

Christmas Gift Ideas

PRICES WALLE SHE WHILE STOCKS LAST

29th and 30th

NEW! 6 PC NPT PIPE TAP & DIE SET

CONSISTS OF ONE TAP AND ONE DIE IN EACH OF THE FOLLOWING PIPE SIZES - 1/4 x 18 -3/8 x 18 - 1/2 x 14

SOBA 6" ROTARY TABLE TAILSTOCK & DIV PLATE SET

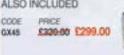
CODE £149.95 XC164

SOBA 3" ROTARY TABLE **EXCLUSIVE TO CHRONOS**

DODE XC154

£79.95 £54.95

VERTEX BSO DIVIDING HEAD C/W 3 DIV PLATES


XC158

£255:00 £220.00

VERTEX BSO DIVIDING HEAD C/W 3 JAW FITTED CHUCK!

TAILSTOCK 3 PLATES ALSO INCLUDED

NEW! HEADBAND MAGNIFIER WITH DETACHABLE LED LIGHT SOURCE!!

THIS SET INCLUDES 3 LENSES - PROMOTING 1.5x - 3x - 8.5x - 10x mag

PRICE CODE £11,95 MACHINETA

NEW! TAPPING FIXTURE

This new future holds taps square to the base, so that the threads are cut straight every time. The smooth turning spindle and large plastic handle provide the "feel" of hand tapping - needed to minimise tap breakage. The heavy cast iron base assures stability for extra control. The precision chuck will hold taps with a shank between 0.8 and 6mm. The Clearance under the chuck is adjustable up to 140mm. The Distance from the centre of the chuck to the front of the column is 120mm. The base includes 8mm T slots to facilitate the mounting of vises and clamps. This unit can also be used for hand drilling and reaming.

VERTEX ROTARY TABLES

67/150MM

£155:00 £139.00 \$285:00 £195.00 8"/200MM 107/250MM \$365:00 £330.00

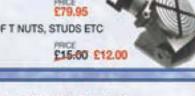
SOBA 4" HZ/VT ROTARY TABLE

CODE MXSO SET OF T NUTS, STUDS ETC

£15,00 £12,00 MXX53

NEW TAILSTOCK

XC156


£39.95# MXS12

SOBA 4" HZ/VT TILTING ROTARY TABLE

COOK MX62 SET OF T NUTS, STUDS ETC

cont MCK63

NEW STYLE SOBA 100MM ROTARY TABLE WITH 2MT CENTRE

PRICE

NEW! HEADBAND MAGNIFIER WITH TWIN SIDE MOUNTED LED LIGHTS

THIS SET INCLUDES 3 LENSES - PROVIDING

1.8x - 2.3x - 3.7x - 4.8x mag

CODE PRICE £9.95 TK10082

ACCESSORIES FOR SOBA VERTEX 6" TABLES COOL SET 6 T NUTS

XC165 SET T NUTS, STUDS & CLAMPS XC166 XC167 TAILSTOCK. SET 3 PLATES ETC

MORSE TAPER CHUCK ADAPTOR

XC164, XC155 & XC156

XC168 2MT MYFORD THREAD XC176 3MT MYFORD THREAD 2MT BOXFORD THREAD XC171 3MT BOXFORD THREAD

mm CHUCKS ON MOUNTING PLATE TO SUIT XC164, MX60 & MX62 ROTARY TABLES

CODE Type 3 JAW **GX46**

SOBA 4" HZ/VT ROTARY TABLE WITH 2MT BORE

CODE ITEM MX70 4" BOTARY TABLE MX88 TAILSTOCK MX89 SET 3 DIVIDING PLATES ETC.

PFNCE \$99.00

NEW! HEADBAND MAGNIFIER WITH GLASS LENSES

CODE ABAG TK10033 TK10038 TK100310

3× 8× 10 ×

ALL PRICES INCLUDE VAT & CARRIAGE (UK MAINLAND) [Prices are correct at time of going to press and are only available while stocks last]

Tel: (01582) 471900 5 Lines Fax: (01582) 471920 Web: www.chronos.ltd.uk Email: sales@chronos.ltd.uk CHRONOS LTD - UNIT 14 DUKEMINSTER ESTATE - CHURCH STREET - DUNSTABLE - LUS 4HU

MODEL ENGINEER

Published by MyHobbyStore Ltd. Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0EL Email: customer.services@myhobbystore.com

Tel: +44 (0)844 412 2262 www.myhobbystore.com

SUBSCRIPTIONS

UK - New, Renewals and Enquiries Tel: 08456 777 807

Email: modelengineer@subscription.co.uk

USA & Canada subscriptions -New, Renewals and Enquiries Tel: (001) 732 424 7811 Email: subs@ewamags.com

Rest of World subscriptions -New, Renewals and Enquiries Tel: +44 (0)1858 468811

BACK ISSUES & BINDERS Tel: +44 (0)844 848 8822

Email: customer.services@myhobbystore.com

EDITORIAL

Editor: David Carpenter Assistant Editor: Michael Jones Production Editor: Kelvin Barber Technical Editor: Roger Bunce Associate Editor: Malcolm Stride

PRODUCTION

Designer: Yvette Masson Illustrator: Grahame Chambers Pre-Press: Brian Vickers Production Manager: Richard Baldwin Ad Production: Robin Gray

ADVERTISING

Senior Sales Executive: Duncan Armstrong Email: duncan.armstrong@myhobbystore.com Tel: 0844 848 5238

MARKETING & SUBSCRIPTIONS Marketing Executive: Heather Morrison

MANAGEMENT

Creative Directors: Nikki Parker & Nikki Coffey Subscriptions Director: Rebecca Blighton Chief Executive: Owen Davies Chairman: Peter Harkness

© MyHobbyStore Ltd. 2008 All rights reserved ISSN 0026-7325

The Publisher's written consent must be obtained before any part of this publication may be reproduced in any form whatsoever, including photocopiers, and information retrieval systems. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from negligence of our staff. Reliance placed upon the contents of this magazine is at reader's own risk.

Model Engineer is published for \$xx per year by MyHobbyStore Ltd.
c/o EWA Magazines, 205 US Highway 22, Green Brook, NJ 08812.
www.ewamags.com. Periodicals paid at Dunellen, NJ.
Postmaster please send address correction changes
to Model Engineer Magazine c/o EWA at the address above.

Paper supplied from wood grown in forests managed in a sustainable way.

ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS

Vol. 201 No. 4338 7-20 November 2008

549 SMOKE RINGS

News, views and comment on the world of model engineering.

550 POST BAG

Letters to the editor.

552 DUKE OF EDINBURGH CHALLENGE TROPHY AT THE MODEL ENGINEER EXHIBITION

Ivan Law reports on the competition for this prestigious award plus the full trophy results.

556 EDWARDIAN ELEGANCE -THE HIGHLAND RAILWAY'S 'SCRAP' TANK ENGINES

Ron Isted concludes his look at Peter Drummond's thrifty tank engines.

559 OLD WINE IN NEW BOTTLES -A TOULET IMPERATOR

John Wilding begins work converting a former pigeon racing timer.

562 McONIE'S OSCILLATING ENGINE

Anthony Mount tackles the steamchest and cylinder parts.

565 THE BR 82000 CLASS 3s

Peter Rich examines a GWRinfluenced standard tank locomotive.

569 PETE'S PAGE

Peter Spenlove-Spenlove provides tips and hints on screwcutting.

570 STOWE

Neville Evans considers bearing aspects before describing Stowe's tender chassis.

574 WHICH AIR COMPRESSOR?

David Stokes surveys what's on the market for this essential piece of workshop equipment.

576 A PRACTICAL APPROACH TO INJECTOR MAKING

Terence Holland concludes his look at how to make injectors simply.

581 NEWS

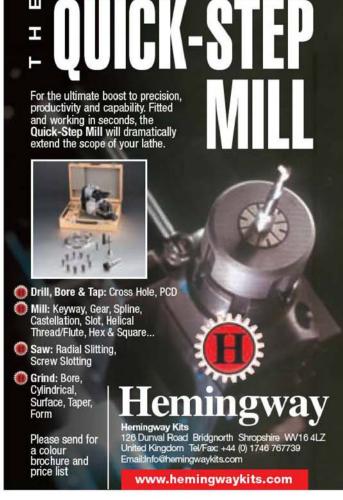
News from the trade and clubs in the UK and around the world.

584 DIARY

Forthcoming events.

585 BACK ISSUES

Missing a recent M.E.? Now's the time to complete your collection.



ON THE COVER...

This stunning locomotive, built by René Etter of South Africa, was displayed at the Model Engineer Exhibition at Ascot. It is a 5in. gauge model of an American-style 4-4-0 built by Baldwin in the 1860s for the New York City and Hudson River Railroad (NYC & HRR). (Photograph by Roger Bunce)

PHONE 08456 777807 TO TAKE ADVANTAGE
OF OUR LATEST SUBSCRIPTION OFFER

12 & 24V MOTORS AND SPEED CONTROLLERS SPROCKETS AND CHAIN . GEARS SPEEDO'S . AMMETERS . BATTERY CHARGERS PNEUMATICS INCLUDING VACUUM/PRESSURE PUMP BATTERY CARE PRODUCTS . SPRINGS . BEARINGS WHEEL BLANKS, SIGNALS, FUSES, LED'S, SWITCHES

TEL:0870 9089373 (national rate) FAX:01282 613647 EMAIL: pselectronics@btinternet.com FOR YOUR FREE LIST

PARKSIDE RAILWAYS

UNIT 2e & 3J, VALLEY MILLS, SOUTHFIELD ST. NELSON, LANCS, BB9 OLD

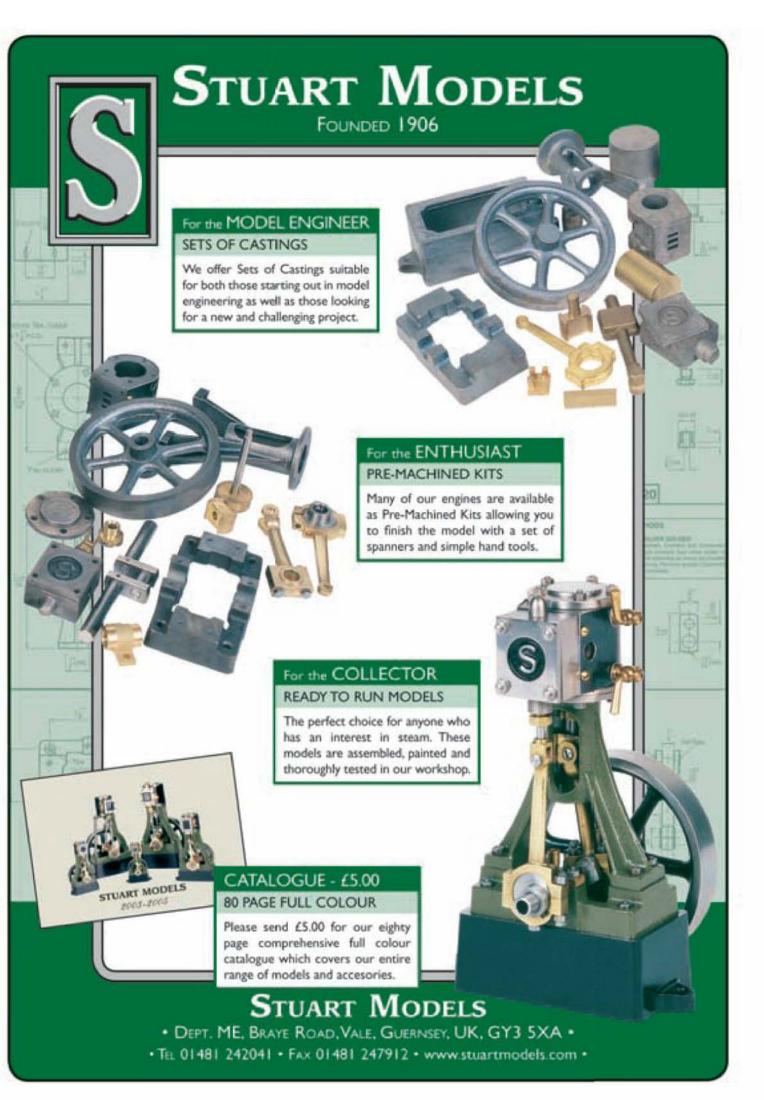
Manufacturers of the renowned Pully 5" page passenger hading, coal fined steam loco kits, which are easily assembled with hand tools and minimal skill. Polly loce kits provide an ideal introduction to the model engineering hobby: Latest Polly VI illustrated. Lit price only £5995 inc VAT.

POLLY MODEL

Manufacture is complemented by our Bruce Engineering Model Supplies business, giving a comprehensive range of steam fittings, accessories, materials, books, etc. We specialise in supply of quality injectors (JC, Chiverton), pressure gauges, etc.

Stationary engine kits: we produce a wide range of over 45 different models, including designs by Anthony Mount, our own large R&B gas engine, etc., and supply the full range of Stream Modely, Practical Scale: Drawings, Castings, lost was parts, laser out frames, CNC rods, CNC platework, etc for the range of locos designed by

See us at exhibitions or find these & other items is or Supplies Catalogue £1.75 posted UK \$5 worldwide Polly Loco Kit Catalogue £5 Stuart Models Catalogue £5



Polly Model Engineering Ltd (Inc.Bruce Engineering) Bridge Court, Bridge St., Long Enton. Notingham, NG10 4QQ tel. 0115 9736700 fax 0115 9727251 www.pollymodelengineering.co.uk

Buy Model Engineering - A Foundation Course together with Building Simple Model Steam Engines Book I and receive Building Simple Model Steam Engines Book II absolutely FREE!

Please quote 200F2D98-13F when ordering online or by phone 0844 848 8822

ORDER YOUR BACK ISSUES OF **MODEL ENGINEER MAGAZINE ONLINE!**

Drawings, Castings & Machined parts. 3"-6" scale range of popular traction engines, including:

RUSTON-PROCTOR, FOSTER, BURRELL, FOWLER & MARSHALL

Full engineering services, technical support and wheel building available. Horn plates, tender sides and wheel spokes laser cut. Full range of model engineering materials. BA & BSF screws, nuts, bolts, rivets, boiler fittings & accessories.

Catalogue & pricelist - £4.00 from: Live Stream Models Ltd., Unit 7, Old Hall Mills, Little Eaton, Derbyshire DE21 5DN E-Mail: livesteammodels@zetnet.co.uk www.livesteammodels.co.uk

Tel: 01332 830811 Fax: 01332 830050

G.L.R. DISTRIBUTORS Ltd

TINA

1" Bore x 1.1/2" Stroke -Slide Valve

Length of Baseplate 12" Diameter of Flywheel

Height 6" - Width 6" Weight 4.1/2 Kilos

Complete, Drawings and Materials (Hardwood base £15 extra)

Unbeatable value at this price £185.00 plus £8.00 Carriage to mainland All prices

include vat

SPECIAL OFFER

Materials and Castings for Boiler and Engine Buy both together at ONLY

£265.00

Carriage FREE to UK mainland Catalogue of all our products included

MULTI-TUBULAR BOILER KIT

Runs on Coal - Gas - Spirit 4" dia. x 16swg Copper tube -8.1/2" high

25 5/16" x 20g Copper tubes Firebox 3.1/2" dia.

> 3.1/2" long Working pressure 80 psi

£95.00 plus Carriage £8.00 to mainland UK Set of 6 fittings optional at £95.00

> All prices include vat

Catalogue included offering our extensive range of Materials • Tooling • Steam fittings • Fasteners • Adhesives etc. Plus our complete range of Charles Kennions Locomotive drawings and Castings

NEW PREMISES - G.L.R. DISTRIBUTORS, UNIT 3, GRESLEY CLOSE, DRAYTON FIELDS, DAVENTRY, NORTHANTS. NN11 8RZ

• Tel: 01327 878988 • Fax: 01327 876396 • E-Mail: peteglr@btopenworld.com Web site: www.modelmakingsupplies.co.uk Send 6 first class stamps for catalogue & Price List

OPEN TO CALLERS - Monday-Friday 9.00am - 5.00pm SATURDAY 9.00am - 12.00 noon

GOOD VALUE GOOD READING HIGH QUALITY INFORMATION

Soldering, Brazing & Welding - a Manual of Techniques • Pritchard · £17.19 Farm and Workshop Welding • Pearce

Welding Institute Guides (DVDs):

No. I MIG Welding • 51 mins	°£31.//		
No. 2 MMA Welding • 54 mins	•£31.77		
No. 3 Oxy - Acetylene Welding,	Brazing &		
Cutting • 45 mins	· £31.77		
MAGAZINES - Sample copies:			
The Home Shop Machinist	•£ 6.80		

Machinist's Workshop • £ 6.50 Digital Machinist · £ 6.50 Live Steam · £ 7.50 Australian Model Engineering • £ 5.55 · £ 9.90

Myford Series 7 Manual • Bradley How to Run a Lathe . South Bend • £ 8.30 The Amateur's Lathe • Sparey • £10.90 The Compact Lathe · Bray • £10.50

Improvements & Accessories for your Lathe • Radford · £15.90 Ornamental Turning · Walshaw · £20.90 Workshop Techniques • Thomas · £29.70

The "Quorn" Universal Tool & Cutter Grinder · Chaddock · £14.55 The EDM How-To Book • Fleming • £14.10

"Build Your Own Metal Working Shop from Scrap" series by Dave Gingery: • £ 8.25

Book I The Charcoal Foundry Book 2 The Metal Lathe · £ 9.85 **Book 3 The Metal Shaper** · £ 9.85

Book 4 The Milling Machine Book 5 The Drill Press • £ 9.85 . £ 9.85 Book 6 The Dividing Head & De-luxe

Accessories £ 9.85 Book 7 Designing & Building the Sheet Metal Brake · £ 8.95

Tricks & Secrets of Old-Time Machinists • £ 7.50 Tricks & Secrets of Old-Time Machinists

Vol. 2 · 1915 & 1916 · £ 7.50 Deep Hole Drilling • 1910, 1926/7 · £ 6.05 Learning the Lost Art of Hand Scraping 1880-1919 • £ 5.50

How I Pour Babbitt Bearings . Gingery

How to Do Aircraft Sheetmetal Work Norcross & Quinn · £13.70

'Popular Mechanics' Drilling and Thread **Cutting Handbook** • £ 8.20

Metal Spinning • 1910 • Tuells & Painter • £ 5.55 Model Engineers Handbook

· £11.90 **Tubal Cain** The Finishing Touch - the how's & why's of painting models · Shephard • £ 7.60 Airbrushing and Spray Painting Manual

· Peacock • £10.55 How (not) to paint a locomotive

. Vine . 423.40 **Building A Gas Fired Crucible Furnace**

• Gingery
Lost Wax Casting • Feinburg
Practical Wood Patternmaking • 1943 • £12.30 · £14.55

· Hall · £14.70 Foundry Notes •1915-1925 · £ 6.80

Smith's Work • 1899 • Hasluck · £ 8.20 **Blacksmith Shop & Iron Forging** • 1906

· £ 8.10 Secrets of Lead Acid Batteries . indsay

· £ 6.15 Generator Secrets •1935

• £ 5.80

This seriously attractive book is, in some ways, an Anglo-American (American author, British publisher) reply to the Australian best-seller Steam Trains in Your Garden (in the right hand column) although, unlike this book it doesn't contain any building instructions. What it does do superbly well is to describe 'Small scale steam locomotives and how they work'. Very slightly under half is devoted to the technicalities of smallscale steam - essentially 0 gauge to G scale, and all scales and gauges in-between. Covered in this first 100 pages is everything from cylinders to firing methods, valve gears to boilers, and much, much more. The second 100 pages have detail descriptions of around 80 models mainly, but not exclusively, commercially built. If you are already interested in small-scale live steam, or considering it, you will find this book an absolute mine

enjoyable read into the bargain. 208 exceptionally well presented pages, heaving with all colour illustrations. Hardbound.

of information - and an

Prices Shown INCLUDE delivery in the U.K

full amount and we will refund the difference. The website also automatically works out delivery charges worldwide

BE PREPAREDS

OUR FREE BOOKLIST:

the books here are a small part of our range of model engineering

and related titles. All are described in our illustrated Booklist (now 96 pages), sent with all orders. Write, phone, fax - or view our website for a copy if you would like to see the list before buying - it is FREE!

OUR WEBSITE: find all the VERY LATEST items on our Website -

www.camdenmin.co.uk

which contains all our books and films, engineering, steam, IC or otherwise, and an easy-to-use, secure on-line ordering facility.

NEW! Fred Dibnah's Chimney Drops McEwen · £33.30

Clerget Patent Aero Engines • 1917 • **VERY SPECIAL PRICE! • £ 3.20**

Building the Bentley BR2 World War I Rotary Aero Engine · Blackmore Building the Maltese Falcon · Shelley ·

SPECIAL PRICE! • £12.15

Building the Atkinson Differential Engine · Gingery

Development of Piston Aero Engines Gunston · £15.74 The Development of Jet and Turbine

Aero Engines · Gunston · £15.74 Miniature Internal Combustion Engines

 Stride · £23.35 Model and Miniature Locomotive

Construction · Bray Model Steam Locomotives • 1954 •

· Greenly rev. Steel · £19.70 Model Engineering A Guide to Model Workshop Practice • 1915 • Greenly • £18.00

Shop, Shed and Road .'LBSC' · #18.70 The Model Injector · Crawford · £ 7.80

Introducing Model Traction Engine Construction • Haining • £ 8.55

Steam Trains.... In Your Garden • £37.30

Building a Marine Compound Engine · € 8.55 Leak

Historic Engines Worth Modelling • Mount · £14.55 The Tesla Disc Turbine • Cairns • £ 7.45

Building the Allchin • Hughes · £20.70 Building the Shay · Hiraoka · £44.30

Building the New Shay · Hiraoka · £44.30 Building the Heisler • Hiraoka · £44.30

Building the Climax • Hiraoka · £44.30 The Pennsylvania A3 Switcher • Hiraoka · £44.30

Building Stirling Engines without a lathe Hoejfeldt • £ 8.35 Building Stirling I . Warbrooke · £ 7.75

Clockmaking for the Model Engineer Thorne · £14.25

The Watchmaker's and Model Engineer's Lathe - a Users Manual (Fifth edition updated) • de Carle · £19.70

Regulator Clock Construction • Heimann · £17.70 How to make a Weight Driven 8-Day Wall Clock · Wilding · £31.95

Carlisle's Crane Makers - the Cowans Sheldon Story • Earnshaw · £11.55 **English and American Toolbuilders**

• 1916 • Roe · £18.75 The Non Rotative Beam Engine • Kelly • **VERY SPECIAL PRICE! • £ 3.60**

NEW! Development of Power in the Textile Industry from 1700 - 1930

The Lister A & B Story • Edgington • £13.60 Advanced Steam Locomotive Development · Porta

Steam Locomotive Design: Data and Formulæ • Phillipson • SPECIAL PRICE! • £18.30 W. Tasker & Sons, Ltd. Catalogue of "Little Giant" Steam Tractors, "Little Giant" Steam Wagons, Light Traction

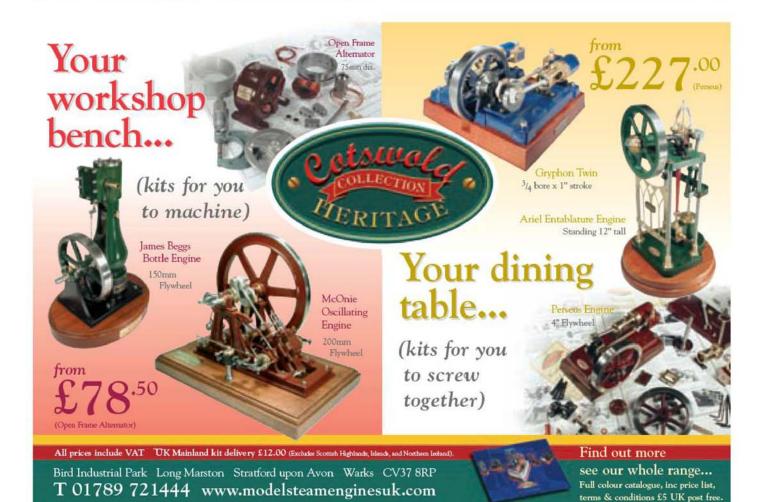
Engines & Road Rollers • c.1919 • VERY SPECIAL PRICE! • £ 3.20

Newly released, exclusive to Alibre, the complete CAD/CAM solution.

Alibre Design delivers the professional parametric 3D solid modeling power you need to handle your designs.

Alibre CAM offers you: 2 1/2, 3 & 4 axis Milling, Hole Making, Post Processors and full Toolpath Simulation and Tool Library

> For more details and to find out about our


> > Promotion contact us now.

All readers receive a discount!! Quote Ref ME05

0870 0119394 info@digitise.ltd.uk

CREATIVE WITHOUT NEEDING A WORKSHOP

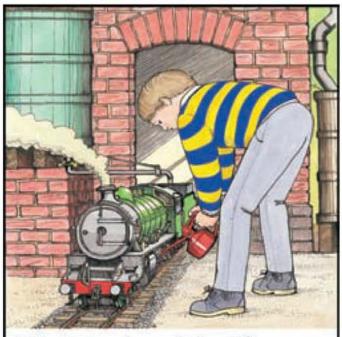
www.phaenixlacas.com

Speedometer

For any Loco or Rolling Stock

- · Indicates True Speed in MPH
- · Quality moving-coil meter 70 mm x 60 mm
- · Works from magnetic wheel sensor (supplied)
 - · Multi-function configuration button
 - Easy entry / display of wheel diameter
 - Adjustable over-speed indicator
 - Wheel diameters from 1 to 9.99 inches
 - · Self contained battery powered unit

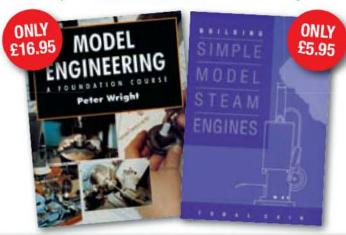
Optional Extras:


- · Wheel-slip indication function
- · Odometer function (up to 99.99 miles recorded)
- · Other scales and calibrations ask for details

Speedometer: £49(inc VAT)

Phoenix Locomotives Ltd www.phoenixlocos.com

01704 546 957



The story of a new miniature steam railway, some stories from the old railways and 'how-it-works'. The first book in a new series for kids who love trains From feedback, children from age 6 to 12 years (and 901) enjoy it. Hardback, 96 pages. 30 watercolours and 14 pages of simple diagrams and explanations

To Order: Please send cheque or p/o for £11.99 + £1.50 p8p (£13.49 total) to C Vine (ME), PO Box 9246, Bridge of Weir, PA11 3WD (UK) or visit www.petersrailway.com to buy on-line or visit a preserved or miniature railway. Many of them now stock it. How (not) to paint a locomotive still available at same address and website. £21.50p inc p8.

BUY 2 BOOKS AND GET A FREE BOOK WORTH £5.95!

Buy Model Engineering – A Foundation Course together with Building Simple Model Steam Engines Book I and receive Building Simple Model Steam Engines Book II absolutely FREE! Please quote 200F2D98-13F when ordering online or by phone 0844 848 8822

ORDER YOUR BACK ISSUES OF MODEL ENGINEER MAGAZINE ONLINE!

WARCO OUR NEXT EXHIBITION London Model Engineering Exhibition Alexandra Palace
16th to 18th Jan 2009 See you there!

WARCO

LOOK NO FURTHER

FOR

MINI LATHE

- · 3 Jaw chuck with inside/outside jaws
- · Centre height 3 1/2"
- Distance between centres 12"
- · Threading facility

WM-180 VARIABLE SPEED LATHE

- Centre height 3 1/2'
- Distance between centres 12
- Infinitely variable from 0-1,250 and 0-2,500 rpm

WM-240 VARIABLE SPEED LATHE

- Centre height 4"
- Distance between centres 18"
- Infinitely variable from 0 1,250 and 0 - 2,200 rpm
- · Large cross slide with two full length tee slots

Each lathe is supplied with two speed bands to allow maximum torque in the low setting, an accuracy test report, digital rev. counter, hardened bedways, face plate, four way tool post, swarf tray and rear splash back, thread dial indicator and reversible motor.

WM series lathes supplied with metric and imperial threading facility, 3 and 4 jaw chucks, fixed and travelling steadies

WM-250 VARIABLE SPEED LATHE

- · Centre height 5"
- Distance vetween centres 22'
- Infinitely variable from 50 to 2,000 rpm
- · Reversible leadscrew for left hand threading

WM-280 VARIABLE SPEED LATHE

- Centre height 5 1/2"

- Distance between centres 27 1/2"
 Infinitely variable from 50 to 2,500 rpm
 Large cross slide with two full length tee slots · Reversible leadscrew for left hand threading

WM-280V-F VARIABLE SPEED LATHE

- Centre height 5 1/2'
- Distance between centres 27 1/2"
- Dedicated feed shaft for longitudinal/cross feed
- Separate leadscrew for thread cutting functions
- Large cross slide with two full length tee slots
- Reversible leadscrew for left hand threading

MINI MILL/ DRILL

- Variable spindle speeds
 50 2500rpm
 Powerful 550w motor

- 3 morse taper with draw bar
 Available with either metric or imperial leadscrews
- · Fine spindle feed Table size:
- 18 1/8" x 4 3/8"

WM-14 VARIABLE SPEED MILL

- Fine feed head elevation with calibrated dial
- Compact, rigid machine
 Table size: 16" x 4 1/2"

WM-16 VARIABLE SPEED MILL

- Rack and pinion drill feed plus fine
- feed for accurate machining
 Table size: 27 1/2" x 7"
- Digital rev. counter Large capacity table

WM series mills are supplied with digital scale for spindle travel, 2 speed settings to allow high torque in low range. Accuracy test report.

Infinitely variable speed range from 50 -2,250 rpm. Dovetail column ensures positive head location. Precision spindle supported on taper roller bearings. Head tilting 45° 0° 45°. Captive drawbar pushes tooling out of taper. Adjustable gibs to slideways. Locks to head, column and slideways. Available with either metric or imperial leadscrews. Interlock chuck guard. Swarf tray and stand available.

WM-18 VARIABLE SPEED MILL Digital rev. counter • Fine feed to spindle • Table size: 27 1/2" x 8 1/4" £1,250.00

SPECIAL OFFER

With each lathe - Live centre, drill chuck, arbor and 5 piece indexable tool set - free of charge.

With each milling machine - set collets, metric or imperial, vice, set of end mills - free of charge.

- · Avoids necessity to change belts
- Prices unchanged since january 2006
- Enjoy Warco's unequalled, outstanding customer service
- Free tooling package allows for immediate use of your new machine without any additional cost.
- Massive range of additional lathe and milling machine tooling available from stock. Please ask for details.
- · Dedicated spares department and long term availability of spares

FREE Delivery UK mainland • All prices include VAT • Please ring for our latest info packed brochure!

WARCO, FISHER LANE, CHIDDINGFOLD, SURREY GUS 4TD Tel: 01428 682929 warco@warco.co.uk

Treat yourself...

Pay just £1 for your first 6 issues*

- SAVE 44% in the 1st year, that's a saving of £31.53
- Every issue, delivered conveniently to your door

*UK orders paid for by Direct Debit ONLY.

OR YOU CAN ORDER ONLINE:

www.subscription.co.uk/mde/S032

YOUR DETAILS (This section must be completed): CODE S032 Name Mr,Me,Mise,Mire	PAYMENT DETAILS: UK ONLY □ I would like to subscribe to Model Engineer. Please send me my first 6 issues for the £1 and then SAVING 44% in my 1st year, paying £12.99 every 3 months by Direct Debit □ I would like to subscribe to Model Engineer for 1 year (26 issues) with a one-off payment of £53.50 (Saving 29%) OVERSEAS						
Section and a recommendation of the section of the	Europe (incl Eire) £78.00						
E-mail	□ ROW Airmail £85.00						
Tel	☐ Cheque/Postal order (Please make payable to MyHobbyStore Ltd. and write S032 on reverse) ☐ Credit/Debit Card Please debit my: ☐ Mastercard ☐ Visa ☐ Amex ☐ Maestro Card number: ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐						
Postcode Country	POST THE COMPLETED FORM WITH YOUR PAYMENT TO: MyHobbyStore Ltd Subscriptions, Tower House,						
TelMobile	Sovereign Park, Market Harborough, Leics LE16 9EF						

by Direct	Deblt	(ple	aset	lck)					
Name of bank									
Address of bank								********	
			Po	stcod					
				bicou			0.0,000		
Account holder									
Signature									
Sort code		T	7	T					
Account numb	er	Ė	П	Ť	Ť		T		
nstructions	to vo	ir ha	nko	r bu	lidin		· lo	hr.	
Please pay Myl	Hobby	Store	Ltd.	Direc	Deb	oits fr	om t	he accou	
detailed in this he Direct Debi	instruc t Guar	tion s	ubje . I un	ct to t derst	he sa	afegu hat ti	iards nis ir	s assured astruction	by may
omain with My	Hobby	Store	Ltd a	and if	80, 6	detail	s wil	l be pass	ed
electronically to	mw h								

Back issues

If you find yourself missing a back issue of *Model Engineer*, for whatever reason, help is at

hand. On page 585 of this issue you'll find covers and contents information on some of our recent issues along with instructions on how to order them through MyHobbyStore Ltd. If the issue you're seeking isn't illustrated, contact us. Our store of magazines is much larger than could be listed on one page.

Sinsheim time approaches

It may be November, but now is the time to start thinking about a trip to Sinsheim in

Nevil Shute Norway

Many model engineers might have read at least one of Nevil Shute's books, *Trustee from the Toolroom.* The work is well-loved by mechanically and technically-minded people for its discussions of machinery and model engineering. What may not be as well-known is Neville Shute Norway's career as an aeronautical engineer

and his career as a best-selling novelist of the mid-20th century.

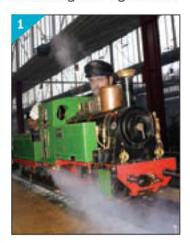
Airships to Airspeed, a conference organised around the life and writings of Nevil Shute, is planned for 26-31 July 2009 in York at the Novotel.

Nevil Shute Norway, born in London in 1899, was educated at Shrewsbury School and Balliol College Oxford where he read Engineering. He joined the De Havilland Aircraft Company as an aeronautical engineer, then moved to Vickers to work on the airship R-100 in competition with the Government-built R-101.

In the late 1920s he moved to York to work on the design and production of the giant airship, R-100, at Howden. When the airship project was scrapped in 1930, following the crash of rival airship R-101, he co-founded, in 1931, an aircraft design and manufacturing company called Airspeed based in the old bus garage still standing (barely) on Piccadilly, near the Red Lion pub.

Shute's first novel *Marazan* was published while he was working on the airship. It was then that he shortened his name to Nevil Shute to protect his engineering career.

Nevil Shute, left his place in York's history, before moving to Australia in 1950. Shute's 24 novels are still in print and a growing revival of interest in his life and works has spawned a worldwide appreciation group.

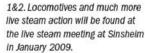

A dedicated conference website has just been launched www.uk2009.info and more information about the author can be found on www.nevilshute.org.

January. The 13th Echtdampf-Hallentreffen (live steam meeting) is taking place over the weekend of 9-11 January 2009. For railway enthusiasts the indoor live steam event features five kilometres of ground level 5in. gauge track, about 1.5km of dual 71/4 and 5in. track. There is also a large boating pool for steamboats and expansive displays of stationary steam engines, many of them running in steam. In all, over 1000 models will be in steam or on display during the Echtdampf-Hallentreffen. Over the three-day event, five metric tonnes of coal are burned - all of it indoors.

Suppliers to the model engineering trade come from across Europe. Roaming the aisles of the exhibition are numerous traction engines pulling wagons and offering rides.

W. www.echtdampfhallentreffen-messe.de

If you're interested in full-size steam equipment, the Technik Museum at Sinsheim is next door to Messe Sinsheim. Outside are numerous aircraft mounted in various angles of flight. Inside



are many exhibits from military equipment, locomotives, cars, mechanical instruments (organs in particular) and much else.

The companion museum at Speyer offers 150,000sq. metres of exhibits including a huge Chinese 2-10-2 locomotive, QJ 2655, which was turned on its side to pass under the road bridges leading to the museum. At both museums you'll find much to amuse the mechanically inclined. *Model Engineer* is planning reports on these two museums in 2009. The website leads to information about both museums. W.

www.technik-museum.de

There is an organised tour going to Sinsheim leaving from south-eastern Britain (with pickups along the M-25) which is organised by History in Harmony. Departure is on Thursday 8 January and return on Monday 12 January. Beside accommodations in Heidelberg, the trip includes transfers to Messe Sinsheim and one admission. Visits to other museums are made daily, so you can see some of the other attractions in this interesting part of Germany. Enquire about the 'Model Engineering Tour' with the operators, E. tours@ historvinharmony.com T. 01980 621418.

Pulse jets (1)

SIRS, - Reference to Dave Fenner's article on pulse jets (M.E. 4334, 12 September 2008). A friend and I have been experimenting with these engines and have found that as far as ignition is concerned, a spark plug (NGK CM-6) powered by a trembler coil as supplied by The Engineers Emporium will provide enough heat for ignition. The plug is screwed into to side of the combustion chamber. This gives a continuous spark and can be disconnected as soon as the engine warms up.

We use propane as a fuel, supplied through a hole drilled in the valve mounting bolt and into a fitting with six radial holes drilled in it so that the gas mixes with the incoming air.

We found a company, (Repco Technology Ltd), who will laser cut valves from stainless shim steel, at a price - CNC machines have to be programmed - but as valve life is short it is worth ordering a quantity of them. Alternatively, they can be etched by spraying thoroughly cleaned shim steel with a metal bonding paint, scribing the outline through the paint and immersing in a sodium chloride solution and passing a current through using a sheet of stainless steel as a cathode.

must not have any sharp edges on its valve side as this will cause a fatigue point in the valve petals leading to early failure, (their life is short enough as it is).

Pulse jets are not a very efficient form of propulsion, using a large amount of fuel for the amount of thrust they produce. They do, however, continue to prove thrust as their forward speed increases, diminishing as they approach Mach 1. Someone in America (where else!) strapped one to his push-bike and on reaching 55mph, decided enough was enough and cut the engine. They are great fun and simple to build, producing a shatteringly appalling noise at full power if you like that sort of thing.

The valve mounting plate

Tony Batten, by e-mail.

Pulse jets (2)

SIRS, - Dave Fenner (M.E. 4334, 12 September 2008) might like to try wiring a small DC electric motor (the brushed type used in child's toys is ideal) in series with the low tension side of his coil. The motor will chop the DC into a series of pulses which yield a continuous spark.

A small disc ceramic capacitor across the motor and keeping the spark inside the (earthed) body of the pulse jet should keep the level of Radio Frequency Interference down but you should check this and screen/suppress as necessary.

Truth be told, I was trying to transmit Morse when I 'invented' it at about age 10. so I had an antenna on mine! Robert Strunz, Ireland.

Ignition coil circuits

SIRS, - I noted in M.E. 4335, 26 September 2008, the M. J. H. Ellis article about ignition coils. Perhaps Mr. Ellis is unaware but the secondary of the ignition coil is not connected to ground as he describes. The common method is for the ground end of the high voltage secondary to be internally connected to the CB terminal. Measuring with an ohm-meter between the HT terminal and the metal canister shows a complete open circuit.

The basic schematic of an ignition system is shown in fig 1. This system is commonly known as the Kettering Ignition System after its invention in 1907 by Charles Franklin

Flywheel energy

SIRS, - In the article by Mr. Ridders (M.E. 4333, 29 August 2008) he discusses the flywheel on the engine he is describing and shows how to calculate its kinetic energy. This reminded me of a book I was reading recently in which the author posed an interesting question to his readers about flywheels.

Supposing there are two flywheels each on its own shaft and both rotating at the same speed, measured in revolutions per minute. They are both the same shape but one is twice the size of the other in every dimension. The large one will have more kinetic energy than the small one but how many times more?

As the large one is twice the size of the small one it will be 2 x 2 x 2 = eight times the volume and eight times the weight but as the speed is unchanged, a first guess might be eight times the kinetic energy. The answer given by the author is 32 times! I couldn't believe this, the guy must have got it wrong somehow, and who was he anyway? A quick look at the back of the Penguin book gave the information that he was a graduate of Cambridge University and had been a mathematics lecturer at various colleges, so perhaps I should think more deeply about this.

With the help of Machinery's Handbook I worked it out for myself and unlikely as it seemed to my common sense, 32 times is correct. The author goes on to say that if the ratio of the sizes of the two flywheels is *n*, then the ratio of the kinetic energies of the flywheels is n^5 : 1. In the above example n= 2, so that $2 \times 2 \times 2 \times 2 \times 2 = 32$. If a flywheel were to be replaced by a larger one having a 50% increase in kinetic energy when running at the same speed, then $1.5^{(1/5)}$ (i.e. $\sqrt[5]{1.5}$), the number of times the larger flywheel is bigger, works out to 1.084. Multiplying the dimensions of the old flywheel by this number gives the dimensions for the new one.

Some engines are fitted with a plain disc for a flywheel and when replacing such a disc with a larger one, it might be convenient to use the same thickness of disc. In this case the figure of 32 times given above becomes 16 times and the ratio of kinetic energies becomes n^4 : 1. Replacing such a flywheel by one having an increase in kinetic energy of 50% would make n =1.5^(1/4) which equals 1.106 and only the diameter needs to be multiplied by this number to give the size of the new flywheel. H. D. Turner, Wakefield.

Write to us

MyHobbyStore Ltd.

should be sent to:

Berwick House,

8-10 Knoll Rise

of the Editor.

and space available. Correspondents should

Views and opinions expressed in letters published in Post Bag

to be in accordance with those of

the Editors, other contributors, or

Correspondence for Post Bag

The Editor, Model Engineer, MyHobbyStore Ltd.

Orplington, Kent, BR6 OEL;

fax: 01689-899266 or to david.

Publication is at the discretion

The content of letters may be

edited to suit the magazine style

note that production schedules

time of six weeks for material submitted for publication.

In the interests of security.

correspondents' details are not published unless specific

instructions to do so are given.

are forwarded as appropriate.

Responses to published letters

normally involve a minimum lead

carpenter@myhobbystore.com

should not be assumed

Kettering of DELCO in the USA. The terminal on the coil that connects to the 12V supply used to have the plus symbol, today it is denoted by the number 15. The terminal that used to be marked either CB or minus is today marked with number 1. The condenser name was discontinued many years ago and replaced with the modern version of 'capacitor', although in the automotive industry things move slowly and condenser is still in common use. Also in fig 1 is shown the method used to provide an adequate spark during starting when the battery voltage may drop. SW1 is the normal ignition switch and normally feeds the primary of the ignition coil via a dropper resistor, R. The value of R is the same as the primary resistance, so for a 12V vehicle system the ignition coil is really a 6-Volt coil. When the key is turned to crank the engine a separate supply directly from the battery provided by SW2 shorts out the resistor causing the coil to be run at higher spark energy, which ensures rapid starting. When the engine starts and the driver releases the key SW2 is opened. This method is known as a 'ballasted coil' and requires the correct value dropper resistor to prevent damage to the coil.

Today contact breaker ignition systems are considered old fashioned and unreliable and electronics have replaced them, reducing the maintenance required and giving much longer life. With an Engine Control Unit (ECU) computer to control the ignition (and often fuel injection) the contact breaker and distributor are largely a thing of the past. The switch shown in fig 2 within the ECU

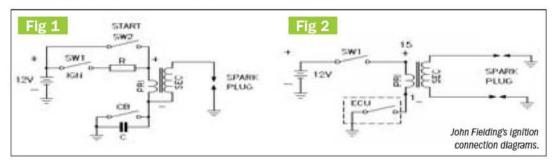
A final reply

SIRS, - I have read Neville Evans letter about me (*M.E.* 4332, 15 August 2008). He seems to think I am offended and that I have inferred that he has pirated a Fred Cottam design, that I know nothing about model practice, insult reader's intelligence, my trials with varying size lubricator sight glasses are of no account, and I am of the "Anorak Fraternity". Ernie Nutty's book is the definitive book about Great Western 2-cylinder locomotives, atomising valves are 'on/off switches' called 'Jockey' valves, that I make banal statements, and have an attitude of divine omnipotence. He states that he and his friends believe that I have a patronising and pontificating attitude and I use stock phrases which are generally offensive to them. After all this he then proceeds to give me his best advice as to how to write my articles.

I had no idea that I possessed all of these dubious characteristics but I see, now that it has been pointed out to me, that 50 years of research, study, designing, overhauling (including regulator 'jockey valves') repairing and working on both full-size and model Great Western steam locomotives have been of no avail to me whatsoever and I have learned very little.

I hesitate to query such a knowledgeable and celebrated model engineer but I thought that the size of blobs of oil could be controlled, at least that is what I thought my trials showed up when I was conducting them 40 years ago while working on hydrostatic lubricator systems. However, I see from what he says my results are impossible and that a blob of oil is matchstick head size irrespective of what I found in my trials.

I'm going to frame his letter and hang it alongside all of my other medals and awards for all to see. Referring to fellow model engineers as "fat heads" and of the "Anorak Fraternity" in a cleverly written letter is not how model engineers conduct themselves and I hope I never again see such a letter published in Model Engineer, whether it is about me or anyone else.


This correspondence is now closed as far as I am concerned because I don't intend to become involved in an 'insults' competition, model engineering is my hobby and I want to enjoy it and I suggest Neville Evans does the same.

Pete Rich, Monmouthshire.

We also consider this topic now closed.

block is normally a high voltage and high current transistor. Today multiple coils using a technique known as 'wasted spark' is the norm. Here two spark plugs are connected in series across the ignition coil secondary and neither side of the coil is connected to ground. When the spark occurs both plugs spark, but one of the plugs is connected to a cylinder

that is on the ignition stroke and the other is on its exhaust stroke. The schematic in fig 2 shows the basic arrangement. For a 4-cylinder engine there would be two coils, often assembled into a single block with 4 HT posts and fed with a common 12V and two triggering terminals, one for each coil. A 6-cylinder engine would have three coils etc.

The other subtle difference between the original Kettering contact breaker system and the modern electronic controlled system is the coil primary resistance and inductance. In the old system the primary resistance had to be fairly high to limit the current flowing, hence about 4A was the maximum drawn from a 12V battery. With electronic control we can control the current to any value desired and so the coil primary resistance and inductance can be much lower, allowing higher rpm. In an old fashioned coil the primary was typically about 3ohms for a 12V coil, a modern ignition coil for electronic control is about 0.7ohm, so they are not interchangeable. If a modern coil was fitted to an older contact breaker system it would overheat and be damaged in a short time. John Fielding, South Africa.

Electric cars

SIRS, - Three cheers for Glynne Hughes for his enlightening letter (*M.E.* 4333, 29 August 2008) about the facts on electric cars and their 50% increased influence on CO₂ emissions. I hope all who read his letter will think twice on the whole matter about 'green' issues, which surely barks up the wrong tree in condemning vehicles which emit not CO₂ but CO.

In any event, to my simple mind and those of millions of others (especially in the Second World) we are unable to accept a single suggestion from this 'greener than grass' brigade.

If anyone can offer proper scientific proof that we humans are to be responsible for any changes in our weather at some indeterminate time in the future, I would be prepared to change my mind. In any case who has decided that any such changes might not bring colder or wetter weather? Where is any proof?

In the meantime, I will continue to look upon these ludicrous pseudo-scientific ideas as just another example of the 'Emperor's New Clothes' fable and its pubic brainwashing effect.

Patrick O'Keeffe, Kent.

The Duke of Edinburgh

Ivan Law reports on the entries for this premier award. Also covered in this report are the major award winners.

t was with mixed feelings that the judges viewed the array of models entered in this year's Duke of Edinburgh Challenge Trophy. The main emotion was one of pleasure, for not only the judges, but more importantly the general public would be given the opportunity of examining for a second time models that had won major awards in previous exhibitions. However, the judges also had a feeling of trepidation as only one model can be adjudged to be the winner of the event. I am not sure who formulated the rules (it happened a long time ago; I think the SMEE were responsible!) but surely they must have been aware of the almost impossible task of differentiating between models encompassing such a large variety of disciplines, that, or they had mischievous minds and wished to see the judges pondering over an almost impossible task!

I may have given the impression that I do not approve or enjoy this, the most highly acclaimed event in the exhibition calendar; this is not the case. Not only I, but the other judges involved feel highly privileged to have the opportunity to examine the models at close quarters and also the chance of meeting the builders and discussing not only the construction of the models, but also how the problems that arose were met and solved.

The entrants

There were nine entries this year, which is a record number, five of them being boats. It was nice to see these in the competition, over the years the general standard of marine exhibits in all classes is usually very good. but unfortunately only a small number reappear in the D.O.E. The smallest boat entered this year was a model of the White Star Lines' SS Baltic. This was only 10in. long, built to a scale of 1:1200 by Mr. Roy Chapman (photo 1). I am amazed how much detail he managed to put into such a small model, I find that 10BA is small enough for me, but a nut that size at a scale of 1:1200 would be 11ft. 6in. across the flats in full-size! Mr. Chapman is no newcomer to

the exhibition, he has exhibited no fewer than 36 times over a period of 50 years. This must be a record in itself.

At the opposite end of the scale spectrum was Mr. Barlow's 1:10 scale model of the Mersey Class lifeboat Andy Pearce (photo 2). Lifeboats are a popular prototype among the model boat fraternity. This is not surprising; they can be built to a scale that facilitates fine details to be achieved. Mr. Barlow's model was an example of this art; there even was a scale size chart on the chart table in the well-detailed cabin. The hull construction was interesting being made of wood but sheathed both inside and out with epoxy resin which gave an authentic appearance to the finished hull.

One aspect of serious model making is that historical prototypes can be chosen thus giving the public an opportunity to see how the modern world has developed. One such model was of a warship from the 18th century built by Mr. Charles Freeman. It was of a 1:48 scale replica of HMS Agamemnon a 64-gun ship reported to be Nelson's favourite. This model was constructed on similar lines to the full-size vessel being mainly wood, using the plank-on-frame method. A

- 1. White Star Lines' SS Baltic built in 1:1200 by Mr. Roy Chapman.
- 2. Mr. A. Barlow's 1:10 scale model of the Mersey Class lifeboat Andy Pearce.
- 3. HMS Roebuck of 1774 by Mr. B. Baldwin to the scale of $\frac{1}{16}$ in. to the foot.
- 4. HMS Cornwall built to a scale of 1:96 by Mr. David Brown.
- Mr. Peter Law's steam engine model was of Bodmer's sliding cylinder engine.

Challenge Trophy 2008

remarkable model, last seen in competition in 1993, it was awarded a Gold Medal and the Maze Trophy.

Another historical model, and also the winner of last year's Maze Trophy was entered by Mr. B. Baldwin, this was a fully-rigged dockyard model of HMS Roebuck of 1774 (photo 3), built to a scale of ½ein. to the foot. This resulted in a beautiful model only 17in. long. The model was mounted on two African Blackwood cradles and displayed in a Canadian maple and glass case.

The final marine model in the competition was a superb replica of the frigate HMS Cornwall built to 1:96 scale by Mr. David Brown (photo 4). Mr. Brown is no newcomer to the exhibition; examples of his superb craftsmanship have been seen quite a few times in the past. This, his latest masterpiece, was awarded a Gold Medal at the Centenary Exhibition last year and it was a privilege to see it on show again. This model was a serious contender for the award.

Last year was a record year for the number of stationary steam engines on show, however, only one of them was entered in this year's D.O.E. It was Mr. Peter Law's Gold Medal-winning Bodmer's

sliding cylinder engine (photo 5). This is an unusual engine. in which the piston remains still whilst the cylinder moves up-and-down. There does not appear to be any advantage in this arrangement over the conventional configuration, other than where height is a limiting factor, such as a paddle steamer. I don't know if any engines of this type were used, or even if any were successfully built and put into useful service. Maybe Anthony Mount, who was responsible for introducing the design into his excellent range of stationary engines. has this information? During the development of the steam engine many peculiar designs were patented some were built and found wanting, many got no further than the outline drawing that accompanied the patent. Making models of these engines involves much research work, but the result is to bring to the notice of the general public artefacts that otherwise would be completely forgotten. Mr. Law (no relation) is to be congratulated for exhibiting an unusual model and for his fine craftsmanship.

Another unusual prototype to model, and also one from the past, was a John Fowler Single Frame Self-Lifting Mole

6. A model of a John Fowler Single Frame Self-Lifting Mole Drainer In 1:10 scale by Mr. Rodger Thurston.
7. Mr. Brian Perkins' 1:4 scale model of a Bristol Hydra aircraft engine.
8. The winner of the Duke of Edinburgh Challenge Trophy, a Ruston-Bucyrus 1260-W Walking Dragilne model in 1:76 scale by Mr. Roddy Turner.

Drainer (photo 6). This was built to a scale of 1:10 by Mr. Rodger Thurston, Although this type of equipment was invented in 1829, versions of it are still used today. When in use the mole drainer is dragged across fields with a cutting tool or mole as it is called, about 2 or 3ft. below the surface thus producing a bore through which excess water can drain away. Mr. Thurston's model was one dating from 1921. It was beautifully made and welldisplayed depicting the mole below the surface. It gained the Bill Hughes Cup and a Gold

Medal at the last exhibition and justifiably deserved its place in the competition.

One noticeable development that has been apparent over the last decade or so has been the increased interest in scale model I/C engines. For many years this type of engine has been designed and made as power units for model boats and aircraft. The current trend is to produce replicas of full-size engines, and some astonishing models have

been made. Brian Perkins's 16-cylinder, double overhead camshaft, poppet valve radial aero engine is a remarkable example of this specialised development (photo 7). Brian's engine is a 1:4 scale model of a Bristol Hydra. This incredible piece of work has been fully described in the pages of the Model Engineer during the last year, so no further description here is needed to do justice to it. No castings were used in its construction, all major

components being made from solid blocks of aluminium, truly a major contender for the award.

The final entry in this class was entirely different from anything entered previously, being a 1:76 scale working replica of a Ruston-Bucyrus 1260-W Walking Dragline. This model was displayed in simulated scale surroundings and was shown working throughout the exhibition moving quantities of scale rocks and earth. It was

Chief judge Ivan Law presented the awards.

The Major Award Winners...

DUKE OF EDINBURGH CHALLENGE TROPHY Roddy Turner Ruston Bucyrus 1260-W Walking Drapline 1:76 scale.

BILL HUGHES CUP Paul Boscott 5-cylinder steam/air engine.

TOM NEVINS MEMORIAL TROPHY Lothar Matrian 'Novelty' stationary steam engine.

BRADBURY WINTER MEMORIAL CHALLENGE CUP
Barry Hares
Rolls-Royce Eagle 22 aero engine 1:5 scale.

JOHN PROTHERO-THOMAS CUP Bernard Baldwin Miniature Marine SS Ben Loyal.

RNLI MODEL LIFEBOAT TROPHY Ronald Paddison George and Mary Webb lifeboat (Whitby) 1:8 scale.

H. V. EVANS TROPHY Graham Castle Carron Company Steam Lighter No. 10 1:32 scale.

EARL MOUNBATTEN OF BURMA TROPHY David Brown HMS Upholder.

MAZE CHALLENGE CUP Charles Freeman HMS Grasshopper.

operated by its builder, Mr. Roddy Tumer (photo 8). There was much more to this exhibit than appeared at first glance. It encompassed many

disciplines of the model engineer's craft, including the fitting of an onboard camera showing pictures of the work being undertaken. The operating seat and control panel was modelled from the full-size machine all the controls working as per full-size. I believe that this remarkable model will be more fully described in future editions of *Model Engineer*.

As is often the case with the Duke of Edinburgh, the judging panel had long and detailed discussions, they went on long after the show closed and continued through the evening meal, and well into the following day, before a decision was made to award the trophy to Mr. Turner for his walking dragline

I would like to thank all those who entered into the competition, the judges know full well that practically all the entrants' models deserve the award, but one has to be selected, leaving this year eight justifiably disappointed contestants.

Other major award winners:

AVELING-BARFORD TROPHY Nicholas Hooper Burrell Showman's Engine 2in.scale.

BOWYER-LOWE TROPHY Alan Jackson 'Stepper head' multi purpose CNC machine.

CHARLES KENNION MEMORIAL TROPHY Richard Castle

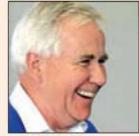
5in. gauge BR Class '2' 2-6-2T locomotive.

NEW ZEALAND CUP John Lewis 3.5in. gauge Large Boilered Ivatt Atlantic locomotive.

WILLIS TROPHY Brian Finch Freelance Steam Turbine Launch 1:12 scale.

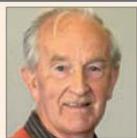
CREBBIN MEMORIAL CUP Herbert Stumm Le France Fire Engine.

EDGAR WESTBURY MEMORIAL TROPHY Bill Connor 1956 Manx Norton short stroke engine 1:2 scale.


J. N. MASKELYNE MEMORIAL TROPHY Alan Crossfield 5In. gauge GWR Bulldog locomotive Empire of India.

JOHN THOMPSON TROPHY Brian Young GWR Delivery Van.

UNDER 18 TROPHY
Eric Henry
HMS Caroline 1914 1:72 scale.



BEST CLUB STAND National 2½" Gauge Association Collected by Des Adeley.

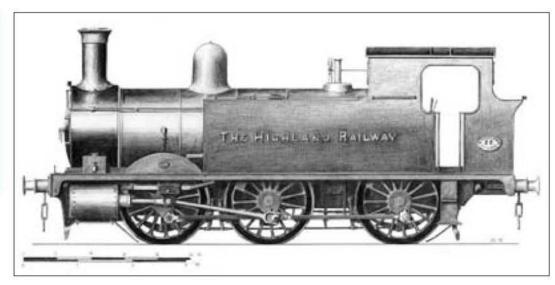
Gold Medal Winners...

CLASS A7 Mike Sayer

CLASS A7 Alan Parsons

CLASS A3 Tom Pascoe

CLASS B12 Ashley Best



CLASS KA Stephen Atkinson

EDWARDIAN ELEGANCE: THE HIGHLAND RAILWAY AND PETER DRUMMOND'S 'SCRAP' TANK ENGINES

Ron Isted concludes his description of three Scottish Highland Railway shunters that were thriftily built from scrap parts!

Continued from page 449 (M.E. 4336, 10 October 2008)

he Lochgorm works plate, flg 3, fixed to the splasher over the leading coupled wheels, measured approximately 8in. by 4in. and was cast in brass, engraved and filled with black wax. None of the 42 locomotives built at Lochgorm between 1869 and 1906 was given a works number, although they did carry the year of construction. The number plate (fig 4) measured 18in. by 11in., and was also cast in brass, engraved and filled with black. Although my principal drawing shown above (see M.E. 4336, 10 October 2008 for large colour version), depicts No. 22, the first of the 'Scrap Tanks', because it has been scaled mainly from photographs of that engine, fig 4 on the other hand, shows the

number plate from No. 23, since it constitutes a further example of Highland Railway eccentricity. You will have already observed, I hope, that the figure '3' has a square top, the only instance on the railway, all other plates having a rounded top to this figure, in other words a mirror image of the lower half. I have absolutely no idea why No. 23 should have been honoured with this unique style. A further graphic peculiarity is that the letter 'G' in the word Highland was a different shape on the number plates compared to the same letter on the works plates. As a matter of interest. Figure 5 shows the Highland Railway crest, although it was never applied to the Scrap Tanks. and in fact did not appear on any locomotive, as far as I know, until the advent of the two elegant 4-4-0s, Nos. 73 and 74, in 1916. It had, however, been used on new corridor coaches since 1912, two representations on each side.

Unusual headlamps

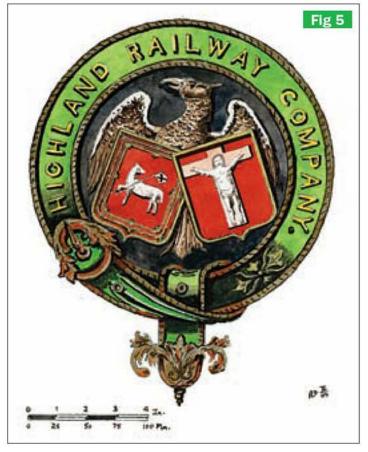
Yet another quirky item, which the Highland Railway shared with the mighty London and North Western, was a peculiar and very impractical species of locomotive headlamp, not unlike that shown on page 760 of M.E. 4289, 20 December 2006. Like those of the Premier Line, (and certain members of the human race on the Saturday before Glasgow Fortnight - none of them model engineers, of course) these Highland locomotive lamps were incapable of remaining in an upright position without some form of support. To solve this self-inflicted difficulty, the Scottish company produced a kind of miniature four-legged stool with a hole in the middle, into which the foot of the lamp was inserted. The lamp occasionally jammed in the four-legged stool, with the result that the complete assemblage was then somehow mounted on the engine. Just how this was physically possible, I cannot tell you, but photographs of this bizarre arrangement have been published. So, if you see a picture of a Highland Railway locomotive with four mysterious excrescences protruding beneath the headlamp above the smokebox door, you will now know what they are.

EDWARDIAN ELEGANCE

However, unlike the LNWR, the Highland also employed more normal lamps with the slot on the back for use with the conventional type of lamp iron - having said that, the positioning of the said lamp irons above the front buffer beam on locomotives of the Highland Railway was anything but conventional, because the right iron (looking forward) was set at right angles to the normal position, while the centre one was missing altogether. The reason for this particular oddity was that lamp codes on the system were also unusual and with one exception, gave no indication of either the type of train or its route. Taking the exception first, any locomotive on shunting duty, including our three Scrap Tanks, of course, had to carry a 'normal' lamp on a lamp iron either side on the cab roof, the right-hand one being officially referred to as a Red Head Light, displaying a red light (the opposite to nautical practice) to the front and a white one to the rear. On the other hand, its partner on the port (sorry, left) side was officially known as a Red Tail Light, and showed a white light to the front and a red one to the rear. All other trains, including light engines, at least after dark or in inclement weather, carried one lamp of what I shall call the drunk and incapable variety above the smokebox, displaying a white light, and one normal lamp mounted each side of the cab roof, similar to those described above for shunting duties,

except that both displayed a white light to the front and a red one to the rear.

So what, you may ask, was the purpose of the pair of lamp irons either side of the front buffer beam? The iron on the left-hand side (the one in the normal position) was apparently used for indicating that a light engine, duplicate train or a special working was following, while its offset partner on the right-hand side was merely a storage position for a spare lamp. The bodies of both the normal and drunk and incapable type of lamp were painted red. Incidentally, the Highland never used the white discs so popular with other companies, although these foreign devices must presumably have infiltrated the area after the 1923 Grouping. Having said that, I have never seen a photo of a Highland Railway locomotive carrying discs, even in LMS or BR days. Further information on the subject can be found in the book Highland Railway Liveries, details in the references at the end of the article.


In model form

I would suggest that a miniature version of a Highland Scrap Tank has a lot going for it, especially in 7½in. gauge, which would produce quite a powerful engine, but physically small enough for two people to lift into the (reasonably spacious) boot of a car without inducing too many hernias. The length over buffers of the full-size machine was 30ft. 8½in., equal to 3ft. 10½in. in

this scale. On the prototype, the larger than normal wheels may have been a disadvantage. but for us they are very much the opposite, as the chances are that small sister will spend most of her life belting round a continuous track on express passenger duties rather than shunting. The wheels were 5ft. 2½in. diameter, with 15 spokes and a crankpin throw of 12in., and in 3½in. gauge, Martin Evans' driving and coupled wheels for his freelance 2-6-2T William are the right size and have the correct number of spokes, although the crank pin throw is intended for the equivalent of 14 inches. I am delighted to report that in 5in. gauge, the wheels for Neville Evans' Highland Railway Jones Goods are almost ideal, except for the balance weights, which may require a certain amount of doctoring. The cylinder castings for this design and also those for the same designer's H. R. Loch 4-4-0 should be suitable for a 5in. gauge Scrap Tank, while in 31/2 in. gauge, LBSC's ever popular Juliet has cylinders one inch by one and a half. the equivalent of 16in. x 24in.,

perhaps a better idea than strict scale size for what is after all not an overlarge engine. In 7½in. gauge, the wheels for Martin Evans' GWR 14xx 0-4-2T Dart could possibly be utilised, although they have 16 spokes instead of the 15 required, in conjunction with the cylinders for Martin's 0-6-ST Holmside.

The maximum external diameter of the boiler is officially quoted in all publications as 4ft., but this must surely exclude cladding, as according to my calculations from photographs, the overall diameter is several inches larger. The barrel length was 10ft, 4in, to which must be added a further 51/2ft, for the round top firebox, producing a rather meagre grate area of just 16.2 sq. ft. This figure was no doubt adequate for the intermittent demands for steam in a shunting yard, but on a continuous track, even a 71/4in. gauge version would probably soon find itself short of breath. Fortunately, the enclosed cab is a generous 7ft. 4in. long, so the length of the firebox can be surreptitiously increased to the rear, which

EDWARDIAN ELEGANCE

not only increases the grate area, but will also facilitate driving. In 31/2 in. gauge, Martin Evans' Rob Roy boiler is equal to 4ft. 4in. diameter, but both barrel and firebox could be usefully extended by small amounts without upsetting the various recommended ratios of tube sizes to barrel length and so on. In 5in. gauge, the same designer's Simplex could probably form the basis, although a quarter inch reduction in outside diameter to 41/2 in, would be desirable in order to leave room for cladding. Alternatively, the boiler for Martin's Midland single Princess of Wales uses 41/2in. O/D tube, but the firebox length would have to be reduced. For builders of a 7½in, gauge version, the design for Martin Evans' GNR 2-2-2 Stirling would need little modification. One unusual detail easily overlooked, though common to most of David Jones' designs, is that the twin safety valves were mounted transversely rather than one in front of the other. The whistle was forward of the safety valves, instead of the more normal position immediately in front of the cab.

As mentioned earlier, I feel these three engines are certainly among the best proportioned shunting engines ever built, the overall effect having a certain resemblance to Martin Evans' highly successful freelance 5in. gauge Simplex. The most obvious differences are below the footplate: the Highland engine is, of course, equipped with inside valve gear, while its wheelbase is slightly longer and unequally divided. 6ft. 4in. + 7ft. 10in. compared to the equivalent of 6ft, 8½in. +6ft, 81/2in, for Simplex, This seemingly small detail, together with the larger wheels and more spacious cab combine to give the Scrap Tank a generally more imposing appearance, at least in my opinion. The prototypes certainly earned their keep over more than a quarter of a century as 0-6-0Ts, and were only taken out of service when the boilers wore out in the early 1930s. By that time, the LMS possessed large numbers

of the standard Midland type Fowler tanks (known to some as Jinties), and the retention of a trio of completely non-standard shunters could not be justified on economic grounds.

References

1. A History of Highland Locomotives by M. C. V. Allchin, pub. Railway Hobbies Ltd., 1947. An excellent little book, years ahead of its time, with several photographs of the Scrap Tanks, some of which are unique to this book. Also contains side elevation drawing by Kenneth Leech of No. 23, which contains minor errors, e.g. boiler bands incorrect, while dome appears too fat compared with photographs. 2. A History of Highland Locomotives by Peter Tatlow ("based on the original book by M. C. V. Allchin"), pub.

Oxford Publishing Co., 1979. A super-deluxe version of ref. 1, printed on excellent quality paper containing much more information and additional photographs, but also the same K. Leech drawing, uncorrected. 3. Highland Railway Locomotives Book 2 by J. R. H. Cormack and J. L. Stevenson, pub. RCTS, 1990. Includes broadside photograph of No. 23, obviously the basis for the K. Leech drawing, together with three more photographs, reproduction not quite up to the standard in other RCTS publications.

4. Highland Railway Liveries by Howard Geddes and Eddie Bellass, pub. Pendragon in association with the Historical Model Railway Society, 1995. This well-researched and superbly produced volume is a model of what a book of this sort should be, my only criticism(?) is that it covers far more aspects of the Highland Railway than the title implies. Photographic reproduction is as good as it gets, aided by a large number of excellent drawings and diagrams, including a front elevation of a Scrap Tank. Essential reading for anyone modelling the Highland Railway. 5. The Highland Railway by H. A. Vallance, 1972 edition pub. Pan Books. Originally published in 1938 with revised versions in 1960s by David & Charles. A good general history of the Highland Railway, but minimal reference to the Scrap Tanks. 6. Postcard of unknown origin of No. 22, shortly after construction. Photographer unknown. This was the main reference for Efty drawing. ME fig 1.

Highland Railway 'Scrap Tanks': Main Dimensions

Note: these are intended specifically for building a miniature version of this locomotive, so internal dimensions, such as grate area and I/D of boiler are omitted. Figures prefixed by = have been scaled off photographs and may not be precise, while some others may also be suspect, since no official drawings survive. Figures for $3\frac{1}{2}$ in. gauge and 5in. gauge are to the nearest $\frac{1}{6}$ in. and have been calculated at $\frac{3}{4}$ in. and $\frac{1}{6}$ in. to the foot respectively. For gauge one, halve the $\frac{3}{2}$ in. gauge figures, for $\frac{2}{2}$ in. gauge, halve the 5in. gauge figures, and for $\frac{7}{4}$ in. gauge, double the $\frac{3}{2}$ in. gauge figures.

Description		Full size	³/₄in. scale	11/16in. scale
			(3½in. gauge	(5in. gauge)
Length over buffers		30ft. 81/₂in.	231/ ₃₂ in.	32 ⁵ /8in.
Length of main frame		27ft. 8in	20 ³ / ₄ in.	2925/64
Height to top of chimney		13ft.	9³/₄in.	13 ¹³ /16in.
Overall width, width of cab, tanks etc.		Unknown	-	
Height to top of footplate	=	4ft. 31/2in.	37/32in.	49/16in.
Height of sidetanks/bunker above footplate	=	4ft. 41/₂in.	39/32in.	4 ²¹ / ₃₂ in.
Height of cab roof above rail level	=	11ft. 10in.	87/sin.	129/16in.
Length of cab	=	7ft. 4in.	5¹/₂in.	751/64in.
Total wheelbase		14ft. 2in.	105/sin.	15³/64in.
Divided into: leading coupled to driving who	eels	6ft. 4in.	4³/4in.	647/64in.
driving to trailing coupled whe	els	7ft. 10in.	5 ⁷ /₃in.	85/16in.
Diameter of coupled wheels (15 spokes)		5ft. 21/₂in.	3 ²⁹ / ₃₂ in.	517/32in.
Throw of crankpins		1ft.	3/4in.	1½iin.
Pitch of boiler above rail level		6ft. 11in.	5³/16in.	7º/32in.
External diameter of smokebox	=	5ft. 2in.	37/sin.	5 ³¹ / ₆₄ in.
External diameter of boiler over cladding	=	4ft. 8in.	31/2in.	461/64in.
Length of smokebox	=	2ft. 9in.	21/16in.	2 ⁵⁹ / ₆₄ in.
Diameter of smokebox door	=	4ft. 2in.	31∕₄in.	427/64in.
Height of chimney above smokebox	=	3ft. 6in.	25/sin.	3 ²³ / ₃₂ in.
Cylinder bore		1ft. 6in.	11/sin.	119/ ₃₂ in.
Piston Stroke		2ft.	11∕₂in.	21/sin.
Length of connecting rod	=	6ft. 6in.	4 ⁷ /8in.	6 ²⁹ / ₃₂ in.
C/L cylinders to driving axle	=	10ft. 51/₂in.	7 ²⁷ / ₃₂ in.	11 ¹³ /64in.

Old Wine in New Bottles A Toulet Imperator John Wilding MBE FBHI begins work converting

the pigeon racing timing machine into a domestic timekeeper.

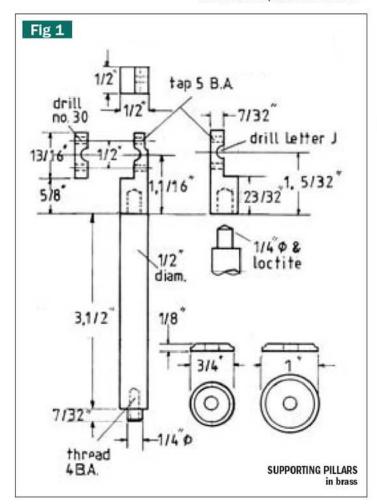
Continued from page 435 (M.E. 4336, 10 October 2008)

s soon as I had the movement out of the case, the quality was immediately apparent. a few turns of the key and the balance sprang into action. After a few checks, I was disappointed to find that the motion work was 24-hour instead of the usual 12-hour type in domestic clocks. In addition there was no friction arrangement for setting the hands. Apart from making a new set of motion work with hands and dial there was little more to do on the actual movement. I decided to suspend the movement by its two lower pillars. A suitable dome was found to be readily available from Meadow & Passmore but no base; however this was easily turned up on my Myford lathe faceplate.

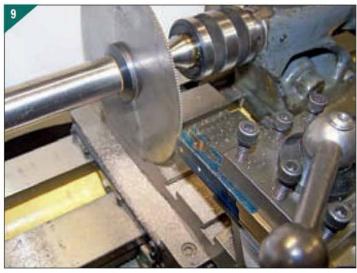
Readers may be interested in my lathe; I purchased it secondhand in the early 1950s for under £50 and over the years a large number of accessories have been accumulated and made. Newcomers to this hobby should bear this feature in mind when buying a lathe; a full range of available accessories and attachments greatly increases the use of the lathe. After some 50 years of use, in which time I have made over 50 clocks on it and carried out an enormous amount of repair work, much on tower clock movements, a certain amount of wear had taken place. I took the lathe to Myford's factory where it was reconditioned and is now ready for the next 50 years!

Removing the movement

The lid of the case has three internal pins that locate in short slots in the main body of the case (photo 4, M.E. 4336, 10 October 2008). However the lid is normally secured to prevent opening by a steel strip that locks against one of the internal pins. You must check this by looking through the glass: it is the pin over the square aperture (photo 4). You can easily see the locking strip and if the lid is locked, you must squeeze together the two levers (left of photo 4) maybe up to 12 times, looking all the time at the steel strip until it drops out of engagement. The lid can then be rotated 1/2 in. or so and lifted clear.


With this lid removed you will see a blued steel plate about an inch down and the actual clock movement is fitted to the

underside of this. I did not find it easy to remove this metal plate; you will see a large number of countersunk screws and I found it necessary to remove nearly all of these in order to free the plate and finally extract the movement (photo 5, M.E. 4336, 10 October 2008), I have designed this conversion in such a way that the movement need not be dismantled. This enables someone not experienced in clock making to carry out the work. In the five movements I have handled so far, being well protected by the dust covers and hidden deep inside the case away from prying fingers, they appeared to be in pristine condition.


The work is commenced by making the two vertical pillars (fig 1). The clock can then be mounted between these pillars on a temporary base while the new motion work is built and fitted. The two pillars are not identical because, with the platform escapement horizontal, one of the movement pillars was higher than the other by about 3/32 inch.

As can be seen from the drawing and photographs, the pillars are square at the top and with a round lower section at the bottom and two large washers at the base to provide stability. The pillars can be machined from square brass rod but in my case I was short of long square sections at the time so I fabricated the pillars from shorter lengths of square brass and round rod. One can of course buy fluted or reeded tube which would make the pillars more decorative (photo 7). These two examples were acquired many years ago and may be difficult to obtain today.

The first step is to apply layout blue to the square

7. Ornamental brass tubing
8. Drilling the letter 'J' holes
9. Making the saw cut in the Myford lathe.
10. Large washers at the base can be formed from off cut pieces of 1/8in. brass.
11. Completed piliars mounted on the finished base taken at a later stage of the construction.

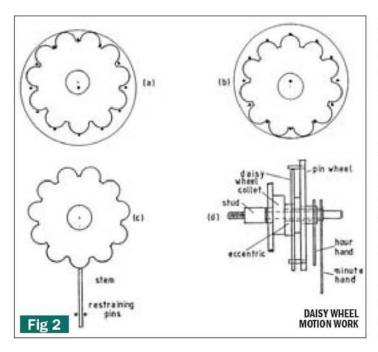
sections and mark out the positions for the letter 'J' holes and the 5BA clamping holes. The forming of these holes is carried out in the drilling machine (photo 8), and then the work is transferred to the lathe where it is held in the lathe toolpost for machining the straight saw cuts (photo 9). Here we see the Myford slitting saw between centres and the

work is fed into the blade for a distance of some %in. (back gear is recommended). A side cut can be carried out to release one half of the square stock and I did this by hand with a hack saw. It can be seen from the drawing that the lower part of the square stock is %in. long on the left side and 23/32in. on the right side. The holes in the clamping strips can be opened up with a No. 30 drill to provide clearance for the 5BA screws. If the pillars are being fabricated, then the top sections are held in the 4-jaw chuck for drilling the 1/4in. axial holes. At this stage these pillars can be checked for fit on the movement pillars. It will be noticed from the drawing that the pillar on the left requires a light relief filed on the upper inside in order to clear the barrel in the movement.

The lower end of the round stock has extensions machined ¼in. dia. and ¾2in. length.

When the base washers are fitted, the whole assembly will pull up tight to the base with the 4BA screws. These washers can either be parted off from round stock or cut out from scrap pieces of ½in. brass sheet. They are drilled ¼in. and then mounted on a ¼in. mandrel for machining the outer diameters and forming the concave decoration (photo 10).

Before drilling the 4BA clearance holes in the wooden base, a careful measurement should be taken on the actual pillars in the movement as I found these varied in some cases. The pillars on the finished base, taken at a later stage of the construction, is shown in **photo 11**.


The motion work

I decided to use the 'daisy wheel' motion work. Firstly it doesn't involve any gears and secondly because it is such

TOULET IMPERATOR

a fascinating mechanism. I am giving a description of this device, which I wrote for Dr. Woodward's gearless clock book:

The 'daisy wheel' motion work Motion work is the term given to the 12:1 reduction between the minute and hour hand. The normal way of obtaining this reduction is to use two pairs of gears, one pair being mounted on a stud fitted to the front plate. The ratios are chosen to provide the 12:1 reduction and also so that the two pairs of gears can share common centres. An example of this is to be found in the normal longcase clock where the reduction is obtained with one pair of gears using 6 and 72 teeth and the other pair of 39 each. When these tooth counts are added together we have a total of 78 in each pair so not only can these gears share a common centre but they can be the same module. Another advantage of this system is that the hands are mounted concentrically and of course the hour hand will rotate clockwise.

Along comes Aaron Dodd Crane who designs a motion work arrangement using only two gears (neither of which is a gear in the accepted sense of the word) and still the hands are mounted concentrically and both rotate clockwise!

Aaron Dodd Crane lived and worked in the USA in the first half of the 19th century. He had an inventive mind and rather like John Harrison came into clockmaking almost by accident. He certainly did not learn the business by being an apprentice, in fact he didn't think much of the way clocks were designed in those days and straightaway looked for improvements.

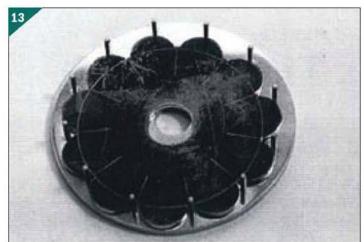
The American society NAWCC have produced a bulletin, No. 16 devoted to the life and work of Aaron Crane written by Frederick Shelley, it makes fascinating reading. However, I first read of the daisy wheel motion work in Dr. Philip Woodward's book My Own Right Time where he describes the device in the chapter on his gearless clock. He did not in fact use it in this clock because he was unaware of its existence at that time. As Dr. Woodward rightly says the action is not easy to grasp, indeed I read the explanation several times and although I 'thought' I knew how it was supposed to work, I couldn't really visualise how it 'would' work until I started to construct it. I actually cut the daisy wheel out of cardboard with scissors initially before I finally grasped the action.

Description

There are three components in this motion work. Firstly the daisy wheel itself which I show in **photo 12**. This has 11 petals and mounted at its back is a stem which hangs down and is loosely embraced

by two horizontal pins let in the front plate. The wheel has a largish hole that rides on a cam fitted to the centre arbor. As the cam rotates the daisy wheel describes an eccentric motion equivalent to the throw of the cam, its stem riding up and down between the two restraining pins. The third component is a pin wheel; this has 12 pins at right angles to the face of the wheel. The relationship in the diameters of these two items is such that when the daisy wheel is located inside the pin wheel it will only fit when two diametrically opposite pins are located; one in the trough between two petals and the other at the apex of a petal.

The action can be followed on the drawing **fig 2**. At (a) we can see the daisy wheel is supported underneath on the apex of the lower petal while the opposite pin is in a trough. If the daisy wheel is imagined to be fitted on the cam then as the latter turns, the wheel, because it can't rotate, will oblige the pin



wheel to rotate, until after half a turn of the cam the situation will appear as in (b) where the pin at the bottom is now in a trough between two petals. After the next half revolution of the centre arbor the situation will revert to (a) again and the pin wheel will have advanced one twelfth of a revolution. I think this motion work is quite delightful and I don't think I shall ever make the conventional design again. Photograph 13 illustrates a stage in the construction and, if you hold the pin wheel in one hand and put your finger in the daisy wheel hole, then move it in a circular motion, the daisy wheel rolls around inside the pin wheel.

An extraordinary feature is, as Dr. Woodward points out, you do not need 12 pins in the pin wheel. The system will work with as few as four pins and Aaron Crane uses only three, mounted on a threelegged spider and this can be seen in a photo of one of his turret clocks in the bulletin already mentioned. As Frederick Shelley rightly states, Crane's inventions have to be seen to be believed. His inventive mind produced all sorts of interesting devices such as a walking escapement. His clocks were usually month or year going and he was an advocate of the torsion pendulum. The bulletin makes fascinating reading.

To be continued.

 Daisy wheel (aptly named!).
 Daisy wheel located inside the pin wheel.

McONIE'S OSCILLATING ENGINE

Anthony Mount tackles various steamchest and cylinder parts.

Continued from page 455 (M.E. 4336, 10 October 2008)

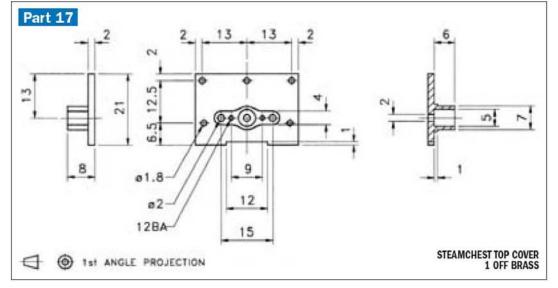
e now come to a part not found on many engines: the steamchest top cover (part 17). I would imagine that on the full size engine, the steamchest top cover was a separate item bolted on, but with this size of model there is very little metal in the cylinder for bolts. I decided to machine a slot in the cylinder valve face to locate the steamchest top cover, and to silver solder or Loctite it in place. If you are only going to run the engine on compressed air, the cover can be a close fit in the groove and held in by Loctite. However, if you intend to steam the engine, the cover should be silver soldered to the cylinder as mentioned in M.E. 4334, 12 September 2008.

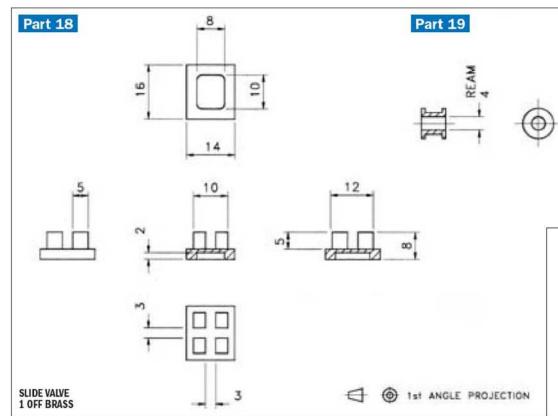
The cover and boss are shown on the drawing as one piece. However, most people will find it easier to make it from two pieces. Start by machining a piece of brass bar or plate to the overall dimensions. The nearest stock bar size will be 3mm thick so machine this down to 2mm. If using plate, engraving brass is much nicer

to machine than ordinary brass. I used wider material (25mm), which was held it in the vice on the milling machine by the long edges to reduce the thickness, taking care to avoid the vice jaws! The thicker edges were removed when the width of the material was reduced.

Drill all the holes using coordinates. The holes for the gland studs can be countersunk on the underside for long screws, these pass right through the plate and also hold the boss to the plate. The boss can be made from a block of brass and the holes again drilled using co-ordinates. A bit of judicious filing completes the shape. For the 12BA threads I did not tap full depth but counterbored to clearance size leaving only 2mm to be tapped. The counterbored hole also acts as a tapping guide. The two parts can be silver-soldered together if you wish.

The steamchest top cover can now be fitted to the cylinder using either silver solder or Loctite. To silver solder: flux the groove, place the cover in position, apply more flux and place a length of 1.6mm silver


solder against the joints either side. Heat up with your gas torch and watch the flux bubble up and go stiff; this may well displace the solder strips, so push them back into position with a push rod. Reapply the heat until the flux goes watery, shortly after that the solder will run freely around the joint. Allow to cool and then clean up the cylinder. Use a fine flat file to square up the joint where the steamchest will fit. Finish off with fine abrasive paper, wrapped around a flat file, to leave a smooth flat surface on the valve face.


Slide valve (Part 18)

Slide valves are tricky things to make, not helped in this case by being so small. Either bronze or brass can be used. Start by machining up a block to the finished overall dimensions. Hold in the vice of the vertical mill and, with a 3mm slot drill, machine out the bottom cavity. It is probably safest not to machine the full depth in one go, but rather in a series of steps. If your milling machine has XY stops it is best to set these, to restrict the movement of the table, which helps to prevent mistakes. Turn the slide over in the vice and machine the two slots for the nut and valve rod. The nut should be an easy sliding fit so that the valve is free to contact the valve face. It also needs to be able to lift to clear condensate if that occurs.

Rocker shaft bearings (Part 19)

The bearings for the rocker shaft are simple flanged sleeves. Free cutting phosphor bronze is the ideal material, second choice gunmetal or, failing that, brass. Drill and ream the bearing hole and then, with a short parting tool, form the seating to fit in

the pedestal. The diameter needs to be accurate so that the bearing is clamped tight. The width can be a little oversize to allow for the thickness of paint. Part off, and the job is almost complete. The oil hole can be drilled through the cap during trial assembly.

Bearing caps and rocker pedestals (Parts 20 and 21)

The bearing caps and pedestals are best described together.
Cut off two slices from a 25 x 5mm section mild steel bar and machine to 15mm wide. Cut

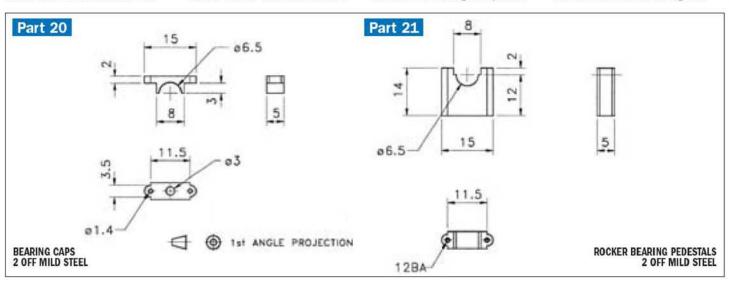
each slice into two. Machine the bigger pieces 14mm long and the smaller pieces 5mm long. Using a 6mm cutter, machine an 8mm wide tongue on the smaller pieces and a slot in the bigger pieces to take the tongue - the fit needs to be close. Three flute FC3 type throwaway cutters are ideal for both milling and slotting.

Reposition in the vice and, after locating the faces with an edge finder, use co-ordinates to position the holes. Most milling machines are too slow for drilling small holes, so spot with a centre drill and transfer

the job to the high speed drill. I have a small 10mm capacity drilling machine that I use for about 90% of my drilling.

For the body of the pedestal, spot both ends and drill 12BA clearance 6mm deep from both sides, then change to the tapping size for the remaining 2 millimetres. Take great care with these tiny drills by continually withdrawing the drill. Watch the depth dial - as drills break through, they are prone to snatch and break.

The clearance hole will act as a guide for the tap and at 12BA use lots of cutting compound and a very light touch. On the last hole I broke the tap. I had already broken a drill, so for a while I was not a happy chappy!


7

ROCKER SHAFT BEARINGS

2 OFF BRASS

The tap was carbon steel so the whole block was heated up to bright orange and left to cool slowly. Then, very gingerly, the clearance drill was used to drill down the 6 millimetres. Fortunately the tap had broken off someway down, so there was a hole to guide the drill. Then I changed to the tapping drill and, with trepidation, drilled through the tap, then finally re-tapped.

Sometimes a broken drill can be persuaded to come out with a little probing with tweezers - but not this time. The drill was HSS which retains its hardness at red heat but, as the block was quite small, I thought I would try to soften it. The maximum temperature I could get the block up to was the same as for the tap, a very bright orange. After slowly cooling I was relived to find that it was soft enough for the new drill to cut through it.

OSCILLATING ENGINE

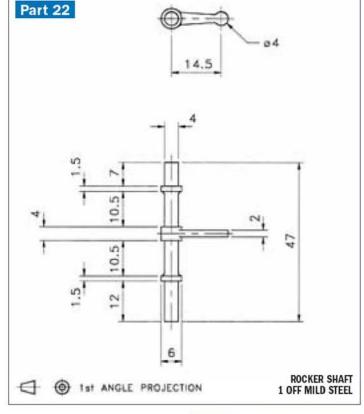
So the pedestal was saved, but if you consider the time it took and the wear and tear on the nerves it would probably have been just as quick to make a new one. So, be warned, go steady with small drills and taps and use plenty of cutting oil or compound.

Soldering the rocker pedestals

As I said in M.E. 4336, 10 October 2008, there is a choice of cylinder end cover and method of fitting the rocker pedestals. If you chose to solder the pedestals to the end cover this is how to do it:

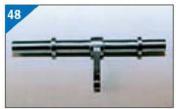
Use 12BA bolts to fix the rocker bearings in place. As there is only one bolt per bearing, use a short length of rod to bridge between the two bearing pedestals; this will need to be necked in the middle to clear the gland flange. The rod can lie in the bearing seating and is used to align the two pedestals.

Note also that a special flux is needed for stainless steel. If the bearing is pulled down tightly, there is nowhere for the solder to go. To allow the silver solder to flow underneath, I filed a few shallow groves in the bottom of the bearing block, and made a few small centre punch marks to raise the bearing slightly. Turn the cover over so that the underside is at the top. The little ledge formed by the overhang of the bearing will form a location for a short length of silver solder rod. After soldering, I am afraid there is no short cut to the chore of cleaning up the cover. Use fine abrasive paper and just


stick at it. If there are any solder runs, be very careful when removing them not to score the face of the cover.

After the rocker pedestals have been silver-soldered in position, the new stud holes can be drilled and tapped from the underside. To locate these two holes, I made up a cup washer, the same diameter as the cylinder cover, and bored it out to fit over the cover spigot. I drilled eight holes at the same setting as the stud holes in the cover. It was then just a case of positioning the cup washer on the cylinder cover, clamping it in place, and drilling and tapping the two additional holes 6BA. These can only be drilled the depth of the cover as they come partly inline with the bearing pedestals.

Rocker shaft (Part 22)


Mounted over the cylinder cover is the rocker shaft that transfers the motion from the cylinder and eccentric to the slide valve. It could be fabricated, but it is an interesting exercise to machine it from the solid. Start with a piece of mild steel bar 19 x 7mm section. This will need to be machined down from a standard section. The bar needs to be about 30mm longer than finished size for holding in the lathe chuck. Mark out the outline and then saw and mill roughly to shape (photo 46).

Mount the blank in the four jaw independent chuck and lightly centre the end for tailstock support. Turn down the shaft sections to 6mm dia.

leaving a 2mm web for the arm. Reduce the shaft between the flanges to 4mm dia. and the same at the ends (**photo 47**).

Begin with a R-H cranked knife tool and turn the 6mm shaft dia. at the front end and also face the arm. Change to a parting tool, with enough overhang to clear the arm, and turn the other 6mm dia. section. Change to a L-H knife tool to face off the other side of the arm to 2mm thick. Change back to the parting tool to form the 4mm dia. either side of the arm. The R-H knife tool can be used for the 4mm dia. region that fits in the bearing, but the parting

tool must be used for the 4mm section at the other end.

Use sharp tools and neat cutting oil to get a good finish. Do not be tempted to use a file or abrasive paper for the final finish as the arm is going around like a scythe and can easily slash a finger!

Remove the shaft from the chuck and saw off from the parent metal. The shape of the arm can be formed using a square pillar file and the edge finished by draw filing with a smooth cut, half round, Swiss file. Mount the shaft in the 3-jaw chuck and, taking light cuts, face off the ends to the finished length. The finished rocker shaft is shown in **photo 48**.

To be continued.

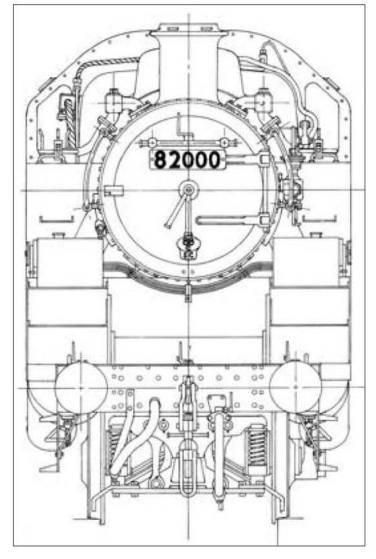
- 46. Rocker shaft blank.
- 47. Careful use of the parting tool!
- 48. Finished rocker shaft.

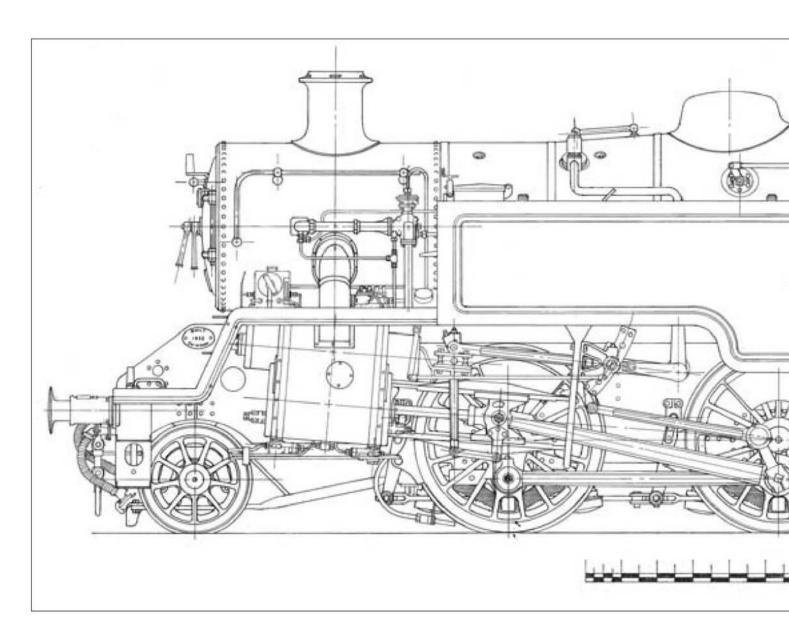
The British Railways 82000 class 2-6-2Ts (Swindon-built, of course!)

Peter Rich describes a Swindon-built class of BR standard locomotives which had a hint of GWR influence. was out on the foreshore again with the pipes the other day practicing the Piohaireachd of Donald Dhu when my mind drifted off into our model engineering world with the thought that there are engines of which we never see models of and for which there appears to be no commercial design. Yet, the

engine was quite a prominent type within the range of full-size locomotives. It occurred to me that the British Railways 82000 class of 2-6-2 tank engines fall into this category. Not a great deal has been written about them in the railway enthusiast press and I don't think I have ever seen them mentioned in *Model Engineer*. So I thought to myself "let's have a bit of a look at them and see if we can come up with something of model engineering interest."

When completed, they totalled 45 locomotives numbered from 82000 to 82044 and were all built at Swindon together with their tender counterparts, the 77000 class of 2-6-2s. Both types were designated Class 3. I have a feeling that in these two examples, Swindon was trying to sneak one past the mainly LMS management which had largely taken over the top jobs when British Railways were formed. Mr. R. A. Riddles became the overall Chief Mechanical Engineer for British Railways and all of the B.R. steam engine designs were attributed to him, hence my reference to the 'Riddles' 82000 class in the text. Having said that he did not actually produce a design himself, he was more in the position whereby he told his design engineers what be wanted and they produced it for him, a situation which held sway on most of the pre-BR railways. When the new designs were shown to him be could reject or modify them or even change the type completely.


Under Riddles superintendency, responsibility for individual designs was farmed out to the various regional design offices, whereby Crewe was responsible for the overall design of the 'Britannias', Brighton for the 92xxxs, and Swindon became responsible for the 82000 and 77000 classes.


Bearing in mind Riddles' LMS background it is reasonable to assume that there would be a lot of LMS influence in the general design of the standard engine classes. However, when it came to individual components and fitments, the best from each region was chosen to be incorporated in the new designs. Hence, the ex-GWR influence was seen in the design of some of the boiler mountings such as the water gauges and the injectors.

GWR influences

With the 82000 class, I feel Swindon got their ideas in through the back door before anyone noticed that such things as the cylinder relief valves and steam pipe cladding were pure Great Western. The boiler was the GW standard No. 2 boiler modified to have a dome where the safety valves had been, and the safety valves separated and re-located to the top of the firebox.

The cylinder relief valves on later engines had the modified BR, design, but the early batches very definitely had the original Great Western type. The pet cock situated on the lower right hand side at the front of the smokebox was pure Great Western as were the snifting

valves located on the rear of the steam pipes as per late-GW practice. All BR standard locomotives allocated to the Western Region also had Great Western lamp irons fitted.

The original coupling rods were fish-bellied, fluted types but those locomotives which were eventually overhauled at Swindon had them changed for the GW-style rectangular rods.

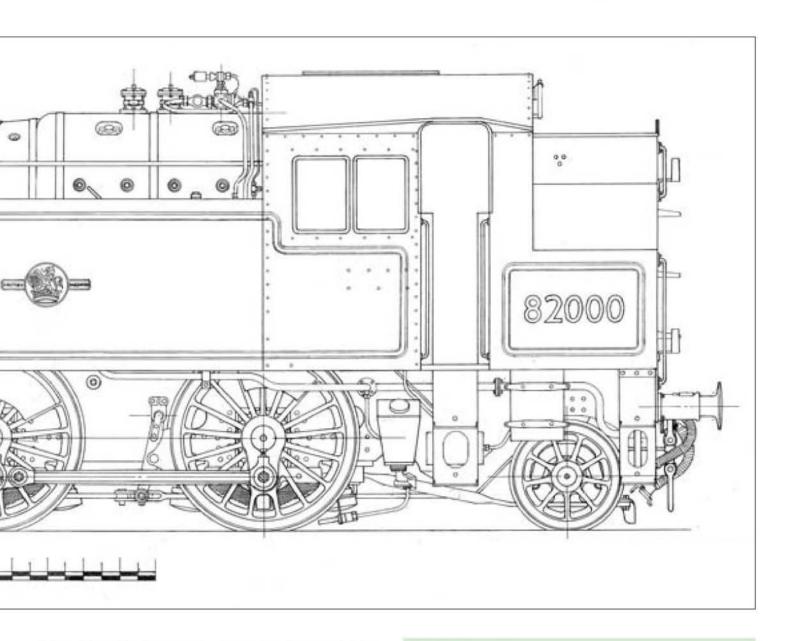
Wheels

Prospective modellers should note that the wheels contained odd numbers of spokes and that the wheel rims were of very pronounced 'V' section between the spokes as was typical of LMS practice. As an aside here from the main subject, most designers pay very little regard to the wheels on our models. This is a pity because

I have found over the years that design of wheels can be of very interesting shapes particularly those of crank bosses. At the turn of the last century when Churchward was developing his designs at Swindon, some very artistic work was put into the design of his wheel bosses. These were modified over the years and when I was drawing my plans for a 5in. gauge 'Saint', I found that no less than seven visibly different boss shapes had been employed on this class and frequently different shaped bosses could be found on the same locomotive. When I did the pattern making for them I found that by sticking to the full-size design shape, the pattern was easy to make and withdrew from the mould very easily.

Tanks

A further modification was a grab handle fitted on top of the boiler (as shown) which was standard Great Western practice on taper boilered tank engines. Another departure from the standard BR practice was noticeable in the filler caps for the side tanks. The original type fitted appeared to be based on the GW screw handle type but later engines may have had the later GW snap-over locking type. If not fitted when built, they were certainly fitted at Swindon when the engines were overhauled there.


Another point which may have been a departure from the 'standard' was that the front outside corners of the side tanks were turned inwards with a radius (as was Swindon practice) whereas the other two

tank engine classes bad these corners squared off.

Liveries

When built, all locomotives in the class displayed the LNWR 'Blackberry Black' livery and lining out on tank and bunker sides with the number on the bunker side. When the Middle Chrome Green livery was reintroduced for most GW engines in the mid-1950s, Swindon also turned out the 82s in this lined-out Middle Chrome Green livery, thus further extending the Great Western influence on this design. By the 1960s austerity had started to creep in again and some of the 82s were turned out in plain green livery.

Andrew Wilson wrote an excellent article about this class, published in the January 1996 issue of Steam Days and

which I have referred to greatly for this article. He provided a list of the final liveries carried by each engine and I include it here for authenticity's sake and to provide the prospective model engineer with correct information. In lined black were numbers 82000/10-19/23-29, unlined green 82007/20/21/30/31/37/39/40/43 and in lined green 82001/08/09/22/32-36/41/42/44.

It should also be noted that at least one engine carried its number on the cab side instead of the bunker, the livery being the black linedout type with the lining also omitted from the bunker, 82044 was one example.

Smokebox number plates were standard throughout

the range of the BR standard classes and were 2ft. long by 6in, wide with the numerals being 5in. high. The numerals for the bunker/cab sides varied in height, most works using eight inch high numbers, but Swindon used nine inch numerals while Darlington and Cowlairs used ten inch numerals. Doncaster differed from the others works in that they used 8in. for the Class 4 2-6-0s and 10in. for Class 5 2-6-4 tanks and the 9Fs. This is the reason why on some photographs the engine numbers appear to be larger than others.

The depot code plate fitted at the bottom of the smokebox door was standard size for all British Railways steam locomotives -7¼in. wide by 45/in. deep. All of the standard

Basic dimensions

Boiler Barrel 4ft. 5in. dia. increasing to

5ft. 01/2in. dia.

Firebox 7ft. Oin. long by 4ft. Oin. wide

Pressure 200psi. Pitch 8ft. 7½in.

Cylinders 171/2in. dia x 26in. stroke.

Total length 40ft. 101/₂in. over buffers.

Front overhang 2ft. 21/4in.

Rear overhang 2ft. 6¾in.

Wheel base 8ft. 9in. + 7ft. 7in. + 7ft. 9in. + 8ft. 6in.

Total 32ft. 7in

Tank capacity 1,500 gallons.

Bunker capacity Coal 3-tons.

82000 CLASS LOCOMOTIVE

engines carried self cleaning smokeboxes which is denoted by the 'SC' plate combined with the depot codes plate as shown. Except for the three large Pacifics and some of the 73000 class 4-6-0s, all of the standard classes were fitted with a Great Western whistle.

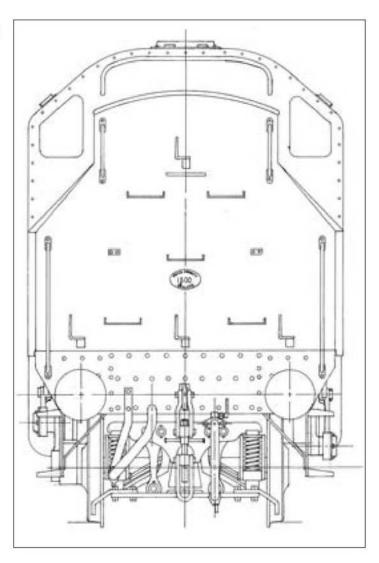
Driving

The driver's position was on the left side of the locomotive and he was provided with a good seat with all controls conveniently at hand. Everything could be operated from his sitting position. I found this to be all very well if you were driving the engine forward but it was a different matter when driving them in reverse. I never drove one of the 82s but I did drive many of the Standard tender engines about the shed at Ebbw Junction. These included the 73xxxs, 75xxxs and the 9Fs and I found that to drive backwards you either had to turn 90deg, and face inside the cab while looking to your right through the tender window and try to operate the controls with your left hand by reaching back behind you, or you had to stand up and lean out of the cab window while also operating the controls which were now behind you. The back and fore regulator handle was most awkward to manipulate in these circumstances. Prospective builders should note that the sides of the bunker tapered inwards toward the buffer beam from waist level.

Tanks

In his article, Andrew Wilson referred to the tank capacity of 1.500 gallons and said this was possibly an Achilles heel of the design as they had to frequently stop at platform ends for a top up. I have to say that I agree with him that 1,500 gallons seems to be a small capacity for such a large tank engine. Indeed some of the much smaller Great Western pannier tanks of the time carried 1,300 gallons while the engines of the 5600 class, a similar size to the 82s, carried 1.900 gallons and the Taff Vale 'A' class carried 1,700 gallons.

In light of this, it is interesting to note that when they were sent to South Wales, it was intended that the 82000s were to replace the 'Taffy' and the 56XX classes on the valley passenger services. I find this small water capacity all the more puzzling because the inside of the coal bunker was hopper-shaped to allow the coal to self-feed down to the shovelling plate and there was plenty of room underneath this to have carried at least a further 500 gallons. A bunker tank was a standard practice on Swindon's GW engines.


Injectors and ATC

Two GW type live steam injectors were fitted both to the R-H side under the cab and alongside each other with the inboard one slightly higher than the other for easy access. I don't know whether No. 82000 carried the ATC battery box and vacuum reservoir tank behind and to the rear of the left band cab footstep as shown, but some locomotives did have it here and I have included it for the very purpose of showing its size and position for prospective modellers.

Performance

Despite these engines being designed and built at Swindon. the Western Region crews did not take kindly to them. Colin Jacks, a Tyseley fireman where they were first allocated, has stated that they weren't up to the standard of the GW types they were meant to replace. Indeed, the Tyseley allocation was very soon transferred to South Wales where they took up residence at Barry and worked the trains on the South Glamorgan line and on the passenger trains up to Treherbert.

Having witnessed these engines working through Cardiff, I can only say that they seemed to be entirely on top of their tasks when I saw them, so perhaps the Welsh crews got more out of them than elsewhere on the Western Region. Enginemen in South Wales were quite used to working on other than

GW types because they had to contend with a lot of the absorbed companies' engines right up until the mid-1950s. probably more so than in other areas, so this may have been a reason why they got more out of the standard classes than elsewhere on the system. Older readers will recall that the entire allocation of the Western Region BR standard Pacifics of the 'Britannia' class were eventually concentrated at Cardiff Canton Depot because crews elsewhere were not happy with them and yet the Welsh crews worked well with them.

My old friend, driver Bob Gale, told me that the fastest engine he had ever driven was one of this class when he was required to work one of them 'light engine' very late in the days of steam on the Western Region.

Unfortunately for the class they were destined to be the

last built for the work they were assigned. Their became available just at a time when the sort of work they were built for was being withdrawn, given to the new diesels or was rapidly transferring on to the road system of this country. They were, after all, classified as Class 3 which covered a sphere of work which the management was no longer interested in. Indeed. it was the policy of the British Railways management at the time that they were only interested if you had 500 tons to transport. Pick- up freights and single wagon loads were not for the future and all of the smaller firms and businesses which had railway lines laid into them very soon had them torn out and therefore couldn't put their products on the railway in any case.

But, ours is not to reason why, but to build our models and enjoy the hobby.

C'S PAGE PE GE PETE'S PAGE PET TE'S PAGE PET TETE'S PAGE PET OF OFF

Peter Spenlove-Spenlove has some screwcutting tips to make this useful procedure easier.

1. View of the indicator from above. For convenience I have replaced the ¼in. hex nut with a wing nut. On large lathes this dial is set into the actual carriage casting and a permanent part of the lathe.

2. The Myford screwcutting dial indicator. Dial on top with eight lines, four of which are numbered, the others unmarked. An oiling nipple is to be used occasionally. The body is a zinc die-casting with a mounting boss for a ½n. BSF stud. A bronze 16-tooth gear is shrouded to engage with the leadscrew.

3. A red wax crayon is stored in the gutter of the milling machine table.

4. The numbered marks have been filled with red wax crayon for easy visibility.

few decades ago it was usual for machinists in jobbing shops to keep a piece of chalk by their machine. It was used for marking positions, numbers and gear teeth. Before lathes were fitted with screwcutting (Norton) gearboxes, to connect the mandrels and leadscrew, one had to 'do a sum' - to work out which gears, from a set, were to be fitted in order to cut a chosen pitch (tpi) of screw thread.

As a first year apprentice in the lathe shop, you would have been shown how to use the chalk to mark a gear tooth, faceplate or chuck after closing the clasp nut. Note the chalk positions relative to more chalk marks on fixed points of the headstock. Each time you started another traverse, engage the clasp nut at the same chalk alignments. With luck, the new cut should follow the previous one.

Later, lathes were fitted with a gearbox and screwcutting dial indicator set into the carriage casting close to the operator for easy viewing (photo 1). Around the dial's edge were radial lines some of which were numbered. On a shaft running down from the dial was a gear in engagement with the leadscrew (photo 2). With work in the chuck, the leadscrew and the gearbox running, and the clasp nut open (not engaged), the carriage will not be synchronised to the headstock or leadscrew. However. the leadscrew will still be driving the threading dial; its

unmarked and numbered lines rotating past an index mark.

First pass

The first cut is started by engaging the clasp nut when a line (say number one) passes the fixed mark. Start all future cuts when this number passes the same spot. Do not disconnect any change gears, etc. Sometimes it is possible to close the clasp nuts at two or four lines instead of waiting for your chosen line to come around. Whether this is successful depends on the thread pitch being cut and the dial gear and leadscrew threading.

On the Series 7 Myfords, (3½in. centre height) the leadscrew is 8tpi. The indicator dial gear has 16 teeth and it has eight marks on top with four of them numbered. The lines on my Myford dial (circa the 1960s) are cut deeply enough to hold the red wax from a pencil (photo 3). I had noticed that the red had gone and as, I filled in the four numbered lines (photo 4) while cleaning down after an oily job.

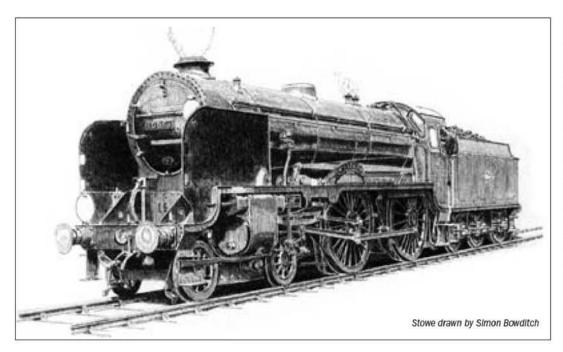
Myford's threading kit

Some Myfords were sold minus the threading dial indicator, but it was easy to buy and fit one. The fixing place on the carriage was already machined. The dial kit - if I remember correctly from the 1960s - consisted of a mild steel stud screwed ¼in. BSF, two or three red, vulcanised washers plus one steel one, a ¼in. BSF hex nut and the threading dial/gear assembly.

Because hobby lathes are liable to become choked with swarf, especially behind the apron and leadscrew, the dial gear can be swung out of engagement with the leadscrew.

Alignment of the indicator

The fibre in the vulcanised washers allows the dial casting to be moved in or out quickly, but they have another more important purpose: adjustment of the threading indicator so that it reads correctly relative to the clasp nut engagement.


First, clean the leadscrew so that the clasp nut closes firmly. Try the rack traverse to make sure. Screw the stud in firmly to the right hand corner of the carriage and facing right. Slip on a couple of fibre washers, the dial assembly, another fibre washer, then the steel washer. Add the nut and tighten gently with the gear engaged with the leadscrew. Look at the dial. Its lines may not line up with a fixed one. With the handwheel at the tailstock, turn the leadscrew as you watch the dial. The relative positions of the lines should not change. If this is so, then everything is correct except one. That is, the number of washers on the left of the dial casting.

Don't alter anything else, but remove or add washers until the lines are in perfect alignment with the dial gear fully engaged and the clasp nut tight.

Now, if you open the clasp nut and rack the carriage along and perhaps turn the leadscrew, the clasp nut will again close easily when the same line aligns. But also, other lines may line up. In this case, if a screw thread was being cut, the next pass won't follow the last on! Lathe guides and books often mention these exceptions in the screwcutting pages.

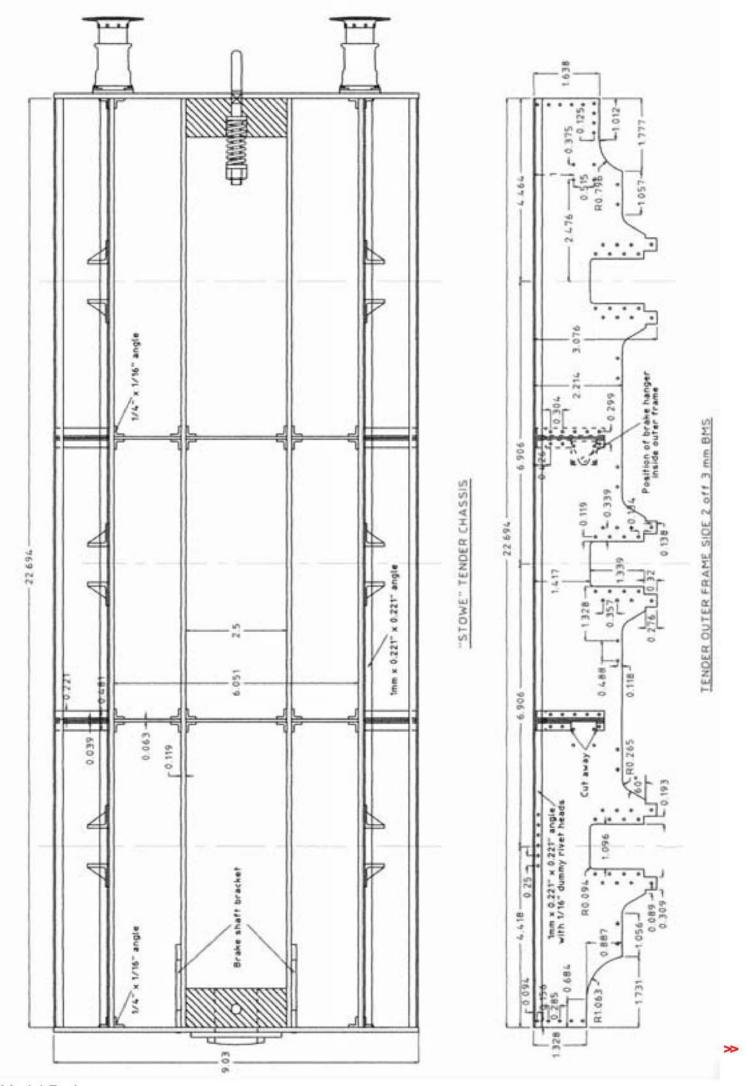
To be continued.

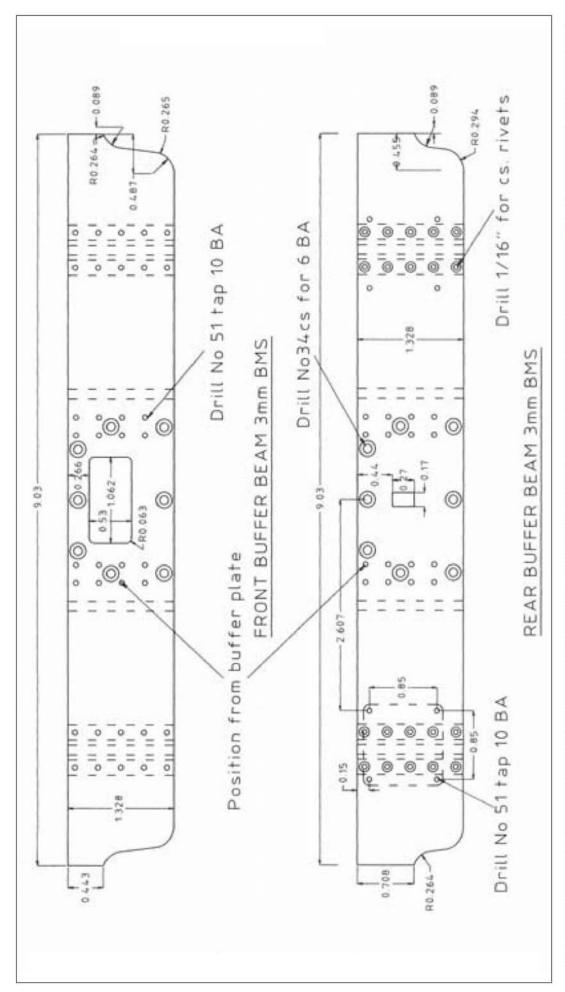
STOWE - Southern Railway Schools class locomotive

Neville Evans considers bearing aspects before describing the tender chassis for Stowe.

Continued from page 444 (M.E. 4336, 10 October 2008)

s I have mentioned many times, I usually find the readers' letters page to be of great interest and this week's offering is no exception (M.E. 4336, 10 October 2008). I must congratulate Norman Barber on his neat solution to the problem of scale appearance in the clack valve. I can honestly say that his idea is quite original and that I've never seen anything like it before, otherwise I should have used it as a standard fitting a long time ago. Nice one Norman, keep them coming. If I may try to gild the lily (slightly), may I suggest a copper/asbestos crushing washer instead of a soft solder behind the olive, purely as a matter of convenience.


Ron Wright (in the same issue) seems to have hit the jackpot with his de-ionising device for providing clean, lime free boiler water. I've never tried it, as one of the benefits of living in South Wales is that we have soft water straight from the tap, but it should be a boon for those of us who are cursed with harder water.

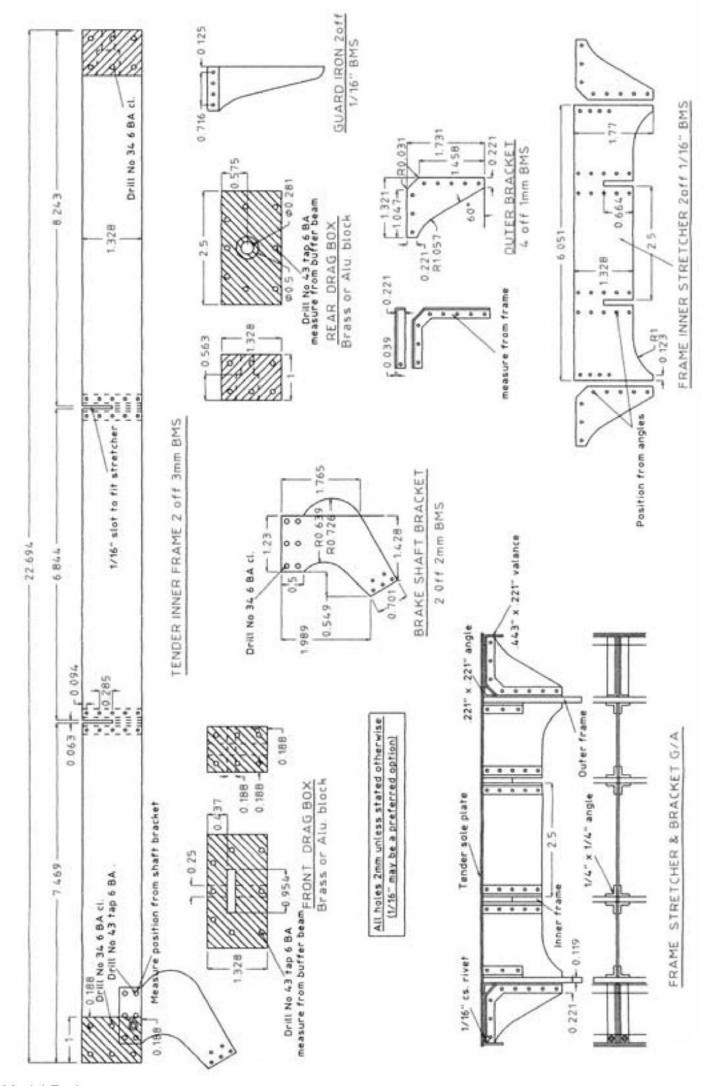

Stephen Atkinson complains, rightly, about the high rate of wear that is endemic in small, poorly lubricated plain bushes. May I suggest that one or all of the following will ameliorate if not cure the problem.

- 1. Substitute cast iron for brass or phosphor bronze in highly visible outside bearings. Buy it from your friendly neighbourhood metal supplier, preferably in the form of Meehanite, a fine grained centrifugally cast iron which may be obtainable in stick form, but is best cut up from a larger piece, thus ensuring homogeneity.
- 2. Do as I do and substitute small roller or even ball bearings for plain bushes and pins. These invaluable artefacts are available from most of our advertisers, as well as local bearing suppliers (Yellow Pages). In the next gripping instalment, I shall append a drawing of the standard long con-rod GWR Stephenson valve gear expansion and lifting links as fitted to all the standard 4-6-0s. The drawing shows both the plain and the alternative roller

bearings. The expansion links are bored to take INA 2YATN needle roller bearings and the bearing spindles are a press fit in the respective eccentric rods. A great advantage of this layout is that the eccentric rod ends form a shield preventing the ingress of grit to the bearings. Remember that it may be far more economic to use metric bearings than imperial, a 4mm roller clutch for example is less than half the price of an imperial counterpart. Simply adjust pin and bore hole sizes to suit. There are probably smaller needle rollers than the Torrington B24 which is 1/8 x 1/4 x 1/4in. size, but if there are, I can't say that they are readily available. A B24 fits neatly into a %in. boss however, which gives one a lot of scope for improvement.

- 3. In the series on Penrhos Grange and also recently in the drawings for Stowe valve gear, I mentioned, and drew, ball bearing eccentrics as devised by my friend Ivor (the engine) Roberts. These devices have been running in Ivor's Torquay Manor and his 6100 tanker for 15 or so years, and are still totally free from wear. They are lubricated annually from the outside by means of a pressure oil can which forces out any bits of extraneous muck at the same time. Thoroughly recommended.
- 4. Ivor has also tried rolling die blocks made from hardened silver steel with conspicuous success, a hardened steel bush running on a hardened steel shaft makes an excellent bearing (ask any jeweller), and a further refinement is that the oil hole can be placed so that oil is forced into the bearing as it turns in the slot of the expansion link. These aids to long mechanical life are of the tied and trusted variety. Another that springs to mind is the total enclosure of the inside

valve gear as proposed and used by Mr. W. Mitchell of South Africa for his Firefly and published in M.E., 1 October 1965.


I haven't mentioned the various schemes whereby the plain bushes and eccentrics are lubricated by means of a pressure oilcan via holes drilled through the centre of the axle. As can be seen from the above, the limits to what can be done are set only by human ingenuity.

Tender chassis

The Maunsell 4,000 gallon tender chassis is quite straightforward, and is very similar to the very popular GWR chassis that I provided for the larger GWR locomotives. The brass or preferably aluminium blocks that find themselves at either end of the inner chassis are used as drag boxes and are milled from 1 x 2.5in, stock which used to be a standard size but which may not still be available. There's no harm in asking though as our local metal stockist has all sorts of odds and ends tucked away in dark comers. I would definitely go for the aluminium option if possible as, apart from the obvious benefit of lighter weight, the present price of brass and bronze seems to have gone through the roof.

The two inner frame members are slotted to retain the stretchers, the whole chassis with outer frames included is then riveted together by means of half inch brass angles. All pretty standard stuff. Note that the outside brackets are cut from 1mm plate, and that the strengthening angles are bent up from the same material giving a more scale appearance. The 1mm x 0.221in. x 0.221in. brass angle that is fitted along the top edge of the outer frame is there purely for appearance and may be dummy riveted at about 1/4in. spacing, with a few proper rivets thrown in for good measure. The complete chassis should be obtainable as a kit of ready cut out component parts by the time you read this article, the only snag being that it will only take a few days to assemble it. Which will leave you kicking your heels for a week or two.

To be continued.

Which air compressor?

David Stokes takes a look at what's on the market for this essential piece of workshop equipment. workshop is not complete without an air compressor; air tools are more powerful than their electrically-powered brethren so tightening, undoing, cutting, sawing, polishing and drilling can be done with ease. The only two real disadvantages are you have to drag about an air hose and the noise of the compressor, especially on startup, can be disturbing.

For the steam locomotive builder the most useful thing a compressor can be put to, I would think, is to run and test, without the need for steam, a newly built or repaired locomotive chassis. Although air doesn't expand in the same way as steam, bench testing a locomotive's machinery does give the builder some idea how it will run.

We took a look at compressors around the 24-litre mark and managed to get-together six low cost ones for a check over to see just what the market has to offer. All are for the DIY market but all are suitable for occasional professional use. Users should be able to do minor paint spraying jobs and operate small air tools with these units.

AIRMASTER TIGER 8/44

£117.48 **Guide Price** Motor output 2hp Input current N/A Air displacement 7.8cfm Maximum free air delivery N/A Tank capacity 24 litres Maximum pressure 116psi 01992 565300 Contact

Designed for the semi professional and DIY user, good for tyre inflation, occasional paint spraying and powering air tools. Fitted with a pressure regulator, pressure gauge and pressure off switch so motor only runs when it's needed. Wheels need to be fitted as they come loose in the packing.

DRAPER 42636

Guide Price £176.56 Motor output 1.5hp Input current 5A Air displacement 6.3cfm Maximum free air delivery 4.3cfm Tank capacity 25 litres Maximum pressure 116psi Contact 02380 266355

Comes disassembled needing its wheels attached but that's all. Handy for the small workshop, can be wheeled about to where it's wanted. Equipped with a pressure switch, pressure regulator and gauge.

METABO CLASSIC 250

Guide Price £149.99 (Screwfix)

Motor output1.5hpInput current5 AmpsAir displacement3.88cfmMaximum free air delivery3.5cfmTank capacity24 litresMaximum pressure116psi

Contact 02380 732000

Blessed with two quick action connection couplings and has a most useful carrying handle at the rear of the tank making for easy lifting into the boot of your car. Designed for the DIY or for occasional professional use. Automatic shutoff when tank is up to pressure, transportable on its own wheels that you have to fit when unpacking.

SEALEY SA952015

Motor output 1.5hp
Input current 5 Amps
Air displacement 6.7cfm
Maximum free air delivery 5.9cfm
Tank capacity 25 litres
Maximum pressure 116psi

Contact 01284 757500

Basic starter compressor, good for DIY and occasional use by a Professional. Fitted with the usual automatic switch off system to save on power and noise. Will operate a small spray gun and other air tools. Wheels need to be fitted, as they are loose in the packing box.

SCREWFIX DIRECT POWER 74212

Guide Price £124.99

Motor output 1.5hp
Input current 5 Amps
Air displacement 5.68cfm

Maximum free air delivery 3.0cfm (approx.)

Tank capacity 24 litres Maximum pressure 120psi

Contact 0500 414141

Low cost high value compressor with twin quick action connector couplings. Great for DIY and limited professional use, fitted with wheels so transportable around the workshop without the need to lift or pipe out the shop. Equipped with an automatic shutoff and pressure gauge.

TOOLSTATION AIRMATE 33069

£99.48 **Guide Price** Motor output 1.5hp Input current 5 Amps Air displacement 8cfm Maximum free air delivery N/A 24 litres Tank capacity Maximum pressure 118psi 0808 100 7211 Contact

Very low cost compressor for the DIYer, hobbyist and for limited professional use. Equipped with an auto cut off, reducing valve and two quick action couplings. Can be used for minor spraying jobs.

A practical approach to injector making

Terence Holland

concludes his description of a simplified way of making injectors.

Continued from page 452 (M.E. 4336, 10 October 2008)

ith the all the parts made from the previous instalment (M.E. 4336, 10). October 2008), the next step is to assemble them into an injector body by silver-soldering. Begin by pressing all fittings in place using silver solder flux powder mixed up with water as a paste. After soldering, clean up in an acid pickle and check that all joints look good with complete fillets.

From the underside extend the overflow hole up into the NRV overflow with a ¼in. dia. drill.

Drill through the tapped hole in the top overflow chamber into the valve box using a 5mm drill at a slight upward angle (to miss the valve seat - see fig 5, *M.E.* 4336, 10 October 2008).

Set the exit end of the body in a %in. x 32tpi tapped bush, chuck true in the 4-jaw chuck and ream through with a 1/2 in. reamer.

Clean up all accessible parts and remove burrs.

Nine-degree reamer and mandrel

Only one type of reamer is required with an angle of 9 degrees. It is worthwhile making several, along with a couple of brass mandrels, once the top-slide is set over. One of the mandrels will be used as a tool for inserting the combining cones. The taper required can be obtained from tangent tables (4.5deg.) and for a 1in, long reamer (which is long enough to produce all the cones) the change in radius will be equivalent to 0.0787 inches. The best way to set the angle accurately is that used by Laurie Lawrence in his mighty 1985 tome on injector making (see 'Sensitivity to Other Parameters', M.E. 4334, 12 September 2008). The method presented by Lawrence is therefore summarised.

Note: In the following procedure, the parallel length of the bar is measured using the lead-screw hand wheel and not, as Laurence did, the length of the taper and hence the use of tangent tables and not sine tables. At these small angles there is little difference; for example, 0.0787 for the tangent and 0.0784 for the sine.

Start by setting the top-slide over to half the required taper, i.e. 4.5 degrees. Then, chuck a piece of ¼in. dia. brass rod. Turn a section to approximately ¼in. long by ¼sin. dia. using the lead-screw or rack.

Lock the saddle and turn a length, just over ½in. long, to a taper using the set over top-slide. At exactly 0.50in. from the narrow end, as positioned using the lead screw, turn a short parallel length, by feeding with the rack or lead-screw.

Measure the diameters of these two parallel sections and subtract one from the other - the result should be 0.079in. for the ½in. length, i.e. 0.158in. for a 1in. long section.

If you get it right first time well done - if not, read on!

Correcting the error

To correct a taper which is too narrow, i.e. taper less than 0.079in. over ½in., proceed as follows

Run the tool into contact with the larger diameter. Gently loosen the top-slide clamp screws and advance the cross-slide by 1/4 of the error. Lock up and remachine the test piece.

To correct a taper which is too large, i.e. taper greater than 0.079in. over a ½in., proceed as follows.

Run the tool into contact with the larger diameter. Note the collar reading on the cross-slide, withdraw the tool (taking up slack) by ¼ of the error. Gently loosen the

top-slide clamp screws and swing the top-slide until the tool is in contact with the larger diameter. Lock up and remachine the test piece.

For making the reamers and cones it is convenient to have some sort of collet, unless of course you are fortunate in having a 'spot on' self-centering 3-jaw. If you don't have a collet chuck use a 3-jaw with the time-honoured brass chuck inserts. Make these as follows.

- Chuck a 1in. length of %in. brass, face, centre and drill/ream ¼in. for holding reamers and the reduced section of the cones.
- Repeat with a second 1in. length of %in. brass, but ream 5.in. for the stock cone material.
- Mark the position of jaw No.1 with a centre pop on each before removing from the chuck, so the brass inserts can always be replaced with the same orientation.
- 4. Remove and saw latterly with a jeweller's saw into the bore. Tidy up and you now have a useful pair of collets to enable repeated accurate chucking in the 3-jaw.

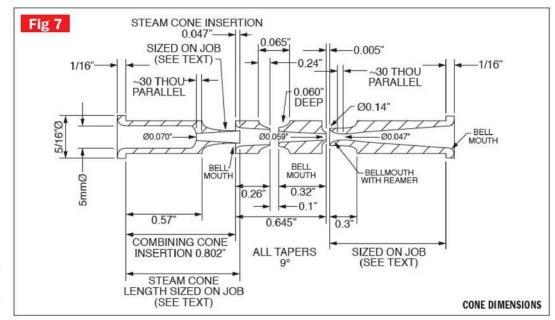
Once the top-slide is correctly set, chuck 3in. lengths of ¼in. dia. silver steel for making the reamers.

- Using a newly sharpened tool, face and check that the tool is at correct centre height.
- Extend the stock to just over 1in. from the chuck, turn the taper using the top-slide only, taking light cuts (particularly at the narrow end) with plenty of cutting fluid. Turn until the small end is less than 0.040in, diameter.
- Polish with fine emery cloth and remove from the collet.

Don't forget to turn a couple of brass mandrels at the same top-slide setting.

The reamers can now be filed or milled to half their diameters. Keith Wilson's method for milling is good, providing that light cuts are taken and that the cutting direction is from the thick end to the thin end with the feed against the rotation of the cutter - no 'climb milling' - especially if you are using a vertical slide on the lathe. Set the stock material in a machine vice parallel to the axis of feed. Take care that the cutter does not snatch when starting each cut at the stock end or you'll find out the hard way what climb milling can do! If part of the stock 1/4in. dia. stock material is also milled, this can be measured with a micrometer to determine when the half-way point is reached. Finish on an oil stone before hardening and tempering.

My reamers were hardened by heating to cherry red and quenching in water. I used them like this and did not attempt to temper them. Even like this, they tended to bend and twist on occasion. I think I probably had an indifferent batch of silver steel and, in future, will try using quality material. It is also possible, however, that I did not hold the 'cherry-red' temperature for long enough - it should be about 10 minutes for a 1/4 in. dia. tool. After heat treatment, the reamers should again be sharpened on an oil stone prior to use.


The various tools required for making injectors are illustrated in **fig 4** (*M.E.* 4336, 10 October 2008).

Making the cones

The dimensions of the cones are shown in fig 7.

Combining cones

- Chuck a piece of 5/16 in. or 8mm brass rod in a collet or brass bush and face.
- Machine a ¾in. length to a tight press fit in the injector body. Finish with 600 grit emery or similar. Part off ¾in. and chuck in a ¼in, collet.
- Face and drill No. 55 or 1.3 millimetres. Reduce the overall length to exactly 0.645 inch.

- Set the reamer collar in a 0.154in. (or 3.9mm) hole, i.e. set the collar to restrict the cut of the reamer to a maximum diameter of 0.154 inch.
- Ream until the collar touches the stock, bell the end slightly with a hand graver.
- Reverse in the collet, relieve around the outlet jet and drill through with a No. 53 drill.
- At 0.16in. from the entrance relieve the centre portion 0.24in. wide and 0.060in. deep.
- 8. At 0.260in. from the entrance, part off 0.065in. wide with a narrow parting tool (or file two slots 0.065in. wide to make a Sellers cone).
- Clean up then press the cones into the body at the steam end using a brass taper mandrel with a collar set at exactly 0.802in. from the cone entrance to the start of the collar.

If the fit is suspect use a drop of Loctite when assembling, followed by a trace added through the ball aperture on to the visible part of each cone. Once the combining cones are in place, the steam and delivery cones can be made and fitted according to the method devised by Eric Rowbottom.

Steam cone (with plain drilled inlet)

 Chuck a piece of 5/4ein. or 8mm brass rod in a collet or brass bush and face.

- Machine a %in. length to a push fit in the injector body. Finish with 600 grit emery or similar.
- Adjust the length by facing so that 0.047in. of the ¼in. dia. section protrudes from the injector when the unfinished cone is pushed home. At this stage, the end of the cone is touching the combining cone inlet.
- 4. Carefully reduce a 0.3in. length to a jet until it starts to enter the combining cone, at which point the 0.047in. gap will start to decrease. Take it slowly at this stage because a fine cut off the diameter results in a relatively large movement into the combining cone.
- 5. Machine until zero protrusion of the ¼in. diameter section into the body is reached. At this point, the steam cone jet is touching the wall of the combining cone at the correct insertion depth of 0.047 inch.
- 6. Remove the injector body and machine 0.010in. from the steam jet (take two 5 thou. cuts), which will produce the desired 10 thou. annulus.
- Centre with the smallest centre bit and drill No. 52 for a 1in. depth. Remove the drill frequently and release swarf to prevent problems.

- 8. Gently ream the end of the steam jet with a 9deg. reamer until a knife-edge is produced. Take care because too much pressure on the reamer at this stage can enlarge the steam jet diameter.
- Part off the cone with ½in. of full diameter material to make the flange.
- 10. Measure the depth of the reamed hole with a No. 50 drill and subtract from the overall length. Subtract a further 0.030in. from this figure to obtain the drill depth for the 5mm steam inlet (this allows for a 30 thou. parallel drilled portion).
- Reverse in a ¼in. collet, face to produce a ¼in. flange and drill 5mm for the depth calculated in 10 above.
- **12.** Drill through with a No. 50 drill to produce the required 0.070in. dia. jet.

Delivery Cone

- Chuck a piece of ½in. or 8mm brass rod in a collet or brass bush and face.
- Machine a %in. length to a push fit in the injector body. Finish with 600 grit emery or similar.
- Carefully face off the end until the shoulder closes with the barrel exactly. At this point the unfinished cone is touching the outlet jet of the combining cone.
- Face off the required 0.005in. clearance.

Table 3: Design Faults

Symptom	Problem	Solution
Non-priming of injector - steam only, at overflow.	Annular gap is too small.	Fit 5 thou. spacers to steam cone flange or remachine a new steam cone with a smaller jet diameter. Retest.
2. Primes but does not feed - spills water.	Annular gap is too large.	Machine 5 thou. increments from steam cone flange face or remachine a new steam cone with a larger jet diameter. Retest.
	Ball valve is blocking exit.	Fit ball control.
3. Primes and feeds but with heavy overflow.	Annular gap is functional but may be a few thou too large.	Machine 5 thou. increments from steam cone flange face. Retest.
4. Primes and feeds but is unstable. Spits steam and water at overflow.	Poor cone concentricity. Badly seated ball valve.	Check concentricity and remachine as appropriate. Check ball seating and reseat if necessary (see W. A. Carter's procedure for testing injector ball valves).

- 5. Reduce a 0.3in, length to 0.140in. dia. to make the jet.
- Lightly centre and carefully drill No. 58 for a depth of 1 inch. Bellmouth the end with a reamer (see drawing for profile).
- 7. Part off just over 1/16in. of the 5/16in. stock to make the flange.
- 8. Set a collar on the 9deg. reamer in a 4.4mm hole and ream to depth.

Table 4: Operational Faults		
Symptom	Problem	
1. Non-priming of injector - steam only, at overflow.	No water in tank. Strainer blocked. Air leak in water supply. Feed water too hot. Water valve closed or obstruction in water supply. Obstruction in cones.	
2. Primes but does not feed - spills water.	Boiler check valve may be stuck. Feed water too warm. Boiler pressure too low. Obstruction in cones. Primes and feeds but with heavy overflow. Boiler pressure low.	
3. Primes and feeds but is unstable. Spits steam and water at overflow.	Water low in tank. Water level high in boiler. Boiler priming.	

- 9. Bellmouth with a hand graver and face the flange to 1/16 inch.
- 10. Drill through with a 1.2mm drill to produce the required 0.047in. dia.

Assembly

This is quite straightforward. The 5/16in, dia, stainless ball is seated in the overflow chamber and the best way to do this (and this also applies to non-return valves in general) is to make up a simple tool as

shown in fig 4 (M.E. 4336, 10 October 2008). This is used to apply screw pressure to the ball ensuring concentricity etc. If any doubt exists as to the effectiveness of the seal, an article by Bill Carter in the M.E. dated 2 August 1974 detailed a useful procedure for testing injector ball valves.

The cones are pressed in each end, the ball placed in the overflow chamber. the ball cage is screwed in and that's it. However, cone removal for cleaning etc. is not easy if a good fit of the steam and delivery cones has been achieved. A special tool, as shown in fig 4, is well worth making up. No matter how careful you are, pulling them out with pliers is not the answer (unless you are a dentist!) and I have several graunched cones in my scrap box to prove it!

Testing injection feed rate

One injector was tested to determine the feed rate and this was injector No. 7 in Table 1 (M.E. 4334, 12 September 2008). The flow rate was measured as 60 ounces per minute which is equivalent to three pints per minute; that is, slightly in excess of the nominal 55 ounce per minute rating.

Fine tuning

An injector made using the above instructions should function reasonably well, however, despite all the care and experimentation, there is still a degree of 'hocuspocus' associated with injector making - even using the empirical method detailed in this article. Consequently, to achieve the best possible performance, adjustment of the steam cone annulus by altering the depth of insertion may be necessary. See Table 3 which has been compiled from work by Martin Evans and D. A. G. Brown. This table addresses those problems which are likely to occur during manufacture.

Table 4 identifies problems which may occur during operation. Note that in cases 2 and 3 in Table 4, if problems occur under normal conditions, the water supply should be turned rapidly off and on to start injection and the water feed then throttled until the injector feeds dry.

Laurie's No. 1 injector

For those requiring a smaller unit, I have modified the construction technique to suit manufacture of a 26 ounce per minute injector as detailed by Laurie Lawrence in his series published in 1986. For fuller details, this series should be consulted.

The body

This can be made the original Lawrence way in %in. round brass rod using a silversoldering jig - or with 1/16in. or %in. square brass bar following the method used by Keith Wilson with spigots on the fittings. The latter way is much easier, however, and you get a physically bigger injector which is better if you are building narrow gauge locos or large scale working engines. The important dimensions for the body identified as 'Laurie's No. 1', measured from the steam inlet end are:

- · body length 1.25 inch.
- · water inlet 0.356 inch.
- · ball valve 0.625 inch
- · overflow 0.920 inch

The ends of the body and water inlet are threaded ‰in. x 32tpi and, after silver-soldering the fittings in place, the body is reamed ‰2 inch. The stainless steel ball for the non-return valve is ‰in. diameter.

My 'Laurie No. 1' body was made about 15 years ago when I contemplated another stab at injector making. However, other pressing needs must have arisen at the time and the job didn't get finished. Fortunately I retained the completed body (I knew it would come in handy one day!) and, more importantly, managed to find it when I needed it.

The combining cones

Again, the combining cones are made first and the other cones are fitted to them.

- Chuck a piece of ¼in. or 6mm brass rod in a collet or brass bush and face and centre.
- Machine a %in. length to a tight press fit in the injector body. Finish with 600 grit emery or similar.
- Drill ¼in. dia. for ½in. deep. Part off just over ½ inch.
- Reverse in a ½in. collet. Face and drill No. 65 into the ½in. hole.
- 5. Set the reamer collar on the 9deg. reamer in a 0.100in. (or 2.5mm) hole, i.e. set the collar to restrict the cut of the reamer to a maximum diameter of 0.100 inch.
- Ream until the collar touches the stock, bell the end slightly with a hand graver.
- Drill through with a No. 53 drill.
- At 0.114in. from the entrance relieve the centre portion 0.14in. wide and 0.040in. deep.
- At 0.162in. from the entrance part off with a 0.030in. wide narrow parting tool (or file two slots 0.030in. wide to make a Sellers cone).
- Part off a further 0.220in. to make the second cone.
- 11. Relieve around the exit jet and slightly bell mouth the entrances to both cones with a hand graver.

12. Tidy up the cones and press into the body at the steam end using a brass taper mandrel with a collar set at exactly 0.434in. from the cone entrance to the start of the collar.

Steam cone

- Chuck a piece of 1/4 in. or 8mm brass rod in a collet or brass bush and face.
- Machine an approximate %in. length to a push fit in the injector body. Finish with 600 grit emery or similar.
- Adjust length by turning/ facing so that 0.030in. of the ½in. dia. section protrudes from the injector when the unfinished cone is pushed home. At this stage, the end of the cone is touching the combining cone inlet.
- 4. Carefully reduce a 0.15in. length to a jet until it starts to enter the combining cone, at which point the 0.030in. gap will start to decrease. Take it slowly at this stage because a fine cut off the diameter results in a relatively large movement into the combining cone.
- Remove the injector body and machine 0.007in. from the steam jet diameter to produce the 7 thou. annulus.
- 7. Centre with the smallest centre bit and drill No. 60 for a depth of approximately % inch. Remove the drill frequently and release swarf to prevent problems.
- 8. Gently ream the end of the steam jet with a 9deg. reamer until a knife-edge is produced. Too much pressure on the reamer at this stage can enlarge the steam jet diameter.
- Part off the cone with ½sin. of full diameter material for the flange.

- 10. Measure the depth of the reamed hole with a No. 58 drill and subtract from the overall length. Subtract a further 0.020in. from this figure to obtain the drill depth for the ½in. steam inlet (this allows for a 20 thou. parallel drilled portion).
- 11. Reverse in a ⅓₂in. collet, face to produce a ⅙in. flange and drill ⅙in. for the depth calculated in 10 above.
- **12.** Drill through with a No. 58 drill to produce the required 0.046in. jet.

Delivery cone

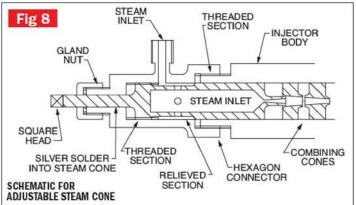
- Chuck a piece of 5/16in. or 8 mm brass rod in a collet or brass bush and face.
- Machine an approximate
 %in. length to a push fit in the injector body. Finish with 600 grit emery or similar.
- Carefully face off the end until the shoulder closes with the barrel exactly. At this point the unfinished cone is touching the outlet jet of the combining cone.
- Face off the required 0.005in. clearance.
- 5. Reduce a 0.15in. length to 0.080in. dia. to make the jet.
- Lightly centre and carefully drill No. 69 for a depth of 5/8 inch. Bellmouth the end with a reamer.
- Part off just over ½6in. of the 5/6in. stock to make the flange.
- Set the 9deg, reamer with a collar in a 1.8mm hole and ream to depth.
- Bell mouth with a hand graver and face the flange to ½6 inch.
- Drill through with a ⅓₂in. drill to produce the required 0.031in. dia.

Batch production

If I were to contemplate making large numbers of identical injectors I would make up a batch of nine deg. reamers and brass or mild steel tapered form tools at the same top-slide setting on the lathe.

With one of the form tools fix a location collar permanently with silver solder for inserting the combining cones at a controlled depth.

There should be three nine deg. reamers. Fix two with collars specific to the combining and delivery cones. Set the collars in drilled holes.


Also I would make up steam and combining cones using the Rowbottom method for sizing, i.e. a 0.010in. annulus and about 0.050in. insertion and a 0.005in. combining conedelivery cone gap.

Finally, I would test one unit and fine tune the steam cone dimensions until self-starting is achieved over the desired pressure range, then I would copy the dimensions of this cone for all other units.

'Cert' injectors

For an injector to be capable of lifting and also self-starting, the exit diameter from the combining cone must be greater than the entrance to the steam cone. Clearly this is not the case as the steam cone throat diameter is the largest of all the cones. To overcome this problem the combining cone is split to provide a free release of steam/ water via the overflow during the starting phase. Once the steam/ combining cone combination is working and lifting water, the jet is established, water enters the boiler via the delivery cone and

a vacuum is achieved in the front end, which closes the overflow valve.

With good proportions and a positive pressure of water feed, of course, an injector will pick up without producing much of a hot water overflow. Ironically, once these conditions are achieved, the overflow valve closes and the system becomes redundant and I believe this was the case with the old 'Cert' injector which had only three cones - steam, single combining and delivery - and no top overflow system. However, I'm not an expert and as far as I am concerned the workings of the Cert are still a mystery. The important fact is that, once finetuned, the conventional design with overflow works so well that pursuit of an overflow-free design seems pointless.

Adjustable steam cone injectors

For anyone who fancies a bit of experimentation, an injector with an adjustable steam cone would be an interesting project. A rough design is presented in fig 8, but I have not made and tested such a device. There may be problems using two concentric threads and a flanged joint on to the injector body with a locating spigot may be a better proposition.

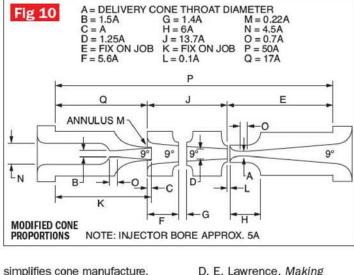
Roy Amesbury published a design with an adjustable steam cone for his De Glen compound locomotive in 1984 which would also make a useful starting point for such a device. His design was produced to simulate the original French Giffard injector, but could be adapted to suit the conventional type.

Standardised injector dimensions

The original Keiller dimensions, as used by Martin Evans etc. are presented in fig 9. The modified dimensions, resulting from this work, are presented in fig 10. The modified data are all expressed as functions of dimension 'A': the delivery cone throat diameter.

Draining and raising water

For moving large quantities of water around, an injector-based device was relatively economical. One useful application of this was their use as bilge pumps in steam ships.


Exhaust steam jet condensers

The use of a custom-designed injectors (or ejectors in this case) for reducing the back pressure on large steam engines was economic and negated the need for an air pump.

Coal Sprinklers. The coal sprinkler (known as a 'squirt') was used to wet the coal supply of a locomotive or coaling plant; thereby reducing the dust problem.

Conclusion

The method of construction detailed in this article considerably simplifies injector making. Body construction is made relatively easy using Keith Wilson's method, which utilises square brass stock with spigoted attachments. Cone angles are reduced from as many as three in previous articles to a single 9deg. angle in this work and the use of a plain drilled hole in the steam cone inlet further

simplifies cone manufacture. Additionally, the application of the Rowbottom method for fitting the steam and delivery cones to the in situ combining cones eases manufacture by reducing the number of areas where a high degree of precision is essential. Finally, the fine tuning of the manufactured units ensured that the injectors performed so well that they have made a major contribution to the ease of operation of my 5in. narrow gauge 0-4-0 Andrew Barclay locomotive on my garden railway; I wish I had had such injectors 20 years ago!

Bibliography

Strickland L. Kneass. *Practice* and *Theory of the Injector* (First published 1894). Lindsay Publications Inc. 2004. ISBN 1 55918-306-3.

The Inspector/J. W. Harding. Locomotive Injectors. Combined Two Volume Reprint (First published 1905 & 1937). TEE Publishing 1994. ISBN 1-85761-083-0.

LBSC. "Maisie" - Words and Music. Percival Marshall & Co. Ltd. 1952.

Martin Evans. How an Injector Works. Model Engineer, 13 September 1962.

Martin Evans, Editor. LBSC's Shop, Shed and Road. Model & Allied Publications Ltd. 1969.

Martin Evans. Manual of Model Steam Locomotive Construction. Model & Allied Publications Ltd. Third Edition, 1970.

W. A. Carter. Testing Injector Ball Valves. Model Engineer, 2 August 1974. D. E. Lawrence. Making Small Live Steam Injectors. Model Engineer, serialised from 18 April 1975 to 18 July 1975.

W. A. Carter. Testing Injectors. Model Engineer, 15 August 1975.

Basil Palmer. Miniature Live Steam Injectors. Part 1 Model Engineer 7 May 1976. Part 2 Model Engineer 21 May 1976.

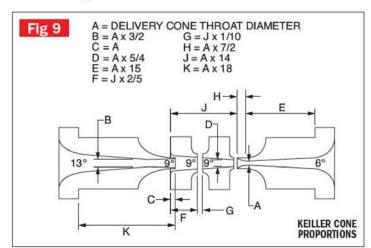
W. J. Hughes. Injector for the 'Allchin'. Model Engineer, 2 July 1976.

D. E. (Laurie) Lawrence. Turrets and Things (Fittings for Small Steam Locomotives). Model Engineer, 15 December 1978.

Martin Rickers. Some Performance Data for an Unusual Injector. Model Engineer, 15 October 1982.

Roy Amesbury. President - A De Glen Compound Locomotive in 5in. Gauge. Model Engineer, 17 February 1984.

D. E. Lawrence. Laurie's Standard Live Steam Injectors. Model Engineer. Serialised from 4 April 1986 to 17 October 1986.


Geoff King. Making Laurie's Injectors the Easy Way. Model Engineer. 18 July 1997.

Keith Wilson. Dean Goods - A Swindon 0-6-0 in 7⁴/₄" Gauge. Model Engineer, 31 July 1998.

D. A. G. Brown. Miniature Injectors. Model Engineer. Serialised from 14 January 2000 to 7 April 2000.

Keith Wilson. Lillian - A Narrow Gauge Locomotive for 7¹/₄in. Gauge. Model Engineer, 28 October 2005.

ME

Malcolm Stride reports

Notices

Sinsheim 2009

The next Indoor Steam Meeting at Sinsheim will take place on 9 - 11 January 2009. Full details can be obtained from Messe Sinsheim GmbH, Neulandstrasse 30, D-74889 Sinsheim, Germany. T. +49 72 6168 9 0, F. 49 72 6168 9 220.

E. echtdampf@messesinsheim.de

W. www.echtdampf_ hallentreffen-messe.de

Model engineering evening class costs

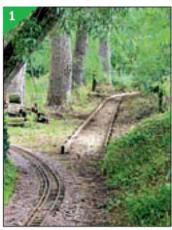
We have had a query regarding the costs of model engineering evening classes run by local colleges. The reader concerned is one of a local group using such facilities and the group has been presented with a cost increase this term of over 130% which is obviously raised some complaints. If any readers can provide information on the cost of their own local courses, we would be please to pass that on to the person concerned for comparison. I know from my own experience that fees vary widely between different local authorities and that there have generally been substantial increases over the past few vears.

UK club news

Colchester SMEE members were recently entertained by Brian Bourne from Chelmsford model engineers to a talk on the Cornish tin mining industry and the beam engines used in the 18th/19th century. Colchester Society members travelled to the Gravesend club site for a "steam up" at the track. Seven steam locomotives were run during the day. The next day was

In Memoriam

It is with the deepest regret that we record the passing of the following members of model engineering societies. The sympathy of staff at *Model Engineer* is extended to the family and friends they leave behind.


Roy Brooks Trevor Gill Les Hammond Alan Nicholson

Northampton SME West Riding Small Locomotive Society Colchester SMEE West Riding Small Locomotive Society spent "at home" entertaining the Peterborough model engineers on their return visit to the Colchester track site. Six steam locomotives ran during their visit, despite the rain.

A group of members at Ickenham DSME spent much effort installing an old style Gilbert Scott designed red telephone box in the corner of the club site recently. The telephone box was purchased for the society by three members at less than the market rate because "it would be going to a good home". Peter Pardington, who supervised the installation efforts, attempted to make the first call from the box with his mobile phone but could not get a signal. I suppose that is some justice, since it is the mobile phone that has led to the demise of telephone boxes. Work on rebuilding the club Speedy is continuing with work on the new boiler completed up to the point of silver-soldering which is scheduled for later this year. It is hoped that the locomotive will be back in working order sometime next year.

Members at Kings Lynn DSME have a new project in the form of a Super Simplex which has been donated to the club by John Illiff. The locomotive is part-built and needs finishing off. Two more projects are also in the pipeline, a traction engine and a 3½in. gauge locomotive. The new loading trolley is now in use and the railway has a new addition for the comfort of members and visitors, a swing garden seat.

Capably led by Dennis Billington and Tony Kendall, work on the ground level track extension (photo 1) at **Northampton SME** continues apace, Phases 1a and 1b. which will be the return section around the bottom and along the drain side of the site, are currently being worked on by the Tuesday and Sunday groups. In conjunction with these works, a comprehensive tree and bush planting programme designed to enhance the future railway is under way, but the gardeners have found that they are providing food for the rabbits! To prevent this damage, chicken wire mesh has to be placed

1. The ground level track extension is taking shape at Northampton SME.

around the new plantings. One of the raised track signal posts was recently torn out of the ground, and member Peter Jarman is to be congratulated on re-installing it, with more substantial foundations within a week of the incident. The newsletter Editor comments "Funny how acts of vandalism at Delapre Park seem to coincide with the start of the school holiday; perhaps it is the relief of being allowed out of school combined with the boredom of not being a model engineer."

Members of Norwich DSME ioined in the 80th anniversary of the opening of Eaton Park in June by starting the running session early resulting in over 800 passengers being carried during the day. The interior of the main building is being reorganised with new benches and shelves already installed. Progress has also been made on the 71/4in. gauge LNER A3 locomotive with the reassembly completed and the majority of the vacuum brake system installed. The installation of the raised track signalling system will commence during the winter because of the need to cut the rails for the track circuits.

The newsletter of the City of Oxford SME reports that the summer rallies this year were very well attended with record attendance at the Sweet Pea Rally and the Dreaming Spires event again well attended. Both events drew good weather, which is an achievement this year.

Clive and Alistair Cook's Aveiling tractor
was enjoying a visit to Saffron Walden SME
joined by lan Couchman with his Ruston
Procter tractor.

3. 'Chief Pinkie', John, admiring his handlwork at Saffron Walden SME.

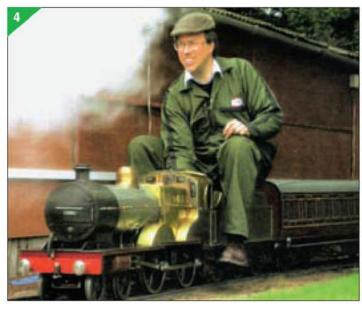
4. Steve Gosling looks pleased with his new Midland Compound at Taunton.

Engineering work at Pinewood Miniature Railway has included completion of the new country carriage store which involved building a brick arch for the front. The design of points has been changed to make use of aluminium rail which will enable the detection of trains on the points for the signalling department. A new signal has been made for the head shunt. As part of the clear up of the site, all the scrap metal collected

was taken to a scrapyard and sold for almost £200. This sounds like something worth doing by others.

September is often noted for an 'Indian Summer' and, so far, predictions are coming true at Saffron Walden SME. The AER Steam Gala (photo 2) has enjoyed favourable weather in recent years and 2008 came up trumps with lots of sunshine and no rain! On the track, the trickle charging circuit problems for the air compressor battery by the station appear to have been resolved and it has stood up to the rigours of intensive use over the running weekends. The Wednesday Gang has been addressing a number of areas where the track has settled or moved. Putting a small paving slab under the expansion joints on the back straight by

the container seems to have been a success, coupled with some more ballasting this section is now much improved. The concrete encased track by the picnic field gate will be removed and a new concrete pad laid for the new track. A wooden inlay will enable vehicles to cross the track. Appropriately nick-named Pinkies Paradise the signal box has been getting a bit of a makeover. Some flashing tape has been fitted just above floor level to try and keep rainwater at bay, the paintwork has been cleaned, windows re-puttied, and repainting is underway. Roof guttering is to be fitted to deflect most of the rainwater thus helping to preserve this most useful building. The picture (photo 3) shows Chief Pinkie, John P. admiring his handiwork after fitting the waterproof flashing tape.


There are some new faces in prominent positions at the Society of Model and **Experimental Engineers**, Mike Chrisp has been elected to the position of Chairman and Matt Pulzer has taken over as editor of the journal. We wish them success in their respective roles. The society continues to be active at many of the events during the year and have had a presence at Harrogate, Merstham, Guildford and not least at the Model Engineer Exhibition. The April Gauge 1 meeting included a presentation on weathering

techniques by David Hatherill. David demonstrated many of the techniques used and several members also tried out the processes.

Members of Stamford MES planned an evening running session at the track in August, but were caught out by the generally inclement weather. Only one locomotive ran: a Class 08 shunter which gave one of Richard Wright's granddaughters driving experience on the otherwise empty track. The other attraction was the Tiger tank built by Colin Richards. This had realistic sound effects and also fired blank 12-bore cartridges. The latter operations caused the electronics board to "take umbrage" which no doubt resulted in several hours repair work. A Saturday morning session mustered two locomotives, a Simplex and a King Arthur which both ran well.

Taunton Model Engineers has received permission from the local borough council to extend the raised track (photo 4) at Vivary Park by about 400 feet. Off site construction work has already started with on-site work due to start at the end of the running season. At the Creech track site, the grading of the embankment has been completed and the exit point has been installed. levelled and ballasted ready to extend the running line. Some 80ft, of track has been laid on the embankment

towards the level crossing with final levelling and packing to be done. A further 25-30ft. is required before the level crossing section can be laid.

I have some news of a society that has not sent information in for a while. West Riding Small Locomotive Society had a very successful visitors rally in mid June with a successful barbecue and eight visiting locomotives on each of the days with the Sunday bolstered by some traction engines. Three awards were made, the Best Finished Locomotive was P. Dalley's 31/2in. gauge LMS 8F, the Best Unfinished Locomotive was R. Lumb's 71/4in. gauge GWR Dart and the Best Non-locomotive was T. Oughton's universal pillar tool.

The open day at Wigan DMES was very successful with plenty of visiting locomotives, plenty of volunteers to man the event and a "tremendous" range of food provided by the catering team. Two locomotives highlighted in the report were John Richardson's new Merchant Navy locomotive and a Lion from Southport. Norman Mathews steamed his Garratt in mid July after 14 years and 8,000 hours in the making. Since then Norman has had several more outings, ironing out teething troubles as he goes.

World club news

Canada

Another well-populated meeting took place at Toronto SME in October. Dave Oulton described how he got into the model engineering hobby - wanting a new challenge. He has found it an interesting learning experience! Dave showed a number of small oscillating engines he has made and demonstrated them running on air at only about 3psi. Some engines are Stuart Turners: others are from castings purchased at NAMES. Dave mentioned that his lathe and mill are both fitted with DROs which he finds makes machining easier and accurate.

Bill Huxhold brought in his latest project, still a work in progress - a Single Corliss Engine that he started in June. The base plate is machined from 1in. plate machined to look like a casting. Bill was asked to give some advice on drilling and tapping small holes - use good quality taps and dies, use lubricant (but not in cast iron) and a tapping machine and do it carefully!

Lloyd Hall bought an old Atlas Shaper and is now renovating it. From the pictures of it before Lloyd started to clean it up, it looked in pretty poor shape, although he had no trouble dismantling it.

Barry Fletcher showed his completed Halbrook No. 7 Twin-Cylinder Reversing Piston Engine and demonstrated how easily it runs on air, his blowing was sufficient!

Dan O'Connell introduced his guests - Donald Greer and his son. They are members of a worldwide group that is interested in producing fullsize versions of the Star Wars robot - R2D2. Don mentioned that standardized parts are available, although he has chosen to make his own R2D2 using aluminium bodyshell parts and an aluminium and steel inside frame. His R2D2 body section he showed is about 18in, diameter and the top half sphere spun in aluminium.

Roy Elliott has started on a 4-cylinder OHC internal combustion engine of his own design, and showed how far he has progressed with the cylinder body and the head. He intends to use a timing belt rather than gears to drive the valves, this arrangement being simpler. Roy is thinking of using aluminium pistons and cylinder sleeves in steel. The bore is 0.680in, which he hopes will allow him to avoid the use of rings.

Phil Regan brought in a Unimat, recently purchased though eBay. These small lathes have not been made since the 1970s and are now considered collectors items.

Bill Salt showed a running stand he has put together so that he can test run his recently acquired 0-6-0 4%in. gauge locomotive at home before he gets to the track at Richmond Hill Live Steamers.

South Africa

In contrast with the previous boot sale in June, the September sale at Centurion SME turned out quite well with at least five vendors with tools and other equipment as well as material on sale. I trust that everyone got the bargain they were looking for. September was arbour month and John Shaw and the part-timers really put in a lot of hard work in getting a substantial number of trees into the ground. Those who took a walk or a ride along the track would have noticed his hard work - mostly between the second and third bridges. adjacent to the outer track.

A footbridge was built out of scrap iron that was being stored at the clubhouse. With a bit of paint applied, it was installed between the two

ISSUE NEXT ISSUE NEXT ISSUE NEXT ISSUE NEXT I E NEXT ISSUE NEXT ISSUE NEXT ISSUE NEXT ISSUE

- Model Engineer Exhibition report
- Pete Rich locomotive
- Gothic engine
- Superheating
- Machine tools

Plus all your regular favourites

Contents subject to alteration

ON SALE 21 NOVEMBER 2008

Tips and hints from Karl Konrad on machinging a 1:20 scale model of the 1895 Gothic-style engine on display at the Henry Ford Museum, Dearborn, US. (photograph by Lothar Matrian)

Seen at the Model Engineer Exhibition at Ascot this year is the upper train of Nicholas Hooper's crystal wheel clock which was awarded a Bronze Medal. (photograph by Roger Bunce)

dams adjoining the steaming bay to facilitate access to the far side of the track. In the meantime research and discussions on the raised track is ongoing and various construction options remain under review. Being a quite large and costly project, it must be wise to ensure that we opt for the ideal solution, rather than to rush things at this stage. As usual, any ideas and suggestions in this regard will (still) be appreciated.

Humour time

More history lessons from the Miniature Steam Road Vehicle Society:

The floor was dirty. Only the wealthy had something other than dirt. Hence the saying *Dirt poor*.

The wealthy had slate floors that would get slippery in the winter when wet, so they spread thresh (straw) on floor to help keep their footing. As the winter wore on, they added more thresh until, when you opened the door, it would all start slipping outside.

A piece of wood was placed in the entranceway. Hence the saying a *thresh hold*. (Getting quite an education, aren't you?)

In those old days, they cooked in the kitchen with a big kettle that always hung over the fire. Every day they lit the fire and added things to the pot. They ate mostly vegetables and did not get much meat. They would eat the stew for dinner, leaving leftovers in the pot to get cold overnight and then start over the next day. Sometimes the stew

had food in it that had been there for quite a while. Hence the rhyme, Peas porridge hot, peas porridge cold, peas porridge in the pot nine days old.

Sometimes they could obtain pork, which made them feel quite special. When visitors came over, they would hang up their bacon to show off. It was a sign of wealth that a man could bring home the bacon. They would cut off a little to share with guests and would all sit around and chew the fat.

RY DIARY DIA

NOVEMBER

- 7 Kinver & West Midlands SME. Kinver Bonfire Night & Fireworks Display. Contact John Campbell: 01384 891244.
- 7 North Norfolk MEC. Andrew Dawson: On various subjects. Contact Gordon Ford: 01263 512350.
- 7 Rochdale SMEE. Auction Night. Contact Bob Denyer: 0161 959 1818.
- 7 Romford MEC. Competition Night. Contact Colin Hunt: 01708 709302.
- 8 Glasgow & S.W. Rly Ass'n.
 Iain Quinn: British Coastal
 Steamers since 1948.
 Contact Bruce Steven:
 0141 810 3871.
- 8 SM&EE. Training Seminar Day 3, Part 1. Contact Maurice Fagg: 020 8669 1480.
- 8 Stockholes Farm MR. Bonfire Night. Contact Ivan Smith: 01427 872723.
- 8 York City & DSME. Bonfire Steaming/Supper. Contact Pat Martindale: 01262 676291.
- 9 Edinburgh SME. Track Running Day. Contact Robert McLucke: 01506 655270.
- 9 Sutton MEC. Bonfire Night Barbecue. Contact Bob Wood: 020 8641 6258. 10 Bedford MES. Lineside Videos.
- 10 Bedford MES. Lineside Videos. Contact Ted Jolliffe: 01234 327791.
- 10 Melton Mowbray DMES. Keith Barns: \$160 loco AB McCloud. Contact Phil Tansley: 0116 2673646.
- Saffron Walden DSME. Club Night. Contact Jack Setterfield: 01843 596822.
- 11 Frimley & Ascot LC. AGM. Contact Bob Dowman: 01252 835042.
- King's Lynn DSME. Talk with David Grimes. Contact Mike Coote: 01533 673728.
- Northampton SME. David Fieldhouse: First Contact with CNC. Contact Pete Jarman: 01234 708501 (eve).

- 12 Birmingham SME. Ken Toone: Train Simulator Programs. Contact John Walker: 01789 266065.
- 12 Chingford DMEC. Martin Masterson: An Update on Helicopters. Contact Ron Manning: 020 8360 6144.
- High Wycombe MEC. Martin Humphrey: The Birth of the Battery. Contact Eric Stevens: 01494 438761.
- Hull DSME. Auction. Contact Tony Finn: 01482 898434.
- Norwich DSME. Malcolm High: Laser Cutting. Contact Shirley Berry: 01379 740578.
- 12 St. Albans DMES. EGM & Members' Evening. Contact Roy Verden: 01923 220590.
- 14 Hereford SME. Keith Hale: Silver Soldering a Black Art. Contact Nigel Linwood: 01432 880649.
- 14 North London SME. Tony Earl: Building the London Underground. Contact Rachael Chapman: 01442 275968.
- 14 Polegate & District MEC. AGM. Contact D. F. Pratt: 01323 645872.
- 16 Frimley & Ascot LC. Club Run. Contact Bob Dowman: 01252 835042.
- York City & DSME. Running Day. Contact Pat Martindale: 01262 676291.
- Model Steam Road Vehicle Soc. AGM. Contact John Bagwell: 01452 304876.
- 17 Peterborough SME.
 P. Wright: Railways in Farming
 & Agriculture. Contact Lee
 Nicholls: 01406 540263.
- 18 Chesterfield & District MES. D. Crookes: Garden Railway. Contact Mike Rhodes: 01623 648676.
- Nottingham SMEE. Mike Corby: History of Horological Science. Contact Graham Davenport: 0115 8496703.

- Taunton ME. Vic Doswell: Guns & Militaria. Contact Nick Nicholls: 01404 891238.
- 19 Birmingham SME. Talk by R. Withers. Contact John Walker: 01789 266065.
- 19 Bournemouth DSME. Meeting. Contact Dave Finn: 01202 474599.
- 19 Bristol SMEE. Alan Freed: GWR Badminton Line. Contact Trevor Chambers: 0145 441 5085.
- 19 Chingford DMEC. John Hatt: The American Chronometer. Contact Ron Manning: 020 8360 6144.
- 19 Leeds SMEE. Jumble Sale. Contact Geoff Shackleton: 01977 798138.
- MELSA. Meeting. Contact Graham Chadbone: 07 4121 4341.
- 20 Cardiff MES. Bits & Pieces. Contact Don Norman: 01656 784530.
- 20 Adelaide Miniature SRS. Meeting. Contact Peter Cooper: 8264 3471.
- 20 Sutton MEC. Auction Night. Contact Bob Wood: 020 8641 6258.
- 21 East Somerset SMEE.

 Bob Alderman: A1 'Tornado'.

 Contact Roger Davis:
 01749 677195.
- 21 Rochdale SMEE. Bits & Pieces. Contact Bob Denyer: 0161 959 1818.
- 21 Romford MEC. Photo Talk. Contact Colin Hunt: 01708 709302.
- 22 Chesterfield & District MES. Public Running. Contact Mike
- Rhodes: 01623 648676.

 SM&EE. Rummage Sale.
 Contact Maurice Fagg:
 020 8669 1480.
- York City & DSME. Mike Waters: Steam Powered Motorcycles. Contact Pat Martindale: 01262 676291.

- Edinburgh SME. Track Running Day. Contact Robert McLucke: 01506 655270.
- 23 MELSA. Bracken Ridge. Contact Graham Chadbone: 07 4121 4341.

23

- 23 Adelaide Miniature SRS. Public Field Day. Contact Peter Cooper: 8264 3471.
- 24 Bedford MES. Slips, Seals & Sliders. Contact Ted Jolliffe: 01234 327791.
- 25 Stafford DMES. Derek Tweed & Frank Beech: Hells Bells. Contact Chris Dobbs: 01889 270533.
- 26 Birmingham SME. An Evening with Non-Steam Models. Contact John Walker: 01789 266065.
- 26 Chingford DMEC. David Bowker: The Scene in China. Contact Ron Manning: 020 8360 6144.
- 26 Harrow & Wembley SME.

 Philip Crouch: Railway Films.

 Contact Roy Goddard:

 E. RSGwatford@aol.com
- 26 Hull DSME. Chairman's Evening. Contact Tony Finn: 01482 898434.
- 27 Cardiff MES. Forum. Contact Don Norman: 01656 784530.
 - Sutton MEC. John Downs: How I survived a plane crash. Contact Bob Wood:
- 020 8641 6258.

 Hereford SME. Chris Raywood and his newest project.
 Contact Nigel Linwood:
 01432 880649.
- 28 Malden DSME. Rummage Sale. Contact John Mottram: 01483 473786.
- 28 Newton Abbot & District MES. Quiz Night. Contact Graham Day: 01626 772739.
- 30 Edinburgh SME. Track Running Day. Contact Robert McLucke: 01506 655270.
- 30 MELSA. Sunday in the Park. Contact Graham Chadbone: 07 4121 4341.

Missed a recent copy of your favourite hobby magazine? Newsagent let you down? Then have no fear, as you can easily get hold of back issues by emailing your requirements to:

plus p&p

customer.services@myhobbystore.com

For those without internet use, you can also apply to: Customer Services, MyHobbyStore Ltd, Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 OEL. T. 0844 412 2262.

Here's a run-down of recent issues and the major articles contained within.

Issue 4337 24 October - 6 November

- The Midlands Federation
- Rally by Terry Dell Engineering's Local Heroes - Lord Armstrong by Roger Backhouse
- Model Engineer Photo Competition 2008 by Malcolm Stride
- Engineering in Wood by Eric Basire and Dave Knight
- The Riddles 9F enigma No.
- 92250 by Peter Rich Machine Tools Drummond Flat Bed Lathes
- by Tony Griffith · A Freelance Shav Locomotive by Alan Beasley
- Keith's Column
- by Keith Wilson

Issue 4336

10 October - 23 October

- · A Toulet Imperator by John Wilding
- The LBSC Memorial Bowl
- 2008 by Roger Bunce
 The Highland Railway's 'Scrap' Tank Engines by Ron Isted
- · A Practical Approach to Injector Making by Terence Holland
- McOnie's Oscillating
- Engine by Anthony Mount •Which Gear and Flywheel Puller? by David Stokes
- 1923 Bentley 3-Litre Engine by Mike Sayers

Amazing Titanic model

Issue 4335

26 September - 9 October

- · Bristol Show by Michael Jones and Roger Bunce • Machine Tools - Bridgeport
- Milling Machine by Tony Griffith
- My First Boller by Julia Old Anna by Derek Brown and Mark Smithers
- A No Frills Cylinder Drain Valve by Harold Pearson
- · Engineering's Local Heroes
- Samuel Smiles
- by Roger Backhouse Pico Electricity and the Model Engineer by Marcus Rooks
- Keith's Column by Keith Wilson

Issue 4334

12 - 25 September · Square Wheel Clock

- by Donald Unwin · Foolin' around with Pulse Jets by Dave Fenner
- SEQLÉC 2008 by Roger Backhouse
- Stowe by Neville Evans
- · A Miniature Steam Turbine Turbo Generator by Raymond McMahon
- McOnie's Oscillating Engine by Anthony Mount
- A Practical Approach to Injector Making by Terence Holland
- The National Cycle Museum by Roger Backhouse

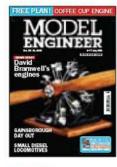
Issue 4333

29 August - 11 September · IMLEC 2008 by Michael

- Jones and Roger Bunce
- My First Boiler by Julia Old Anna by Derek Brown and Mark Smithers
- Machine Tools Schaublin 125 Lathe by Tony Griffiths · A Simple 2-Cycle I/C
- Engine by Jan Ridders (Free Plan) A Unique Petrol Vapour Carburettor by Jan Ridders
- Kelth's Column by Kelth Wilson
- · Hand Grinding Slot Drills by Harold Pearson

Issue 4332

15 - 28 August · Simple Division


- by James Wells
- · Little LEC 2008
- by Jim Wilson
- · 15-Day Skeleton Timepiece by John Parslow
- Stowe by Neville Evans
- · A Miniature Steam Turbine Turbo Generator
- by Raymond McMahon McOnie's Oscillating
- Engine by Anthony Mount Building an Experimental Wind Turbine
- by Marcus Rooks

Issue 4331

- 1 14 August · A Mk. IV Douglas Motorcycle in 1:4 scale by Neville Heath
- · Three Generations of Small Diesels by Andy Probyn
- · Anna by Derek Brown and Mark Smithers
- Machine Tools Schaublin 102 and 90 Lathes
- by Tony Griffiths Merstham Show
- by Brian Davies Russian Master
- by Roger Bunce Longcaseltus!
- by Gordon Gurney · Kelth's Column by Kelth Wilson

- 18 31 July
 - ·Titanic Super Model by David Carpenter Raised Track Points
- by John Berry
- McOnle's Oscillating Engine by Anthony Mount
 15-Day Skeleton Timepiece
- by John Parslow Super Displays again at Harrogate by Roger Bunce
- and Michael Jones Index to Volume 200
- Engineering's Local Heroes
- Timothy Hackworth by Roger Backhouse
- The Postle Motor by David Fenner
- Stowe by Neville Evans

Issue 4329

- 4 17 July · An Extraordinary Engine Builder
- by Roger Backhouse. Coffee Cup Stirling Engine
- by Jan Ridders (Free Plan) My First Boller by Julia Old Anna by Derek Brown and
- Mark Smithers Three Generations of Small
- Diesels by Andy Probyn
- An Engineer's Day Out -Gainsborough Model Railway
- by Roger Backhouse Machine Tools - Schaublin Lathes by Tony Griffiths
- Keith's Column by Keith Wilson

Issue 4328

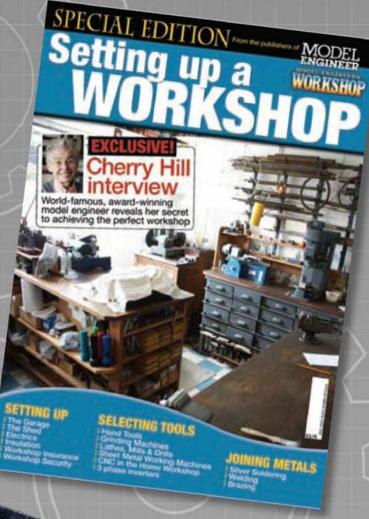
- 20 June 3 July
 Super Displays again at Harrogate by Roger Bunce and Michael Jones
- A Steam Turbine-Powered Model Launch by Malcolm Stride
- · 15-Day Skeleton Timeplece by John Parslow McOnie's Oscillating Engine by Anthony Mount
- Mickey Mice at Newport by Peter Rich Which Vernier Caliper?
- by David Stokes Winning the Lottery! by Roger Bunce
- Short Tapers Made Simple by H. M. Turnbull
- · Stowe by Neville Evans

Issue 4327

- 6 19 June · De Havilland Goblin 35
- Engine by John Heeley
 My First Boller by Julia Old Sinshelm comes to Ascot
- by David Carpenter Anna by Derek Brown and Mark Smithers
- Self-Starting Single-Cylinder Double-Acting Steam Engine by Les Kerr Which Digital Micrometer?
- by David Stokes · Machine Tools -Early Myford Lathes by Tony Griffiths
- Taunton Exhibition 2008 by Robert Coles Kelth's Column

by Keith Wilson

Issue 4326


23 May - 5 June · McOnie's Oscillating Engine by Anthony Mount

- Filing Rest
- by Maurice Turnbull · 15-Day Skeleton Timepiece
- by John Parslow

 Catch Me Who Can: Unique Trevithick Locomotive by Allen Bellamy
- A Lathe Attachment for CNC Mills by Dr Richard Stephen
 Stowe by Neville Evans
- Finishing the Bristol Hydra by Brian Perkins
- Micrometer Survey by David Stokes
- Number Plates by Alan Crossfield

SPECIAL EDITION MAGAZINE SETTING UP A WORKSHOP

Setting up a Workshop is the 'all you need to know' guide for beginners through to advanced metal workers. It teaches you the ins and outs of selecting the workshop, setting up security and selecting machines.

ON SALE NOW at WHSmith or BUY ONLINE at www.myhobbystore.com

probably the best website for machines and tooling in the model engineering world!

just a selection from our current stock

Go to the "new arrival" section of our website: www.gandmtools.co.uk for our latest additions to stock. Check out our ebay shop for many more bargains, go to: www.stores.ebay.co.uk/gandmtoolsales

Jones & Shipman 40" Bench Centres on Stand, £650.00 plus vat.

Colchester Bantam 800 Lathe with Tooling,3ph, needs Cleaning, £695.00 plus vat.

Boxford 190VMC vertical CNC Bench Mill, 1ph, £1250.00 plus vat.

RJH Bison Pedestal Grinder/Polisher, VGC, 3ph, £325.00 plus vat.

Moore & Wright 12"/300mm Vernier Height Gauge, Matt Chrome Easy to Read Scales, Excellent Condition, Case, £85.00 plus vat.

Lathe. Cabinet Stand, 1ph or 3ph, Excellent Condition, Good Choice, £3650.00 plus vat.

Hilger & Watts 8" Precision

Myford Super 7

Bench Lathe, 1ph,

£775.00 plus vat.

Engineers Level with Case, £75.00 plus vat.

Aciera F3 Vertical/Horizontal Milling Machine, 3ph, £1650.00 plus vat.

Europa Milltech 2000 Turret Mill, R8 Spindle, Power Feed Table, Tooling, Variable Speed Head, VGC, 3ph, £2750.00 plus vat.

Chesterman 12"/300mm Vernier Height Gauge with Matt Chrome Easy to Read Scales, Box, Accesories, VGC, £100.00 plus vat.

• Telephone enquiries welcome on any item of stock. • We hold thousands of items not listed above.

 All items are subject to availability.
 All prices are subject to carriage and VAT @ 17.5%. We can deliver to all parts of the UK and deliver worldwide.

Over 7,000 square feet of tools, machines and workshop equipment.

G and M Tools, The Mill, Mill Lane Ashington, West Sussex RH20 3BX

Opening times: 9am -1pm & 2pm - 5pm Monday to Friday.

e-mail: sales@gandmtools.co.uk Telephone: 01903 892510

Closed Saturdays, except by appointment.

web: www.gandmtools.co.uk fax: 01903 892221

M & DIESEL CASTIN

Drawings, castings, fibreglass mouldings, motors and electronic control systems available for the following 5" Gauge locos:

- Class 10* Class 20 (Chopper)
 - De-Winton (Puffin)
- Class 35 (Hymek)
- Planet Diesel
- Metropolitan *
 Dock Shunter
- Class 37 Class 40 (Whistler)
- Mk I Coach
- Class 45 (Peak)
- Class 47 Class 51 (Prairie Tank)
- Class 52 (Western)
- Driving TrolleyRiding Wagon * Available in 5"
- Class 55 (Deltic) For details send 9 x 4, 1st Class 50p S.A.E. to:
 - & 71/4" Gauge Completely built locos, pre-machined kits, castings or drawings supp

Steam & Diesel Castings, 59 The Foxholes, Kidderminster, Worcestershire DY10 2QR

BUY 2 BOOKS AND GET A FREE BOOK WORTH £5.95!

Buy Model Engineering - A Foundation Course together with Building Simple Model Steam Engines Book I and receive Building Simple Model Steam Engines Book II absolutely FREE! Please quote 200F2D98-13F when ordering online or by phone 0844 848 8822

ORDER YOUR BACK ISSUES OF MODEL ENGINEER MAGAZINE ONLINE!

The First Electric Motors Build an Historic Model Engine Kit

All electro-magnetic and working on batteries. Based on original designs from 1836-1860. These fully working engine kits represent how electrical pioneers of the time, tried first to mimic steam engine technology and then made the break through to rotary motion that led to the modern electric motor.

A healthy learning experience from £99.87 and made in England

The Old Model Company Limited PO Box 455 Chichester, West Sussex UK PO18 9ZH Tel and Fax: 01243 575403 email: oldmodels@btinternet.com For much more information and history visit: www.oldmodels.co.uk

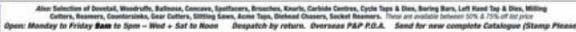
Unit 1, Parkfield Industrial Estate, Barton Hill Way, Torquay, Devon TQ2 8JG • Tel: 01803 328603 • Fax: 01803 328157 • Credit Card Hotline: 01803 326430

Please phone for FREE

Website: www.tracytools.com email: info@tracytools.com MODEL ENG TAPS & DIES SET (2 Tape each size) 1, 140, 1 TAPS £20 SET TAPS £24 SET TAPS £20 SET (10) TAPS £20 SET DIES E20 SET DIES E24 SET DIES E20 SET
DIES E20 SET
DIES E20 SET
DIES E20 SET
DIES E20 SET
DIES E20 SET
DIES E25 SET
DIES E25 SET
E25 IACH SET
E20 IACH SET

E30 FACH SET ES LOT An 4, 5, 6 mt @ £35 £12 5£1 No. O. I. 2 MIT OF EVE EA. No. 3 & £22. £25 SET

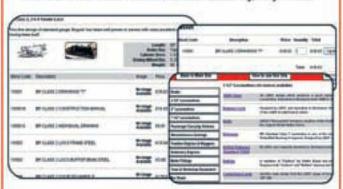
TON O ES SET I DA O ES SET


Ø 625 Ø 612 6 - Idmin Ø 630 367 MAGNETIC BASE Ø 615 KAGN 27 (a - ½) - 1 Junio O E16, I - Grain s. I. Stainless Steel dial Calipers (MM OR IMP) O E12 EACH RE-THREADING FILES (MP OR MAN) OF EN ENCH

31 IN HISS # £15 SET, OR CARRIED TIPPED # 216 SET

DRIEL GAUGES, MP, MAM, LETTER, VEARGER & E4 EACH DRIELS RELOW N, DIA & SOP ALL SIZES COVENTRY DIEWEAD CHASES - ALL SIZES

@ ETO EACH, WITH TIP JEXTRA TIPS EZJ @ EB, ... @ ETJ, ... @ ET4, ... @ ET8 EACH



New Online Shop at www.ajreeves.com

Over 8000 different items available to order 24 hours a day, 7 days a week!

New, secure online ordering from Reeves 2000

Visit the Shop That's Got the Lot!

Castings, Drawings. **Boiler Fittings**, Paint, Transfers, Drills. Taps & Dies, Bar Stock, Rivets, **Bolts, Screws** & Washers, Spring Steel Brazing & Silve

Solders and much more...

Reeves 2000. Appleby Hill Austrey, Warks, CV9 3ER

9:00am-4:30pm Monday - Friday 9:00am-12:00pm Saturday

The World's Largest Stockists of Model Engineering Supplies

The 'Starter Kit'

5 x J&M Easy-flo 2, 1.5mm

50g Easy-flo Fux

(while stocks last, please mention advert when ordering)

Save over £25 on separate selling price

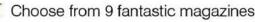
'starter kit' includes 1x50g Easy-flo flux, 5x1.5mmx600mm Easy-flo 2 rods, 1xregulator, 1x3m hose, 1xS3486 handle, 1xS3511 neck tube, 1x2941 burner

JM Always ask for genuine Johnson & Matthey, don't accept anything less!!!

Trade Counter Now Fully Stocked and Open to Callers - ALL WELCOME

Reeves 2000 Appleby Hill Austrey

9:00am-4:30pm Monday - Friday 9:00am-12:00pm Saturday Closed Sun, Bank Holiday Sat & Mon 26th Edition Catalogue


The perfect gift

subscribe & enjoy:

A magazine subscription that's a unique gift which will be enjoyed long after Boxing Day! Why not treat a friend or yourself with our fantastic festive offer today!

💢 The perfect gift at a perfect price

Save up to 28% on the full rate

istmas gift details:

TERMS & CONDITIONS: Offer ends 31st December 2008. Offer available to UK subscriptions only. Subscriptions will begin with the first available issue published in January. Please continue to buy your magazine until you receive your acknowledgement letter. Refund

FREE greeting card to announce your gift Subscribe online and get an extra 10% off	requests must be in writing to the Publisher and will not be given on accounts with less the £20 credit. A £5 admin charge will apply and will be deducted from any refund. Refunds wonly be given at the Publisher's sole discretion. All magazines are published on a monthly basis except for Model Engineer which is published fortnightly. We will use the contact desupplied to communicate with you regarding your subscription.
TO SUBSCRIBE CALL THE ORDER HOTLINE:	OR YOU CAN ORDER ONLINE:

www.subscription.co.uk/myhobbystore/X020

OUR DETAILS (This section must be completed):	Code: X020
Asgazine Title	***************************************
Name Mr/Ms/Miss/MrsInitialSurname	
Address	
PostcodeCountry	
-mail	
iel Mobile	

	(Please make sure you have completed "YOUR DETAILS"):
and the same of the same	re Initial Surname.
Address	

Postcode	Country
E-mail	
Tol	
Tel	Mobile

	CAVE 400/
PAYMENT DETAILS:	SAVE 10%
☐ Cheque/Postal order (Passemak	e payable to MlyHobbyStore Ltd. and write XO19 on the reverse
☐ Credit/Debit Card	

Please debit my: ☐ Mastercard ☐ Visa ☐ Amex ☐ Maestro TOTAL AMOUNT (£):

Post the completed form with your payment to MyHobbyStore Ltd Subscriptions, Tower House Sovereign Park, Market Harborough, Leics LE16 9EF

TERMS & CONDITIONS: Offer ends 31st December. Offer available to UK subscriptions only. Subscriptions will begin with the first available issue published in January. Please continue to buy your magazine until you receive your acknowledgement letter. Perfund requests must be in writin The Miss a Contact Note: One and will not be given on accounts with less than £20 credit. A £5 admin charge will apply and will be deducted from any refund. Refunds will only be given at the Publisher's sole discretion. All magazines are published on a monthly basis except for dealing like and in the product of the Publisher's sole discretion. All magazines are published on a monthly basis except for dealing your subscription. If you are also happy for us to contact you about other products or services available from MyHobbyStore Ltd. please indicate here: Contact by: ☐ email ☐ telephone ☐ mobile. If you are happy for us to pass your details on to other carefully selected companies to contact you about their products or services available from MyHobbyStore Ltd please indicate here ☐ If you do NOT wish us to pass your details on to other carefully selected companies to contact you by POST about their products or services please indicate here ☐

MODEL ENGINEER

MODEL ENGINEERS'

Subscribers, see these adverts five days early!

SUBSCRIBE TODAY AND SAVE £££'S

Machines for sale

- H11-1A lathe, similar to Warco VS1224 without inverter with vertical mill on back and every possible extra including internal and external grinding, Centec 2B horizontal and vertical head, Warco vertical power feeds (miller). Tel: 01827 898441 Tamworth.
- Boxford ME10 screwcutting lathe, single phase 5in. x 22in. with gearbox, power feed, T slotted cross slide, on makers stand with as new three and four jaw chucks, face plate, quick change tool post and holders, handbook and parts list all in VGC, £1150 ONO.
- Tel: 01438 715819 Herts.
- Atlas 5in. lathe, 10in. swing, 24in. between centres, three and four jaw chucks, collets, vertical capability, best offer.
- Tel: 01522 687157 Lincoln.
- IXL treadle lathe, 5in. x 20in. back geared, screw cutting with chucks and gears ETC. in good condition under slight surface rust, offers. Tel 01264 361822
- Machine levelling mounts, set of 4, threaded and adjustable,

- 4in. base, suit Myford or similar, £35 +P&P. Tel: 01253 858 455 Blackpool.
- Denbigh no. 4 fly press complete with stand and some tooling, £200 ONO.
- Tel: 01473 730899 Ipswich.

Machines wanted

- Emco Unimat S.L. model makers lathe and also accessories. Tel: 01635 44482 Newbury.
- Lever feed tailstock attachment for Myford Super 7 lathe, part no. 1440. Tel: 01472 389229 Grimsby.
- Myford Super 7 in fair condition, no gearbox, buyer collects, £800. Tel: 02380 863775 Southampton.

Models offered

- Stanier 4000 gallon LMS riveted tender for class 5XP, 5in. gauge unpainted or with professionally painted livery if required, offers?
- Tel: 01656 785652 Bridgend.
- LMS 2P, 3½in. gauge, part completed, chassis, boiler. Tender finished, unpainted, £750. Tel: 0116 2783549 Leicester.

- Petrola unmachined castings, driving wheels, leading wheels, cylinder set and drawings, buyer collects, offers?
- Tel: 01255 422101 Clacton-On-Sea
- Simplex 5in. gauge drawings and all copper boiler materials except foundation ring, offers? Tel: 01342 832235 East Grinstead.
- 1½in. Alchin, parts all new: set of six spur gears, brakedrum, smokebox hinge, chimney top, brake brackets and rear hub caps, all unmachined, £35.

 Tel: 01332 517475 Derby.
- King, 5in. gauge four cylinder, (not steamed) to exhibition standard. Lankey radial tank, 5in. gauge, B1, 5in. gauge, nicely made and steamed twice, to much to list, phone for details.

 Tel: 01827 898441

 Tamworth.

Models wanted

- Clayton steam lorry in 2in. scale or similar, part built or drawings.

 Tel: 01452 728384 Glos.
- Lorna Doone, 71/4in. gauge 4-2-2 Dean single castings, w.h.y. 020 73710032 Fulham.

Books and magazines offered

- Model Engineer mags, 50 vols. Complete in good condition from vol. 100 (1947) to vol. 149 (1982), offers. Tel: 01258 837467 Dorset.
- Masie book by LBSC £20 plus £3 P&P. Tel: 01226 759204 South Yorks.
- Model Engineer mags, Sept. 96' to Dec. 07', Engineering In Miniature Sept. 95' to Jun. 07' (Dec. 05' missing) any reasonable offer, buyer to collect. Tel: 01789 841605 Warwick.
- Tools & Trades History Society newsletter booklets, each are thirty to forty pages, no. 1 to no. 100current. Six TATHS journals mainly eighty pages each, about £60 for the lot. Tel: 01932 225557 Shepperton.

Information wanted

■ I would like to correspond with any reader who has constructed their own 12/24 volt battery powered locomotive speed controllers and/or diesel engine sounders. Ted, g4egb@yahoo.com Tel: 01723 362537 Scarborough.

FOR SALE Wanted MACHINES Tools MODELS Miscellaneous BOOKS Magazines MATERIALS Information

one & town - please write clearly)
Town:
Please use nearest well known town
Please post to:
David Clark, ME/MEW FREE ADS, MyHobbyStoreLtd,
Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0EL
Photocopies of this form are acceptable. Adverts will be placed as soon as space is available.
PLEASE NOTE: this page is for private advertisers only. Do not submit this form if you are a trade advertiser. If you wish to place a trade advert please contact Duncar Armstrong on 01689 899212 or email duncan.armstrong@myhobbystore.com

Model Engineer Classified

ALL LOCOS AND STEAM ENGINES.

ANY SIZE OR CONDITION EVEN PLAIN WORN OUT! COMPLETE COLLECTIONS PURCHASED FOR CASH! DISTANCE NO OBJECT, AVAILABLE 7 DAYS A WEEK.

PLEASE TELEPHONE 01507 606772 FOR A FRIENDLY AND INFORMAL CHAT.

PENNYFARTHING TOOLS Ltd. The Specialist Tool sh

Quality Secondhand Machine Tools at Sensible Prices

We purchase complete Workshops, Machines, Models and Hand Tools. Agreed settlement on inspection -Distance no object

Tel: Salisbury 01722 410090 Web Site: www.pennyfarthingtools.co.uk

SOUTHERN STEAM

Buy ALL live steam engines

Especially locomotives and traction engines. Partbuilt models also purchased. For speedy prompt service please telephone,

01803 525 043

COMPLETE HOME WORKSHOPS

AND MODELS PURCHASED. DISTANCE NO OBJECT

> Tel: Mike Bidwell on 01245 222743

CLOCK CONSTRUCTION & REPAIR Books by John Wilding and others

Free Catalogue 01420 487 747

www.ritetimepublishing.com

PARTBUILT MODELS BOUGHT. All locomotives, at any stage of

construction. Completed models also bought regardless of condition. Traction engines and all Stuart stationary engines wanted - beam, vertical, horizontal etc, part built or com-plete. Will travel any distance. Please telephone Graham, 0121 358 4320. (T)

NEIL GRIFFIN

 St.Albans, Hertfordshire **Engineering Services**

Machining for Model Engineers From drawing, sketch, pattern etc. Friendly personal service.

Telephone / Fax: 01727 752865 Mobile: 07966 195910

Mallard Metal Packs Ltd

Cowells Small Machine Tool Ltd.

ding freed, 19th Ranting Calchester (107 \$100 Steen Str. (The call (S.1306 St.) PR) a conf. calculatered and

www.cowells.com

LL STEAM ENGINES WANTE

any age, size or condition considered - any distance, any time

ALL 5" GAUGE LOCO'S WANTED

Hunslett, Simplex, Speedy, BR Class 2, Horwich Crab, BR 8400 tank, Maid of Kent, Black Five, Jubilee, Royal Engineer, B1 Springbok, Torquay, Manor,

ALL 3½" GAUGE LOCO'S WANTED

Tich, Juliet, Rob Roy, Firefly, Jubilee, Maisie, Doris, GWR Hall, Britannia, Hielan Lassie, etc.

ALL 7¼" GAUGE LOCO'S WANTED

Paddington, GWR Mogul 43xx, GWR King,

ENGINES WAT ALL TRACTION

Minnie, Burrell, Royal Chester, etc.

ALL PARTBUILT MODELS WANTED

For a professional friendly service, please telephone:

Graham Jones M.Sc. 0121 358 4320

www.antiquesteam.com

Model Engineer Classified

BOOST PHASE CONVERTERS

The UK's most advanced phase converters with a unique 3 year guarantee. Never beaten on price.

Tel: 01344 303 311 Fax: 01344 303 312 Mob. 07952 717960 www.boost-energy.com info@boost-energy.com

BOOST HAS BEEN MANUFACTURING HIGH QUALITY PHASE CONVERTERS IN THE UK SINCE 1957

BOILER SERVIC

COPPER BOILERS FOR LOCOMOTIVES AND TRACTION ENGINES etc. MADE TO ORDER

Constructed to latest European Standards 71/4" guage and P.E.D. category 2 Specialist Enquiries, Prices and Delivery to:

Telephone: Coventry 02476 733461

Mobile: 07817 269164

idge CB21 4XD

Little Samson Steam Tractor Available in 3", 4" and 6"scal

Universal Carrier Steam Lorry

Available in 3"scale Both Models serialised in the Model Engineer Machine cut gears including differential Comprehensive sets of laser out components Lost wax castings, name plates, spun brass chimney caps

Minature Steam Fittings Book £35 inc p&p (UK), signed on request All normally in stock and posted by return Cast wheels option saves weeks of work Catalogue £2.50 post free (UK) Sorry cheques only

For more than 25 years I have been serving model engineers, offering services including the supply of top quality 'used' machines and accessories, valuations, pre purchase inspection of third party machines plus general advice and information. For an online stocklist plus details of services available please go to my website or contact David Anchell direct.

www.quillstar.co.uk

Telephone: 0115 9206123 Mobile: 07779432060

CASTINGS & DRAWINGS FOR 10 DIFFERENT MILL **ENGINES BOTH SLIDE** & CORLISS VALVE

For Details: LAL 9" x 4"

SOUTHWORTH ENGINES www.southworthengines.com

CHESTERFIELD S40 4EW

TEL: 01246 279153

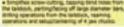
THE TOOL BO

For the best in used hand & light machine tools for all crafts

We also purchase good equipment and set related books, as well as providing a world-wide back-issue service for Model Engineer and Engineering in miniature, we don't publish lists, but if there's something you need, get in touch,

> Open Monday - Saturday throughout the year Colyton, East Devon EX24 6LU Tel/fax: 01297 552868

E-mail: info@the toolbox.org.uk


www.thetoolbox.org.uk

TESLA

SMOOTH, QUIET, HIGH PERFOR VARIABLE SPEED CONTROL FOR YOUR LATHE OR MILL

- How large \$170, Hz 74 and 74
- AMAZING TO YEAR WARRANTYHIS

1987-1997

Supplying to Hodel Engineers and Industry for 10 Years.

STATION ROAD STEAM

Good prices paid for live steam models in any condition, broken or part-built through to exhibition quality. Collections purchased. Lecomotives, traction and stationary engines, benight, sold and part-exchanged.

- Locomotives from gauge 1 to 10 1/4 inch •
- Miniature railway equipment, rolling stock etc Traction engines from 3/4 inch to half full-size •
- Stationary engines from table-top models to full size, including designs by Stuart Turner, Westbury
 Spirit, gas and coal-fired boilers in all sizes
 All types of restoration projects & part-built models.

Fully serviced and tested locomotives and traction engines supplied with our renowned no quibble" written warranty

Large range of items in stock, available for inspection and trial at our premises at any time, by appointment Comprehensive workshop facilities on site. Advice, valuations and driving tuition freely given World-wide mail-order service, goods supplied on 7 days approval, competitive shipping rates.

Fully illustrated and priced catalogue online at www.stationroadsteam.com

Telephone Lincoln 01526 320012

KITTLE HOBBY

Sharp milled (not rolled) brass sections from 1mm to 10mm.

Sold in metres.

Send sae for list to: PO BOX 5, YSTALYFERA. SWANSEA, SA9 1YE

> TEL: 01639 731005 www.kittlehobby.com

Model Engineer Classified

John Styles 5 Heoly Berth Caerphilly CF83 ISP

Non-Ferrous material supplied in all forms, tailored to your need by size & quantity. Aluminium, Brass, Copper & Stainless steel, Silver steel, Gauge plate, B.M.S. steels. Catalogue free,

P.L.Hill (Sales) Ltd

Unit 3 Crownworks, Bradford, BD4 8TJ

Tel/Fax: 01274 733300

Email: pthillsales@aol.com www.pthillsales.com

THINKING OF SELLING YOUR LATHE MILL OR COMPLETE WORKSHOP?

and want it handled in a quick, professional no fuss manner? Contact David Anchell, Quillstar (Nottingham).

0115 9206123 100 07779432060

Model Engineering Products (Bexhill)

www.model-engineering.co.uk Email: mep1@btconnect.com

Manufacturers of 5" and 7"/4" diesel outline battery electric locomotives and rolling stock. Visit our shop to see the stock. Colour brochure inc. p&p £1.75 PHONE/FAX. 01424 223702 MOBILE 07743 337243

> 17, SEA ROAD, BEXHILL ON SEA, EAST SUSSEX. TN40 1EE.

LYNX MODEL WORKS LTD.

Docume House, Multip le Marsh, Allind, Lines LNIS-RP Tel-00XIT-80085 Manke 01899-40089 Website: www.lynx.modelworks.co.uk Email: info@llynxmodelworks.co.uk

WORKING SCALE MODELS AND SPECIALIST SERVICES

Lets Model Works - 5 Specialist Engineers working together to not only hald beautiful Working Live Steam Lecomotives from page 8 to 10 %, Traction Engines from %, to 8° Scale, and Sectionary Steam Plant Engines. We will also complete your art fractional project for you art movements one greater just bought, inherited on simply wish to rejenerate in our Ecotomisms Devision.

We have experise in building, completing and resouring the very beautiful and elegant Carloomis of York range of Working Steam Models and currently have 4 of time highly expected interactive designs being built as specialist commissions for eleman.

Lyon Model Painting and Machining Services will give your charished model that probasinal, final finish and also help you by manufacturing Specialist parts to assist you complete your current or placed prises.

Lyns Model Bollers with a range of Fully Certificated and EC Compilant Copper and Steel Bollers, some co-stock.

We are also Agents for Steam Models and held the ones that Steam don't!

Var our Nebale (www.lynzouldwerls.co.sk) or centact as indep with year equivements for a no-obligation quote or discussion. A full colour A4 Brochure shortly smallable telephone or email for further details.

Renowned Quality & Service Together at the Right Price

ALL MAJOR CREDIT AND DEBIT CARDS ACCEPTED

Call John Clarke on 01507-451565

BA FASTENERS IN BRASS STEEL & STAINLESS

SPLIT PINS, TAPER PINS, ROLL PINS, TAPS, DIES, DRILLS, NUTS WASHERS, RIVETS, MATERIALS

Send Stamped addressed envelope plus four first class stamps for 28 Page List (Overseas £2.50) "Quote Me"

"ITEMS" MAIL ORDER LTD.
Mayfield, Marsh Lane, Saundby,
Nr Retford, Nottinghamshire, DN22 9ES
Telephone 01427 848880 Fax 01427848880

M-MACHINE

Unit 6 Forge Way, Cleveland Trading Estate Darlington, Co. Durham, DL1 2PJ

Metals for Model Makers

Contact us for Copper, Brass, Aluminium, Steel, Phosphor Bronze, etc.

PHONE & FAX 01325 381300

e-mail sates@m-machine.demon.co.uk www.m-machine-metals.co.uk

Dreweatts

'Entries Invited for our Spring Auction' To be sold in our next

Next Sale includes fine model engineered Locomotives, model stationary engines, 3 and 4 inch scale Showmans engines & Traction engines, Cars, 16ft Steam Boat, Signs and Railwayana. Consultant: Michael Matthews MRICS.IRRV

Illustrated Catalogues and sale details, Telephone: 0117 973 7201
Auctions to be held at Dreweatt's - Bristol Auction Rooms.
St John's Place, Apsley Road, Clifton, Bristol. BS8 2ST.

HOME AND WORKSHOP MACHINERY

Genuine Used Machines & Tooling

144 Maidstone Road, Foots Cray, Sidcup, Kent DA14 5HS Telephone: 0208 300 9070 - Evenings: 01959 532199 - Facsimile: 0208 309 6311

www.homeandworkshop.co.uk * stevehwm@btopenworld.com Opening Times: Monday-Friday 9am-5.30pm - Saturday Morning 9am-1pm

10 minutes from M25 - Junction 3 and South Circular - A205

Home and Workshop Machinery "come and take a look"

Myford dividing head £395

Boxford dividing head £895

Myford vertical slide £100 - £245 Boxford vertical slide £345 - £425

Myford 6" 4 jaw chuck £90 - £140 Boxford 6" 4 jaw chuck £85 - £125

Myford collets boxed £275

Boxford collets + draw bar £175 Myford fixed steady £90 Myford travelling steady £40 Myford 9" faceplate We currently have (never used) **Brook Crompton 2HP and 3HP**

1400rpm & 2800rpm motors in stock at just £120 and £140 each!

> Colchester Student 1500rpm (1950 in the rare Summer sun!

in daily!

£750

JUST IN!

Boxford 1130 lathe (not finished)

Boxford AUD 5" x 22" + gearbox & power crossfeed

2000VS Turret milling machine

broaching

Eagle surface grinder + mag table

£3450

Harrison M250 5" x 30 lathe

Colchester Student 1800 / Master 2500

Fobco, Startrite, Ajax & Mastroy C210T lathe Autumn Special

Gabro 24" box and pan folder + Accs.

Crompton/Tyco NEW motor for ML7/Super 7

Collection of fine lathe chucks

Cowells miniature milling machine

Kingsland 39" / 1 metre guiolotine

Waltons 50" 16g guillotine + stops

Boxford 1130 5 1/2" x 30" + stand

Emco Compact 5 lathe, topslide screw-different

Harrison 11" + gearbox + gap bed

Whitworth and BSF

£1 each

to callers

becom

RJH bench grinder / buffer - 240 volts

Milling/Drilling ground X-Y table

Kasenit Mini furnace

Bridgeport milling machine JUST IN - choice

PLEASE PHONE 0208 300 9070 TO CHECK AVAILABILITY OR TO OBTAIN OUR LIST DISTANCE NO PROBLEM! DEFINITELY WORTH A VISIT ALL PRICES EXCLUSIVE OF VAT

Just a small selection of our current stock photographed! We have wood lathes, saw benches, bandsaws, morticers and Record vices etc - large selection!

Chester Machine Tools www.chestermachinetools.com

Comet Lathe Peatures - Powered Crossfeed - Left hand Thread Cutting - T' Stotted Crosslide - T' Stotted Topslide - Digital Speed Display Standard Accessories - 3-km Chuck 100mm - Oulok Change Toolpost - 2 Square Toolpost Holders £846 MT3 & MT2 Steel Centres Manual & Parts List

FEATURES

Engineered from High Grade Castings - Cuts Left and Right Hand Triteads - Bedways Hardened and Ground - Carriage Mounted Spindle Control - Metric/Imperial Dial Graduations -Back Gear Drive - Powered Cross Feed - 'T Slotted Crossities

STANDARD ACCESSORIES

S-Jaw Belf Centering Chuck 160mm - Independent 4-Jaw Chuck - Machine Stand - Fixed Steady - Travelling Steady - 4 Way Toolpost - 2 x MT3 Steel Centres - Centre Sleeve MT5-MT3 - Face Plate - Thread Cutting Dial - Rear Splash Guard

Super Lux

All prices include VAT unless otherwise stated Delivery Free to UK mainland - excluding certain Scottish postcodes. Prices valid for duration of this issue only. * Delivery by quotation

Chester Machine Tools, Clwyd Close, Hawarden Industrial Park CHESTER CH5 3PZ T:+44(0)1244531631 F:+44(0)1244531331 www.chestermachinetools.com email:sales@chestermachinetools.com Midlands Showroom: Unit 4 Plant Lane Business Park, Plant Lane, Burntwood, Staffs, WS7 3JQ Tel 01543 448940

