndle	180mm 350mm 20mm
ndle	
	20mm
	MT3
r	MT2
w Gear:	100-1200 rpm
h Gear:	100-3000 rpm
	350w DC
Motor Output Range of Threads	
(imperial machine)	
ns	750x320x330mm
ss)	44kg/56kg
	w Gear: th Gear: ds te)

Standard Equipment: 80mm 3 Jaw Chuck, Oil Tray, MT2 Dead Centre, Gear Set, Wrench Set, Oil Can

* FREE MINI-LATHE BOOK

Buy an imperial C3 Mini Lathe now and we'll add the latest book in the Workshop Practice Series, "The Mini-Lathe" by David Fenner, absolutely FREE (Normally £6.95)

C3 Imperial Standard Mini Lathe: £361.00 £275.00 incl. VAT C3 Imperial DRCD Mini Lathe: £421.00 £335.00 Incl. VAT

Carriage: £25.00 to most UK mainland destinations. Offer applies to first 10 imperial C3 machines only

Special offer on Metric C1 Lathes

	Spe	cifications:			
Swing Over Bed	140mm	Spindle Speed	0-2000 rpm		
Distance Between Centres	250mm	Range of Threads	0.5-1.25mm (5 thread pitches)		
Hole Through Spindle 10.5mm Motor Output 150w DC					
Spindle Taper MT2 Overall Dimensions 540x300x270mm					
Tailstock Taper	MT1	Weight (net/gross)	23kg/32kg		
Standard Equipment	: 80mm 3	Jaw Chuck, MT1 Dead	Centre, Tool Kit		

C1 Lathe - Metric: £261.00 Incl. VAT (subject to availability) Carriage: £25.00 to most UK mainland destinations.

C3 Milling Attachment and C3 Milling Sub Table

The C3 Milling Attachment also doubles as a variable height toolholder which can be locked in position for rigidity. The slide pivots about a bolt through the cast angle bracket. A protractor is provided for accurate setting of the angle. The slide locates via a pin and is fixed to the cross slide with 2 screws.

The C3 Milling Sub Table is used to extend the capacity of the Milling Attachment. The table is 120x120mm overall with a matrix of tapped holes on 20x20mm centres. Supplied with 4 adjustable work clamps and 2 angle stops

C3 Milling Attachment £78.95 090-020-00500 C3 Milling Sub Table 090-020-00510 £35.00

MT2 Tailstock Chuck and Arbor

100			
10mm Key Type Drill Chuck	040-010-00300	£6.30	
MT2-JT2 Drill Chuck Arbor	040-020-00600	£3.00	

MT2 Tailstock V Adaptor

For holding small round parts in the tailstock for cross drilling

MT2 Tailstock V Adaptor

090-070-00700

March Special Offer: MT2 Rolling Tailstock Keyless Chuck

Used to support small diameter work at the tailstock where a live centre is not practical. Complete with 13mm keyless drill chuck

MT2 Rolling Tailstock Keyless Chuck 040-015-00200

End of Line Clearance - Stirling Engine Kits

HAE02 Assembly Kit £110.00 £77.00

HAE05 Assembly Kit 150-015-00500

Visit us on-line at: www.arceurotrade.co.uk to see the full range

MODEL ENGINEER

Published by MyHobbyStore Ltd. Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0EL Email: customer.services@myhobbystore.com Tel: +44 (0)844 412 2262 www.myhobbystore.com

SUBSCRIPTIONS

UK - New, Renewals and Enquiries Tel: 08456 777 807 Email: modelengineer@subscription.co.uk

> USA & Canada subscriptions -New, Renewals and Enquiries Tel: (001) 732 424 7811 Email: subs@ewamags.com

Rest of World subscriptions -New, Renewals and Enquiries Tel: +44 (0)1858 468811

BACK ISSUES & BINDERS Tel: +44 (0)844 848 8822

Email: customer.services@myhobbystore.com

Editor: David Clark Tel: +44 (0)1847 821136

Email: david.clark@myhobbystore.com Production Editor: Kelvin Barber Assistant Editor: Michael Jones Technical Editor: Roger Bunce

PRODUCTION

Designer: Yvette Masson Illustrator: Grahame Chambers Pre-Press: Brian Vickers Production Manager: Richard Baldwin Ad Production: Robin Gray

ADVERTISING

Senior Sales Executive: Duncan Armstrong Email: duncan.armstrong@myhobbystore.com Tel: 0844 848 5238

MARKETING & SUBSCRIPTIONS Marketing Executive: Heather Morrison

MANAGEMENT

Head of Design and Production: Nikki Coffey Special Projects Publisher: Nikki Parker Subscriptions Director: Rebecca Blighton Chief Executive: Owen Davies Chairman: Peter Harkness

© MyHobbyStore Ltd. 2009 All rights reserved ISSN 0026-7325

The Publisher's written consent must be obtained before any part of this publication may be reproduced in any form whatsoever, including photocopiers, and information retrieval systems. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from negligence of our staff. Reliance placed upon the contents of this magazine is at reader's own risk.

Model Engineer is published for \$136 per year by MyHobbyStore Ltd c/o EWA Magazines, 205 US Highway 22, Green Brook, NJ 08812. www.ewamags.com. Periodicals paid at Dunellen, NJ. Postmaster please send address correction changes to Model Engineer Magazine c/o EWA at the address above.

Paper supplied from wood grown in forests managed in a sustainable way.

ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS

Vol. 202 No. 4347 13 - 26 March 2009

311 SMOKE RINGS

News, views and comment on the world of model engineering.

312 POST BAG

Letters to the editor.

315 IMLEC 2009

Don Cordall tells us about this year's competition.

316 TRACTION ENGINE LAMPS

Tony Meek makes a set of 3in. scale lamps.

320 EOUATORIAL SUNDIAL

Roger Bunce describes his superb sundial.

325 PSEUDO STEAM

Roger Bunce looks at the new trend for battery-powered steam outline locomotives.

328 EDWARDIAN ELEGANCE THE PHEONIX MOTORCAR

Ron Isted looks at an Edwardian motor vehicle.

332 McONIE'S OSCILLATING ENGINE

Anthony Mount finishes the crosshead, tackles a range of other components and describes the side frame bearings.

336 THE RE-CYCLE ENGINE

Dave Fenner finishes the framework and starts on the crankshaft.

340 KEITH'S COLUMN

Keith Wilson talks about dies, sanding gear, oil pumps and offers a simple little tool for fitting nuts.

342 TIDE CLOCK

Roger Castle-Smith offers some thoughts on a tide clock and asks for reader input on the design.

344 DIARY

Forthcoming events.

345 A BEGINNER'S APPROACH TO MAKING A BRASS AND ALUMINIUM CHESS SET

Mike Freeman concludes with the king and queen machining sequences.

348 NEWS

News from the clubs.

ON THE COVER...

This equatorial sundial, designed and made by Roger Bunce, indicates 'clock time' throughout all sunshine hours. (Photograph by Roger Bunce)

PLEASE SEE PAGE 310 TO TAKE ADVANTAGE OF OUR LATEST SUBSCRIPTION OFFER 12 & 24V MOTORS AND SPEED CONTROLLERS SPROCKETS AND CHAIN . GEARS SPEEDO'S . AMMETERS . BATTERY CHARGERS

PNEUMATICS INCLUDING VACUUM/PRESSURE PUMP
BATTERY CARE PRODUCTS . SPRINGS . BEARINGS

WHEEL BLANKS . SIGNALS . FUSES . LED'S . SWITCHES

TEL:0870 9089373 (national rate) FAX:01282 613647
EMAIL: pselectronics@btinternet.com FOR YOUR FREE LIST

PARKSIDE RAILWAYS

UNIT 2e & 3J, VALLEY MILLS, SOUTHFIELD ST.
NELSON. LANCS. BB9 0LD

Polly Model Engineering Limited

Incorporating Bruce Engineering

For all your model engineering requirements.

Manufacturers of the renowned Polly 5"
gauge passenger lauling, coal fired steam
loco kits, which are easily assembled with
hand tools and minimal skill. Polly loco kits
provide an ideal introduction to the model
engineering hobby. Latest Polly VI illustrated,
kit price only £5995 inc VAT.

Manufacture is

complemented by our Bruce Engineering Model Supplies business, giving a comprehensive range of steam fittings, accessories, materials, books, etc. We specialise in supply of quality injectors (JC, Chiverton), pressure gauges, etc.

Stationary engine kits: we produce a wide range of over 45 different models, including designs by Anthony Mount, our own large R&B gas engine, etc., and supply the full range of Stuart Models.

Practical Scale: Drawings, Castings, lost wax parts, laser cut frames, CNC rods, CNC platework, etc for the range of locos designed by Neville Evans and scrialised in Model Engineer.

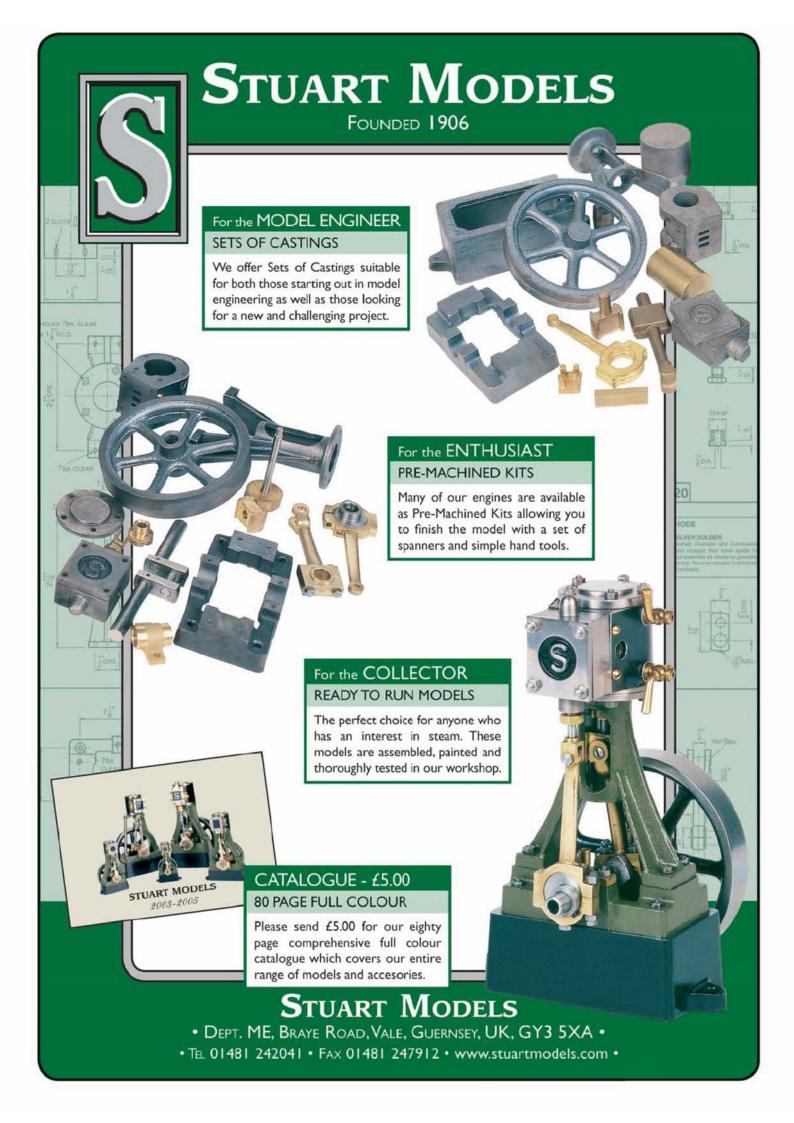
See us at exhibitions or find these & other items in our Supplies Catalogue £1.75 posted UK \$5 worldwide Polly Loco Kit Catalogue £3 Stuart Models Catalogue £5

Polly Model Engineering Ltd (Inc.Bruce Engineering)
Bridge Court, Bridge St., Long Eaton. Nottingham, NG10 4QQ
tel. 0115 9736700 fax 0115 9727251
www.pollymodelengineering.co.uk

heming**way** ahead

Send £2 (refundable) for our latest workshop catalogue or visit our website

Hemingway Kits 126 Durval Road, Bridgnorth Shropshire W16 4LZ United Kingdom Tel/Fax: +44 (0) 1746 767739


Tel/Fax: +44 (0) 1746 767739 Email:Info@hemingwaykits.com

www.hemingwaykits.com

Discerning craftsmen the world over trust Hemingway Kits to add precision, productivity and capability to their workshops.

Order with confidence from our 40 page catalogue or secure website and add real "satisfaction" to every job.

- TOP DESIGNERS
- HUGE RANGE
- GREAT SERVICE

G.L.R. DISTRIBUTORS Ltd

MULTI-TUBULAR BOILER KIT

Runs on Coal - Gas - Spirit

4" dia. x 16swg Copper tube 8.1/2" high
25 5/16" x 20g Copper tubes
Firebox 3.1/2" dia.
3.1/2" long
Working pressure 80 psi
£95.00 plus carriage
£8.50 to mainland U.K.
Set of 6 fittings
optional at £99.00
plus carriage £4.00.

All prices include vat

Catalogue included offering our extensive range of Materials • Tooling • Steam fittings • Fasteners • Adhesives etc.

Plus our complete range of Charles Kennions Locomotive drawings and Castings

illustrations of

models when built by our customers

NEW Premises – G.L.R. DISTRIBUTORS, UNIT 3, GRESLEY CLOSE, DRAYTON FIELDS, DAVENTRY, NORTHANTS. NN11 8RZ

Tel: 01327 878988
 Fax: 01327 876396
 E-Mail: peteglr@btopenworld.com
 Web site: www.modelmakingsupplies.co.uk
 Send 6 first class stamps for catalogue & Price List
 OPEN TO CALLERS - Monday-Friday 9.00am - 5.00pm
 SATURDAY 9.00am - 12.00 noon

SAVE POUNDS

See you there! THIS NEW YEAR...

WITH VALUE YOU CAN MEASURE!

WARCO ARE COMMITTED TO PASSING ON THE **NEW VAT SAVINGS** TO OUR CUSTOMERS

WM18 VARIABLE SPEED MILL Metri

FOR A LIMITED PERIOD, supplied with 2 axis digital readout at £225.00 including supply, fitting and VAT

- Infinitely variable from 50 50 3,000 rpm
- · Dovetail column slide for positive head location during elevation and descent
- Tapered gibs to all slideways
- · Digital depth gauge to quill. Metric/imperial/zero
- · Back gear ensures maximum torque in low speed
 - Individual accuracy test report
 - Supplied with 13mm drill chuck and arbor
 - ·3/8" Whitworth drawbar

MINI BENDER

- ·Vice mounting
- ·Segmented blade ·Up to 90° folding angle
- Capacity in mild steel
- 12"300mm x 20 swg/1mm

VMC TURRET MILL

- Compact, accurate, low cost vertical milling machine
- ·Nine speeds
- · Vee belt drive
- · Halogen low volt lighting
- ·Head tilts left right calibrated to 45°
- 360° rotation on horizontal axis One shot lubrication system to slideways and leadscrews, ensures prolonged machine life
- ·Optional spindle taper: R8 or 3MT ·Choice of metric or imperial leadscrews and dials

Optional digital readout Optional power feed

GH MAJOR MILLING MACHINE

· Totally enclosed oil immersed

Our next exhibition THE NATIONAL MODEL ENGINEERING EXHIBITION

- gear box. Quiet operation
- Speed selection by lever control
- Calibrated scale for tilting Supplied with 13mm drill
- chuck as standard Available in R8 or 3MT
- spindles · Optional stand and wide
- coolant tray available

Table size 28 34 x 8 1/2" X and Y travel 20 x 10 1/4" Throat 10 1/2"

VARIABLE SPEED LATHE

- Fitted with inverter drive to allow infinite speed selection simply by rotating the control knob
- Exceptionally quiet, ideally suited to a noise sensitive environment
- Safely operates from a domestic 13 amp supply ·Both metric and imperial versions will cut metric and imperial threads
- Induction hardened and ground bedways
- ·High tensile cast iron bed
- ·Taper roller bearing headstock spindle · Jogging switch
- ·Gap bed
- ·Supplied with accuracy test report
- · Supplied with 3 jaw chuck, camlock with inside/out side jaws, 4 jaw chuck independent, telescopic lead screw covers, micro adjustable bed stop and equipment as illustrated

Optional digital readout VS1224 £677.28 fitted VS1232 £704.68 fitted

ENGINEER'S TOOL CHEST

- · Part of a superb new range of higher than average quality tool storage cabinets
- Heavy gauge steel plate construction
- Drawers slide on robust ball bearing guides which give exceptional
- support Soft drawer closure
- · Rubber liners to
- Lockable

FRACTIONAL DIGITAL VERNIER

- reading this unique vernier shows fractional figures
- Easy to convert across the three measuring disciplines Thumb wheel for precise, accurate
- positioning
 Large easy to read screen

RANGE OF MAGNETIC STANDS

WITH FINE ADJUSTMENT

- · Very rigid hydraulic locking mechanism Switched magnetic
- vee base · Suitable for circular
- or dove tail mounting
- · Available in 3 different heights: 220mm
- 360mm

FREE Delivery UK mainland • All prices include VAT • Please ring for our latest info packed brochure!

WWW ARCO CO JUK

WARCO, FISHER LANE, CHIDDINGFOLD, SURREY GUS 4TD Tel: 01428 682929 warco@warco.co.uk

Engineering Supplies

SOBA 6" ROTARY TABLE TAILSTOCK & DIV PLATE SET

PRICE

£7.30 Includes postage

ER COLLET CHUCKS FOR YOUR LATHE!

CODE	TYPE	RECESS	PCD	PRICE
069703	ER25 80mm	55mm	63mm	£34.50
069710	ER25 100mm	72mm	84mm	£39.50
069709	ER25 125mm	95mm	108mm	£43.95
069704	ER32 80mm	55mm	63mm	£34.50
069705	ER32 100mm	72mm	84mm	£39.50
069708	ER32 125mm	95mm	108mm	£43.95

SETS OF HSS TITANIUM COATED END MILLS

CODE	TYPE	PRICE
074105	6 PC 2 -12mm	£17.95
074104	5 PC 2 - 6mm	£14.95

TRANSFER **PUNCH SETS**

CODE	TYPE	PRICE
TPS1	IMP 3/32 - 1/2	£12.95
TPS2	MET 1-13mm	£12.95
TPS3	LETTERS A-Z	£12.95
TPS4	NOS 1-60	£14.95
TPS5	ALL THE ABOVE	£47.95
TPS6	1/2 - 1"	£36.95

NEW - GLANZE CLAMP TYPE INDEXABLE PARTING TOOLS!

W ITEMS • NEW ITEMS

Complete with special grade aluminia coated insert for a superior finish!

CODE	SHANK	PRICE
CGG081	8mm	£24.95
CGG101	10mm	£29.95
CGG121	12mm	£32.00
CGG122	16mm	£34.00
CGG120	20mm	£34.00
CGGSP	Insert for 8, 10, 12 & 16mm	£ 4.25
CGGSP20	Insert for 20mm	£ 4.25

1KG CASE HARDENING POWDER

PRICE £24.95

ALL PRICES INCLUDE VAT & CARRIAGE (UK MAINLAND)

(Prices are correct at time of going to press and are only available while stocks last)

Tel: (01582) 471900 5 Lines Fax: (01582) 471920 Web: www.chronos.ltd.uk Email: sales@chronos.ltd.uk

CHRONOS LTD UNIT • 14 DUKEMINSTER ESTATE • CHURCH STREET • DUNSTABLE • LU5 4HU

RIVES DIREC

www.drivesdirect.co.uk sales@drivesdirect.co.uk

DIGITAL INVERTERS

PPRACTICE SERIES 43

VISA

Basic 220 Volts Input - 220 Volts output These small and compact basic 220 Volt output inverters allow you to run a DUAL VOLTAGE motor from a single phase supply, they come in sizes from 1/4 HP up to 3 HP(0.18kW up to 2.2kW) and offer SOFT START, SPEED, ELECTRONIC

BRAKING and JOG functions via the low voltage remote control terminals, they are perfect for fitting into workshop machines, it is often possible to connect the remote START/STOP and FOWARD/REVERSE to the machines existing controls as long as they are of the maintained type (IE not push button).

- ¼ HP(0.18kW) £77.50 1 HP(0.75kW) £134.95
- 1/2 HP(0.37kW) £94.95
- 3 HP(2.2kW) £239.95

• 2 HP(1.5kW) £189.95

Basic 220 Volts Input - 415 Volts output

These basic 415 Volts output inverters come in 3 sizes from 1HP up to 3HP and they offer all the functions of the 220 Volf output version BUT the fact they offer 415 Volts output means they can be used with motors that are NOT DUAL VOLTAGE, this would often be the case on older motors or on DUAL SPEED motors.

- 1 HP (0.75kW) £274.95
- 2 HP (1.5kW) £329.95 3 HP (2.2kW) £419.95

All of the inverters above are available as IP-65 units for applications where dirt/dust or fluid ingress may be a problem, these units have a built in mains power ON/OFF switch, FOWARD/STOP/REVERSE selector and a SPEED CONTROL as well as a digital display and programming pad, please ring our sales office for pricing on any of these units.

THE NEW DRIVES DIRECT ROTARY PHASE CONVERTER

THE BEST QUALITY AT THE BEST PRICE ANYWHERE

- Simple Plug and Play 3 Phase Conversion.
- 240V Single phase Input with a 415V 3 Phase+N output via a 5 pin socket.
- Input and Output overload
- protection via MCB.
 Input Amp meter. Pushbutton START/STOP controls.
- Mains ON Pilot Light. No MINIMUM LOAD required. 2HP £475 3HP £550 4HP £650 5½ HP £750 7½ HP £950 10HP £1095 15HP £1375

3 PHASE ELECTRIC MOTORS

We offer a range of high quality aluminium 3 phase motors in sizes ranging from 90 Watts(1/8 HP) up to 2200 Watts(3 HP), the 90 W motor being one that's small enough to hold in the palm of your hand with a 9mm shaft that's perfect for fitting to bench top lathes etc Prices start at £39.95

MOTOR & INVERTER PACKAGES

We also offer matched motor and inverter packages for retrofitting to your machine with remote control boxes if required, we can supply everything you need for these conversions including motor pulleys, cable and connectors, Please contact us with your requirements.

Prices start at just £99.95

Drives Direct

DIGITAL PLUG & PLAY CONVERTERS, POWER YOUR WHOLE WORKSHOP WITH ONE CONVERTER

These units come in sizes ranging from 5½ HP up to 30 HP and they will convert a single phase 240 Volt supply into a 415 Volts 3 phase regulated output, various versions are available from units to power basic machines up to advanced systems that can be used to run CNC machines and welders via a workshop ring main and are able to run more than one machine at once, please call us with your requirements.

Prices start at £649.95

VISA

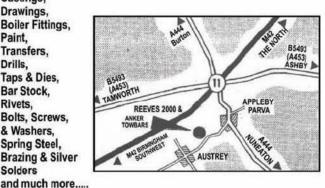
At Drives Direct we pride ourselves on customer service and we offer you full telephone technical support to guide you through the wiring and programming on any products purchased from us, you can buy with 100% confidence that you have the correct item for the job and that you will receive all the help you need to get up and running, this service is available from 10.00am until 10.00pm.

You are not just purchasing a box from Drives Direct!

All prices include VAT

Drives Direct is a trading name of Drives Direct(Inverters) LTD.

Tel: 01773 811038 Fax: 08717 334875 Mob: 07976 766538


New Online Shop at www.ajreeves.com Over 8000 different items available to order 24 hours a day, 7 days a week! BRICLASS 2 CONSTRUCTION MAILWAY BR CLASS 2 LOCO BUFFER SENI STEEL

New, secure online ordering from Reeves 2000

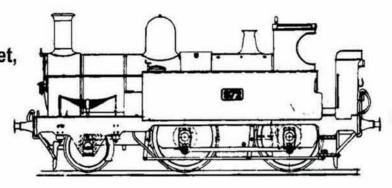
Visit the Shop That's Got the Lot!

Castings, Drawings, Boiler Fittings, Paint, Transfers, Drills, Taps & Dies. Bar Stock. Rivets, Bolts, Screws, & Washers, Spring Steel, **Brazing & Silver** Solders

Reeves 2000, Appleby Hill Austrey, Warks, CV9 3ÉR

9:00am-4.30pm Monday - Friday 9:00am-12.00pm Saturday

The World's Largest Stockists of Model Engineering Supplies



As featured in Model Engineer...

Metro, 2-4-0 GWR Tank Loco

Castings available to order online or page 84 (26th Edition Catalogue), ref 18/1xx...

D&C Wheels, Cylinder Casting Set, Stretchers. Horns, Axleboxes. Motion Plates. Crosshead Pump,

Smokebox Door. Smokebox Ring, Chimney. Dome. Safety Valve Cover, Regulator Stand, etc.....

Designed in 5" gauge by Martin Evans. The "small metros" were used in the last London suburban trains in the late 19th century. Described in Model Engineer Vol 139-140

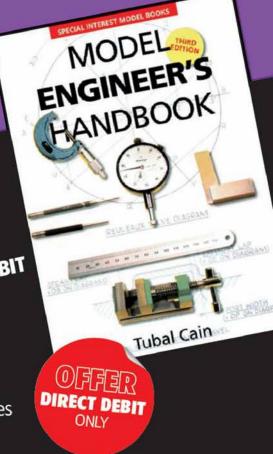
Trade Counter Now Fully Stocked and Open to Callers - ALL WELCOME

http://www.ajreeves.com

Reeves 2000 Appleby Hill Austrey Warks CV9 3ER

9:00am-4.30pm Monday - Friday 9:00am-12.00pm Saturday Closed Sun, Bank Holiday Sat & Mon Tel: 01827 830894 sales@ajreeves.com

Fax: 01827 830631


26th Edition Catalogue

UK: £7.00 inc p&p Europe: £8.00 inc p& Rest of World: £12.00 inc p&p New Price List: 4 x 1st Class Stamps

B00K When you subscribe today!

- FREE MODEL ENGINEER'S HANDBOOK
- SPREAD THE COST \$17.88 PER QUARTER BY DIRECT DEBIT DELINERED STRAIGHT TO YOUR DOOR NEVER MISS AN ISSUE

This third edition comprises a compilation of tables, facts, procedures and data that the author has found invaluable in his model engineering activities including the use of data and calculations in both imperial and SI units. The book also contains helpful explanations of the hows and whys of using many of the entries.

Free gift UK only

BY PHONE: 08456 777 807 quote ref. S098 (**) ONLINE: www.subscription.co.uk/mde/S098

Alternatively, you can complete the form below and return, with payment, to the address provided

DIRECT DEBIT SUBSCRIPTIONS (UK ONLY):

□ I would like to subscribe to Model Engineer paying £17.88 every 3 months by Direct Debit + MY FREE GIFT (UKONLY)

Please complete form below

Instructions to your bank or building society to pay by Direct Debit.

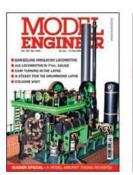
Originator's reference 422562 □ Pay £17.88 every 3 months by Direct Debit (please tick)

DIRECT Debit

		.,		

Po	stcode)		
Da	te			
Account number	\neg	$\overline{}$		_
	PoDa	Postcode Date	Postcode Date	

Direct Debits from the account detailed in this instruction subject to the safeguards assured by the Direct Debit Guarantee. I understand that this instruction may remain with MyHobbyStore Ltd and if so, details will be passed electronically to my bank/building society.


Reference Number (Official use only)

Please note that banks and building societies may not accept Direct Debit instructions from some types of account.

TERMS & CONDITIONS: Offer ends 27th March 2009. Offer valid by Direct Debit only. *Free gift UK only when you pay by Direct Debit. Subscriptions will begin with the first available issue. Please continue to buy your magazine until you receive your advowledgement. It letter Refund requests must be in writing to the Publisher and will not be given on accounts with less than 520 credit. A 55 artimin charge will apply and will be deducted from any refund. Refunds will only be given at the Publisher's sole discretion. We will use the contact details supplied to communicate with you regarding your Model Engineer subscription. If you are also happy for us to contact you about other products or services available from Model Engineer and MyHobbyStore Ltd. please indicate here: Contact by:

— email □ telephone □ mobile. If you are happy for us to pass your details on to other carefully selected companies to contact you about their products and services please indicate here: Contact by: □ email □ telephone □ mobile. If you do NOT wish us to contact you by POST about products or services available from Model Engineer and MyHobby/Store Ltd. please indicate here □ if you do NOT wish us to pass your details on to other carefully selected companies to contact you by POST about their products or services please indicate here □

SEND TO: MODEL ENGINEER SUBSCRIPTIONS, TOWER HOUSE, SOVEREIGN PARK, MARKET HARBOROUGH, LEICS LE16 9EF

OVERSEAS SUBSCRIPTIONS:

☐ I would like to subscribe to Model Engineer for 1 year (26 issues) with a ☐ ROW Airmail £85.00

For all Canadian, North and South American subscriptions please call 001 732 424 7811 or go to www.ewarnags.com

OUR DETAILS:			
/Ir/Mrs/Miss/Ms	Initial	Surname	
\ddress			
ostcode		Country	
el		Mobile	

I don't get many complaints MUNL about the content or layout of Model Engineer but a few addressed and the caption is now underneath the photo and in a slightly larger font size.

CLARK

IONES Assistant

Polly Owners Group

A small change

to Model Engineer

things have been mentioned

more than once recently.

They are, captions not on

the same page with the

photos, captions not next

to the photos and caption

text too small. All three of

these problems have been

16mm National Garden

Association are holding their

annual show at the National

Agricultural Centre, Stoneleigh,

There are 70 traders confirmed

to attend and upwards of 2,000

sufficient free parking for all and

there is also a free vintage bus

service from Coventry Station.

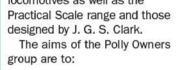
www.16mm.org.uk and www.

stoneleighpark.com has travel

directions and venue information.

Even if you don't model in 16mm

Full details are available at


visitors are expected. There is

Warwickshire on Saturday 4 April.

The 16mm Narrow Gauge

Railway Show

The Polly Owners Group has been formed by people who eniov building and running their locomotives, which have been produced by Polly Model Engineering. This includes the Polly range of kit built locomotives as well as the designed by J. G. S. Clark.

scale, this is a fantastic day out with several layouts on show, lots of live steam and even coal-fired Garratts running on the day.

Readers' Survey 2009

I won't have the results of the readers' survey for some time and then it will take me a while to read and analyse them. What I have received are photocopies of the first 10 received in the office, seven Model Engineer surveys and three Model Engineers' Workshop ones (Workshop went on sale a week later).

I can see by your comments in the freeform boxes that this information is going to be very useful when planning future issues of Model Engineer. For instance, 50% of readers would like to see 1-2 pages of News and the other 50% would like to see 3-4 pages. It is early days yet but perhaps one fortnight, we could run 2 pages of News and the other fortnight we run four pages. Perhaps a compromise might be 21/2 pages of news with the next issue at the bottom of the third page.

One reader commented that the survey asks for detailed workshop information and also had his address on. Please rest assured, the workshop information (list of machines) will not be stored on a computer. The only information stored will be a few of the numbered questions together with your name and address by a reputable company for our marketing department. The forms will then be passed to me and I will read them, enter answers to the numbered questions into a spread sheet without names and addresses included and then they will be shredded.

Please fill in the survey, it will help me to give you the magazine you want to read. Photocopies of the survey are fine, but please staple them together.

IMLEC and the Bristol Society of Model and **Experimental Engineers**

Entries are invited for the International Model Locomotive Efficiency Competition for the Martin Evans Challenge Trophy to be held at Ashton Court, Bristol on 4/5 July 2009. Please see page 315 for competition details.

- · Bring together individuals owning any of the Polly range of locomotives.
- · Provide help and encouragement to the members of the Group, whether they are building or running a locomotive.
- · Organise meetings during the year to enable the coming together of members of the group and their locomotives.

Following the rallies held last year, we have organised two rallies for this year. The first being on 9 May 2009 at the Bracknell Railway Society and the second over the weekend of 12/13 September 2009 at the Peterborough Society of Model Engineers. This rally will also include our AGM.

The Bracknell Railway Society is located in the Jocks Lane Recreation Ground, Jocks Lane, Bracknell, Berks. They have a 970ft, raised track with a

maximum gradient of 1 in 160 catering for 3½in, and 5in. gauges.

The Peterborough Railway Society can be found at Thorpe Hall, Thorpe Road, Longthorpe, Peterborough, Cambs. Their track is also raised level and has gauges of 3½in., 5in. and 71/4 in. The length of track is just over 1.100 feet.

So if you own a Polly or any locomotive from the Polly Model Engineering or J. G. S. Clark ranges or are building or thinking of building one you and your family are welcome to join us for these rallies.

If you would like any more information about either rally please contact:-

Neil Mortimer, 108 Copthall Road West, Ickenham, Middlesex UB10 8HT. T. 01895 635596.

E. Neilimortimer@aol.com

W. www.pollyownersgroup.org.uk

FIRST CLASS POST

Write to us

Views and opinions expressed in letters published in Post Bag should not be assumed to be in accordance with those of the Editors, other contributors, or MyHobbyStore Ltd.

Correspondence for Post Bag should be sent to:

David Clark,

David Clark, The Editor, Model Engineer, MyHobbyStore Ltd. Berwick House, 8-10 Knoil Rise, Orpington, Kent BR6 OEL. F. 01689-899266.

E. david.clark@myhobbystore.com Publication is at the discretion of the Editor.

The content of letters may be edited to suit the magazine style and space available.

Correspondents should note that production schedules normally involve a minimum lead time of six weeks for material submitted for publication. In the interests of security, correspondents' details are not published unless specific instructions to do so are given.

Responses to published letters are forwarded as appropriate.

Mystery tool

SIRS, - Attached is a photo of a tool given to me several years ago in the hope that I could

identify it. This I could not do and from many attempts since, its purpose has still not been established. It was covered in rust and well pitted when it was given to me, so I had it grit blasted to get the finish you see now.

The overall length is 7in. with the screw jack fully out. The head measures 3¾ x 1½ x 1½ in. thick. The screw jack is threaded 1½ in. x 32tpi with a 1½ in. square end for the tommy bar. The end of the screw jack inside the head is free to rotate and inside the arched portion of the head are two ribs.

Tony Meek, by email.

The age of model engineers

I was interested in the letter from Paul J. Weighell regarding the age of model engineers (M.E. 4345, 13 February 2009). We have had this discussion on numerous occasions and in these pages. I have been attending model engineering exhibitions for several decades and model engineers have always looked that age to me. I was dead keen on model engineering in my teens, but then fast motorbikes and girls came along and I didn't lose interest but just didn't have time for all three, the girls won! As with most people I did marriage, the family and the house bit, but just didn't have the money or time for model engineering. It was not until in my late 40s that I was able to get back into it. I speak to many of our customers and they all say the same.

Foden C-Type help sought

Whenever I read the *Postbag* pages I am impressed by the wealth of knowledge put forward by readers. Most of this knowledge seems to be rail related but is there someone out there who can help me with a road steam related problem?

I am converting my 3in. scale Foden C-Type flat bed to a 3-way tipper and have been fortunate to meet a very helpful exhibitor with a full-size version. I have managed to photograph many of the details of the chassis, ram and body which have started the metal cutting process. Now for the problem. On most 3-way tippers the ram is held in a pivoted frame, allowing the ram to tilt backwards, and the ram is pivoted to give side-to-side movement. However, this does not seem to be the case with the Foden water ram. The cylinder is bolted between two large 'triangular' plates which are then bolted between the chassis rails allowing no movement of the ram cylinder. Unfortunately, the top of the ram is hidden by crossmembers and the exhibitor did not know how the ram was attached to the body as it had only been tipped once and the leather seal leaked badly and has not been replaced.

Can anyone tell me what the top of the cylinder is like, open or closed, and how the ram is linked to the body. I can think of a number of ways of overcoming the problem but would prefer to follow the full-size method if possible. Yours in anticipation **Brian Chatburn, by email.**

From a business point of view I have to say that we have to add at least three or four new customers to our computer every week. When I speak to them they are all in their late 40s or early 50s or recently retired and have gone through the same process as described above. As far as we are concerned the hobby is expanding quite quickly, well, the 5in. Ground level movement certainly is, but it gets scant publicity in the magazines as we get the impression that it is regarded as "Playing Trains". Well, that's what we call it anyway. The new modellers of today are far more discerning than the model engineers of old as they do not want to make things from scraps, they want exactly the right castings and parts for the job: they want every nut and bolt in the right place and the right size and they want the drawings fully detailed and correct because they do not have time to waste on making things twice. We are finding that a lot of people have a lot of money to spend on the hobby and most of our customers don't ask the price. they just want to know if we have it in stock and can I get it in the post tonight. The hobby

is certainly changing and on the increase but not dying.

Over the past few years we have had to produce far more in the way of machined kits and ready-machined parts, not because the purchasers can't do it but mainly because they haven't got the time. Our biggest problem is trying to keep ahead of the game and anticipating what people want. It doesn't seem to matter what I have on the drawing board (or CAD) but I have a queue of people wanting the bits before I have even got the drawing finished. They want all laser cut parts and lost wax castings as they do not want the drudgery of cutting everything out when it is so cheap to get things laser cut. At present we have at least 80 people actively building my BR Std 2-6-4 Tank plus about 12 completed and we have sold over 250 sets of drawings. At least 60 customers are building Britannia's and want all the detail; about 30 are building Black Fives. We have about 10 building Springboks and can't wait to get them finished so that they can build something decent. This is just a sample.

At the moment we can't build our BR Mk. 1 coaches

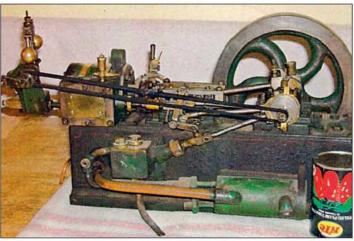
fast enough to keep up with demand (£4,000 each complete and ready to run) and people are constantly asking what new wagon kit is in the pipeline. We have at least a 2-year waiting list for building Winson Britannia's and other locomotives for people.

I am well on the way to completely re-designing the 5in. gauge Britannia but I haven't publicised it too much yet until we receive all the new patterns. However, over the past two weeks I have had enquires for it from South Africa, Zimbabwe, Kent and New Zealand and an order for everything available from the Zimbabwe enquiry.

We have a lot of new young members at Gilling and I think it is because of what we do. They all get involved from the age of about 8 and once they can handle a shunting pole they can work in the Yards with the Yardmasters who mentor them in both working the yards and in working to the timetable. They just love it, as it as near to running a real fullsize railway as one can get. One has just left college now and got a job with the Network Rail timetabling department in Leeds and another is now a chief engineer with First Group at Norwich running trains all over East Anglia. Another has now got a holiday job as a guard on the Ravenglass and Eskdale railway and another has just finished a proper apprenticeship in the locomotive shed at the Llangollen Railway. He started coming to Gilling when he was 14. The young lads working the yards at Gilling are brilliant as one only has to tell them something once and they can do it. It takes ages trying to train some of the older members and some are just a blooming nuisance in the yards as it doesn't seem to matter how many times you tell them what needs doing they just don't get the hang

A typical instruction would be "The "305" Parcels is due to arrive in five minutes, can you set No. 7 road up for it, hook "A" Pilot on the back to release the train engine and put the stock in the carriage sidings then set the road for the train engine to go off to Shed". Then, get "A" pilot up to the yard exit signal with the stock ready to go across to the station, I will ring the signalman to get him a road out" If one of the young lads is doing the job I come off the telephone and it is all done, but if one of the older members is asked to do it I come off the phone and they say "what did you say?".

Model engineering is very much alive and well, especially if the young ones can get involved. **Doug Hewson, by email.**


Unknown mill engine

SIRS, - My 90 year-old father-inlaw has an old mill engine. It is quite large as can be seen by the tin of vegetables in the photos (right). The main dimensions are:

Bore	70mm
Flywheel diameter	230mm
Flywheel width	37mm
Height	310mm
Length	530mm
Stroke	52mm
Weight	21.5kg

The model includes three valve arrangements, though I do not understand their purpose except that the piston is pushed in both directions. As the photos show, there is a speed control governor. There is also a condenser for the steam and oil is introduced into the cylinder with the steam input.

I would like to know what it is a model of and to locate drawings for the boiler. Details of boiler construction including safety valves would also be of great help. What would be a suitable fuel supply and fuel control arrangement? Also, how do I operate the final model safely to ensure our survival! Does this type of model have an output capable of useful work? Eric Crawford, West Sussex.

Steamship Sir Walter Scott

SIRS, - Following the article An Engineer's Day Out - Loch Katrine - Steamship Sir Walter Scott by Roger Backhouse (M.E. 4343, 16 January 2009), readers may be interested to know that the following original builder's plans for Sir Walter Scott are obtainable from the National Maritime Museum under the reference DBA/623/089:

- Profile Main/Lower Decks Scale 1:48
- 2. Sheer lines (1954) 1:24
- 3. Stem stern post and rudder 1:12
- 4. Midship section 1:12
- 5. Displacement scale

The cost is £16.56 per sheet (plus 'Research Handling' of £11.50 plus p&p of £8.05 for a total of £103.35) so they are not cheap but they are good.

I was inspired to seek
them out by Roger's article
because from his photographs,
especially that of the engine
room, I think that this might
be the ideal model in which to
put the triple expansion engine

Black Five help?

SIRS, - I am currently building the 7½in. *Black Five* as designed by Martin Evans and have run into a problem when fitting the leading brake shoes. There is insufficient clearance between the leading edge of the wheel and the rear of the motion plate.

All dimensions and the position of the motion plate have been checked against the drawing (#6). This calls for the centre line of the motion plate to be sited 5% in. from the rear face of the cylinder. Having measured a friend's Black Five to the same design, his motion plate is sited 5% in. from the rear cylinder face, thereby allowing room for the brake shoe and hanger to fit as expected. Can any of your readers clarify the position as to whether there is an error on the drawing or simply that the builder of the Black Five I took measurements from ran into the same problem and decided to move the position of the motion plate?

lan Parsons, by email.

and boiler for which I already have castings. The National Maritime Museum contact details are:

Graham Thompson Curator Historic Photographs and Ship Plans National Maritime Museum Greenwich London SE10 9NF

E. plansandphotos@nmm.ac.uk

First though, as a relative newcomer to 'steam' modelling, I need to finish the Stuart twin compound that I am building in order to get my skills up to a level at which I do not reduce the rather nice triple castings to expensive swarf.

Richard Brickwood, Hertfordshire.

Not the worldwide web!

SIRS, - Will editors, suppliers and anybody connected with computers, please remember there are thousands of model engineers out here who are not interested and do not have the time or the inclination to understand the WWW. So please stick to "LONGHAND" and we will just get along fine. G. W. Judge, Grimsby.

Thanks for the help

SIRS, - Could I through the columns of *Postbag* offer my very sincere gratitude to 'Chris' at Quiltedsteam who has most helpfully and generously forwarded all the details that I needed to make a proper start on my latest I/C project. I never cease to be amazed at the help given of the legendary worldwide brotherhood of model engineers.

James Wells, Saudi Arabia.

Gear ratios

SIRS, - In his article on gear ratios, (M.E. 4340, 5)
December 2008) Mr. Lavis introduces a method of calculating gear ratios, which, to me is quite unusual, so I found it very interesting. The ratio used as an example in the article is obviously intended purely to illustrate the method, which it does very well. The resultant gear ratio has some gears which

are quite large and I thought it would be a useful exercise to try and find a ratio with smaller gears.

I have always found that the continued fraction method usually gives the most accurate ratios, so this was the first method to be tried. The required ratio, 1.095679/1, has first to be converted to a fraction without decimals, and multiplying numerator and denominator by 1000000 converts it to 1095679/1000000. After expanding this into a continued fraction, it will be found that the sixth convergent is 355/324 which factorises to 5/81 x 71/4, and a gear ratio of 50/81 x 71/40 gives the ratio 1.0956790 123.

Both 81/50 and 71/40 are in the tables used by Mr. Lavis but as he pointed out, the difficulty is in selecting two suitable ratios. As my 1941 edition of *Machinery's Handbook* has these tables, some people must have overcome this problem and found the tables very useful over the years.

Machinery Publishing Co. Ltd. used to publish a series of booklets, of a very practical nature, on various engineering subjects. They were called Machinery's Yellow Back Series and No. 27 has the title, Compound Change Gear & Indexing Problems, Anyone wanting to study the ways of finding or calculating gear ratios might be advised to try and obtain a copy, as the author gives a full description of the calculation of gear ratios and the calculation and use of continued fractions as well as various other ingenious methods of obtaining suitable gear ratios. The use of different methods for calculating the same ratio is tabulated and the errors for different methods compared. A dozen or so ratios are calculated by five or six different methods and the results displayed in tables. The method Mr. Lavis uses and the use of Brocot tables is not covered.

H. D. Turner, Wakefield.

Rolling stock construction

SIRS. - I couldn't help noticing the letter from Shaun Trewinnard about rolling stock (M.E. 4345, 13 February 2009). He is obviously not aware (and doesn't read our M.E. adverts!) that I described all the wagons seen at Gilling in E.I.M. from March 1987 onwards. I described them all particularly for beginners as I knew at that time that there were not many people who had built wagons. We do sell all the parts and drawings for building them and provide kits or just a box of parts to make them.

Since the *E.I.M.* articles, rolling stock building has taken off like a new hobby within the hobby as a lot of our customers ring me to say that they don't think they have got the skills or equipment

to build a locomotive but they can build wagons and some build more than three a year. We now have more than 2,000 wagon builders on our computer.

Hopefully, Mr. Trewinnard will find the coach building articles interesting as well, assuming you will be publishing them.

I can't remember what I have said in the articles on building the Mk. 1 coach bogies but as they are all riveted I can also answer the query by Mr. Griffith-Jones. If I have not described the riveting, I can add it in and send you a revised copy. I will have a look to see what I have said.

Doug Hewson, by email.

I will be publishing the coach building articles in the near future, Ed.

DON

Don Cordall, IMLEC Group Leader at Bristol SMEE, tells us about this year's competition.

Conditions of entry

- The competition is open to owners of 3½in. and 5in. gauge coal-fired steam locomotives whether previous entrants, previous winners or newcomers.
- The competition will be held in two parts. Entrants who have never previously won the Martin Evans Challenge Trophy will be entered in the main competition for the trophy. Previous winners of the trophy will be entered into the separate previous winner's competition.
- 3. A maximum of 27 locomotives will be accepted for the event on a first-come, first-served basis. Entrants for the main competition for the Martin Evans Challenge Trophy will constitute the bulk of the total entries. The organisers' discretion will determine the number of entrants accepted for the previous winner's competition.
- Locomotives to which ballast, including water, has been fitted externally to the scale outline, or the likely outline of a freelance model, will not be accepted
- A competitor may nominate another person to drive on his behalf.
- 6. Prizes will be awarded for competitors finishing in 1st, 2nd and 3rd places in the competition for the Martin Evans Challenge Trophy, for the best 3½in. gauge entrant and for the winner in the previous winners competition.

IMLEC 2009

his year sees the 100th anniversary of the Bristol Society of Model and Experimental Engineers.

As part of their celebrations, BSMEE are hosting this year's International Model Locomotive Efficiency Competition (IMLEC) on the weekend of the 4/5 July. This is the sixth time that BSMEE has run the event.

Track

The competition will be held on the society's track in Ashton Court Estate at the edge of Bristol. The raised track is dual gauge of 3½in. and 5in. gauges and the length of run per lap is 1,650 feet. The maximum gradient is 1 in 120 and the minimum radius 78 feet. Since the last IMLEC at Bristol in 2003, the track has been completely replaced with 2lb/yd mild steel, flat-bottomed rail mounted on wooden or plastic sleepers.

Competition

A total of 27 locomotives are expected to take part in the competition; 15 runs on Saturday and 12 on Sunday. The first run will start at 8:30am on both the Saturday and the Sunday. The Bristol dynamometer car will be used for the competition. It has recently been modified to ensure that the driver can sit much closer to the locomotive than in the past.

Entries

A separate section in this article describes the conditions for entry and how to apply. Successful applicants will have their entries confirmed and will be provided with a pack containing details of the timing of their run, the procedure to be followed on arrival, complimentary tickets and a copy of the rules, etc.

Admission

Spectators are most welcome. The admission fee will be £6 per head and under-16s will be free. No unaccompanied children will be admitted. The admission fee covers both days of the weekend and will include an event programme.

Railway location

The IMLEC page of the society website, www. bristoimodelengineers.co.uk shows the location of the railway site relative to the major approach roads in the city. Access to the estate and railway for everyone will be via the Clifton Lodge gate only. Using any other gate will lead to confusion as there are no other roads within the estate which will give access to the railway or car park. Please

follow the map instructions

carefully. Care is needed along

the A369 from Junction 19 on

the M5, since it is not possible

Satellite navigation

to turn right off the A369.

If you are relying on SatNav for guidance, the postcode of the Clifton Lodge is BS8 3PX. Furthermore, if you are using SatNav and approaching along the A369 from Junction 19 on the M5 (see above), you should ignore your SatNav instructions once you join the A369 at Gordano and rely on the website map otherwise you may arrive on the wrong side of the road. You will then need the website map to recover the situation.

Car parking in the estate

Free car parking will be available about 200yds from the railway site exclusively for IMLEC visitors. Note that there will be no parking alongside entrance roads from the gate. The car park will be signed and should be used by all. Remember BSMEE shares the estate with the public and July is a busy time. No visiting vehicles will be allowed on the railway site. Special arrangements will be made to give elderly and infirm visitors direct access to the venue, but cars must be returned to the car park after unloading.

Camping

A site will be available for tents, caravans and campervans. The site will be open from about 2pm on Friday 3 July until about 12 noon on Monday 6 July. A charge of £10 per tent, caravan, etc. will be made regardless of duration of stay. Prior booking is essential and enquiries should be sent to Eric Lindsay by phone on 01761 434208 or email to eric.lindsay@blueyonder.co.uk

The camping site will not be adjacent to the railway site. It is situated inside the estate about a 10-minute walk from the railway. Alternatively, an internal road will give car access from the campsite to the IMLEC car park without going back onto public roads. Caravans and campervans must not enter the estate at Clifton Lodge but should follow the directions in the campers information pack.

On-site activities

An exhibition of Bristol SMEE work will be on display in the marquee. Refreshments will be available throughout the event and a hot communal meal will be available on Saturday evening. Bring your own favourite liquid refreshment for this event and book in advance with Cherry Trotham on 0117 968 2983. A number of traders are expected to be present. The ground level 7½in. gauge track and miniature road vehicles will be operating throughout the weekend.

Finally, if you don't want to camp, hotel and B&B accommodation is listed on www.visitbristol.co.uk

How to enter

Entries can be arranged by either ringing the Entries Secretary, Sandra Pearce on 01275 856887 for an entry form or by downloading the form from the IMLEC page of the BSMEE website www.bristolmodelengineers.co.uk and then posting to the Entries Secretary. Alternatively, a form may be submitted directly from the website.

The closing date for entries is 31 May 2009. After that date any enquiries about entries, etc. should be directed to Don Cordall on 0117 962 4073 or by email on doncordall@blueyonder.co.uk

Traction Engine Lamps

Tony Meek describes making lamps for his 3in, scale Allchin.

PART 1

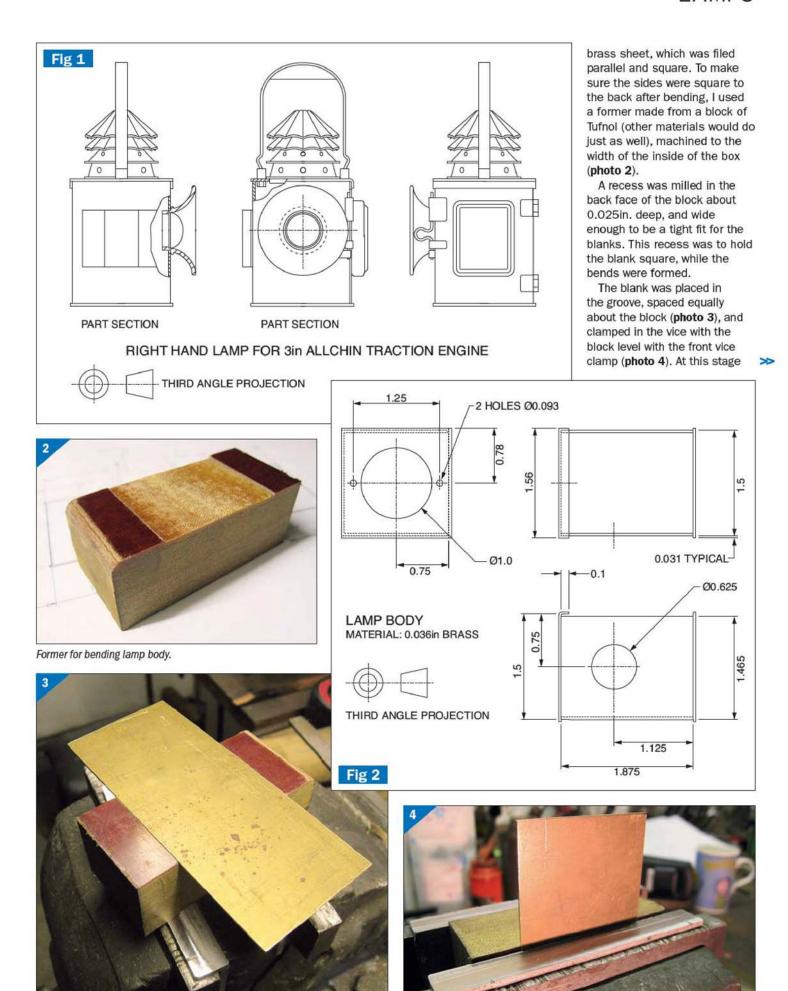
arly in 2006, I made a set of lamps for my Midland Single - Princess of Wales. These are only a small feature on a relatively large model, but I felt they made such a big improvement on the overall appearance. With this in mind, I planned to make a set for my 3in. Allchin - Ruby Swann, but only when I had sufficient details to make reasonably accurate models. Drawings of the lamps in Bill Hughes' book on the Allchin were reduced so much that they were too small to read and I didn't have a copy of the 1½in. scale drawing at the time, so I deferred making the lamps until I acquired appropriate details. I had plenty to do in the meantime, so nothing was lost.

Then, at one of our meetings, my friend John Jopson asked if I would like to have a look at an old M.E. magazine - the Centennial Celebration Collection featuring Road Steam Engines (one of 10 special

issues published in 1999) - saying that there were lots of interesting articles in it.

Well he was dead right! There was plenty to read in it, but what really interested me was an article by Bill Hughes on making lamps for the 1½in. Allchin. Just what I had hoped would turn up one day.

The best thing about this article was that the drawings and dimensions were legible but, being for the 1½in. Allchin, they were lacking in a lot of detail that could easily be added in 3in. scale.

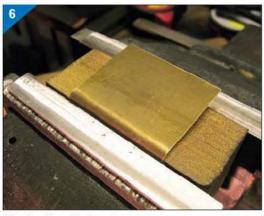

Finding photographs of full-size lamps to match Bill's drawings wasn't too difficult and, with the aid of both sets of information, I was able to make a set of drawings for my 3in. scale traction engine.

Only one thing eluded me and that was how the wire door bolt worked. The photographs I had seen did not show that particular detail well enough; however, a chat with Stephen Ross, soon cleared that up for me. He kindly sent me some excellent photos of the lamps on his full-size steamroller, which enabled me to complete the general arrangement drawing (**fig 1**). The finished lamps are shown in **photo 1**.

Lamp body

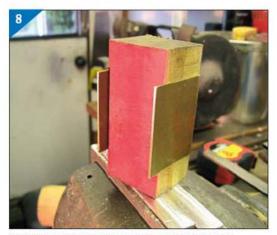
The first part to be made was the body - the box shaped piece onto which all other parts would be fixed (fig 2). This part comprises wrap round sides. back, top and bottom plates. I have a small press brake that I could have used to form the sides and back. However, it allows no control of the sharpness of the bends and leaves deep marks in the sides of the material being formed. Hence, I opted for a method I used in the past, which gives nice sharp corners to the bends.

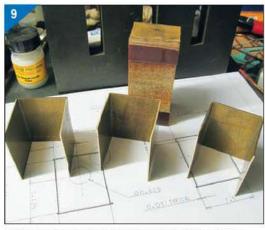
The blanks for the sides and backs were cut from 0.036in.

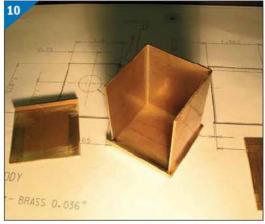


Body blank in position on the bending former.

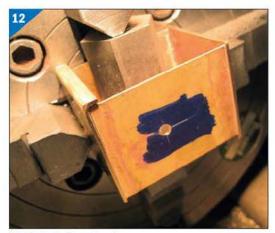
Former and blank in vice ready for bending.


Bending using a wooden roller.


After bending with the roller.


Using a flat-faced hammer to 'sharpen' the bend.

Other side of the body bent using a similar method.


Bodies bent up for front left, front right and rear lamps.

Body parts ready for silver-soldering.

Silver solder joint along inside of seams.

Pilot hole for lamp hood.

Lamp hood hole.

I used new aluminium vice clamps, but later these were replaced with new, unblemished, mild steel vice jaws.

The first side was bent over as far as possible using a wooden roller, then finished off with a smooth, square-faced hammer; this was kept flat to ensure marking the metal around the bend was kept to a minimum, and to give fairly sharp corners on the outside (photos 5, 6 and 7). The block was then turned in the vice and the other side bent over in the same way (photo 8).

As there are three lamps for a set - left and right front lamps, and a rear lamp - two more sides and backs were made (**photo 9**).

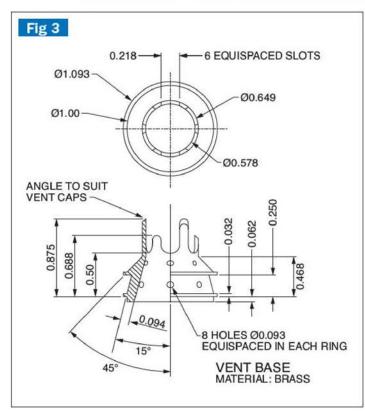
Tops and bottoms were cut from the same material as the sides and back. These were made a little bigger than shown on the drawings (**photo 10**). The front edges of the tops were bent over in the vice, again using the square faced hammer.


To solder these parts together, a small piece of silver solder was placed on the inside corners of the sides and back, so that the solder would 'wick' along the joints. The solder could have been applied along the outside edges, but applying the solder to the inside meant that there was no cleaning up to do afterwards (photo 11).

With all the parts of the boxes soldered together, the excess material was milled off the top and bottom edges, according to the drawing. At this stage the holes for the handle, lamp hood and vent base were machined (photos 12 and 13).

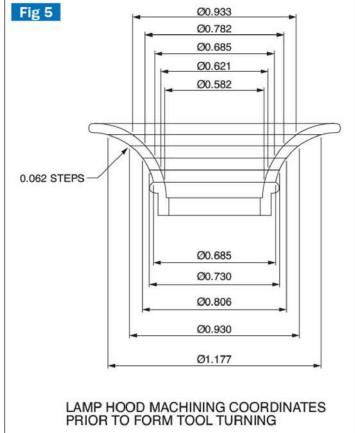
Turned parts

The next items to be made were the turned parts, namely: vent bases and lamp hoods. The vent base (fig 3), involves turning, milling and drilling (photos 14 and 15) - more about the vent base later. The lamp hoods (figs 4 and 5), involve machining to coordinates, then smoothing the curves using inside and outside form tools (photos 16, 17 and 18).



Machining the first step of the vent base.

Machining the second step of the vent base.



Form tool used to machine the inside curve of the lamp hood.

Lamp hood ready for parting off.

Equatorial Sundial

BUNCE Technical

Roger Bunce describes a sundial that indicates 'clock time'.

am interested in the design of clocks (ref 1). But, as we all know, clocks evolved from sundials. In fact, sundials were more reliable than early mechanical clocks and were used by some authorities to set clocks to time as late as the mid-1920s. So, for those of you who like clocks, but

dislike cutting wheels and pinions, here is a sundial that indicates 'clock time'.

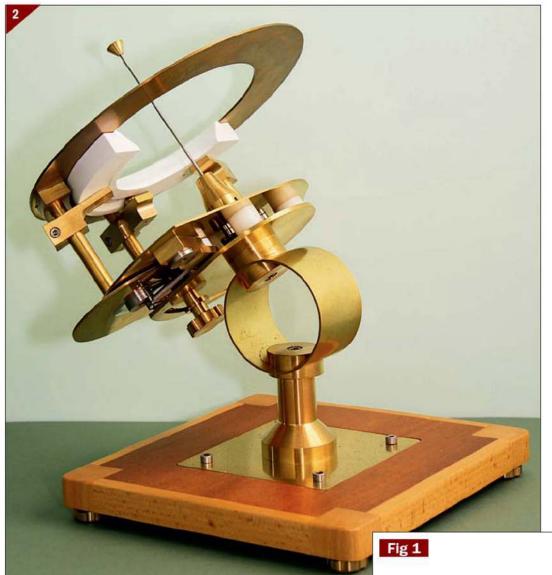
Background

In order to understand the design of this sundial it is important to distinguish the difference between 'Greenwich Mean

Time' (GMT), which is the time shown on accurate clocks and watches in England, and Time' (LAT). which is the time shown by 'ordinary' sundials. The difference between in early November an ordinary sundial, located at Greenwich, would be about 16.5 minutes fast, and in mid February about 14 minutes slow, relative to a clock set to GMT. This difference varies in a quite a complex manner throughout the year. In addition, the difference between GMT and LAT also varies as the ordinary sundial is moved in any direction away from Greenwich. The reason for this is outside the scope of this article but for more information on this and many other aspects of sundials see refs 2 and 3.

In fact, it was the spread of railways across England, in the mid-19th century, which bought about the introduction of GMT. Incidentally, GMT has been replaced by 'Coordinated Universal Time' (UTC). GMT is based on astronomical observation and UTC on atomic clocks. GMT and UTC are virtually identical, the difference being no more than a second.

Before the introduction of the BBC time signal in 1924. some railways still set their clocks using a sundial. However, for the reason mentioned earlier, common sundials were somewhat difficult to use because they did not indicate GMT directly. The solution came with the invention of a special sundial called the Pilkington & Gibbs Heliochronometer (ref 4 and 5, fig 1). The PGH indicated GMT directly and was reputed to be capable of being read to about one minute of GMT during the year (provided the sun was


Brother Sun. PART 1 'Local Apparent these two time defining systems is significant: for example, MAR FEB

Front view of sundial.

320

Model Engineer 13 March 2009

EQUATORIAL SUNDIAL

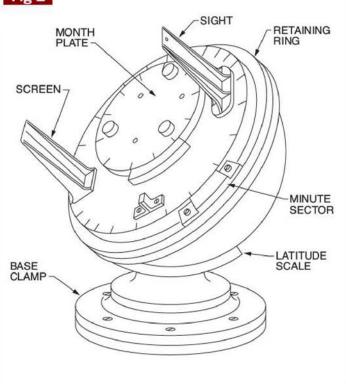
Rear view of sundial.

out!). Unlike 'ordinary' clocks and watches of the time, once it was set up properly, it was never slow or fast and, in fact, it was always as good as the earths motion about the sun which, as the basis of a time standard, was good enough in those days.

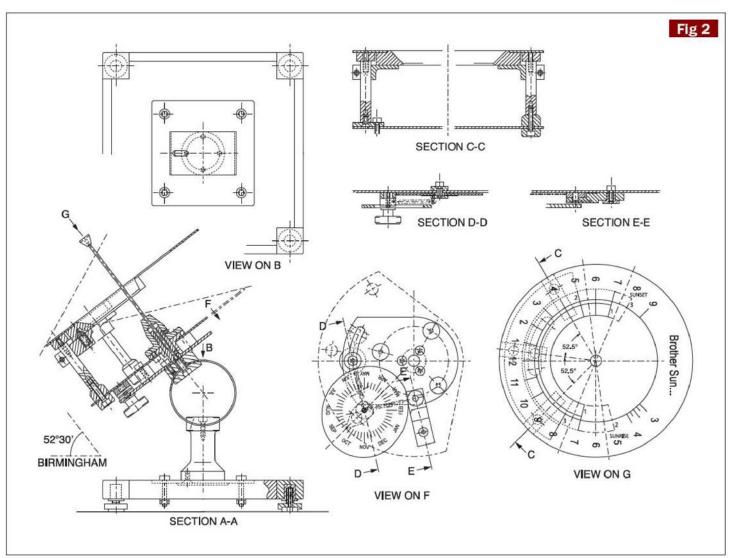
The working of the PGH depended upon, amongst other things, an understanding of the relationship between GMT and LAT - this is expressed by the equation of time (EoT). The EoT normally takes one of three forms: a table of numbers, a graph, or a mathematical expression. Confusingly, any of these forms is normally referred to as the EoT. In fact, the PGH used a polar graph arranged to act as a cam. The cam was fitted to a dial called the month plate. Before reading the

time from the instrument, the operator had to turn the cam to the correct date. In addition, the PGH would also have to be set up according to its location relative to Greenwich but, provided this location was not changed, the setup procedure only had to be done once. Since the invention of the PGH many other ingenious sundials have appeared commercially and in the patent literature (ref 6).

The PGH was no doubt an accurate sundial. However, the price paid for accuracy was that, for 'a quick look at the time', it was not so easy to use as an ordinary sundial or a clock. One had to ensure that the month plate was set correctly and then, to read the time, physically rotate another dial so that the sun shone through the pinhole sight


to project a spot of light centrally onto an engraved line on the screen (fig 1). Both the sight and screen are fixed to the dial and the time read from a scale engraved on the dial. Incidentally, both dials have auxiliary scales for added accuracy.

I wanted to make a sundial which indicated UTC but which could be read more easily - rather like a clock.


Equatorial sundial

My design is based on an equatorial sundial. The important features of this type of sundial are: 1) The gnomon (the axial rod which casts the shadow), is parallel to the earth's rotational axis. 2) The hour dial is set at 90deg. to the gnomon. 3) The hour dial is divided into equal radial divisions, whereas, in an ordinary sundial the dial plate is horizontal and the divisions are unequally spaced.

The equatorial arrangement has a number of important advantages over the common sundial: 1) It does not have to be individually designed for a particular location relative to Greenwich. 2) It can easily

The Pilkington & Gibbs Heliochronometer based on an illustration in their original catalogue.

General arrangement drawing of the sundial.

be arranged to display UTC directly rather than LAT. 3) It can easily be adjusted to display either UTC or British Summer Time. 4) The hour dial looks rather like a 24hr clock dial - which was part of my design criteria.

General description

Figure 2 shows the general arrangement drawing of the sundial and photos 1 and 2 show front and rear views respectively. The hour dial measures 220mm diameter. This sundial was very much a concept model designed to explore new ideas.

The base is made of mahogany with beech lipping. There are four leveling feet with cork protective discs. The wooden base is merely for development purposes and is not weatherproof. Most of the other parts are made from brass.

The sundial mechanism is supported on a column via a short horizontal tube. The tube is fixed to the column and the sundial mechanism by large washers; each washer has a cylindrical face. The tube is provided with slots, rather than holes, so that the sundial mechanism can be set at a particular angle to the horizontal.

The mechanism assembly includes three main plates (fig 2, Section AA and View on F): The lower plate has a curved slot and is fixed to the tube via the special washers. The intermediate plate is sector-shaped and pivots about the central axis of the sundial. The intermediate plate has three bearing pads, which slide on the lower plate. Projecting from the intermediate plate are three columns, which support the third plate - the hour dial.

Underside view showing the EoT cam and the thumbscrew for longitude adjustment.

Screwed to the intermediate plate is the EoT cam (**photo 3**). This has a months dial glued to the upper side. A pointer fixed to the intermediate plate indicates the setting of the EoT cam. The EoT cam is spring loaded

against a follower, which is pivotally mounted in the curved slot of the lower plate. Hence, by turning the EoT cam the intermediate and therefore the hour dial pivots about the axis. The position of the cam follower

Spring-loaded follower to provide balancing action for the EoT cam.

can be moved and locked along the slot - this also has the effect of turning the hour dial.

A second spring-loaded follower acts on the EoT cam at 90deg. to the first follower (photo 4). This is merely to provide a balancing action and avoids the need to physically lock the EoT cam after changing the month. However, the balancing action is not perfect due to the asymmetric shape of the cam and a shim-steel 'curved' friction washer is used under the EoT cam.

Located under the hour dial is an auxiliary dial. This is held in place by three 'fingers', each one being clamped to a column. The centre finger incorporates a spring-loaded plunger to bias the auxiliary dial against the bore of the hour dial and keep it in position. Hence, the auxiliary dial can be pivoted about the main axis of the sundial.

Materials

Most of the parts are made from brass. This was purely for convenience at this stage of development. If ever I were to design and make the 'new improved model', I would use mainly stainless steel. Various pivots and the springs are already in stainless steel.

The three bearing pads, supporting the intermediate plate, are made from white polyacetal (Delrin), and the cam followers are PTFE.

The hour dial is brass on which is glued a paper dial made using CAD. The paper dial is covered with 'sticky-backed' plastic for protection. This is obviously not suitable for continuous outside use but is fine for development. If I were to make another dial, particularly one in stainless steel, I would consider using laser or water jet methods to cut and engrave the dial.

The auxiliary dial is made from plywood and painted gloss white - again, not suitable for outside use. In future, I would consider using opaque white Corian. This is an acrylic polymer filled with alumina trihydrate, made by DuPont.

The gnomon is made from NiTinol super elastic metal

Month dial fitted to the EoT cam.

(ref 7). This is a nickel/titanium alloy discovered by the Naval Ordinance Laboratory, US, in 1962. NiTinol is difficult to machine - I could not cut it with a hacksaw and had to resort to grinding. The problem with the gnomon used in this type of sundial is that it is 'freestanding' and, if bent, will ruin the accuracy of the sundial. Figure 1, Section AA, shows that the maximum the gnomon can be deflected is about 90deg .; even this amount of deflection is within the elastic limit of NiTinol and, if bent, it springs back 'good as new'. A remarkable material!

Adjustments

As indicated earlier, in order for any sundial to function properly it has to be adjusted according to its latitude and longitudinal location. This, together with other adjustments and features, are as follows:

Orientation: As with any equatorial sundial, the gnomon is aligned parallel to the earth's rotational axis and the plane of the hour dial is parallel to

the equatorial plane. So, in the upper hemisphere, the person reading the time would be facing south. An easy way to set the orientation is, assuming the sundial is mounted accurately on the base, use a compass to set the L-H or R-H side of the base to true north (not magnetic north).

Latitude adjustment: To make this adjustment, the two screws within the large supporting tube are slackened and the dial mechanism turned about the axis of the tube to set the plane of the hour dial relative to the horizontal (photo 2). This is only necessary when first installing the sundial or if it is moved to a different location. In Birmingham, UK, the latitude is about 52deg. 30min., the angle the gnomon makes with the horizontal is also 52deg. 30min (fig 2, Section AA). However, it is generally more convenient to measure the angle the hour dial makes with the horizontal; this is called the colatitude which equals 90deg. - latitude, so, in Birmingham, this is 37deg. 30 minutes.

EQUATORIAL SUNDIAL

Photograph taken at the end of the first week in February 2009. The time shown is about 11.35.

Longitude adjustment: This is made by slackening the thumbscrew under the lower plate and rotating the dial assembly about the gnomon axis. An easy way to set this is: first set the month dial to the correct date then, using an accurate clock, turn the dial so that the sun's shadow indicates that time, then lock the thumbscrew.

UTC and British Summer

Time: This is also done by slackening the thumbscrew under the lower plate and turning the hour dial forward or backwards an hour.

EoT correction: This is done simply by turning the month dial so that the correct month and week are adjacent to the pointer (photo 5). The month dial incorporates the EoT cam, which turns the hour dial, via the sector-shaped plate, and so effectively converts LAT to UTC. Several people have asked me how to design and make an EoT cam so that will

be described in the next issue of *Model Engineer*.

Summer and winter months: Like many other equatorial sundials, in the summer the sun shines on top of the hour dial and in winter below the dial (according to the dates of the

spring and autumn equinoxes, which, for 2009, are March 20 and September 22. For ease of reading during the winter, I wanted the shadow cast by the gnomon to be visible from above. To allow this, the main dial is provided with the auxiliary dial with a non-graduated inclined surface (painted white). Photograph 6 was taken at the end of the first week in February 2009 and the month dial is set accordingly. The sun is shining on the underside of the dial and so the shadow is cast on the auxiliary dial and not on the upper surface of the hour dial. The time shown is about 11.35.

During the winter months, the difference between the earliest sunrise and latest sunset in Birmingham (and other places) is greater than 12 hours. This means that the auxiliary dial would need to encompass a span of greater than 180 degrees. However, this would mean that on some days, in the early morning or late evening. one end or other of the auxiliary dial would obscure the suns rays from casting a shadow on the opposite side of the dial. To avoid this problem, the auxiliary dial can be turned axially relative to the hour dial (photos 7 and 8). This allows the time to be read during all winter sunshine hours.

Accuracy: The dial is graduated in hours and quarters and can be read (estimated) to within about 2 minutes of UTC. This may be unimpressive by modern standards but, on the other hand, it never gains, never looses, doesn't go wrong and doesn't need batteries!

Motto

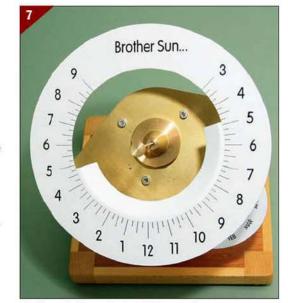
All sundials should have a motto! The motto on my dial reads: Brother Sun... from: Saint Francis of Assisi, Canticle of the Sun, c1225: "Be praised, my Lord, with all They creatures, above all Brother Sun who gives the day and lightens us therewith."

References

1. Bunce, R. A., Two Contemporary Clocks, M.E. 4314, 7 December 2007, pp. 680-683.

2. Waugh, A. E., (1973), Sundials: Their Theory and Construction, Pub. Dover Publications Inc.

3. The British Sundial Society, www.sundialsoc.org.uk


4. UK Patent No. 10,787, Application date 8 May 1906.

5. Aldred, G., A Review Of The Heliochronometers by Pilkington & Gibbs, British Sundial Society Bulletin, Vol. 18(ii, iii), pp. 90-131 et al.

6. Intellectual Property Office, esp@cenet, Worldwide patent data base, http://gb.espacenet. com/search97cgi/s97_cgi. exe?Action=FormGen&Template =gb/en/advanced.hts

7. Supplier of NiTinol super elastic metal: Memry GmbH, www.memory-metalle.de

To be continued.

Auxiliary dial turned to 'catch' the morning sun.

Auxiliary dial turned to 'catch' the evening sun.

ROGER BUNCE Technica Editor

Roger Bunce looks at a new range of products from Steam and Diesel Castings.

PART 1

Dan Jeavons in his workshop.

Pseudo Steam

team and Diesel
Castings (S&DC) is a
small, family-owned,
business which has
been supplying components to
model locomotive enthusiasts
for over 40 years. The proprietor

is well-known model engineer Dan Jeavons (**photo 1**), and the business is based in Kidderminster, Worcestershire.

As the company name suggests, Dan began by supplying castings and

BRITISH RAILWAYS
68088

NER Y7 Class 0-4-0 Dock Tank Engine.

designs for all types of locomotives, and that is still an important part of his business. There are 22 locomotives and items of rolling stock in the current range, most of which are diesel electric models in 5in. gauge with some in 71/4 and 7½in. gauge. The business remit is more extensive than the name suggests: Dan can supply anything from a locomotive windscreen wiper blade to a custom made locomotive complete with driving and passenger trolleys.

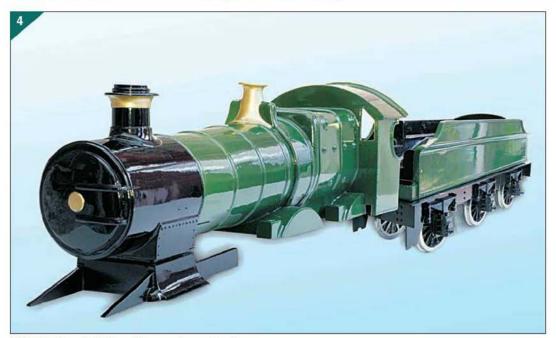
The business may be small but the range of expertise is vast. Dan firmly believes in seeking out the very best skills available in order to provide quality products second to none. The West Midlands has always been known for its engineering skills and local companies are used for services including: pattern making, cast iron and aluminium castings, machining, laser cutting and fabrication,

glass reinforced plastic (GRP) moulding, precision resin moulding, and painting.

Pseudo Steam

The range of diesel electric locomotives available from S&DC is considerable, so much so that Dan asked the question - what next? Now, in order to appreciate the validity of the answer, readers need to appreciate that Dan is not just a 'battery on wheels man', he has many years experience in building and running live steam, passenger carrying, model locomotives. Dan recognised that, while there are many passenger carrying electric locomotives that looked like diesel locomotives, there are almost no electric locomotives that looked like steam locomotives. Could this be the next model engineering challenge? - a challenge which Dan recognised and calls 'Pseudo Steam' (PS).

The idea is not entirely new - Hornby is the obvious example - but on a somewhat smaller scale! Dan thinks that the reason for the lack of pseudo steam in larger gauges is because, technically, it is a much more difficult problem to solve than diesel electric 'silhouette' models. For example, there are much greater geometric and dimensional constraints with steam locomotives.



GWR 51 Class 2-6-2 Prairie Tank Engine.

There are of course advantages and disadvantages with any new concept and it is unlikely that live steam enthusiasts will suddenly switch to PS. However, it is a fact that diesel electric locomotives have been a successful addition to the modelling repertoire - so why not PS? Let us examine the relative merits.

There are two aspects of PS that we, at *M.E.*, find particularly appealing: Firstly, it is a relatively new concept - and we are always

Advantages	Disadvantages
Safer	Traditionally, not the 'real thing'
Instant running	Deskills the driving challenge
More reliable	No smell
Less maintenance	
Less expensive	
Easier to drive	
Easier to construct	
Quicker to construct	
Machine tools not necessary	
Cleaner	

GWR City Class 4-4-0 City of Truro, under construction.

looking out for new ideas.
Secondly, it could appeal to a
younger generation of model
engineers. Indeed, Dan's Y7
Class entry level locomotive
was conceived with that very
market in mind. So parents
and grandparents, that's
something to bear in mind
for that special birthday or
Christmas present!

Pseudo Steam models

Dan does not do things by halves! He now has four prototype PS models, either finished or at an advanced stage of construction and plans to produce them in small batches. As Dan said, "One thing just led to another."

Dan's enthusiasm for PS is such that he now provides a

brand new catalogue devoted entirely to, and called, Pseudo Steam (and it's free).

The first models to be chosen for the PS range are all in 5in. gauge and in order of power and cost are:

NER Y7 Class 0-4-0 Dock
Tank Engine
GWR 51 Class 2-6-2 Prairie
Tank Engine
GWR City Class 4-4-0 City
of Truro
LNER A4 Class 4-6-2 Mallard

These are well-known locomotives that have all been the subject of conventional live steam models.

The **Dock Tank**, as the name suggests, was intended mainly as a dock shunter were an important requirement was for a small locomotive with a short wheelbase. They first appeared in 1888 and were originally known as the H class

The **Prairie** Tank first appeared in 1932 and remained in service until the end of steam. They were used mainly on suburban and branch lines because of their good acceleration.

City of Truro was built in Swindon in 1903. It was unofficially timed at just over 100mph while hauling a Plymouth to Paddington mail train in 1904. It would be another 30 years before the Flying Scotsman was officially timed at over 100mph.

Mallard was built in Doncaster in 1938 and was in service until 1963. It remains the world speed record holder for a steam locomotive at 126mph, which was achieved in 1938 on the East Coast Main Line.

Model construction

The vast differences in layout between the four prototypes presented numerous challenges when modelling in PS. These will be discussed in detail in subsequent articles but, very briefly, the construction is as follows:

Dock Tank uses a single electric motor with a worm and wheel gearbox. The batteries are housed in the side tanks of the locomotive. The main construction is a sheet steel fabrication.

Prairie also uses a single electric motor with a worm and wheel gearbox. Again, the batteries are housed in the side tanks. However, the main construction is a precision aluminium casting.

City of Truro is a departure from the two previous locomotives: There are four electric motors - two to each axle. The batteries are located in the tender, which is a sheet steel fabrication. The engine itself is a one-piece aluminium casting.

Mallard is a major challenge to convention: The motors and batteries are all housed in the sheet metal tender (available with or without a corridor). So, essentially, the tender drives the locomotive! The wheels of the locomotive are turned merely by frictional contact with the track. The connecting rods and valve gear are all modelled in detail and are driven by the cranks. The locomotive is built on a conventional chassis and the streamline bodywork is a high quality, detailed, GRP moulding.

Livery

The livery of these four engines is well documented. Dan favours the original livery and his finished engines would normally be painted accordingly. As I mentioned earlier, Dan's locomotives are painted professionally - no point in spoiling the ship for a ha'p'orth of tar! Do bear in mind - if you intend to make your locomotive from a kit, you need to paint many of the parts before assembly.

Performance

By performance, I mean how many passengers will it pull, how fast will it go and what is the minimum radius of track needed (table 1). This is of course a much-simplified list and the figures given are approximate. In addition, I have included the overall length of the locomotive including the tender if fitted:

Controls

All of Dan's electric locomotives are fitted with 4QD electronic control systems, which use a flying lead control box as standard. Dan is particularly pleased with these control systems and would like to thank 4QD for all their help and encouragement over many years.

Model Engineer would like to wish Dan every success with Pseudo Steam - an exciting concept in large gauge model locomotives.

Contact details

Dan Jeavons, Steam & Diesel Castings, (Pseudo Steam), 59 The Foxholes, Kidderminster, Worcestershire DY10 2QR. T. 01562 754530

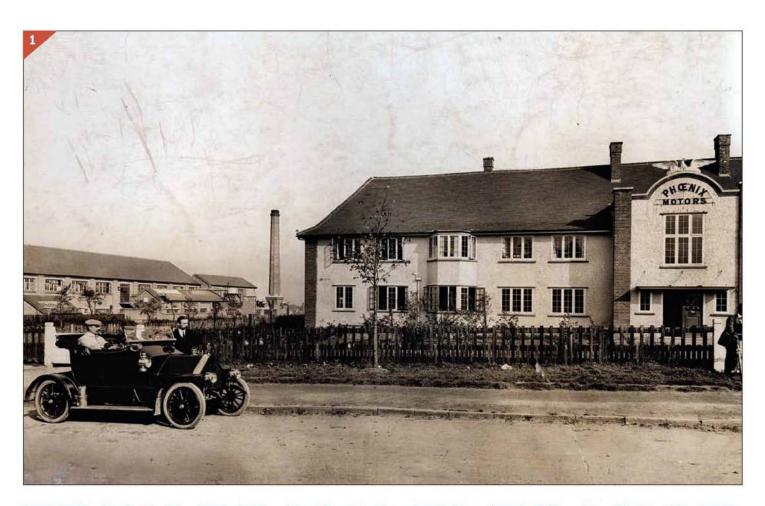

To be continued.

Table 1

Class	Passengers*	Speed (mph)	Length (in.)	Radius (ft.)
Y7	2	8+	221/2	8.2
51	8	8+	45	14.75
City	10	8+	63	11.5
A4	12	8 +	73	14.75

4468

LNER A4 Class 4-6-2 Mallard, under construction.

EDWARDIAN ELEGANCE The Phoenix motorcar

ISTED

Ron Isted looks at the strange saga of a Belgian marzipan maker, the secretary of a model engineering society and a Phoenix in borrowed colours!

egular readers will, no doubt, have noticed over the last few years a gradual process of rejuvenation of this venerable magazine, now 110 yearsold, together with a welcome increase in the variety of its contents, Since Model Engineer can only publish what its writers actually write, I felt it was about time I conquered a few of my own prejudices and described a machine that neither runs on rails nor floats. Even more unusual for these articles, the subject of this one does not even derive its means of propulsion from a combination of external combustion and boiling water. In fact, I have wanted to write about a motorcar for some time, the

main problem being that so many of those made during the reign of King Edward VII were anything but elegant. To put it bluntly, a lot of pre-First World War internal combustion road vehicles look like a random collection of components knocked up in sundry backvard sheds without reference to each other and then forcibly joined together in very unholy matrimony to produce what can only be described as a (hopefully) mobile visual monstrosity. As with the railway locomotive, the aeroplane and so many other examples of man's mechanical inventions. three or four decades elapsed before the majority of motorcars attained their optimum proportions. However,

there were a few exceptions, for example some of the early French cars, those produced by Rolls-Royce almost from the firm's foundation, and a vehicle produced by a small company in Hertfordshire, the subject of this article.

Chanced upon

I first came across the Phoenix 8-10hp Voiturette (figs 1 and 2) quite by chance in a slim little book with a rather lengthy title: A Pictorial History of Kingsbridge and the Surrounding Area.

One of the many illustrations, all superbly reproduced, was a photograph taken about 1910 near Kingsbridge (an attractive small town in South Devon), of the second man in the area to own a car. It was

EDWARDIAN ELEGANCE

immediately obvious that this vehicle, unlike so many of its contemporaries, had been designed by somebody blessed with a fine sense of shape and proportion, and I decided there and then that here at last was a suitable subject for one of these articles. At the time I had never heard of the Phoenix car and certainly had no idea that its designer was none other than A. E. Bowyer-Lowe, a distinguished model engineer who in later years wrote for this magazine and donated a trophy, the Bowyer-Lowe Challenge Cup, for the best design and craftsmanship in the tools section at the Model Engineer Exhibition. He also became the secretary of the newly formed Letchworth Society of Model and Experimental Engineers, while his boss. Joseph van Hoovdonk, Founder and Managing Director of Phoenix Motors Limited, the company that built the car, was the first chairman of the Letchworth SMEE. All this was duly reported at the time in the Model Engineer and Amateur Electrician, along with the fact that Joseph very generously donated a lathe to the new society - I wonder what happened to it or for that matter to the society itself?

As is evident from his name. Mr. van Hoovdonk was not a native of this country, his parents having emigrated from Belgium when he was a child. That country was, and still is, famous for its sweets, especially chocolate, so it's perhaps not altogether surprising that when he left school, Joseph went to work for James Pascall, the wellknown confectionery firm, now part of the Cadbury empire. The young van Hooydonk did very well in the confectionery business and, according to one contemporary account, acquired the reputation of being Pascall's best marzipan maker. He was, however, also passionately interested in bicycles and besides racing them himself, began a lucrative sideline in repairing other people's machines. The story goes that Pascalls (a family

firm) were somewhat put out when they discovered that one of their star employees was doing a spot of moonlighting, with the result that J. van H. resigned altogether from the marzipan day job to set up his own company in London's Holloway Road, probably in the late 1880s or early 90s, though reported dates vary. He began by continuing the cycle repair business, but soon started to design and build new machines, and was then persuaded by his brother to produce a motorcycle, subsequently marketed under the title of The Phoenix. The inspiration for the name came from the Phoenix Cycling Club, of which Joseph was a keen member. Two interesting features of this pioneering and highly successful bike, which preceded the iconic Harley-Davidson, were the excellent Minerva 2-cylinder engine. imported from Hooydonk's native Belgium, and the fact that it was mounted transversely. Both the engine and its unorthodox position were later to re-appear in the Phoenix motorcar.

Trimo and Ouadcar

The success of van Hooydonk's motorcycle led in 1903 to a three-wheel version, equipped with a basket-work seat between the front wheels for the unfortunate passenger, who apart from being completely exposed to the elements, was obviously very vulnerable in the event of an accident. This twospeed vehicle was known as the Phoenix Trimo and incorporated various improvements in order both to improve stability and also to strengthen the frame at the front end, a weak spot on many contemporary threewheelers. These modifications were patented by van Hooydonk and were so successful that they were soon adopted by other manufacturers, to his pecuniary advantage, naturally. His financial position received a further welcome boost from substantial compensation. according to a contemporary report, because a railway line was to be built on the site of

his premises, although I have failed to discover any further details. The company made use of the extra cash to decamp a few blocks further along the same street to a larger site at No. 736 Holloway Road, whence the Phoenix Quadcar emerged in 1905, by which time the company had become Phoenix Motors Ltd. Unlike its predecessors, the Quadcar was a four-wheeler, as its name suggests, although still based very much on the original two-wheel technology. Also in contrast to previous Phoenix machines, it was an unmitigated disaster and I believe only one vehicle was built to the original design, which was seriously deficient in certain basic essentials such as brakes. These consisted of 'strip-brakes' fitted to the front wheels and were said to have had a life expectancy of one trip, while the clutch lasted little longer!

Bowyer-Lowe, quite a catch!

Just how Joseph van Hooydonk managed to produce such a turkey after his previous successful efforts remains a mystery, but on the other hand, had he not done so, A. E. Bowyer-Lowe might not have been asked to join Phoenix Motors. This he did on 1 January 1906, having spent just under four years with J. A. Prestwich of Tottenham, North London, a firm probably better known to readers of this magazine as JAP manufacturer of very successful small internal combustion engines. They were not only used in countless motorcycles, not to mention Morgan and Reliant cars, but have even been known to provide the power plant for some of our miniature 'diesel' locomotives. Rather less wellknown is the high reputation achieved by the firm in the manufacture of projectors and other precision equipment during the early years of the cinema industry. B-L, as he was generally known, had joined JAP at the age of 18, and during his relatively short time there, designed both the first OHV and the first Vee-twin engines

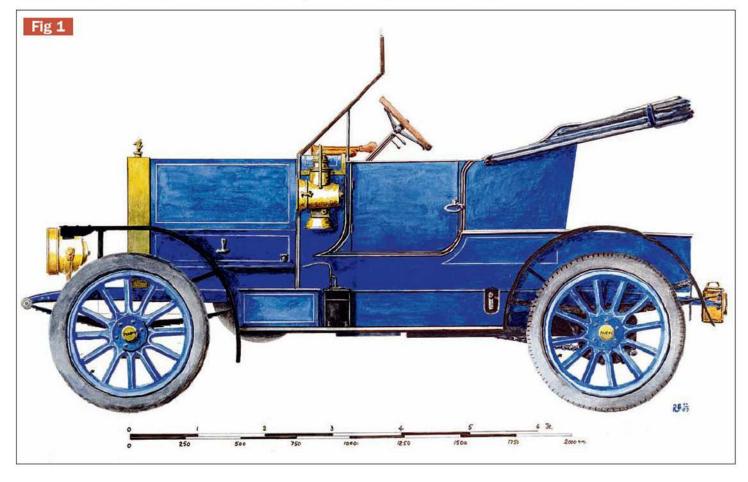
in this country, together with a 3-cylinder Dual car. This vehicle was fitted with an epicyclic gearbox, steel-plate clutch (in contrast to a flimsy cone clutch fitted to Hooydonk's contemporary Quadcar), worm back axle and was generally considered to be at the forefront of design technology. He was, therefore, quite a catch for Phoenix Motors, where he was specifically entrusted with re-designing the disastrous Quadcar, although Joseph van Hooydonk was not slow in putting forward his own ideas, as we shall see.

The revised version of the Quadcar appeared within a few months of B-L's appointment, but does not appear to have been much more successful than the original. I have failed to discover any illustrations of either vehicle, and the only technical information I have is that the new version was powered by a 2-cylinder watercooled engine manufactured in Aachen, Germany, by Fafnir. Also, that it incorporated an American epicyclic two-speed gearbox and that the differential back-axle came from 'Geo. Adams of Drury Lane' - was this the same firm that advertised lathes and other tools from an address in High Holborn in early issues of Model Engineer and Amateur Electrician? Incidentally, in April 1915, this magazine carried an article on an ingenious epicyclic back gear mechanism devised by A. E. Bowyer-Lowe for use with the popular Drummond round bed lathe. For ante-deluvian steam men like myself, it is somehow comforting to reflect that epicyclic gearing, still very much in current use, is in effect a development of the sun and planet gear patented by James Watt well over 200 years ago.

The little car with a big heart

Meanwhile, back at Phoenix Motors, B-L immediately set about two completely new car designs. The first one, the two-seater 8-10hp, and the principal subject of this article and shown in figs 1 and 2, was produced early in 1907 and

marketed as "The Little Car with a Big Heart", which only goes to show that Edwardian publicity blurb was every bit as cringe-making as 21st century television car commercials. The larger 10-12hp version followed a year or so later. Photograph 1, reproduced by kind permission of First Garden City Heritage Museum, Letchworth, shows a 10-12hp outside the elegant new factory in Letchworth to which the firm moved in 1911. I believe the driver is Joseph van Hooydonk, while the smartly dressed and serious looking young man standing next to the car is its designer, A. E. Bowyer-Lowe.


Both the 8-10 and the 1012hp models were extremely
successful and, quite apart
from their pleasing proportions
by comparison with so many
contemporary vehicles, both
were unconventional in several
other ways. At van Hooydonk's
insistence, transmission was by
chain drive, although this was
already going out of fashion
in favour of the cardan shaft.
Perhaps as a deliberate policy
in the face of that undeniable

fact, the publicity material issued with the Phoenix made much of the vehicle's Hans Renold patent silent chain, even reprinting part of an article by Henry Sturmey from The Motor magazine, generally singing the praises of chain drive and asserting that it was very much more efficient than cardan shafts with all their associated gearing. This was not an entirely unexpected claim from Mr. Sturmey, of course, since he and James Archer had only recently patented the famous chain-driven multi-speed gear for bicycles. As a matter of historical interest, Sturmey's main points are (i) that the cardan shaft is under very much greater stress than a chain drive, because of the universal joints necessitated by the independent movement of wheels and axles relative to the fixed position of the power source, (ii) much more power is lost in shaft drive than with chain, (iii) maintenance and replacement are much easier with a chain. In his own words: "the removal of a single bolt takes the chain away and it


can be properly cleaned and treated, conveniently and comfortably away from the car. Furthermore, if breakage should occur, the repair is an easy matter... in some forms, new links can be put in absolutely without any tools and when the chain wears out, a new one can be ... put on by any novice without any need to resort to a workshop or skilled labour". On the other hand, he has this to say about the cardan shaft: "when wear does take place, it cannot be taken up by the chauffeur (!), it is usually a workshop job, needing re-bushing, and in the event of a shaft or a joint breaking, a motorist is absolutely stranded... the only thing is to wait for a new shaft". After once again emphasising the "superior efficiency of a central chain drive", he ends with the following remarkable statement: "My way of thinking may not perhaps coincide with popularly accepted notions of the day, practical trial will ultimately show the correctness of the views put forth". Oh well, you can't win 'em all.

Bought-in engine

In the earlier examples of the Phoenix 8-10hp, and probably at van Hooydonk's insistence, the engine was again bought-in from Antwerp-based Minerva, an up-market firm that has been described as the Belgian equivalent of Rolls-Royce. Minerva's British agent, by the way, was David Citroën, brother of the founder of the famous French car firm. As with the original Phoenix motorcycle, the engine was mounted transversely, most unusual at this period and indeed for another half century until the advent of the Mini in 1959. Since the engine rotated in the direction of travel and the ratio was 1:1 in the highest of the three gears, Phoenix Catalogue No. 26 proudly informed would-be owners: "the drive is direct from engine to road wheels, no gear wheels at all are revolving. The chains are efficiently protected and the drive being straight through from engine to road wheels by the most efficient power transmitter known in engineering, no power is wasted as is the case with

EDWARDIAN ELEGANCE

bevel wheels ... as most of the time the top gear only is used, the running is light on petrol and tyres, but in addition a perfectly silent drive is the result... The Phoenix... may be called a top gear car, on which an average of 20 miles per hour. even in very hilly districts, is a long way within its maximum capacity". Later engines were imported from two other Belgian manufacturers, Imperia and Métallurgique, and I believe that later still, engines were

built in house, although the castings must still have been bought in from outside firms, since Phoenix Motors did not possess its own foundry. The engine on the only surviving Phoenix 8-10hp in this country, dating from 1910/11 and to be discussed later, is in fact marked 'Phoenix' (photo 2). However, as can be seen from the illustration, the name is a separate plate bolted on, so it may very well be in the literal sense an Edwardian example of a practice depressingly common today, namely badge engineering.

Engine specification

The engine featured two cylinders 90 x 100mm, cast in one block, and the Phoenix Catalogue informs us that "in accordance with latest practice. both pistons are mounted on the same line of crankshaft. which results in perfect running at all speeds... while silence is one of the leading features of the engine". Cooling was by thermo-syphon, a system quite common at the time, largely because it avoided the

photograph of the chassis suggests a figure of about 15in. diameter. RIS

use of a pump, and perfectly adequate with the low engine revs then in use. The water jacket was made in generous proportions, especially round the valves to ensure effective cooling... the top section is detachable and a large cover is in addition, placed at the side, enabling any deposit of fur to be easily cleaned out from the water space - one of many gentle, and not so gentle, hints to the owner/ driver to remember to carry out his own regular maintenance. On the engine itself, inlet and exhaust ('outlet') valves were stated to be 'all alike' (i.e. the same size), so that not more than a spare one need be carried, implying that the driver was presumably meant to fit the replacement himself in the event of a failure on the road. In passing, I would have expected the exhaust valve to be somewhat larger than the inlet, to allow for the expansion of the burnt gases. but perhaps I'm just betraying my steamy background. With only two cylinders and low rpm, the flywheel obviously needed to be pretty hefty, but unfortunately, I have no details of its exact dimensions, though scaling it off a small overhead

The publicity material merely states that it was of ample proportions, giving a constant torque and smooth drive to the car. It was combined with the clutch, "a large single hardened and ground steel plate, smooth in action and running in oil... (and) can be slipped with impunity allowing driving in traffic to be done in top gear. It is practically unwearable and needs no attention beyond occasional lubrication obviously the lessons from the flimsy Quadcar had been well and truly learned. As mentioned above, the Phoenix gearbox was of the three-speed and reverse sliding type on Hoffmann ball bearings. The whole box is cast in one piece, obviating anything in the nature of leaking joints. A plain cover is placed over the top which, when removed,

exposes the whole of the gear for inspection...

Home maintenance

It is obvious from the numerous references to ease of access and inspection that Phoenix car owners, as indeed was the case with the majority of makes at the time, were expected to carry out most of their own running repairs and general maintenance. In the words of the Phoenix publicity handout: The design of a car is the basis from which springs satisfaction or dissatisfaction, economy or expense, accessibility or a lack of getat-able-ness which is not only annoying but which leads to the calling in of outside assistance for an adjustment which could well be made by the owner could he only get at it ... Economy in first cost, running and up-keep, accessibility and simplicity are also necessary points to the man who wishes not only to drive his car, but also to be able himself to keep it in order. However, Mr. van Hooydonk went a stage further and issued the following dire warning to purchasers of his vehicles. combined with a demand for physical effort while actually out on the road: Lubrication is by hand pressure pump. Mechanical lubrication, no matter how well made, is liable to fail. Failure of lubrication means ruin to the engine, and consequently we fit a large transparent oil pump easily operated by the driver, and all that is required is to pull up the plunger and turn the cock round say every 15 miles - not much to do, but giving one the certain knowledge that the oil has actually gone into the crank case. Just the sort of little distraction you needed when negotiating your way through a lethal combination of motorised and horsedrawn traffic round London's Piccadilly Circus in the rushhour, (no traffic lights in those days!) or trying to avoid getting your wheels stuck in the Deansgate tramlines on a wet day in Manchester.

To be continued.

McONIE'S OSCILLATING ENGINE

ANTHONY MOUNT

Anthony Mount
completes the
crosshead and tackles
a range of other
components including
the side frame bearings.

PART 15

Continued from page 263 (M.E. 4346, 27 February 2009)

111

Crosshead after soldering with the clamps still in place.

olding the parts together for soldering is a problem! I tried at first with a couple of toolmakers clamps but the bigger of the two 'sucked' away a lot of the heat, so a couple of 5mm square section straps were made with two 8BA tie rods to pull the parts together. One of the straps was tapped 8BA the other drilled clearance.

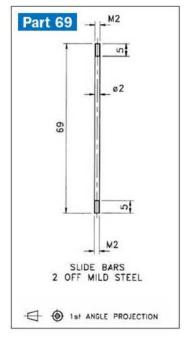
To space the two bars the correct distance apart a spacer was made from the same section as the die block (see Part 70). One thing we do not want to do is to solder the spacer! Therefore, the bars were coated with Tipp-Ex correction fluid, which resists silver solder.

Assemble all the parts with the straps holding the sliders in place and a small toolmakers clamp holding the spacer and nose in position (**photo 111**) - hence the reason for not rounding the end of the nose.

As the parts are quite small there is no need for a huge flame. Flux only those parts where solder is required and use small diameter silver solder wire. Bring up to heat and just touch the joints with the solder wire, it should run quickly around the joints. I turned my assembly over using tongs and found I needed to apply a little extra solder on two joints on the other side.

When the assembly was cold, all the clamps came away easily and the spacer pushed out - much to my relief! A brisk rub with a wire brush removed most of the discolouration.

A word of caution on clamping: It is tempting to tighten up the nuts very tight, but this can lead to the sliders taking a 'set', as they soften with the heat. Also, when holding the part in the bench vice be careful not to squeeze too hard as, since the bars are curved, they will not resist the pressure of the vice as well as if they were straight.


Ream the slider holes 2 millimetres. Try the two slide bars (Part 69) in place and check that they slide easily, their distance apart is correct, and that they are parallel to each other. A measurement across the slide bars at each end of the crosshead will confirm this.

Slide bars (Part 69)

The slide bars are simple 2mm dia. mild steel rods threaded one end.

Die block (Part 70)

This could be made from a small piece of brass bar using the milling machine, fly cutter and end mill. However, I had a short length of brass bar about the right diameter so, as with

the curved bars of the cross head, I turned it to size in the lathe (**photo 112**).

A slitting saw was used to cut out a piece for the die block and another piece for the clamping spacer (used when soldering the crosshead). Finally, a 2.5mm hole needs to be drilled through the centre of the block.

Governor balls (Part 71)

There are a number of ways to provide balls for the governor, such as softening ball bearings and drilling holes in them. But it is most satisfying to machine them yourself and to provide them with a little neck, as used on the full-size prototype.

To machine the balls a ball turning tool can be used, either the up and over or the horizontal type. Without such a device I find the quickest way is to make a form tool in gauge plate and harden and temper it, then you can produce standard balls ad infinitum.

Always stone the cutting edge after hardening - the better the

Turning a ring to make the die block and crosshead clamping piece.

Using a form tool to turn the governor balls.

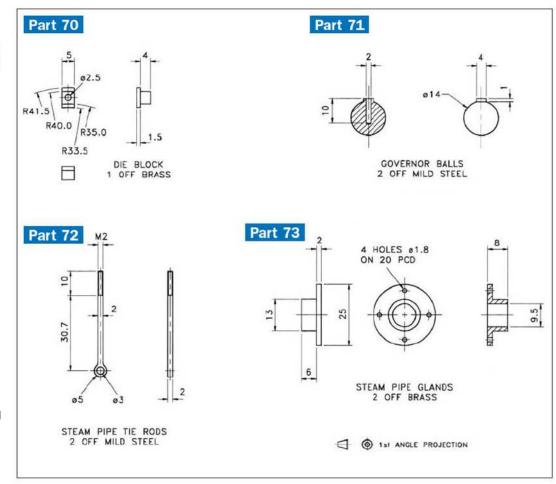
finish on the tool - the better the finish on the job.

As you feed in the tool some cutting fluid can help. However, I find that when nearing the finished diameter, with by now a broad cut, if cutting oil is still used, the tool will suddenly stop cutting and the metal surface will simply slide on the tool. After wiping off any cutting oil, cutting will begin again. Once the finished diameter has been reached, allow the tool to dwell for a while. The tool will continue to take off a tiny cut producing gossamer swarf and a pretty good finish (photo 113).

However good your tool, you will probably need to finish off the surface with some fine abrasive paper to remove tiny tool marks.

To drill the ball, make a brass, top hat-section, collet. The underside of the rim bears against the chuck jaws. The ball goes inside the collet, pushing against the bottom, which is split together with the side of the collet. The jaws compress the collet against the ball to hold it tight (photo 114).

If you grip the neck of the ball in the tailstock chuck and then offer it up to the collet, it will be orientated correctly for facing off the boss and for drilling the hole for the arm.


Steam pipe tie rods (Part 72)

Two tie rods are required to hold the steam pipe elbows at the correct distance from the side frames. Start by drilling the cross-hole and then form the ball end with a form tool. Give tailstock support and turn down the small diameter rod behind the ball (**photo 115**). Finally, part off, re-chuck, and thread the end.

On assembly, two nuts are used either side of the frames to adjust the length of the rods.

Steam pipe glands (Part 73)

The two steam pipe glands are turned from brass bar. Drill out the hole to be a sliding fit on the pipe and turn down the 13mm dia. to be a close fit in the cylinder pivot ends. Part off

Holding a governor ball in the 'top hat' collet.

Turning the slender region of a steam pipe tie rod.

and use the dividing head to drill the stud holes.

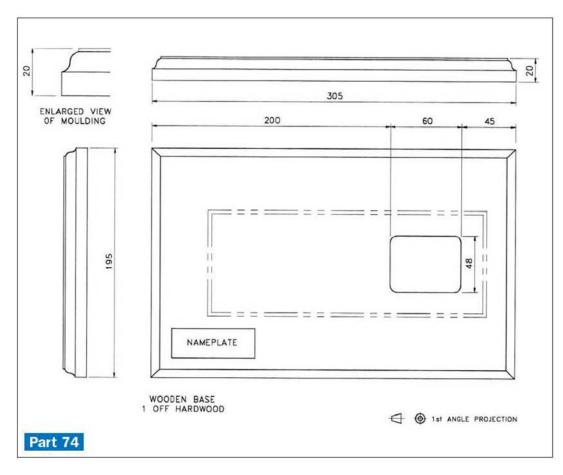
Wooden base (Part 74)

The engraving shows the full-sized engine supported on timber bulks, but it may also have been mounted on brick and or stone pedestals. I decided to just mount the model on a polished wooden base - as is my usual practice.

A cut-out is required to clear the bottom end of the cylinder as it rocks. Any quality hardwood can be used, stained and polished to your particular requirements. I would also fit a nameplate, giving a few

particulars of the engine and the builder.

Some model engineers seem to fight shy of using wood. If woodworking is not your forte, look in Yellow Pages to see if there is a woodworking shop near you who could make the base - it will only take an off-cut of wood.


If you decide to make your own base, the milling machine can be used to machine the moulding around the edge. The base is clamped to the table and a router cutter used. A slot drill can be used to machine the cut-out and also the recess for the nameplate.

Staining is done using a proprietary water or spirit stain. Bear in mind that water stain can raise the grain of some woods. Several types of polish are available; one of the simplest is sanding sealer followed by a wax polish - use whichever you prefer.

Side frame bearings (Parts 75, 76 and 77)

Fixed to the side frames are bearings for the cylinder pivots (see M.E. 4330, 18 July 2008, p. 83). In the full-size engine they were cast integral with the side frames, but for the model it is much easier to make them as separate items.

The pivots on the cylinders are stainless steel. These need to run in bearings made from a 'dissimilar metal', which in this case is bronze bar. Since we are tight for space, separate shell bearings are not used and the pivots run in imitation shells machined on the bearing blocks themselves.

Start by milling the four parts to their overall finished sizes. As an alternative to milling, the blocks can be turned two at a time in the 4-jaw independent chuck. This would lead us nicely to the next operation: the two caps (part 77), can be set up together in the 4-jaw chuck and a hole drilled and reamed 10mm (photo 116). The hole is reamed 10mm initially so that when the mating parts 75 and 76 have been made, and the pairs mounted together in the 4-jaw chuck, if there is any misalignment, the holes can

be opened out by boring and reaming to the finished size of 12 millimetres.

As well as drilling the hole, the body is turned down leaving a 14mm dia. ring around the hole. The parts are then reversed in the chuck and the ring on the other side turned being careful to ensure that the hole runs true.

Parts 75 and 76 can be machined to the same stage, but they will have to be worked

117

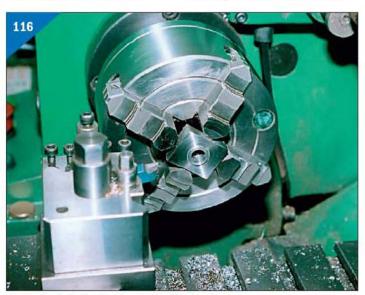
Milling the tongue of a bearing cap.

on singularly as the holes are not on the edge of the blocks. While the parts are still 'blocked up', it is best to drill the stud holes.

The next job on the bearing caps is to mill one side where the cap sits against the main frames. Take care to hold the cap firmly in the machine vice - even a 6mm end mill imparts considerable force.

Similarly, mill the bearing bodies (parts 75 and 76), to fit against the main frames. Reverse and machine the smaller rebates on the other side.

Hold the caps in the machine vice and mill the 14mm wide tongues (photo 117). Do not use big cuts. They are quite small items and it would be a shame to spoil them at this stage.


Now mill out the slot in the bearing bodies to receive the tongues of the caps. Make careful measurements of the cap so that the slot is correctly positioned for alignment of the imitation bearing shells - even if this means that the tongue is slightly off centre.

Fit the two parts together and mount in the 4-jaw independent chuck setting the boss or hole to run true. With a small boring tool open out the hole to almost 12mm and finish with a reamer running at a slow speed.

Make up a couple of cup bushes to fit over the bosses on the caps and set up in the 4-jaw chuck again to turn the oil cups (**photo 118**). All that now remains to complete the caps is to round the ends of the stud flanges.

There is still more work to do on the bodies. For this the rotary table needs to be used with a 12mm locating spigot in the middle. Also needed is a 14mm dia. cup washer to go over the spigot and clamp the body down to the rotary table. A sacrificial washer is placed on the table to raise the bearing body and protect the rotary table surface from the cutter.

The side of an end mill can now be used to form the curve of the body (**photo 119**). This is semicircular for Part 76. Also semicircular is Part 75, but with straight side wings. It

Turning the imitation bearing shells of the bearing caps.

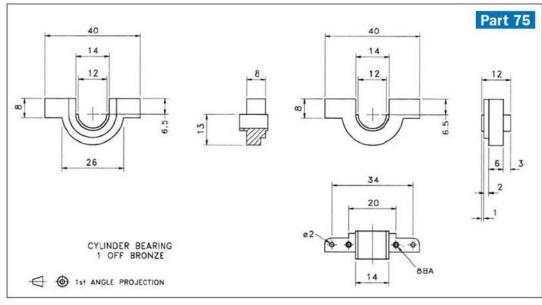
OSCILLATING ENGINE

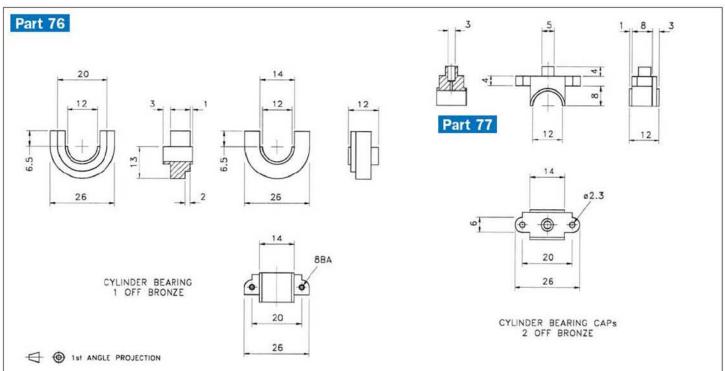
is easier to machine the side wings before the bottom radii because the part is easier to clamp and the slots thus formed provide an indication of the finishing positions of the ends of the curve.

The bearings can now be fitted to the side frames. You will see that at a few locations the bead around the edge of the frames needs to be cut away for the bearing to sit flat. Also, on the other side of the frame, just the ends of the bead at the cut-out for the bearing need to be removed. This is so that on assembly, the cylinder can slide into the bearings without fouling the ends of the bead.

To fix the bearings into the slide frames I decided to forgo silver-soldering and use Araldite glue, with a couple of screws fitted flush into counterbored holes in the frame. The bearings were clamped into position on the frames and the holes spotted though into the bearings. They were then drilled and tapped 8BA.

After assembly, the heads of the fixing screws were covered with epoxy filler and, when dry, rubbed down flush with the frames. After painting, the screws are invisible.


To be continued.



Turning the oil cups of the bearing caps.

Milling the curve of a bearing body.

The Re-Cycle Engine

FENNER

Dave Fenner finishes the bearing housings, covers the cylinder stanchion and starts the main crank assembly.

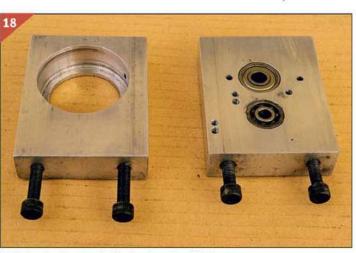
PART 3


Continued from page 280 (M.E. 4346, 27 February 2009)

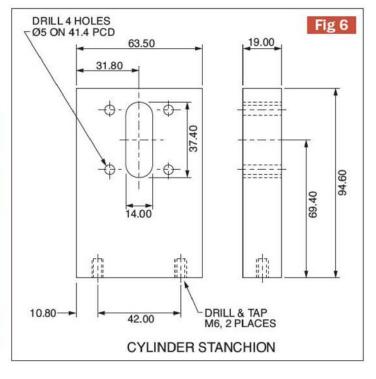
Boring bearing locations for slave shaft and camshaft.

he bearing housings can now be machined in the lathe to create the bearing locations. Photograph 16 shows one of these after centering up (done by locating a Morse taper centre between the drilled 10mm hole and the tailstock centre, then checking with a DTI) in the 4-jaw chuck and boring to diameter and depth. A close fit to the bearing is required, and as the size is approached, it may be useful to take one or two extra passes at the same setting to compensate for any spring in the boring tool.

As regards the slave housing, note that the shaft centreline spacing is 1in. (25.4mm) to suit the gears. If achieving this dimension accurately is a problem, then a few thou, over will be okay, but do not make it less or the gear sizes will need adjustment. Here, I chose to bore the two bearing locations on the mill, using a boring head made about 30 years ago (photo 17). The bores are taken right through, and the bearings would be fitted later from each side, retention being by the use of Loctite. You may wish to include a spacer between each pair of bearings, in which case, the spacers may be turned as thin walled items, a little smaller in O/D than the


Work held in a 4-jaw chuck to bore main bearing housing.

bearings, with a length to bring the bearings flush with the outside faces of the housing. **Photograph 18** shows one of the main housings along with that for the slave shaft with its bearings in place.


Cylinder stanchion

Again the material used is the 63.5 x 19mm aluminium flat bar (**fig 6**). This time all the work is undertaken on the mill. The essential features, which

need to accurately placed, are the four 5mm dia holes on a 41.4mm pcd for the cylinder studs and the two M6 holes for attachment to the main base. I have given dimensions for the slot as 14 wide by 37.4mm high, these being measured from mine as made. It should, however, be noted that this is just clearance for the connecting rod and mine was finished by hand after assembly. Photograph 19 shows slot

Main bearing housing (left), slave housing (right).

THE RE-CYCLE ENGINE

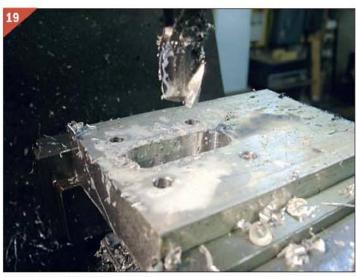
milling in progress. I would suggest that the slot be cut to the dimensions given, then checked and filed, if necessary once assembly is under way.

Photograph 20 shows the components made thus far, loosely assembled, and it may be observed that the steel base has now been treated to a coat of paint in an effort to make it just a little more photogenic.

Reinforcing yoke

This is probably a good time to add the reinforcing yoke as shown in **photo 21**. I made this from strips of bright steel flat bar, sawn, filed, drilled, attached and then tack welded on the job prior to fully welding on the bench. If you do not have welding facilities, then you may choose to go for a silver-soldered or bolted arrangement. I used countersunk Allen screws as these give a more positive

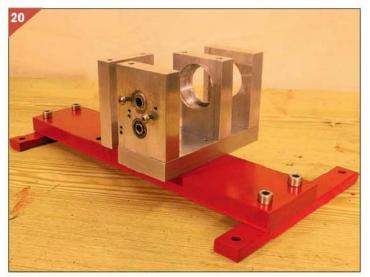
positional location, without the added complication of dowels. These alternative production methods will probably mean that it is better to fit to the job (positioning the drilled and tapped attachment holes) after silver-soldering or initial bolting. The yoke has not been drawn, but the bars used would be one at 6 thick by about 25mm wide, and two at 8 thick by roughly 19mm in width. The part is shown placed in position with its countersunk screws, in photo 22. As may be seen from the photos, some sawing and profiling may be needed to clear the screw heads, and in due course, the lubricator.

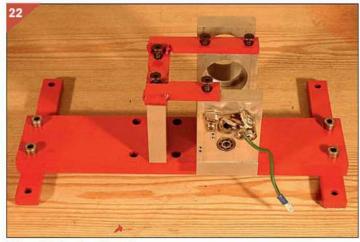

Main crank

The raw material used for both webs was a length of 75 x 12mm black steel flat bar. After completing the basic operations, these two parts were cleaned up by giving a lick on the surface

012.70 012.70 013.00 016.00 MAIN CRANK WEB

grinder, reducing the thickness of each to 11.5 millimetres. It is unlikely that you will have one of these in the typical amateur workshop, so I suggest cleaning up either on the mill, or using bright bar and adjusting the main shaft shoulder location and nylon bush size, to accommodate material supplied to 12mm thickness.


After sawing to the approximate length, the blank for the main web (fig 7) was set up in the mill (photo 23) and four holes drilled, one was drilled 13 and later opened up and reamed out to 16mm in the centre, one is 13mm dia. for the crankpin, and two are 12.7mm (½in. dia.) which form fillet radii for the counterbalance


Milling slot in cylinder stanchion.

Reinforcing yoke made as a welded fabrication.

Principal structural parts built up.

Yoke painted and positioned.

Starting work on the first crank web.

feature. The drilled plate was then attacked with a hacksaw to remove the areas on each side of the crankpin position. The initial saw cuts may be seen in **photo 24**.

A small fixture was then made, as shown in **photo**

Initial sawing on the web.

25. This has two buttons pitched at 1in., their relative diameters being chosen to match the holes in the web. I believe that fixing by countersunk screws gives a more accurate location. The web was bolted to the

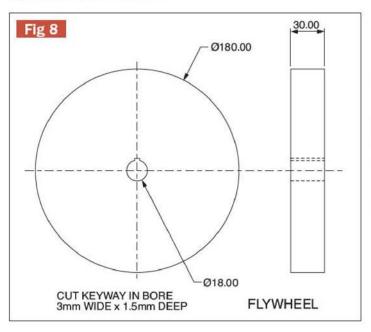
fixture which could then be held in the 4-jaw chuck, to turn the outside diameter. To ensure squareness, the work was pushed back to contact the jaws. The outer end of the central button could be touched with a DTI to enable centering, (photo 26). Turning could then proceed as seen in photo 27, cutting being stopped a few thou, short of the chuck jaws, leaving a thin sliver to be removed by filing afterwards. The web, still on its fixture, was then transferred to the mill (photo 28) where the counterbalance cut outs were tidied up, after which it was back to the lathe, where, gripped now in the 3-jaw, the central hole was opened up and reamed out to 16mm (photo 29). If you decide to deal with the flywheel next, then when it comes to turning the main shaft, you have both the mating parts to check against.

My original intention was to use a 9in. dia. cast iron flywheel, but when looked at in perspective, this seemed a little on the large side, so a slice

Fixture to hold web.

Work is centred by reference to the button.

Turning the outside diameter of the web.



Web is back on the mill to clean up the profile.

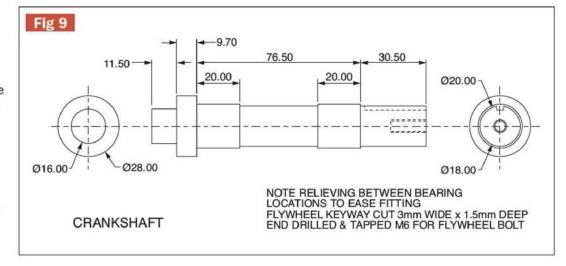
THE RE-CYCLE ENGINE

Main web is reamed to 16mm bore.

of steel approximately some 7in. or 180mm in diameter was liberated from the scrap box. No effort was expended in turning a fancy profile; it was just cleaned up, drilled, and bored to 18mm diameter. Photograph 30 and flg 8 give the general form.

The main crankshaft component (**flg 9**) is a relatively straightforward turning exercise, which I chose to do between centres as this would ensure concentricity of all the essential features, whilst also allowing the work to be removed from the machine to check against the mating parts. **Photograph 31** shows this at an intermediate stage, where a Greenwood Tools profiling tool is being used to marginally reduce the

diameter between the bearing locations, so that sliding on the inner bearing would become an easier operation later in proceedings.


To be continued.

No fancy profile; just cleaned up.

Diameter between bearings is slightly reduced to make fitting easier.

-ULUIVII V LITH'S C **IN KEITH**

Keith Wilson talks about dies, sanding gear and oil pumps.

WILSON'S WORDS OF WISDOM

The trouble is that people WILL take Authority to be Truth, whereas they should take Truth for Authority.

Francis Bacon

(believed to be eldest son of Queen Elizabeth I)

am glad to mention that my GWRILLIAN boiler has turned out okay (photo 1) and I can continue with the building. It is always a relief to get a boiler officially approved; especially when it is so big. I made a minor error in plate thickness (darned Metric system) and all the barrel and firebox plates are thicker than I planned. I designed for 4mm copper, but due to the error, barrel and wrappers are 5 millimetres. This pushes the barrel safety factor up to 12.5, so a) I could work with higher boiler pressure and b) it will give plenty of adhesive weight. This latter has some importance, but is not necessarily vital.

I recall a certain contest (c.1924) when a certain 4-4-2 beat another 2.5in. gauge 2-8-2 (or was it 2-8-0) with heavy lead blocks under the running plates, hauling a driver some 4-stone lighter then the 4-4-2's driver. A bit of oil on the rails (usually at departure point in the station) or a light amount of rain and any engine will slip. There is also the problem of grass-cutting and falling leaves especially on up gradients (Sod's Law). A small amount of rain merely 'muddifies' the almost invisible layer of dust on the rails; whereas a good shower, annoying though it might be to crews, will wash this mud away, allowing - or causing better adhesion.

Although working sanding gear is quite possible in our sizes. there are two important matters to be considered. One is that the distance from rail-top to main axle bearings is so much less (about 1/8 of full-size) so that sand can get easily to the place where it's wanted least. The other - oddly enough - is our old friend the square-cube law which states that retaining the same shape reduces the relevant quantity of sand in its box, and therefore only about 1:475 of full-size capacity is available. Mark Bedford's letter (M.E. 4335, 26 September 2008) reminds me that several years ago we visited North West America. In the museum in Seattle there was a duplicate copy of the Titanic's whistles/ hooters. I would love to have heard them - probably from a safe distance - but no luck! As far as memory goes there are one or two other copies in existence, possibly from the

It was on this trip that we went right down into the South-East corner of Oregon (Chiloquin is the town) to visit Train Mountain, written up in 'ours' some years ago. I was talking to someone (back in Blighty!) about Train Mountain and he asked me if I had read the article concerned, "Read it? I wrote it!" Incidentally, if you have Google Earth on your computer (it is free) you might enjoy the satellite views of Train Mountain.

Olympic or the Britannic.

We had a telephone call from Pennsylvania about a week after we got back and already the news had spread. "I hear you have visited Train Mountain." I do not know off-hand the distance from Train Mountain (Oregon) to Pennsylvania, but it must be about the 2,500 mile mark.

Richard Clifton's Postbag letter (M.E. 4335, 26 September 2008) on the subject of Paternoster lifts recalls a memory of some 44 years ago, when I attended an interview in Acton, just west of London.

There was a Paternoster lift (I believe it translates to 'Our Father') in operation with the warning "all visitors must be accompanied by a member of staff when using these lifts". There were some of these lifts in other parts of London I believe.

If and when a newcomer was in the firm and noticed the lifts, on occasions a more experienced person would enter the upward side lift at the top floor, directly he was out of sight he would stand on his head when the lift came down. producing some astonishment or temporary consternation!

'Perfection at its best'

About 40 years ago I was asked to sort out a 71/4in. 'George the Fifth'. On removing the boiler from the chassis, I discovered that the steel ashpan was bolted to the foundation ring of the boiler proper, Ugh! The state of the ashpan left somewhat to be desired, but when I had unbolted it a 'spare' fire grate was in the ashpan, together with quite a lot of ash, all a bit soggy with condensation. No wonder steaming was not as it should be.

The locomotive owner told me that he didn't know much about steam locomotives. but then he took me into his workshop and showed me his work on carriages - two LMS carriages. I am not prepared to swear that the toilet rolls had scale perforations, but would not be in the least surprised if they had. The interiors defied description - the words brilliant, magnificent come to mind.

The carriages were 71/4in. gauge, and superb is understating the case. Although not too familiar with rolling

"Ain't no such things as skyhooks. Oh yeah?

stock in general - apart perhaps for GWR Toads - I certainly would take some convincing that they were not 'perfection at its best'.

This reminds me of something I noticed years ago. Magnificent as some 'competition' entries are, you will often find even better work on individual club stands. Some years ago when I was 'shanghaied' into being one of three judges at an exhibition, we were so impressed by a locomotive that was immaculate but not entered that we awarded it a well-deserved prize.

We had great difficulty in deciding which of the two top locomotives should be given the top prize. Eventually we decided to look for the slightest apparent flaw and found a very tiny mar indeed. That was the occasion when one of the judges insisted on being anonymous, and another was carefully ill, leaving me to award everything. That made twice that I was a judge - the first time and the last!

Material sizes

I have just learnt something new to me, information via a metal supplier and Alan Howarth - a Levland club member.

In view mainly of the very high cost of new dies (drawing type. not thread type) there are what might well be called crossover points. If, for example, you order 1/sin. dia. silver steel, you might very well get 3 millimetres. Now 1/8 is 0.125in. and 3mm is 0.118in., the difference being only just under 7 thou. so it is quite easy to miss. In the same way, you might get the nearest Imperial size when ordering metric, or vice versa. 5/16in, is very close to 8mm and %in. is just under 16mm (about 0.005in. difference).

Sometimes this can be very useful, sometimes not. To give an example of not, in making a batch of four Kings a few years ago, I used (without realising it at the time) 3mm with 1/4 in. non-return clutches for the lubricator drives.

Result: - lots of backlash, which I did not understand at the time. I carefully gave the

Nut in place.


lever a lot more travel than necessary. Unfortunately, this led to excessive wear despite hardening and the drives packed up after a few months' operation. Some owners replaced the drive with ratchet wheels as per LBSC type, but there is a potential snag with this system to the effect that missing just one tooth cattles up the system, once again rendering the system useless. It is by no means easy to adjust so that it is dead reliable.

After learning of the matter two paragraphs ago, I checked all my stock of %in. silver steel and found three lengths of 3mm and just one of % inch. Having got some clutches in stock, I checked them with the silver steel, finding that the 3mm had lots of backlash whereas the operation using the %in. piece worked perfectly.

It so happens that the shaft used with these clutches must be dead hard, and therefore very brittle. If you drop just the shaft onto a hard floor, it can break easily. Another matter is the thread on the outside to prevent the lever working its way off the end, and also for a knurled knob in order that a bit of pumping can be done by hand as occasionally it is very helpful. It follows that the less stress the better.

This can be done with two actions. One is to tap the outer end 6BA and after hardening, screw in a stub of 6BA screwed rod (mild steel of course) and the other is to harden only just enough length to go through both clutches.

With the clutch drive, no way can a tooth be missed; there is no difficulty in adjusting it to get 'just one tooth' operating.

Insertion tool.

Whilst on the subject of oil pumps, Jack Shilling's Postbag letter (M.E. 4335, 26 September 2008) on the Ewins lubricator shows a fatal flaw in reasoning. There is no possibility of a hydraulic lock on the upstroke for the maximum force available for the possibility of locking is atmospheric pressure only. On a ram %in. dia. this amounts to 0.875oz. There is nothing that can lock the pump as the ram moves upwards. A near vacuum is formed as the ram moves upwards; once it uncovers the feed ports oil will be sucked in - or rather pushed in by atmospheric pressure. A close comparison is the discovery of atmospheric pressure. A chap named Torricelli - not sure of the precise spelling - filled

The Ewins pump works perfectly. "The greatest danger of saying that something is impossible is that you might be interrupted by someone doing it".

a one-end-sealed glass tube

with mercury then inverted it

keeping the open end under

mercury. To his surprise, only a

height of the contents at about

30in, above the mercury-in-bowl

surface (762mm) In tribute

'tube' mercury is called a

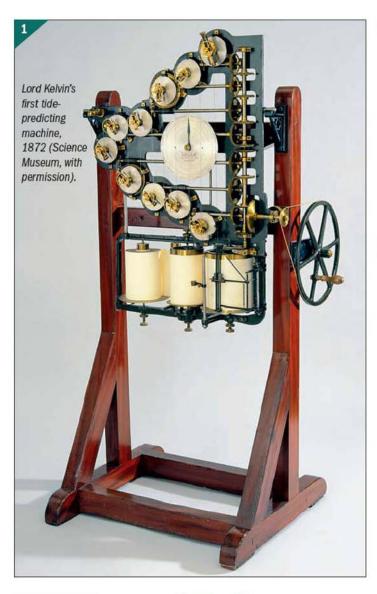
Torricellian vacuum.

to him, the volume above the

little mercury fell out leaving the

This reminds me of an article in a private journal refuting a semi-automatic points-changer, which if run through in the trailing direction against the points, the changer automatically changed the points and locked them in the new position. "It will not work" was the claim in the refuting article. In point of fact it had

been working perfectly for about 18 months on a semicommercial railway. I witnessed its working on site.


A nut fitting tip

On assembling, especially a 'true to scale' model, there arises frequent problems of getting a nut onto its stud. If the stud points towards you - in other words if the stud were much longer it would have to go right through something else. the easiest way is either to use a box spanner, or a piece of metal with a couple of threads on the end even if it has to be kinked to line up. The nut is put on the far end, and can be 'twiddled' around with the point of a scriber and finally tightened with a spanner.

If, however, this cannot be used due to covering of the stud by a fitting (photo 2) then the device shown in photo 3 can succeed. The size of the nut is 5BA and the 'handle' is an odd bit of scrap brass (18swg) rescued from the scrap box.

The fitting is the driver's brake valve on GWRILLIAN being fitted to the boiler, hence the use of a steel stud and nut - on final assembly after painting they will be replaced by a bronze stud and brass nut.

The tool to place the nut is made by tapping a hole in the end of a piece of metal and screwing a screw into it so that about two threads are protruding (photo 3). In my case I set the screw in with Loctite 601 and when it was set cleaned the head off flush on the linisher. It was also needful to trim the tool tip for narrowness. It was still tricky to get the nut on, but at least it was possible.

CASTLE-SMITH

Roger Castle-Smith airs some ideas for the design of a tide clock.

y first clock, a Synchronome, was made during the school holidays almost 60 years ago. Moving around in the army with the Royal Signals, and a busy second career as Chief Engineer (communications) with the Foreign and Commonwealth Office precluded any serious workshop activity until after retirement in 2000 when my interest in horology was revived. I completed a clock that was loosely based on the Murday battery clock (ref 1). I am in the process of making a Shortt clock and, while doing this, I am sketching out ideas for my next project namely: to design and make a tide clock. This choice arose out of my enjoyment of sailing and I was also inspired by an article serialised in the Horological Journal (ref 2).

Tide Clock

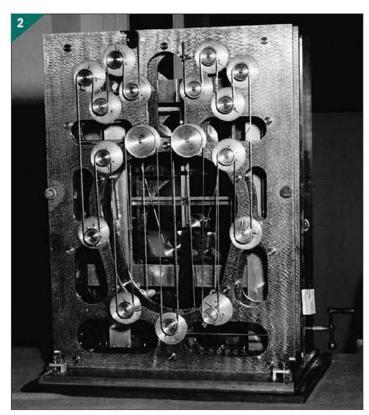
For those not familiar with tidal matters, I will introduce a few salient facts, although the subject is complex. However, they should be sufficient to enable readers to understand the background to my ideas.

Main tidal influences

Roughly two-thirds of tidal motion is due to the gravitational influence of the moon and one third due to the sun, although there are many other smaller influences with different periods. Centrifugal forces also come into the picture. A twice-daily influence, due to the moon's gravity, is known as the M2 tide and likewise S2 for the sun. The M2 tide has 57 high water peaks every lunar month and S2 has 59. It is the beating together of these two components when they are added which produces so called Spring and Neap tides. The rise and fall of the tide at Springs is greater than that at Neaps. Spring tides occur, on average, about two days after full or new moon at about fortnightly intervals. The two-day delay is known as 'the age of the tide'. Exceptional tidal forces occur around the Vernal and Autumn equinoxes. in March/April and September/ October respectively, due to the alignment of the Moon and Sun. At these times the Spring tides are significantly greater than at other times.

Other tidal influences

The rise and fall of the tide follows a height/time curve which is approximately sinusoidal for many places - but is not always the case. Southampton is a classic example that has a so-called double high water. After the first high water, the level goes down just a little and then rises again, before falling rapidly to low water. Elsewhere, there may be a stand at high water during which time the level remains


almost static. Conversely, some places exhibit a double low water or a stand at low water.

It is tempting to think that the double high water at Southampton is something to do with the fact that there are two entrances to Southampton water around the northern coast of the Isle of Wight but this is not the case. It is due to the effects of a so called shallow water tide that distorts the effects of the M2 and S2 astronomical tide components. The Hydrographic Office notes that this probably starts somewhere off Start Point, which first shows up as a double low water at Portland and then as a double high water at Southampton.

In addition to the M2 and S2 twice-daily components, the next most significant ones, at least in UK waters, are the once daily K1 and O1 components which are related, between them, to the declination of the sun and moon relative to the earth's equatorial plane. This is far from the end of the story as other components known as N2, M4, P1 and K2 come into the picture to a greater or lesser extent. For example, the time taken for the moon to travel between each perigee. that is its closest approach to earth, is one of the factors. It will be gathered from all of this that the factors that influence the rise and fall of the tide are far from simple.

Harmonic components

The relative phase and amplitudes of each tidal component are not the same for each place and the period of all components is not always the same. Most readers will know that any graphical curve can be made by adding together simple harmonic components. One way to predict the tide a long time ahead, for a particular place, is to measure the tide height at frequent intervals

First tide-predicting machine used in the USA, designed by William Ferrel and completed in 1882.

over a long time and then break down the resulting curve into its harmonic components. It is these components that can be used for long-term predictions. Obtaining figures, which are good enough for accurate predictions, is complicated by the fact that, for example, abnormal barometric conditions and wind can significantly affect the height of the tide. Even if totally accurate figures could be obtained, they would have a limited life as local conditions and other factors can change. It is for this reason that the Hydrographic Office limits its prediction to 50 years.

There are many mechanical clocks of yesteryear, typically grandfather clocks, which depict the rise and fall of the tide by means of a ship rising and falling against a painted sea background. These only crudely approximate the real world because they almost always just take into account the moon's M2 tide and assume a sinusoidal rise and fall. For the unwary, modern clocks and watches are available that only use the M2 tide. These can give errors in the time of high water of at least an hour or so.

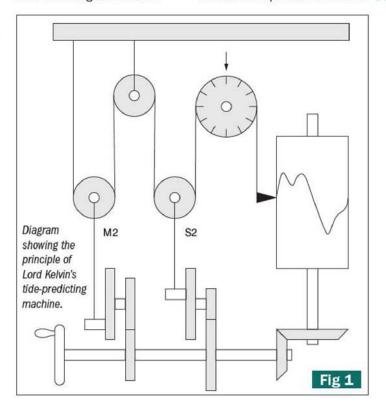
Early developments

Taking a step back in time: in 1872 Lord Kelvin invented a tide predictor (often spelt predicter), which took into account several sinusoidal components. These, when summed, gave a tide rise and fall curve as shown in fig 1. In this figure, just the M2 and S2 components are taken into account. The summing of them is accomplished by means of a cord running over pulleys, the operation of which is clear from the figure. The principle can be extended to include many more components. The ratio of the gears on the hand driven time input shaft, at the bottom, determines the frequency of each component. An arrangement on the driven gear of each pair allows amplitude and initial phase settings, relative to a datum, to be adjusted. Kelvin's first tidepredicting machine (photo 1), is now in the Science Museum. Photograph 2 shows the first tide-predicting machine that was used in the USA. It was designed by William Ferrel and completed in 1882. It summed up to 19 harmonic tidal components. Finally, it

is worth mentioning a Kelvin tide-predicting machine of the German Hydrographic Institute which was massive at some 2.7m long and could sum up to 62 tidal components.

The essential difference between a tide clock and tide predictor is that the former just indicates the current state of the tide, and possibly the time to the next high tide, while a predictor has a means of recording what will happen to the tide beyond the current time. So, there is no reason why the tide clock, which I am proposing to design and construct, should not simply follow the predictor principle shown in fig 1 but with the input handle driven by a clock.

Practical considerations


It will be evident from the above theory that a large number of components need to be summed for those places with a complicated tidal curve. Furthermore, beyond the M2 and S2 components, there is the added difficulty that the period of some of the sinusoidal components are not related by a convenient ratio. This is an aspect that I am studying in some detail, as a lot of extra complexity will only lead to a marginal increase

in prediction accuracy. My intention is to include M2, S2, K1 and O1 but how far to go beyond that, if at all, remains to be determined.

My idea is that it would be nice to make a clock which is truly universal in that it would be possible to enter each tidal component; this would need a dial, or similar means, to input amplitude, phase and frequency. Arranging for variable amplitude and phase is not difficult but obtaining sufficiently accurate gear ratios, without too much complexity, is another matter. Details of tidal components for 400 ports in the UK are available in Admiralty Tide Tables.

The authors of ref 1 give some very neat ideas for generating and combining components by means of gears. However, I propose to use the Kelvin method with pulleys, as I feel that it gives the onlooker a better idea of what is happening.

As a nice add on, I would like to include a facility which enables a pre-cut plate, or similar device, with a port name engraved on it, to be inserted into a slot which sets up the harmonic components for that port. One could have several such plates for favourite

TIDE CLOCK

ports. Older readers may remember the Hoover *Keymatic* washing machine which had programming notches cut into each edge on both sides of a thick square plate, thus giving a total of eight wash programmes. In my scheme a notch depth could perhaps encode amplitude, another one phase and a final one, frequency.

Displaying the information

The tide clock needs a means of displaying tidal information over the last 24-hour period. Having ruled out any form of electronic display, it occurred to me that an approximate curve could be shown with an elastic cord, or flexible band, stretched across the tops of say 24 pins whose vertical positions

correspond to the tide height at half hourly intervals. But how I would implement such an arrangement, which would involve a mechanical memory, has yet to reach the back-ofthe-envelope stage! I would like to avoid a plotter, as shown in fig 1, as this involves replacing expendables, which might not be available in years to come. A mechanical plotting solution would also be more interesting. It has been suggested to me that it might be nice to have a small tank of blue water, with variable depth, and a boat floating on it to indicate the current tide height!

I also intend to incorporate a moon phase ball, which is not difficult to implement, to show how far the tidal cycle is between Springs and Neaps, and also an indicator to show the time to the next high or low water.

Timekeeping

Finally, a clock-controlled input is needed to drive the tide indicating mechanism. I initially toyed with the idea of incorporating one of Harrison's famous timekeepers, H1 or H2, but I quickly realised that with such complexity, it would be unlikely to be completed before my personal end date! So, as the clock is associated with the sea, I favour a chronometer style balance with a springdetent escapement, which would be simple to implement in a large size. The balance, some 5in. diameter, would oscillate slowly allowing the action of the escapement to be seen clearly. I am anxious to

make the design aesthetically pleasing and mechanically interesting.

The above are my initial thoughts. However, some may prove too grandiose to implement. I would welcome readers' comments and suggestions before I begin the detailed design work.

I would like to thank Dr John Amson (ref. 2), for helping me to understand various tidal matters and for reviewing this article.

References

- 1. Castle-Smith R., Finishing a Gold Medal Clock, M.E. 4325, 9 May 2008.
- Amson J. and McQuater A., Tide Clocks (three part series), Horological Journal, May, June and July, 2006.

RY DIARY DIA

MARCH

- Colchester SMEE. Members' DVDs. Contact Jon Mottershaw: 01206 383456.
- Hereford SME. Derek Goddard: William Armstrong. Contact Nigel Linwood: 01432 880649.
- Polegate & District MEC.
 John Blackwell: Railways
 Around Newhaven.
 Contact D. F. Pratt:
 01323 645872.
- 14 Glasgow & S.W. Rly Ass'n. AGM. Contact Bruce Steven: 0141 810 3871.
- Sunderland (City of) MES. Peter Russell: Computers. Contact Albert Stephenson: 01429 299649.
- 15 Bedford MES. Boiler Testing Traction Engines. Contact
- Ted Jolliffe: 01234 327791.

 Leyland SME. Big Shaun's
 Traction Attraction. Contact
 A. P. Bibby: 01254 812049.
- 15 Model Steam Road Vehicle Soc. Boiler Tests. Contact
- John Bagwell: 01452 304876.

 15 Otago MES. Club Running Day.
 Contact James Woods:
 476 1369.
- York City & DSME. Running Day. Contact Pat Martindale: 01262 676291.
- 16 Lancaster & Morecambe MES. Canon Bill Greetham: The Settle & Carlisle Railway. Contact Mike Glegg: 01995 606767.

- Model Steam Road Vehicle Soc. Bring & Buy Sale. Contact John Bagwell: 01452 304876.
- 6 Peterborough SME. S. Ross: Restoring a Steam Road Roller. Contact R A Meek: 01778 345142.
- 17 Chesterfield & District MES. AGM. Contact Mike Rhodes: 01623 648676.
- Nottingham SMEE. AGM. Contact Graham Davenport: 0115 8496703.
- 17 Romney Marsh MES. AGM. Contact John Wimble: 01797 362295.
- 18 Birmingham SME. AGM. Contact Mike Page: 01564 784006.
- 18 Bristol SMEE. Geoff Sheppard: On the Table Evening, Contact Trevor Chambers: 0145 441 5085.
- 18 Hull DSME. Members' Current Projects. Contact Tony Finn:
- 01482 898434.

 Leeds SMEE. Paul Tracey:
 Drawing in 3D. Contact Geoff
- Shackleton: 01977 798138.

 MELSA. Meeting. Contact
 Graham Chadbone:
 07 4121 4341.
- 19 Cardiff MES. Club Chat. Contact Don Norman: 01656 784530.
- 19 East Somerset SMEE. On the Table. Contact Roger Davis: 01749 677195.
- Leyland SME. Cock-up Night. Contact A. P. Bibby: 01254 812049.

- Sutton MEC. Quiz Night. Contact Bob Wood: 020 8641 6258.
- 20 Brighton & Hove SMLE.
 Pete Groves & Derek Green:
 Around Mt. Etna by Train.
 Contact Mick Funnell:
 01323 892042.
- 20 Colchester SMEE. Models Night. Contact Jon Mottershaw: 01206 383456.
- 21 Chesterfield & District MES.
 Public Running, Contact Mike
 Rhodes: 01623 648676.
- 21 SM&EE. Polly course training day 4. Contact Maurice Fagg: 020 8669 1480.
- 21 York City & DSME. David Pinniger: Garden Railways. Contact Pat Martindale: 01262 676291.
- 22 Cardiff MES. Open Day. Contact Don Norman: 01656 784530.
- 22 MELSA. Bracken Ridge. Contact Graham Chadbone: 07 4121 4341.
- 22 Westland & Yeovil DMES. Track Running Day. Contact Gerald Martyn: 01935 434126.
- West Riding SLS. Public Running. Contact David Batty: 01924 363908.
- Reading SME. Public Running. Contact Ian Fothergill: 0118 9421679.
- 24 Romney Marsh MES. Track Meeting. Contact John Wimble: 01797 362295.

- 25 Birmingham SME. Bits & Pieces. Contact Mike Page: 01564 784006.
- 26 Cardiff MES. Bits & Pieces. Contact Don Norman: 01656 784530.
- 26 Sutton MEC. Guest speaker. Contact Bob Wood: 020 8641 6258.
- 26 Westland & Yeovil DMES. AGM. Contact Gerald Martyn: 01935 434126.
- 27 Colchester SMEE. Working the Main Line. Contact Jon Mottershaw: 01206 383456.
- 27 Hereford SME. Nigel Jeffries: The Brunels, Father & Son. Contact Nigel Linwood: 01432 880649.
- 27 Newton Abbot & District MES. Meeting. Contact Graham Day: 01626 772739.
- 28 Leyland SME. Boiler Testing Day. Contact A. P. Bibby: 01254 812049.
- 28 Romney Marsh MES. Boiler Testing. Contact John Wimble: 01797 362295.
- 28 SM&EE. Gauge 1 informal meeting. Contact Maurice Fagg: 020 8669 1480.
- 29 Bedford MES. Boiler Testing Locomotives. Contact Ted Jolliffe: 01234 327791.
- 29 Bristol SMEE. Steam-Up & Boiler Test Day. Contact Trevor Chambers: 0145 441 5085.
- 29 Harrow & Wembley SME. Sunday Running. Contact Roy Goddard: E. RSGwatford@aol.com

Mike Freeman concludes with the machining details for the king and queen.

PART 3

Continued from page 275 (M.E. 4346, 27 February 2009)

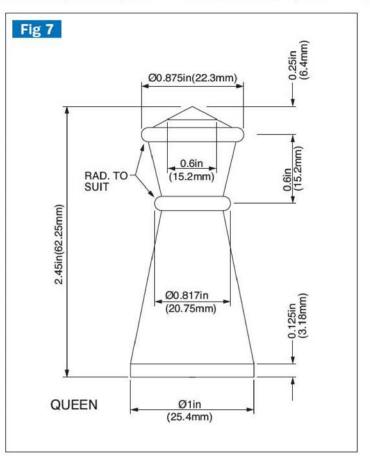
A beginner's approach to making a brass and aluminum chess set

he queen is 2.45in. (62.25mm) tall and is all lathe work to make, the dimensions being shown in fig 7. Start by mounting a 1in. (25.4mm) dia. bar of brass or aluminium in a 3-jaw chuck. There should be a minimum of 3in. (76.2mm) bar clear of the chuck. After facing the end of the bar, take a skimming cut for 2.5in. (63.5mm) towards the chuck. Scribe a mark 0.250in. (6.35mm) from the faced

end and centre the contour tool over the mark. Then take light cuts until the contour is 0.875in. (22.3mm) diameter. Now scribe a further mark at 0.850in. (21.6mm) from the faced end of the bar and make small cuts with the contour tool until a finished diameter of 0.817in. (20.75mm) is achieved. Now replace the contour tool with a boring bar and set the top slide over to 60 degrees. Take small cuts until the top of the queen comes to a point. I made use of the Myford ML10's reverse feature to carry out this top taper. Still using the boring bar, make a slight cut 0.3in. (7.6mm) from the centre point of the newly turned top, to a

depth of 0.050in. (1.27mm). This cuts the ring that can just be seen at the right-hand end in **photo 16**.

Remove the boring tool and replace it with a cutting tool. The remaining two tapers are next so set the top slide over to 5deg. and make the first taper cut between the top contour and the middle contour. Continue taking light cuts until the taper matches the two contours. When satisfied set the top slide over to 8deg. and make the last taper which runs between the middle contour and the base of the queen.


Finally return top slide to zero and change to a parting tool to part off to a length of 2.45in. (62.25mm). **Photograph 17** shows the finished queen.

Queen in the lathe after polishing.

The finished queen.

Queen 2.45in. (62.2mm) tall

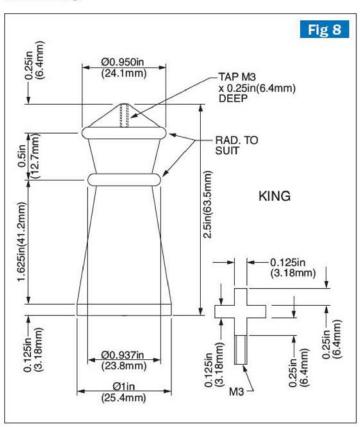
- Using a 3-jaw chuck mount a lin. (25.4mm) dia. bar of brass or aluminum with a minimum of 3in. (76.2mm) long clear of the chuck.
- 2. Face the end off and take a skimming cut for 2.5in. (63.5mm).
- Centre the contour tool with the faced off end; measure back 0.25in. (6.35mm) and then make small cuts until the contour is 0.875in. (22.3mm) in diameter.
- Move the tool towards the chuck by 0.6in. (15.2mm) a total of 0.85in. (21.6mm) from the faced end.
- Make small cuts with the contour tool until a finished diameter of 0.817in. (20.75mm).
- Replace the contour tool with a boring bar and set the top slide over to 60deg.
- 7. Take small cuts until the top of the queen comes to a point. I ran mine in reverse to achieve this task. (Only do this if your back plates are bolted on; don't run in reverse if using a threaded mandrel, Ed.)
- 8. Make a slight cut 0.3in. (7.6mm) from the centre and make the ring as per photo to a depth of 0.05in. (1.27mm).
- 9. Remove the boring tool and replace with the cutting tool.
- 10. Set the top slide over to 5deg, and make the taper cut between the top contour and the middle contour. Continue until the depth matches the two contours.
- Set the top slide over to 8deg, and make the last taper between the middle contour and the base of the piece.
- Return the top slide to zero. Use this opportunity to polish the queen.
- 13. Part off to a length of 2.45in. (62.2mm).

King

The king is 2.5in. (63.5mm) tall and is very similar to the queen except that his body is a little fatter and he has a cross at the centre of his head (photo 18 and flg 8). Start by chucking a section of 1in. (25.4mm) diameter bar, take a light cleaning cut for 2¾in. (69.8mm). Now face the end of the bar before using a centre drill, followed by drilling and tapping an M3 hole (or any equivalent i.e. ME or BA).

Measure 0.25in. (6.4mm) from the faced end and scribe a mark. Measure another 0.5in.. i.e. .750in. (19.05mm) from the faced end and scribe a second mark. Use the contour tool and centre it at the 0.25in. (6.4mm) mark and form the first contour, until it just completes its shape and no deeper. Re-position the contour tool centre to the 0.75in. (19.05mm) scribed mark and using light cuts, take the tool in until you have a finished diameter over the contour of 0.937in. (23.8mm).

Change to a boring bar and with the top slide set over to 60deg, turn the top, as you did


with the queen, between the first contour and the centre hole. Reset the top slide to 10deg. and change the tool so the first taper can be cut between the two contours, to a depth that matches the contours. Re-position the top slide to 6deg. and cut the last taper for the main body until it blends in with the contour and the base. Polish the king and then part off to length.

The last item to make is the cross for the king's head. The dimensions for the cross are all 0.125in. (3.18mm) wide and thick and you can either mill or file to shape. The base of the cross is rounded so that it can be threaded M3. Polish, and then screw the cross into the top of the king. I used a little Loctite to ensure it doesn't go missing in the future.

That concludes the build, and hopefully you now have a nice chess set to create a stir, which hopefully will put off your opponent when playing. It really is nice to feel the difference in weight and the set is certainly tactile.

The finished king.

Afterthoughts

After polishing I did use a lacquer to protect the polish but I must admit I didn't get on with it to well. Whether I used the right product or not I don't know, but there may be better ways to protect your work.

Another variation I have thought of since making the first set is to make both sides from aluminium with one side anodised and the other side plain (or anodised a different colour). But then you loose the

Table 5

King 2.5in. (63.5mm) tall

- Chuck a section of lin. (25.4mm) diameter bar and take a light cleaning up cut.
- 2. Face, centre drill, then drill and tap an M3 hole (or any equivalent i.e. ME or BA).
- Use the contour tool and centre it at the faced end edge. Measure towards the chuck 0.25in. (6.4mm) and form the first contour so that it just completes its shape and no deeper.
- Re-position the contour tool centre to 1in. (25.4mm) from the faced end and using light cuts take the tool in until you have a finished diameter over the contour of 0.937in. (23.8mm).
- Re-position centre of contour tool 0.75in. (19.05mm) from the faced end and advance it into the work for 0.15in. (3.8mm).

- Re-position the top slide to 60deg. and turn between the first contour and the centre hole forming the topmost taper of the king.
- Re-position the top slide to 6deg, and cut the main body taper until it blends in with the contour base.
- 9. Polish the king and then part off to length.
- Make the cross so the body parts are 0.125in. (3.18mm) wide and thick.
- The bottom of cross is ¼in. long and rounded so that it can be threaded to match the hole (M3 in my case).
- Polish and screw the cross into the top of the king. I also used a little Loctite to ensure it doesn't go missing.

A view of some of the different pieces.

weight differential, which is one of the nice outcomes of Brass and Aluminium. You can of course drill out the bases and put a plug of brass or some other heavy metal inside. Some finished chessmen can be seen in **photo 19**.

If you wish to view more photos they can be seen on http://www.mikes-models.com

ME

ISSUE NEXT ISSUE

- A full list of Model Engineer Exhibition winners
- McOnie's Oscillating engine
- Traction engine lamps
- Making a sundial
- The Re-cycle engine
- Stowe with Neville Evans
- Slide valve lapping
- Pseudo steam electric power - steam outline

Ashley Best starts a series on building scale model trams.

PLUS all your regular favourites

ON SALE 27 MARCH 2009

Contents subject to alteration

Ascot Locomotive Society

The society has now rebuilt most of its railway on the new racecourse site, having been relocated from the previous one when the racing straight mile was realigned in 2004 to make more room for the new grandstand opened in 2006. The society is unable to use the following items recovered from the previous railway buildings, but hopes some other society or enthusiast can recycle them in their own developments. If not, they will have to be destroyed later on in the spring.

The following items are going for a song:

- Four pairs of locomotive shed doors, approximately 4ft. wide and 4ft. high.
- A 10ft. wide by 6ft. high steel framed lean to carriage-shed end with two doors taking four tracks at 20in. centres.
- Two 8ft. wide by 6ft. 6in. high pairs of external doors and frames.

All are exceptionally strong and fitted with custom made hinges and bolts. Contact Derek Alford, the secretary on 01344 482485 for a viewing.

The Model Steam Road Vehicle Society

The MSRVS has just released news of its all new website and a new logo launch in time for the 24th Annual Rally in Tewkesbury on the weekend of June 27/28. The new website address is www.msrvs.co.uk and the site has a brighter look to it, with new features planned over the coming weeks.

One significant change in image is the launch of a new club logo. This is actually a rendered image taken of a 3D

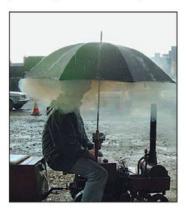
Computer Aided Design model of one of the club member's traction engine wheels. This gives it the full 3D effect without being a specific photo of any one type of engine, while hopefully being instantly recognisable as a traction engine wheel. The society hopes to use this in all their stationery and publicity for the future, so keep a look out for this distinctive image.

Preparations are well under way for their rally, with engine and model invitations sent out with the February newsletter. So fine weather permitting, and the normal great support for the society, all should be set for a great event. With a Silver Anniversary coming along in 2010 the society is looking forward to good times ahead. Why not book the dates in your diary and check out the website to see what the group is all about.

Littlebrook Club track for sale

The club occupied the Littlebrook Power Station grounds for 27 years but were given notice to quit in 2006. The club then purchased a secure container to store the entire track with the intention of using the container as a clubhouse and machine shop on a new site.

The track is of raised dual gauge 5in. and 3½in. by 970ft. long, with two access points and steaming bays, two traversers and access line. The club managed to move the now extremely heavy container to the Glentworth Club in Dartford, Kent.


Since then they have tried extremely hard to find a new

site but without success, so have now decided to dispose of the container and its entire contents hoping that, somewhere in the British Isles, there are a group of model engineers who would like to take advantage of their misfortune.

Peterborough Society of Model Engineers Ltd

Dale seemed to be enjoying himself at the very wet Nene Valley Railway Vintage Weekend on 12 July 2008. (Photo: by Peter Jackson).

Norwich and District Society of Model Engineers

The club owns a 7½in. gauge Warship battery-electric locomotive and would like to contact any individual or club who also owns one with a view to exchanging information regarding any modifications or replacements they have had to make and also to discuss the possibility of forming a 'user group'.

Welling and District MES

Due to the owners requiring the land for other purposes, the society will have to move from their present site in the near future. It may be a year or so before this happens so a provisional programme of public running has been planned for the following dates between 2pm and 5pm. They are: April 19; May 3, 17, & 31; June 14 & 28; July 12 & 26; August 9 & 23; September 6 & 20; October 4. Open days have been planned for May and October for visiting clubs and Gauge One Association members and will be announced in Club Diary nearer the time.

In Memoriam

It is with the deepest regret that we record the passing of the following members of model engineering societies. The sympathy of staff at *Model Engineer* is extended to the family and friends they leave behind.

Stephen Atkinson John Whybrow Model Engineer's Society (NI)

Canvey Railway and Model Engineering Club

when you subscribe to

NDDRS

- **DELIVERED TO YOUR DOOR**
- JUST £11.67 EVERY 3 MONTHS
- **/E UP TO 13%**
- NEVER MISS AN ISSUE

HURRY! Offer ends 27 March '09

BY PHONE: 08456 777 807 quote ref. S105 (100 ONLINE: www.subscription.co.uk/mew/S105) Alternatively, you can complete the form below and return, with payment, to the address provided.

☐ I would like to (13 issues) with						1 year		
OVERSEAS SI	JBSCRII	PTIONS:						
would like to su with a one-off pa								
For all Canadian, North a	and South Am	erican subscrip	tions please c	al 001 732 42	24 7811 or go	to www.ewa	mags.com	
PAYMENT DETA	ILS:							
☐ Postal Order/0	Cheque [☐ Visa/Mas	stercard	☐ Maestr	o			
Please make chequ	es payable	to MyHobby	/Store Ltd a	and write co	ode S105 o	n the back	K	
Cardholder's name								
Card no:							(Maestro)	
	1-16		5.5					
					15 3			
/alid from	Ехр	oiry date	Має	stro issue	no			
Signature			Dat	Đ				

Initial.

UK ONLY SUBSCRIPTIONS:

YOUR DETAILS:

Mr/Mrs/Miss/Ms

Address

Postcode

DIRECT DEBIT SUBSCRIPTIONS (UK ONLY):

☐ I would like to subscribe to Model Engineers' Workshop paying just £11.67 every 3 months by Direct Debit.

Please complete form below

Instructions to your bank or building society to pay by Direct Debit.

Originator's reference 422562 DIRECT Debit ☐ Pay £11.67 every 3 months by Direct Debit (please tick)

Name of bank	
Address of bank	
	Postcode
Account holder	
Signature	Date
Sort code	Account number

Direct Debits from the account detailed in this instruction subject to the safeguards assured by the Direct Debit Guarantee. I understand that this instruction may remain with MyHobbyStore Ltd and if so, details will be passed electronically to my bank/building society.

Reference Number (Official use only)

Please note that banks and building societies may not accept Direct Debit instructions from some types of account.

Please note that banks and building societies may not accept Direct Debit instructions from some types of account. TERMS & CONDITIONS: Ofter ends 27th March 2009. Subscriptions will begin with the first available issue. Please continue to buy your magazine until you receive your advisowedgement letter. Refund requests must be in writing to the Publisher and will not be given on accounts with less than £20 credit. A £5 admin charge will apply and will be deducted from any refund. Refunds will only be given at the Publisher's sole discretion. We will use the contact details supplied to communicate with your parting your Model Engineers Workshop subscription. If you are also happy for us to contact you about other products or services available from Model Engineers Workshop and MyHobbyStore Lid, please indicate here: Contact by: _email _letelphone _models for us to pess your details on to other carefully selected companies to contact you about their products and services please indicate here: Contact by: _email _letelphone _models for the please indicate here. Contact by: _email _letelphone _models for the please indicate here _if you do NOT wish us to pass your details on to other carefully selected companies to contact you by POST about products or services available from Model Engineers Workshop and MyHobbyStore Ltd, please indicate here _if you do NOT wish us to pass your details on to other carefully selected companies to contact you by POST about products or services please indicate here __

SEND TO: MODEL ENGINEERS WORKSHOP SUBSCRIPTIONS, TOWER HOUSE, SOVEREIGN PARK, MARKET HARBOROUGH, LEICS LE16 9EF

MODEL ENGINEER

Subscribers, see these adverts five days early!

SUBSCRIBE TODAY AND SAVE £££'S

Machines and tools offered

- Myford vertical milling machine, model VM-C, floor standing single phase, table travel 14½in. x 5½in. R8 spindle, 9 speeds, 2680 revs, forward/ reverse, collets, vice, rotary table, chuck and cutting tools, buyer collects, £1,000. Tel: 0208 85613815 Hayes.
- Myford Super 7 on makers cabinet, 3 and 4 jaw chucks, faceplate, catchplate and changewheel set, all in excellent condition, £850.

Tel: 02392 379710 Portsmouth.

- Alba 1A shaper, very good condition, single and 3 phase motors (you could use either), £300 ONO. Tel: 01539 534996 Kendal.
- Colchester Bantam 1600, 5%in. x 20in., 3 off 3-jaw chucks, soft jaws, 4-jaw chuck, collet chuck with full set of collets, Mitutoyo read out, quick change tool post, change wheels, coolant pump, tooling, all in good condition, £1,600. Tel: 0115 9847807 Nottingham.
- Myford Rodney milling attachment, fits ML7 and Super 7, in excellent condition, £280.

Naerok Mill Drill, 5 speed, 3 morse taper, imperial machine, swivelling 20in. x 5in. table, swivel tilt head, 1 HP motor and clamping kit on wooden stand, £480. Tel: 01472 389229 Grimsby.

- Height gauge, 18in. vernier, metric/ imperial, Chesterman in original box, £70 +P&P.
 Tel: 020 82905974 Bromley.
- Drummond lathe, 4 x 17 with 3 and 4 jaw chucks, face plate, vertical slide, change gears and two small chucks, £400. Tel: 01206 393420 Colchester.

Models and parts offered

- 7¼in. gauge diesel outline sit in locomotive powered by a two stroke Villiers petrol engine, 4 speed with reverse, complete with a four seater double bogie carriage, both in very good condition. Tel: 0161 2859053 Stockport.
- MINIMAG Magneto, two sparks per rev, ¼in.BSF drive shaft, serial No. 02-01, two 5/sin. castellated pulleys and two 1¼in. castellated pulleys, four ¼ x 32 NGK ME-8 plugs, brand new, £120 including P&P+ insurance.

Tel: 01380 776324 Devizes.

YOUR FREE ADVERTISEMENT: (May 30 words plus phone & town - please write clearly)

■ Britannia kit, painted to stage 3, tender complete, offers over £2,750. Pride of Penrhyn steam lorry 95% complete, painted, a snip at £2,200 ONO.

Tel: 01245 250297 Chelmsford.

■ 3½in. gauge Britannia running chassis, smokebox saddle and ashpan base, needs lubricator, tender 75% complete, good workmanship, £800.

Tel: 0141 5634054 Glasgow.

- 3½in. gauge Britannia, 90% complete, some bodywork required to finish, £2,000. 3 1/2in. gauge 2-8-2 P1 locomotive, good runner but needs some TLC, £2500. Tel 01904 488106 York.
- Solid drawn copper tube, 48in. long, 9%in. diameter, ¼in. wall thickness, £300. Tel: 01383 736001

Tel: 01383 736001 Dunfermline.

■ Allchin 1½in. scale traction engine comprising drawings, Hughes book, castings, steel, boiler materials, machined hind wheels, £1,000 ONO. Tel: 01508 518277 Suffolk.

Models and parts wanted

Cylinder and wheel castings for Springbok B1. May be able to collect as often 'down south'. Tel: 0131 4495250 Edinburgh.

Books and magazines offered

Bournemouth.

- Model Engineer mags, 1975 to 1999, not complete, 465 copies, also Model Engineers' Workshop No's 1 to 57, 10 and 11 missing, buyer collects, offers?

 Tel: 01202 530837
- 'Not Much Of An Engineer' by Stanley Hooker, £8. 'World Encyclopaedia Of Aero Engines' by Bill Gunston, 1986, £8. Both nice and clean, +P&P.
- Tel: 01993 841778 Carterton.
- Free to collector, Model Engineer mags Vols. 142-151, 1967-83, a few missing from 142, 145 and 147 + another 35 issues from 1952-75 and 6 specials.

 Tel: 01225 782902 Trowbridge.
- Archive Quarterly Journal For British Industrial And Transport History, a glossy magazine costing £6 each in 2003, forty copies from issue 1 to issue 40, £40 ONO the lot.

Tel: 01932 225557 Sheperton.

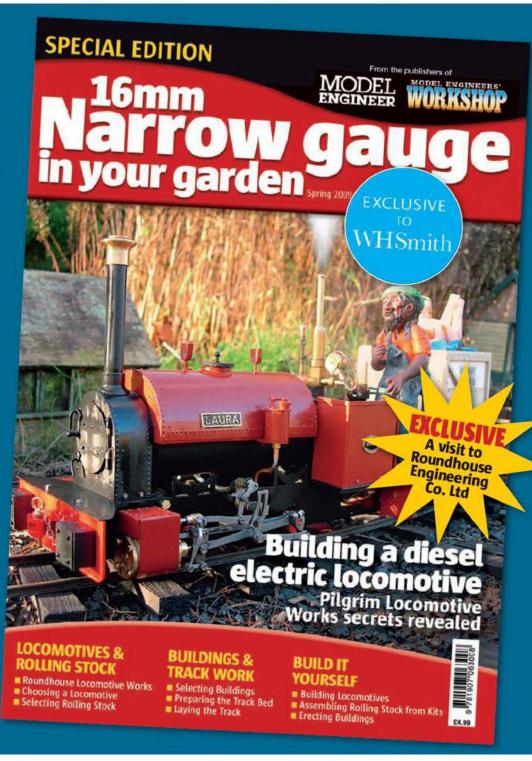
FOR SALE Wanted MACHINES Tools MODELS Miscellaneous BOOKS Magazines MATERIALS Information

		- (max oo morao piao pia	no ca torni prodoco mito orc	out 137		
Phone:		Town:				
No Mobile phone numbers except by prior arrangement			Please use nearest well known town			
Please insert advert i	into: (Tick one box only)		Please post to:			
☐ Model Engineer ☐ Model Engineers' Workshop			David Clark, ME/MEW FREE ADS , MyHobbyStoreLtd, Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0EL			
Name			Berwick House, 8-10	Knoll Rise, Orpington	Kent BR6 OEL	
Address			Photocopies of this form are acceptable. Adverts will be placed as soon as space is available.			
					y. Do not submit this form if	
Postcode			you are a trade advertiser. If you wish to place a trade advert please contact Dunca Armstrong on 01689 899212 or email duncan.armstrong@myhobbystore.com			

SPECIAL EDITION MAGAZINE

ON SALE NOW!

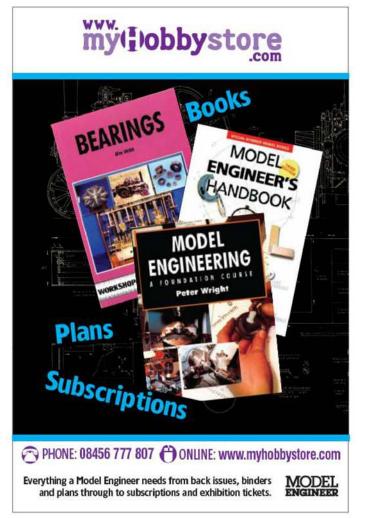
EXCLUSIVE TO WHSmith

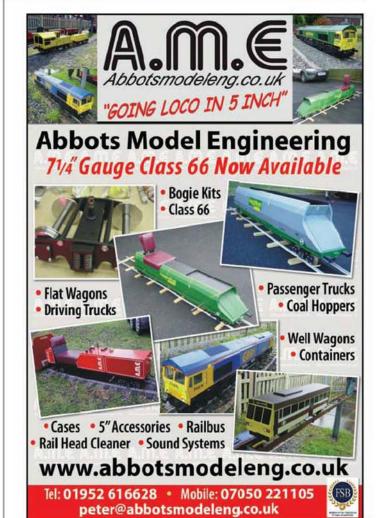

16mm Narrow gauge in your garden

From the publishers of

MODEL Engineer

WORKSHOP


- The complete guide to building a 16mm Narrow Gauge Railway in your Garden
- Learn to design the track layout, do the earthworks and lay the track
- Find out how to build your own rolling stock and buildings from kits
- This special edition features a visit to the Roundhouse Locomotive Works in Doncaster



Buy online at www.MyHobbyStore.com

SMOOTH, QUIET, HIGH PERFORMANCE VARIABLE SPEED CONTROL FOR YOUR LATHE OR MILL

Introducing the NEW D720 Inverter range....

The only inverter drives on the market set up specifically for machine tool use.

THE ALL NEW ULTRA COMPACT D720

240V 1-phase input, 220V 3-phase output for use with dual voltage three phase motors.

Six sizes from 0.1kW (0.12hp) to 2.2kW(3hp).

Built-in user keypad, display and Digital Speed Dial.

High Performance Torque Vector control.

High Reliability and Long design life.

Prices start from £99 plus VAT for the 0.1kW.

Compatible with our Multi-function Remote control stations with START, STOP, FWD/REV, JOG, & SPEED control functions.

CL series lathe speed control systems....

For the Myford ML7, Super 7, Boxford, and Raglan "Little John" lathes.

CL RANGE KEY FEATURES

- Comprehensive package with controller and matched motor. All pre-wired ready to go!
- Power Range: 1/2hp, 1hp, 2hp and 3hp.
- Smooth control across entire speed range, giving chatter free machining and excellent finish.
- · Quiet, vibration free operation.
- High torque down to lowest speed.
- Powered from domestic single phase mains.
- Complete electronic motor protection.
- Simplifies screw-cutting, tapping

Prices start from £390 inc VAT.

UK mainland delivery is £18.

1987-2998

Supplying to Industry and Model Engineers for over 21 Years.

Newton Tesla (Electric Drives) Ltd,

Units G15 & G18, Warrington Business Park, Long Lane, Warrington, Cheshire WA2 8TX, UK.

Tel: 01925 444773 Fax: 01925 241477

E-mail: info@newton-tesla.com Web: www.newton-tesla.com

Model Engineer Classified

ALL LIVE STEAM ENGINES WA

including BROKEN or JUST WORN OUT PART BUILTS considered

- ALL LOCOS WANTED from GAUGE 1 to 10¼" especially BRITANNIA, A4, A3, SADDLE TANK and anything large and unusual. ALL TRACTION ENGINES WANTED from 1" to 6" including SHOWMANS, BURRELLS and PLOUGHING etc.
 - ALSO WANTED STATIONARY ENGINES, BEAM ENGINES, VERTICALS, HORIZONTALS, STUART TURNER etc.
 - ANY ENGINEERED SCALE BUSES, LORRIES, CARS etc considered.

for a fast friendly ervice seven days

TELEPHONE: 01507 606772 or 07717 753200 and ask for Kevin www.railwaycottages.info

We will collect, and possibly in your area today.

BOOST PHASE CONVERTERS

3 year guarantee.

Fax: 01344 303 312 Mob. 07952 717960 www.boost-energy.com

BOOST HAS BEEN MANUFACTURING HIGH QUALITY PHASE CONVERTERS IN THE UK SINCE 1957

Breaking MYFORD ML7 & SUPER 7 lathes

Most parts available • Home workshops cleared · World wide shipping · ·We accept cards on mail order · (Myford ML10, ML7 & Super 7 lathes always wanted) orry we do not stock parts for other makes of lathes We are open: Monday-Friday 9 - 5pm.

www.new-or-used.co.uk

LATHE PARTS . lathe-parts@new-or-used.co.uk Tel: 01205 480 666 • Near Boston, Lincs. UK. ME4

Non-Ferrous material supplied in all forms, tailored to your need by size & quantity. Aluminium, Brass, Copper & Stainless steel, Silver steel, Gauge plate, B.M.S. steels.

Catalogue free.

P.L.Hill (Sales) Ltd

Unit 3 Crownworks, Bradford, BD4 8TJ

Tel/Fax: 01274 733300

Email: plhillsales@aol.com www.plhillsales.com

PART BUILT MODELS BOUGHT

All locomotives, at any stage of construction. Completed models also bought regardless of condition. Traction engines and all Stuart stationary engines wanted - beam, vertical horizontal etc. Part built or complete. Will travel any distance.

Please telephone Graham. 0121 358 4320

COMPLETE HOME WORKSHOPS

AND MODELS PURCHASED. DISTANCE NO OBJECT

> Tel: Mike Bidwell on 01245 222743

NEIL GRIFFIN

- St. Albans, Hertfordshire **Engineering Services** Machining for Model Engineers From drawing, sketch, pattern etc. Friendly personal service.

Telephone / Fax: 01727 752865 Mobile: 07966 195910

ALL STEAM ENGINES WAY

any age, size or condition considered - any distance, any time

ALL 5" GAUGE LOCO'S WANTED

Hunslett, Simplex, Speedy, BR Class 2, Horwich Crab, BR 8400 tank, Maid of Kent, Black Five, Jubilee, Royal Engineer, B1 Springbok, Torquay, Manor,

ALL 3½" GAUGE LOCO'S WANTED

Tich, Juliet, Rob Roy, Firefly, Jubilee, Maisie, Doris, GWR Hall, Britannia, Hielan Lassie, etc.

ALL 7¼" GAUGE LOCO's WANTED

Hunslett, Hercules, Jessie, Romulus, Dart, Bridget, Holmeside, Paddington, GWR Mogul 43xx, GWR King,

Black Five, A3, B1, etc.

Minnie, Burrell, Royal Chester, etc.

ALL PARTBUILT MODELS WANTED

Workshops bought and cleared

For a professional friendly service, please telephone:

Graham Jones M.Sc. 0121 358 4320

www.antiquesteam.com

Model Engineer Classified

WESTERN STEAM Model Engineers

Founder Member Assn of Copper Boiler Manufacturers (ME)

COPPER BOILERS

For Locomotive, Traction, Marine & Stationary engines, to PER cat 2. All copper construction, silver soldered throughout using quality materials to the standards required by the APCBM(ME), standards required by the APCBM(ME), PER, & relevant Model Engineering Associations. CE marked and certificates of proof test and conformity supplied.

Unit 4A. Love Lane, Burnham-on-Sea Tel.01278 788 007

Model Engineering Products (Bexhill)

www.model-engineering.co.uk Email: mep1@btconnect.com

Manufacturers of 5" and 71/4" diesel outline battery electric locomotives and rolling stock. Visit our shop to see the stock. Colour brochure inc. p&p £1.75 PHONE/FAX. 01424 223702 MOBILE 07743 337243

> 17, SEA ROAD, BEXHILL ON SEA, EAST SUSSEX. TN40 1EE.

Myford MYFORD SPRING SHOW

0115 925 4222

Website: www.myford.com Email: sales@myford.com

DIESEL SOUND UNITS

Controls for idle speed, max. revs., turbo, cylinders, tone and volume.

DESS-12B for 12v, DESS-24 for 24v

£34.95 plus £3 p&p

TRAX CONTROLS, PO Box 419, Norwich NR1 3BZ. Tel: 01603 610956 SAE for details. www.traxcontrols.com

COPPER BOILERS FOR LOCOMOTIVES AND TRACTION ENGINES etc.

MADE TO ORDER Constructed to latest European Standards 71/4" guage and P.E.D. category 2 Specialist

Enquiries, Prices and Delivery to:

Telephone: Coventry 02476 733461

Mobile: 07817 269164

THINKING OF SELLING YOUR LATHE MILL OR COMPLETE WORKSHOP?

and want it handled in a quick, professional no fuss manner? Contact David Anchell, Quillstar (Nottingham). 0115 9206123 Mob: 07779432060 **BA FASTENERS IN BRASS** STEEL & STAINLESS

SPLIT PINS, TAPER PINS, ROLL PINS, TAPS, DIES, DRILLS, NUTS WASHERS, RIVETS, MATERIALS

Send Stamped addressed envelope plus four first class stamps for 28 Page List (Overseas £2.50) 'Quote Me'

"ITEMS" MAIL ORDER LTD. Mayfield, Marsh Lane, Saundby Nr Retford, Nottinghamshire, DN22 9ES Telephone 01427 848880 Fax 01427 848880

www.modelsteamenginesuk.com 🦼

SOUTHWORTH ENGINES 6 KENNET VALE, CHESTERFIELD \$40 4EW **CASTINGS &** www.southworthengines.com DRAWINGS Tel: 01246 279153 FOR 6 ALSO CHEQUER STEAM PLATE SILICONE 0-RINGS BOILER FEED TAPPING TOOL PUMPS DRAWINGS FOR 10 DIFFERENT MILL **ENGINES BOTH SLIDE & CORLISS VALVE**

Quality Secondhand Machine Tools at Sensible Prices

We purchase complete Workshops, Machines, Models and Hand Tools. Agreed settlement on inspection. Distance no object.

Tel: Salisbury 01722 410090 · www.pennyfarthingtools.co.uk

S.A.E. 9"x 4"

LYNX MODEL WORKS LTD.

Dovecote House, Maltby le Marsh, Alford, Lines LN13 0JP Tel: 01507-451565 Mobile: 07899-806689

Website: www.lynxmodelworks.co.uk info@lynxmodelworks.co.uk

WORKING SCALE MODELS AND SPECIALIST SERVICES

Lynx Model Works - 5 Specialist Engineers working together to not only build beautiful Working Live Steam Locomotives from gauge 0 to 10 1/4, Traction Engines from 3/4 to 6" Scale, and Stationary Steam Plant Engines. We will also complete your unfinished project for you or renovate the one you've just bought, inherited or simply wish to rejuvenate in our Restorations Division.

We have expertise in building, completing and renovating the very beautiful and elegant Clarksonis of York range of Working Steam Models and currently have 4 of these highly respected locomotive designs being built as specialist commissions for clients.

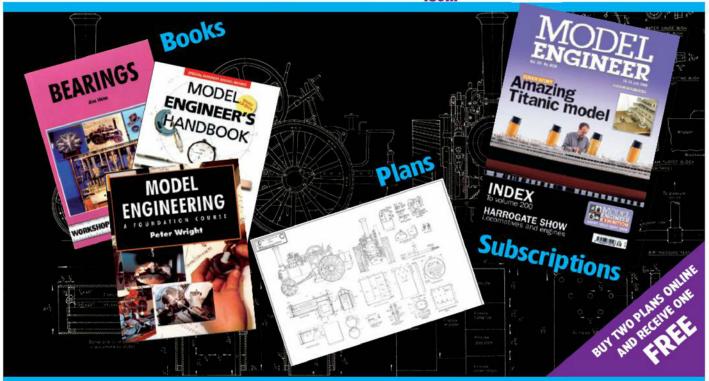
Lynx Model Painting and Machining Services will give your cherished model that professional, lined finish and also help you by manufacturing Specialist parts to assist you complete your current or planned project.

Lynx Model Boilers sells a range of Fully Certificated and EC Compliant Copper and Steel Boilers, some ex-stock.

We are also Agents for Stuart Models and build the ones that Stuart don't!

Visit our Website (www.lynxmodelworks.co.uk) or contact us today with your requirements for a no-obligation quote or discussion. A full colour A4 Brochure shortly available telephone or email for further details.

Renowned Quality & Service Together at the Right Price


ALL MAJOR CREDIT AND DEBIT CARDS ACCEPTED

Call John Clarke on 01507-451565

Model Engineer 13 March 2009

Model Engineer Classified

my lobbystore

Everything a Model Engineer needs from back issues, binders and plans through to subscriptions and exhibition tickets.

Don't know what it's worth?

- Good prices paid for all live steam models
 Locomotives from gauge 1 to 10 ¼ inch
 Traction engines to 6 inch scale
 Part-built or broken through to exhibition quality
- A no-obligation offer and firm decision over the telephone
- Fully-insured collection arranged nationwide
- Free seller's guide on request

Speak to the experts

STATIONROADSTEAM.COM

Build, buy & sell all types and sizes of locomotives, traction & stationary engines
Call Mike or Jayne Palmer on 01526 320012 (office) or 01526 328772 (workshop)

Station Road Steam Ltd, Unit 16 Moorlands Industrial Estate, Metheringham, Lincs LN4 3HX Open daily Monday to Saturday from 8am to 6pm, visitors welcome by appointment

Model Engineer 13 March 2009

HOME AND WORKSHOP MACHINERY

Genuine Used Machines & Tooling 144 Maidstone Road, Foots Cray, Sidcup, Kent DA14 5HS Telephone: 0208 300 9070 - Evenings: 01959 532199 - Facsimile: 0208 309 6311 www.homeandworkshop.co.uk • stevehwm@btopenworld.com Opening Times: Monday-Friday 9am-5.30pm - Saturday Morning 9am-1pm 10 minutes from M25 - Junction 3 and South Circular - A205 Fobco, Startrite, Ajax & Meddings 240 volt bench drills £3250 Boxford 250STS (rare 240 volts model) Boxford 5" + CLUTCH / IMP gearbox almost immaculate RARE! rs Trading Stock Harrison vertical mill + vice & chuck £1650 Myford vertical slides £100 - £245 Micrometers (various) £5 - £40 each J&S arbor press (large) £225 Harrison / Colchester Colchester Chipmaster lathe D14 faceplates 12" / 18"
Taylor spinning lathes £1250 - £1650 Elliot '00' Omnimill. One of the BEST Gear cutters small each £12 ones yet!! Vertical and horizontal Harrison 140 lathe Swage block 12" square £125 gearbox & power cross feed Crompton NEW 2HP motor each £120 Taylor spinning lathe + tooling Myford MA99E collets each £20 Kasenit furnace £175 Archer tapping heads £75 - £125 Presses / arbor / selection 20 assorted 1" bore horizontal milling cutters for £59' *inclusive of post and VAT. UK mainland only. £2950 Boxford 1130 lathe (not finished) £1200 Harrison L5 lathe RJH bench grinder / buffer - 240 volts Harrison M250 5" x 30 lathe Q and S 6" Sawmaster hacksaw Flame fast DS300 Harrison M300 6" x 24" £2750 Myford ML7 lathe SIP NEW mill, Twain, Grade A factory Limited stock/special price Startrite 1475 steel cutting vertical bandsaw in excellent condition Myford ML10 lathe £850 £1250 Waltons 50" 16g guillotine + stops Milling/Drilling ground X-Y table Immaculate -NEW for ML7/ grinder Harrison M300 fixed steady £2150 HARD TO GET! Boxford Mk111 lathe + stand Myford ML7R lathe + stand Immaculate/one owner!

PLEASE PHONE 0208 300 9070 TO CHECK AVAILABILITY OR TO OBTAIN OUR LIST

Just a small selection of our current stock photographed!

We have wood lathes, saw benches, bandsaws, morticers and Record vices etc - large selection!

ALL PRICES EXCLUSIVE OF VAT

DEFINITELY WORTH A VISIT

DISTANCE NO PROBLEM!

£875

Myford vertical slides and accessories

Archer tapping heads

Keyway broaches 7/16" 18mm

Disc sander (heavy duty)

Cowells miniature milling machine

Bridgeport slotting head

Taylor Hobson engraver

Harrison L5 travelling steady (L5A, L6, Student, Master also)

Myford coolant tank (240 volts)

Dickson toolposts to suit Colchester Mascot (others available)

Clarkson 40INT collet chuck + collets (we have 2MT-5MT and 30INT to 50INT in stock!!)

Colchester Triumph fixed steady

Myford capstan attachments

Boxford STS 1020 lathe

Viceroy drill grinding machine (240 volts)

Crompton Parkinson Foot Mounted 2HP 240V / single phase 1400 revs as new.

Engineers flat PVE (cased)

Jones and Shipman large arbor press

Q and S 6" power hacksaw + coolant

Flamefast hearth DS120F

Startrite TA1250 12" full sliding table saw bench (240 volts)

Burnerd 'LO', D13 & D14 collet chucks

RJH vertical linisher + built in extractor

Harrison taper turning attachment only

Steinel tapping machine

Tom Senior milling vice (swivel)

Raglan 5" x 24" lathe

Denford Viceroy buffer's

'LOO' face plate + we have loads more from Myford to Colchester Mascot

EME (Elliot Small Tools) precision universal vice

All machines come with relevant safety features, standard accessories, manual and parts list

CRUSADER LATHE

Max Swing

Max Distance Between Centres 810mm

Motor 1.5hp **Net Weight** 450kgs

300mm

STANDARD ACCESSORIES

- · 2 Axis Digital Readout
- Face Plate
- · Fixed Steady
- · Splash Guard · Machine Stand
- · 3-Jaw Chuck 4-Jaw Chuck
- · Travelling Steady

- Toolholders Machine Lamo

Quick Change Toolpost

Coolant System

FEATURES

- . D1-4 Camlock Spindle
- 2 Axis Digital Readout
- . Hardened & Ground Bedways Independent Leadscrew
- and Feed Rod · Gao Bed
- Taper Roller Bearings
- Cast Iron Bed

Includes Digital Readout

Max Cutting Capacity @ 90' Max Cutting cpacity @45' Blade Speed

Packing Size

Round 90mm Square 90x 120mm Round 65mm Square 70 x 120mm 20,29,50m/min

420w 240volt 1300 x 0.63 x 12.5mm 760 x 295 465mm

- . Cast Iron Base and Arm . Canbe used with stand supplied or bench mounted
- · Roler Bearing Blade Guides · Angled Cutting · Auto Switch off when cutting finished
- . Ideal machine for the Home Workshop providing large capacity cutting in a small space.

DB11VS

Centre Distance Swing over Bed Spindle Bore Motor

Net Weight

Spindle Speeds

700mm 280mm 26mm 1200w

125-2500rpm 180kgs

£1188

Digital Speed Readout • T Slotted Crosslide • Variable Spindle Speed • Metric & Imperial Thread Cutting . Longitudinal Power Feed

STANDARD ACCESSORIES

3-Jaw Chuck • 4-Jaw Chuck • Face Plate • Coolant Tray . Rear Splash Guard . Lathe Tool Set . Chip Guardd

CENTURY MILL

- FEATURES

 Variable Speed Spindle

 Digital Depth Readout
- Fine Feed Quill • Heavy Duty Cast Iron Construction
- Strong 1.5hp Motor
 Angled Miling Head
- · Wide Speed Range

Max Drilling Capacit Max End Mill Capaci Max Face Mill Capaci Table Size Cross Travel Long Travel

£875.00

"T" MILLING MACHINE

- "HORIZONTAL & VERTICAL MILLING
 - - Variable Speed Spindles
 Separate Motors
 - Longitudinal Power Feed
 Halogen Work Lamp
 - Inbuilt Cookart Syste
 - Heavy Duty Cast Iron Construction

800x240mm

£4135

All prices include VAT. Delivery Free to UK mainland – excluding certain Scottish postcodes.

Prices valid for duration of this issue only.

WHY CHOOSE CHESTER? · ONE YEAR WARRANTY -

- All machines come supplied with a 12 month manufacturers parts warranty from date of receipt of delivery
- MADE TO LAST Chester Machines are built to high standards. All machines are made from cast iron and quality checked throughout production.
- · WE KNOW MACHINE TOOLS A good understand of machine tools and there environment is essential to provide you the customer with the right machine.
- LATEST TECHNOLOGY Chester continue to expand their range of machine tools and accessories. enabling us to offer the widest range of machines and tooling in the UK.
- SERVICE AND SUPPORT Chester offer parts and after sales service from both our Chester HQ and Midlands Showroom alongwith local agents here in the UK and Overseas.
- EXPERIENCE Chester have been distributing and installing machine tools all over the UK and Overseas, for many years, including private individuals, training establishments, schools and industrial customers.

For full details on these and other machine tools please contact

SOUTHERN SHOWROOM

TPH Machine Tools, Fairview Industrial Park, Rainham ESSEX B18 5PN T+44(0) 1708 523 916

email: machines@tpmachines.co.uk Opening Times: 9am-5pm, Mon-Fri.

Chester UK Ltd

Clwyd Close, Hawarden Industrial Park CHESTER CH5 3PZ T: + 44 (0) 1244 531631 F: + 44 (0) 1244 531331

email:sales@chestermachinetools.com www.chestermachinetools.com

MIDLANDSSHOWROOM

Unit 4 Plant Lane Business Park Plant Lane, Burntwood

Staffs, WS7 3GN Tel 01543 448940