MODEL ENGINEER

Vol. 200 No. 4322

28 March - 10 April 2008

COVER STORY

Simple clock for beginners

A clutch for the Myford

Brighton show highlights More action from Sinsheim

22

CAN \$8.95 | AUS \$8.95 | NZ \$10.90

Online Catalogue - www.chronos.ltd.uk

SEE US AT THE NORTHERN MODEL ENGINEERING EXHIBITION@HARROGATE MAY 9-11th

GLANZE THREADING, PARTING & PROFILING LATHE TOOLS SETS

NEW TOP QUALITY INDEXABLE TOOL SETS FROM GLANZE

THIS SET INCLUDES THE FOLLOWING GLANZE INDEXABLE LATHE TOOLS 10/12MM SHANK EXTERNAL THREADING TOOLS HOLDER WITH 2 X 60 DEGREE METRIC CARBIDE INSERTS

10/12MM SHANK INTERNAL THREADING TOOL HOLDER WITH 2 X 60 DEGREE METRIC CARBIDE INSERTS

10/12MM SHANK PROFILING TOOL WITH 2 X 5MM DIAMETER CARBIDE INSERTS

10/12MM SHANK PARTING TOOL WITH 2X2MM CARBIDE PARTING INSERTS SUPPLIED IN A GOOD QUALITY FITTED CARRY CASE COMPLETE WITH TORX KEY

SHANK SIZE 10MM SQUARE 12MM SQUARE

PRICE £115.00 £125.00

GLANZE FACE MILL CUTTER SYSTEM

NEW FROM GLANZE. ABSOLUTE TOP QUALITY INDEXABLE FACE MILL CUTTERS AND SHANKS! SUPPLIED WITH QUALITY APKT 1604 INSERTS AND IN PLASTIC STORAGE CASES

FACEMILL CUTTERS COMPLETE WITH SHAN					
CODE	SET	PF			
761503MT	50MM HEAD ON 3MT SHANK	£1			
76150R8	50MM HEAD ON R8 SHANK	£1			

63MM HEAD ON 3MT SHANK 63MM HEAD ON R8 SHANK

S RICE 29.95 129.95 £144.99 £144.99

FOR SQUARING THE HEAD ON YOUR MILLING MACHINE REF: SDP 450

SPINDLE SQUARE SYSTEM

NEW PATENTED

PRODUCT

CODE 773260

761633MT

76163R8

50MM DIAMETER FACE MILL CUTTER STD 25MM BORE COMPLETE WITH 5 INSERTS & A TORX KEY £110.00

CODE 773270

63MM DIAMETER FACE MILL CUTTER STD 25MM BORE COMPLETE WITH 6 INSERTS & A TORX KEY £129.95

CODE 7613MT

3 MT FACE MILL CUTTER ARBOR SUITABLE FOR THE ABOVE CUTTERS, CAN ALSO BE USED AS A SLITTING SAW ARBOR AS SPACING RINGS AND KEYWAY ARE INCLUDED!. TAPPED 3/8 BSW FOR A DRWBAR £29.95

CODE 76163R8

R8 FACE MILL CUTTER ARBOR SUTABLE FOR THE ABOVE CUTTERS, CAN ALSO BE USED AS A SLITTING SAW ARBOR AS SPACING RINGS AND KEYWAY ARE INCLUDED!. TAPPED 7/16 UNF FOR A DRAWBAR £29.95

NEW DRY ACID PICKLING SALTS

500 GMS - MAKES UP TO 8 LITRES OF ACID DIP SOLUTION CODE ACD100 £12.95

ADVANTAGES OF THE SPINDLESQUARE

- SELF CALIBRATING UNIT NO NEED FOR ANY ADDITIONAL MEASURING TOOLS!
- COMES FULLY ASSEMBLED WITH TWO INDICATORS MOUNTED
- CAN BE USED TO SQUARE ANGLES WITH A SINE BAR.
- PACKAGED IN CUSTOM ALUMINIUM CASE.
- MACHINEST DESIGNED AND TESTED FOR ACCURACY AND EASE OF USE.

PRODUCT SPECIFICATIONS

- FULLY ASSEMBLED WITH TWO 2" DIAMETER DIAL INDICATORS 001 INCREMENT LEVEL.
- 4" BETWEEN CONTACT POINTS.
- GROUND SURFACE, SOLID STEEL CONSTRUCTION OF BODY SHANKTO END OF CONTACT POINTS.
- ACCURACY TO 001 INCH

Fax: (01582) 471920

£115

PHONE FOR DETAILED LEAFLET OR SEE IT ONLINE AT WWW.CHRONOS.LTD.UK

ALL PRICES INCLUDE VAT & CARRIAGE (UK MAINLAND)

(Prices are correct at time of going to press and are only available while stocks last)

Tel: (01582) 471900 5 Lines

MAGICALIA PUBLISHING LTD.

Berwick House, 8-10 Knoll Rise, Orpington, Kent BR6 0EL UK Calls: 0844 412 2262 International Calls: +44 (0)1689 899 200 Fax: +44 (0) 1689 899266 Email: customer.services@magicalia.com

SUBSCRIPTIONS

UK SUBSCRIPTIONS NEW, RENEWALS AND ENQUIRIES Tel: 08456 777807

Email: modelengineer@subscription.co.uk

USA & CANADA SUBSCRIPTIONS NEW, RENEWALS AND ENQUIRIES Tel: 001 732-424-7811 Fax: 001 732-424-7814 Email: subs@ewamags.com

> REST OF WORLD SUBSCRIPTIONS NEW, RENEWALS AND ENQUIRIES Tel: +44 (0) 8456 777807

TO SUBSCRIBE ONLINE, PLEASE TURN TO THIS ISSUE'S SUBSCRIPTION OFFER

PLANS, BACK ISSUES, BINDERS Tel: +44 (0) 844 412 2262

Email: customer.services@magicalia.com

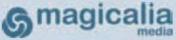
EDITORIAL

Editor: David Carpenter Tel: 01689 899255 Production Editor: Kelvin Barber Technical Editor: Roger Bunce Assistant Editor: Michael Jones Associate Editor: Malcolm Stride

PRODUCTION

Designer: Anne Heppelthwaite Simon Gould Commercial Designer: Ben Wright Retouching Manager: Michelle Briers Production Manager: Richard Baldwin Ad Production: Robin Gray Tel: 01689 899286

SALES AND MARKETING


Sales Director: James Burton Tel: 01689 899237

Senior Sales Executive: Duncan Armstrong Tel: 01689 899212

Email: duncan.armstrong@magicalia.com Marketing & Subscriptions Executive: Chris Webb Email: chris.webb@magicalia.com

MANAGEMENT

Events Director: Jez Walters Creative Director: Nikki Parker Managing Director: Owen Davies Executive Board: Peter Harkness, Owen Davies, Adam Laird, Jeremy Tapp

MAGICALIA PUBLISHING LTD. 2008 All rights reserved ISSN 0026-7325

The Publisher's written consent must be obtained before any part of this publication may be reproduced in any form whatsoever, including photocopiers, and information retrieval systems.

All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from negligence of our staff. Reliance placed upon the contents of this magazine is at reader's own risk.

Model Engineer is published for \$136.00 per year by Magicalia Publishing Ltd c/o EWA Magazines, 205 US Highway 22, Green Brook, NJ 08812. www.ewamags. com. Periodicals paid at Green Brook, NJ. Postmaster please send address correction changes to Model Engineer c/o EWA at the address above

IN THIS **ISSUE** IN IN THIS ISSUE IN THIS ISSU

Vol. 200 No. 4322 28 March - 10 April 2008

369 SMOKE RINGS

An inspiring steam roller plus Society of Ornamental Turners celebrate.

370 POST BAG

Letters to the editor.

373 15-DAY SKELETON TIMEPIECE

John Parslow shares his design for a first clock for model engineers.

376 MAKING THE MOST OF THE MYFORD

Graham Howe's simple but effective clutch for the Myford.

378 POP-POP MOTOR

John Ryder achieves success with his motors after much perseverance.

380 MACHINE TOOLS

Tony Griffiths charts the small shaping machines available.

382 STEAM SENSATION AT SINSHEIM

Michael Jones concludes his reports.

385 STOWE

More on Neville Evans' latest loco.

389 SEQLEC

Details of this July's 71/4in. gauge Locomotive Efficiency Competition.

390 BRIGHTON MODELWORLD 2008

Malcolm Stride enjoys his first visit to this annual modelling show.

392 PETE'S PAGE

Peter Spenlove-Spenlove advises on making washers.

393 CAMBRIDGE OLD SEWAGE PUMPING STATION AND REPLICA PUMPING ENGINE

Donald Unwin describes the Hathorn Davey pumping engine.

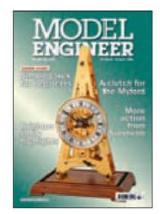
396 FINISHING THE BRISTOL HYDRA

Brian Perkins struggles with valve timing.

399 SMEELEC

Mike Kapp outlines a new energy saving competition for this year's Model Engineer Exhibition.

400 RACHEL


Stan Bray explains how to machine a flywheel.

402 NEWS

News from the trade and clubs in the UK and around the world.

404 DIARY

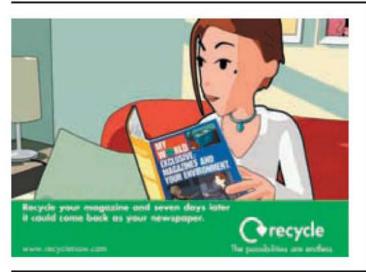
Forthcoming events.

ON THE COVER...

The delightful clock built by John Parslow. This clock is designed as a first clock for construction by model engineers, easy to make and accurate enough for general use. The series giving clear instructions to budding clock makers begins in this issue on page 373.

(Photograph by John Lynch)

PHONE 08456 777807 TO TAKE ADVANTAGE OF OUR LATEST SUBSCRIPTION OFFER

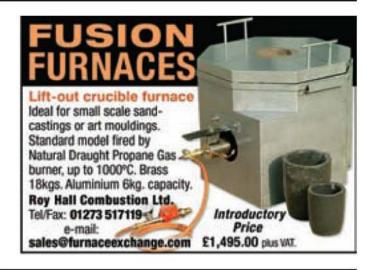

12 & 24V MOTORS AND SPEED CONTROLLERS
SPROCKETS AND CHAIN . GEARS
SPEEDO'S . AMMETERS . BATTERY CHARGERS
PNEUMATICS INCLUDING VACUUM/PRESSURE PUMP
BATTERY CARE PRODUCTS . SPRINGS . BEARINGS
WHEEL BLANKS . SIGNALS . FUSES . LED'S . SWITCHES

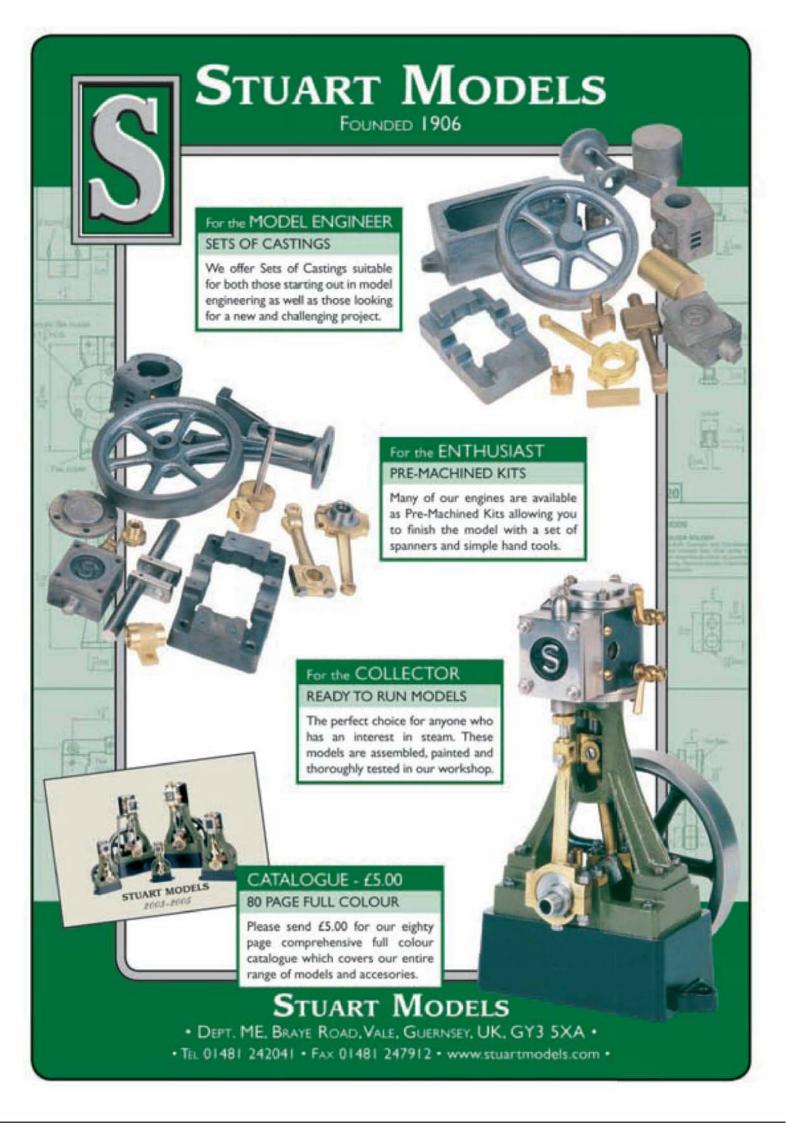
TEL:0870 9089373 (national rate) FAX:01282 613647

EMAIL: pselectronics@btinternet.com FOR YOUR FREE LIST

PARKSIDE RAILWAYS

UNIT 2e & 3J, VALLEY MILLS, SOUTHFIELD ST. NELSON. LANCS. BB9 OLD




Insurance for Modellers & Model Engineers Clubs, Societies and Individuals Public Liability, Models, Personal Accident, Road Trailers, Home Workshops, Road Traffic Act Directors & Officers, Boiler Testers Professional Indemnity Thinking about taking out cover or your renewal coming up? Phone FREE on 0800 783 0878 for full details Walker Micgley Insurance Brokers Yorkshire Bank Chambers, Fargate, Sheffield S1 2HD www.walkermidgley.co.uk Attanged by Walker Maginy Insurance Brokers Ltd & Underwritten by Rayal & San Allarus Insurance pic

Authorised and Regulated by the Financial Services Authority

THE MOST VERSATILE TOOL FOR TURNING & FACING

It's easy to see why our biggest selling turning tool is the SCLCR. It can turn and face a bar without altering the toolpost, and the 80° nose angle gives much more strength than a 60" (triangular) insert.

The NJ17 insert cuts steet, stainless, cast iron, phosphor bronze, brass, copper, aluminium etc. Please state shank size required - 8, 10 or 12mm square section. Spare inserts £5.36 each for 8-10mm tools, £6.20 for 12mm.

SPECIAL OFFER PRICE £33.90 (MRRP = £64.04)

USE THE OTHER 2 CORNERS FOR ECONOMY!

Our SCRCR rough turning tool uses the same inserts as the 6.8 & 10mm sq SCLCR tool above, and the boring bar below. The good news is that it uses the other two corners! These very strong 100° corners are rigid enough for rough or intermittent turning. The insert is mounted at 75 deg to the lathe axis. 10mm sq section only.

SPECIAL OFFER PRICE £35.90 (MRRP = £64.04)

PROFILING WHEELS or SHAPING AXLES & PILLARS?

If you need to create complex shapes, our SRDCN button tool is invaluable. The 10mm square shank holds a 5mm dia cutting insert, and gives great versatility, superb strength and excellent tool life.

Mr D Hudson of Bromsgrove SME has used these tools since 1995 to profile the special form of tyre treads for his self-steering wheel sets with great consistency. Spare nserts just £4.55 each.

SPECIAL OFFER PRICE £33.90 (MRRP = £62.77)

SPECIAL OFFER PRICE £33.90 (MRRP = £64.04)

TURN SMALL DIAMETERS with LIVE CENTRE IN PLACE!

The SDJCR tool uses a 55° insert, allowing access to small diameter components when using a tailstock centre. It can also profile back-angles. The NJ17 insert cuts steel, stainless, cast iron, phosphor bronze, brass, copper, aluminium etc. Shank size 10mm square section. Spare inserts just £5.36 each.

A TOP QUALITY BORING BAR FOR YOUR LATHE

Bar Dia	Min Bore	Here's your opp
8 mm	10 mm	bar which uses shank boring ba
10 mm	12 mm	approx 5 times t
12 mm	16 mm	Please state bar
16 mm	20 mm	10, 12 or 16mm.

Here's your opportunity to own a top quality boring bar which uses our standard CCMT06 insert. Steel shank boring bars can generally bore to a length of approx 5 times their diameter. Please state bar dia required - 8, 10, 12 or 16mm. Spare inserts

SPECIAL OFFER PRICE £36.90 (MRRP = £81.84)

WAKE UP FROM YOUR NIGHTMARE WITH KIT-Q-CUT!

The original and famous Kit-Q-Cut parting tool fits the vast majority of ME tathes, including ML7 & ML10 machines, regardless of toolpost tupe. The tool can effortlessly part through 1.5/8" dia. bar.

It comes complete with key to insert and eject the tough, wear resistant insert. Cuts virtually all naterials. Spare inserts just £8.37 each

SPECIAL OFFER PRICE £49.50 MRRP = £79.5

55° NEUTRAL THREADING and PROFILING TOOL

Our SDNCN tool with neutrally mounted 55° insert allows Whitworth. BSF & BSP threads to be generated, as well as profile turning - both towards and away from the chuck. The 10mm square shank comes as standard with 0.2mm point radius insert. Inserts also available with 0.4mm or 0.8mm radius at the same price of £5.36 each.

SPECIAL OFFER PRICE £35.90 (MRRP = £64.04)

EXTERNAL THREADCUTTING TOOL

Our range of external threading tools use the industry standard 'laydown' 16 mm triangular (3-edged) inserts. By using tough, fully ground HSS inserts, coated with Itanium nitride for wear resistance and smooth cutting. threads can be cut at slow speeds - even by hand-revolving the chuck! Tools are right handed as shown in icture. Insert not included - order separately at £12.74.

SEE OUR WEBSITE FOR MORE INFORMATION

SPECIAL OFFER PRICE £38.60 (MRRP = £61.10)

TURNING/BORING/PARTING TOOLS COME COMPLETE WITH 1 INSER

Please add £2.00 for p&p, irrespective of order size or value

GREENWOOD TOOLS **Greenwood Tools Limited**

2a Middlefield Road, Bromsgrove, Worcs. B60 2PW Phone: 01527 877576 - Fax: 01527 579365

Email: GreenwTool@aol.com

Buy securely online: www.greenwood-tools.co.uk

Features: Preserved Railways, Steam Centres, Transport/Industrial Museums & Collections, Ship/Canal/ Aircraft & Military Vehicle Collections & Steam Operated Miniature Railways

IN ALL OVER 96 PAGES -PACKED WITH INFORMATION

PLUS £1

IN GREAT MONEY SAVING **VOUCHERS TO THE UK'S** LEADING VENUES

Enjoy our heritage this Summer with this comprehensive guide.

Nearly 700 places to visit with 1,250 great show in the diary.

WITHOUT 'STEAM HERITAGE' YOU DON'T HAVE THE WHOLE PICTURE AND YOU WILL MISS SEEING FASCINATING MUSEUMS AND SOME GREAT SHOWS! OUT END OF MARCH 2008 - price £3.95 or by post just £4.70 inc. p&p

PHONE 01926 614101 or see website

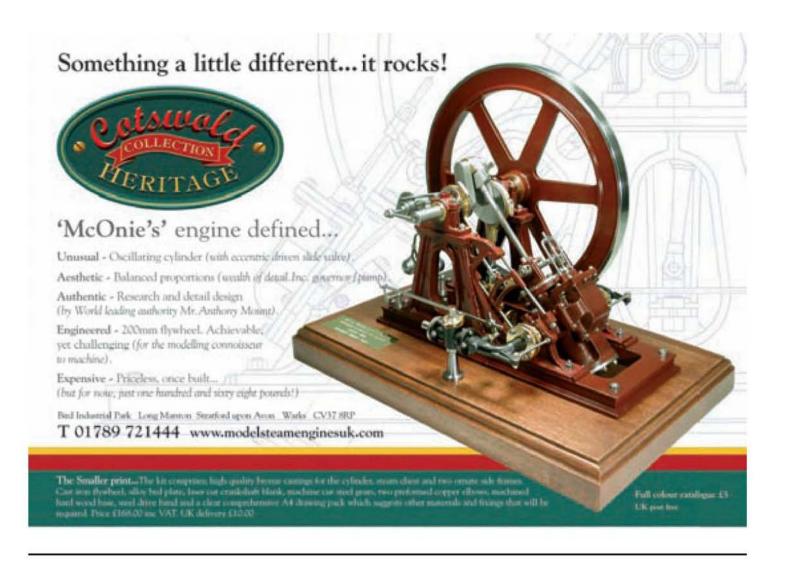
Available from all good newsagents

The Fosse Fosse Way Leamington Spa CV31 1XN

TEE Publishing Ltd T 01926 614101 01926 614293

info@teepublishing.co.uk

www.teepublishing.co.uk



Yes, 3000! Plans for model builders of all persuasions, Aircraft, Boats, Locomotives, Traction Engines, Steam and IC Engines. We even do Woodworking plans.

See and Buy all of the MAP, Argus, Nexus ranges @

OPEN TO CALLERS - Monday-Friday 9.00am - 5.00pm SATURDAY 9.00am - 12.00 noon

E-Mail: peteglr@btopenworld.com

Send 6 first class stamps for catalogue & Price List

• Fax: 01327 876396

• Tel: 01327 878988

Web site: www.modelmakingsupplies.co.uk

SOUTH WEST

Model Engineering, Model Making &

Hobbies Exhibition

A Great Day Out

12th & 13th APRIL 2008

9.30am - 5.30pm daily

Royal Bath & West Showground Shepton Mallet, Somerset

Model Aircraft Displays, Boating Lake, Locomotive Displays and Rides, Fairground, Military Displays, Figures, Car Models and much much more..

Adults £8 Concessions £7 Including a free Show Guide Accompanied children under 16 free FREE PARKING

Book tickets online to get £2 off www.nwe.co.uk

USE OFFER CODE MEF8

IF YOU WOULD LIKE TO BOOK A STAND PLEASE CONTACT NADINE

Good Information **Good Instruction** Great Read

The Ultimate Tesla Coll Design and Construction Guide *Tilbury * £22.09

The title tells you all you need to know about this book - it is the state of the art of Yesla Coil designing and making, But - it is highly technical; this is practical electrical engineering applied to Tesla Coils, and you need to be computer literate and understand terms such as skin effect, non-uniform electric fields,

thermal rise from ambient and so on to get the best from this book. If you don't, you can still learn a lot, but you are going to have to stretch the brain cells quite a bit. This is complicated and technical, but all the information you dreamt of about Tesla Coils appears to be in its pages. If you want to make the sparks By....! 413 page paperback, full of graphs, diagrams and some drawings.

Original Articles from AMATEUR WORK ILLUSTRATED . Hasluck, Lulcin & Durrance . £7.35

The bulk of this fascinating book reprints two series of sequential articles from the 1880s, the first by Paul Hasluck, the second by James Lukin, on lathes, their constituent parts, and how the amateur could build his own machine. The third article is on building lathe chucks - not the three or four-jaw variety, but still with some useable information. However the real value of this modestly priced book lies in Lukin's article, which would com-

bine well with either the Gingery or the Mason books to help you build your very own lathe. 109 very well illustrated pages. Paperback.

STATIONARY ENGINE MAGAZINE on Model Making • Mason • £10.70

Around two-thirds of this book are devoted to the construction of a 1/2 scale model of a Fairbanks Morse Eclips: engine from an (American) set of castings - full details of these are in the book. Other sections cover making a Lister Grinding Mill, as well as other stationary engine models. Whilst not a conventional 'blow-by-blow' construction manual, there is a huge amount of useful information here for those who wish to construct working models of vintage stationary IC

engines. 62 very well produced and illustrated pages. Paperback.

"The Home Shop Machinist" - very well produced, this bi-monthly magazine focuses on workshop techniques. Virtually every skill needed in the workshop is covered from time to time and the building of workshop tools is a major feature of the magazine. The style is very down to earth as the articles are written by practical (model) engineers with practical rather than theoretical. objectives in mind. A tremendous magazine which will appeal to all model engineers, or "do it yourself" enthusiasts working in metal, who wish to broaden their range of skills.

*SAMPLE COPY + £ 6.65

"Live Steam" - first published in 1966 and the original American model engineering magazine, Live Steam is largely steam orientated, covering rall, road, marine and stationary steam engines, both model and full size. No workshop technique articles, as these are found in sister magazines. such as The Home Shop Machinist. There is an American bias. but there are regular articles by non American writers, including the great Kozo Hiraoka. Bi-monthly.

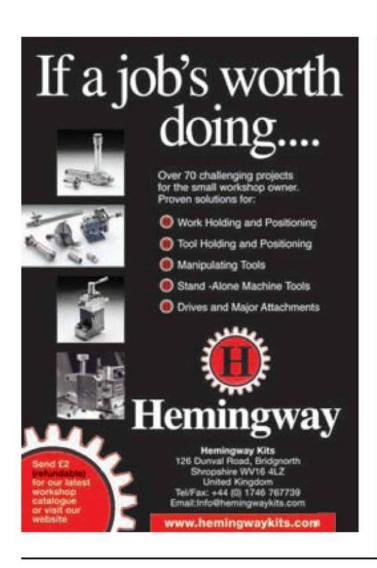
*SAMPLE COPY + £ 7.45

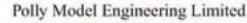
"Australian Model Engineering" - bringing you the best from around the world, here is a really GREAT bimonthly magazine, reminiscent of the old Model Engineer. Very well produced, and with a lot of technical interest for the model engineer, although understandably many of the railway related articles are concerned with Australasian prototypes, and fascinating they are. Also included on a regular basis are boats, clocks, workshop items, Club News (Antipodean!) etc. Try a copy, we GUARANTEE you will like it!

SAMPLE COPY +£ S.45

Prices shown INCLUDE U.K. Post & Packing

Come and see our stand at the South-West Model Engineering Exhibition, Bath & West Showground, Shepton Mallet on the 12th & 13th April.


Mail Order (no stamp required in the U. f.) to: CAMDEN MINIATURE STEAM SERVICES FREEPOST (BA 1502) Rode Frome Somerset BA11 6UB Tel: 01373-830151 Fax: 01373-830516



On-line ordering: www.camdenmin.co.uk

Incorporating Bruce Engineering

For all your model engineering requirements.

Monadastuary of the renewand Pully 5"
gastap passenger handing, coul fired steam lock kits, which are easily assembled with hand tooks and minimal skill. Pully loce kits provide an ideal introduction to the model engineering hobby. Latest Pully VI illustrated, kill price only £5995 inv VXI.

POLLY MODEL

Manufacture is complemented by our Bruce Engineering Model Supplies business, giving a comprehensive range of steam fittings, accessories, materials, banks, etc. We specialise in supply of quality injectors (JC, Chiverton), pressure gauges, etc.

Stationary englise kind we produce a wide tange of over 45 different models, including designs by Anthony Mount, our own large R&B gis engine, etc., and supply the full range of Struct Models.

Practical Scale: Drawings, Castings, but was, pure, laser eat frames, CNC rods, CNC platework, etc for the range of locus designed by Newille Evans and sortalised in Model Engineer.

See us at exhibitions or find these & other items in our Supplies Catalogue CL75 posted UK 55 worldwide Polly Loco Kit Catalogue CJ Steam Models Catalogue CS

Pully Model Engineering Ltd (Inc.Bruce Engineering) Bridge Court, Bridge St., Long Eaten, Notlingham, NG10 4QQ left. 0115 9736700 fax. 0115 9737251 www.pollymodelengineering.co.uk

VISA

phone for Unit 1, Parkfield Industrial Estate, Barton Hill Way, Torquay, Devon TQ2 8JG Tel: 01803 328603
 Fax: 01803 328157
 Credit Card Hotline: 01803 326430 ALWAYS AVAILABLE MODEL ENG TAPS A DIES SET CF Tapes each sized 's 1 40, 's DIES E20 SET
E20 E20 SET Website: www.tracytools.com email: info@tracytools.com EAPS 620 SET TAPS 624 SET TAPS 620 SET 88 LOT No. 4, 5, 6 ant @ 238 E12 SET E25 SET 3" DIA @ E6 SET 2" DIA @ E5 SET Ø 825 Ø 812 8 - 10m/m Ø 830 SET MAGNETIC BASE Ø 815 BACH Tu - V. 1 - Timbe & ETB, 1 - Simile & . 1: STAINLESS STEEL DIAL CALIPERS (NAM OR NO) & ETZ EACH RE-THREADING PILES (MF OR NAME) OF EN EACH 31 IN HES & ETS SET, OR CARBIDE TIPPED & ETS SET DMILL GAUGES, MAY MAN LETTER MEASURER & 64 EACH DMILLS BELLIN IL DIA & 50p ALL SIZES DRELS WITH V. SHARK V. V. V. V. V. V. V. DIA & ETS SET

DRELS WITH V. SHARK V. V. V. V. V. DIA (CAR ST WILE FOR BRAING BARK OR SWALL FORCASTS (S. F. D. DIA (CAR ST WILE FOR BRAING BARK OR SWALL FORCASTS (S. F. D. DIA (CAR ST WILE FOR BRAING BARK) OR SWALL FORCASTS (S. F. D. DIA (CAR ST WILE FOR BARK) OR SWALL SET WARROWS DRELS, SELDIN V. DIA TO EACH STUD, QUECK SPRAL SLOW SPRAL LEFT HARD, & ES EACH TYPE KNURLING TOOLS, 2 WHELL DIT & ES, 6 WHELL DIT & ENG SPRAK KNURLE ET EACH)

ADMIN PRECISION DRILL CHUCKS, WITH NO. 1 OR No. 2 MODISE TAPER ARRODS COVENTRY DIEMEAD CHASES - ALL IUTS O E10 EACH, WITH TO JEXTRA TIPS EZJ - 0 E7 - 0 EE - 0 E10

Albus Selection of Devetail, Woodraffe, Ealinese, Concave, Spellacers, Broaches, Knuris, Carlide Centres, Cycle Taps & Dies, Boring Bars, Left Hand Tap & Dies, Milling Cutters, Resiners, Countersinks, Gear Cutters, Stitting Saws, Acres Taps, Diehead Chasers, Socket Reamers. These are positively extreme SON & 70% of the price Opens: Monday to Friday Bars to Spots — Wood + Sait to Noon Despatch by return. Oversons P&P R.O.A. Send for new complete Catalogue (Stamp Pinase)



New Online Shop at www.ajreeves.com Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week! Over 8000 different items available to order 24 hours a day, 7 days a week!

Visit the Shop That's Got the Lot!

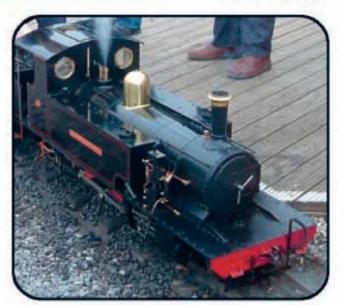
Castings,
Drawings,
Boiler Fittings,
Paint,
Transfers,
Drills,
Taps & Dies,
Bar Stock,
Rivets,
Bolts, Screws,
& Washers,
Spring Steel,
Brazing & Silver
Solders
and much more....

Reeves 2000, Appleby Hill Austrey, Warks, CV9 3ER

9:00am-4.30pm Monday - Friday 9:00am-12.30pm Saturday Closed Sun & Bank Holiday Sat & Mon

The 'International Range' of Boiler Fittings

The World's Largest Stockists of Model Engineering Supplies



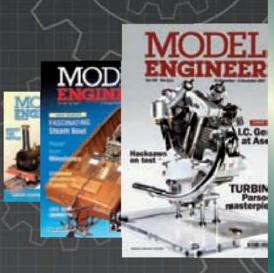
New Addition

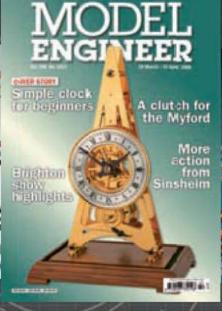
5" NG 2-6-0T Loco and Tender

Aquila

castings and drawings available

as featured in Model Engineer...


Trade Counter Now Fully Stocked and Open to Callers - ALL WELCOME


Reeves 2000 Appleby Hill Austrey Warks CV9 3ER 9:00am-4:30pm Monday - Friday 9:00am-12:30pm Saturday Closed Sun & Bank Holiday Sat & Mon

Tel: 01827 830894 sales@ajreeves.com Fax: 01827 830631 http://www.ajreeves.com 26th Edition Catalogue

UK: £7.00 reptp Europe: £8.00 reptp Rest of World: £12.00 reptp New Pore Lat 4 to Clean States

subscribe

when you subscribe online

BY PHONE: 08456 777 807 quote ref. E741 ONLINE: www.subscription.co.uk/mde/E741

Alternatively, you can complete the form below and return, with payment, to the address provided

١	U	K	O	N	L	۲.	S	U	В	S	C	н	II	,	I	O	N	IS	,

- ☐ I would like to subscribe to Model Engineer for 2 years (52 issues) with a one-off payment of £100.00, SAVING 30%
- ☐ I would like to subscribe to Model Engineer for 1 year (26 issues) with a one-off payment of £53.50, SAVING 25%

OVERSEAS SUBSCRIPTIONS:

- ☐ I would like to subscribe to Model Engineer for 1 year (26 issues) with a ☐ ROW Airmail £85.00
- For all Canadian, North and South American subscriptions please call 001 732 424 7811 or go to www.ewamags.co

PAYMENT DETAILS:

□ Postal Order/Cheque □ Visa/Mastercard □ Maestro Please make cheques payable to Magicalia Publishing Ltd and write code E741 on the back

Cardholder's name Card no: (Maestro)

Expiry date Maestro issue no. Valid date

Signature. YOUR DETAILS:

Mr/Mrs/Miss/Ms. .Inital..... Surname

Address

Country. Mobile.

E-mail

DIRECT DEBIT SUBSCRIPTIONS (UK ONLY):

□ I would like to subscribe to Model Engineer and SAVE 27%, paying £12.99 every 3 months by Direct Debit (UKONLY) Please complete form below

Instructions to your bank or building society to pay by Direct Debit. Originator's reference 422562

☐ Pay £12.99 every 3 months by Direct Debit (please tick)

De bit

Name of bank	
Address of bank	
	Postcode
Account holder	
Signature	Date

Sort code Account number Instructions to your bank or building society: Please pay Magicalia Publishing Ltd.
Direct Debits from the account detailed in this instruction subject to the safeguards assured by the
Direct Debit Guarantee. I understand that this instruction may remain with Magicalia Publishing Ltd and
if so, details will be passed electronically to my bank/building society.

Reference Number (Official use only)

Please note that banks and building societies may not accept Direct Debit instructions from some types of account. TERMS & CONDITIONS: Offer ends 10th April 2008. Subscriptions will begin with the first available issue. Please continue to buy your magazine untill you receive your acknowledgement letter. Refund requests must be in writing to the Publisher and will not be given on accounts with less than £20 credit. A£5 admin charge will apply and will be deducted from any refund. Refunds will only be given on accounts with less than £20 credit. A£5 admin charge will apply and will be deducted from any refund. Refunds will only be given at the Publisher's sole discretion. We will use the contact details supplied to communicate with you regarding your Model Engineer subscription. If you are also happy for us to pass and description and Magicalia Publishing Ltd. please indicate here: Contact by: | email | telephone | mobile. If you are happy for us to pass your details on to other carefully selected companies to contact you about their products and services please indicate here: Contact by: | email | telephone | mobile. If you are happy for us to pass to the products of Model Engineer and Magicalia Publishing Ltd. please indicate here □ If you do NOT wish us to pass your details on to other carefully selected companies to contact you by POST about their products or services please indicate here □

SEND TO: MODEL ENGINEER SUBSCRIPTIONS, TOWER HOUSE, SOVEREIGN PARK, MARKET HARBOROUGH, LEICS LE16 9EF

KERINGS SN SS SMOKE RI S SMOKE PY

Inspiring roller

In Martin Wallis' report of last summer's traction engine rallies (*M.E.* 4317, 18 January 2008)

there is a photo of a 1:3
scale steam roller, a very
nice Aveling and Porter
weighing in at 15cwt.
We have since had the
pleasure of hearing from
the builder, Gerry Downend
of Barnsley.

Gerry tells us he embarked on this little project at the age of 77, and he has given details of some of the construction of this mainly fabricated roller.

It is fitted with a differential based on the design of G. W. Ackland and described in *M.E.* Vol. 147, page 934, "which made the old grey matter work."

Spur gears were all 6DP, and the turning of the main gears and the casing, was carried out on a milling machine, using an adapted lathe top slide.

"I had a small bench 2ft. square with a ¾in. steel plate on which I bolted a 1½in. shaft about 20in. long, then fitted one collar on the wheel and another to retain the wheel from moving sideways. Then the lathe top slide was fitted to turn the edges of the wheels.

"I then fitted a motor on a board and a few weights to tension the belt around the wheel, which was 20in. diameter. A carbide tool stood up to the job and time finished the work with a few blue turnings down my shirt."

Gerry also pointed out that there is another AP roller to

be seen in *M.E.* It's in Vol. 148 page 255, and it was built by A. Nash of Derby.

It would be good to see a few more steam rollers around our rally fields. Gerry's effort should be an inspiration to the rest of us.

Diamond turners

This year sees the diamond anniversary of the formation of the Society of Ornamental Turners. Set up to help prevent the craft sinking into obscurity, it has since revived to become thriving hobby.

Daventry Town Council is taking part in Museum & Galleries Month in May and knowing that 2008 is the 60th anniversary of The Society of Ornamental Turners, invited its members to join in and put on an event.

The event, entitled The Craft of Nobility & Gentry, is to be held on Saturday and Sunday 3 and 4 May at the Daventry Town Council Museum, in Bishop Crewe House, North Street, Daventry NN11 4GH.

The society will be demonstrating the craft, and art, of ornamental turning on a Holtzapffel lathe and there will be displays from its collection of items in exotic wood and ivory. The event will be open 10.00am to 2.00pm on both days. Entrance is free and tea/coffee will be available. Car Parking is nearby and free. Contact T. 01327 703970

Ron's reward

Winner of this year's Joe Martin Foundation, Metalworking Craftsman of the Year award, is Ron Colonna of McKeesport, Pennsylvania. He will receive a gold medallion and a cheque for \$2,000. Ron is the 12th winner of the award.

It is given to a person who has "contributed to craftsmanship through a lifetime body of high quality work that demonstrates a wide variety of metalworking skills, at the small end of the size scale." Emphasis is also placed on those who have inspired others to build projects and improve their skills.

Ron's interest in engines started in his youth. He flew

model aircraft with engines he had fine-tuned himself. He started working on steam locomotives and joined a local live steam club before eventually expanding his interests to include internal combustion engines.

When Ron took on the ambitious project of building a quarter-scale model Offenhauser ('Offy') 270 engine, he went the extra step to document the build, make drawings and write a book on how it was done so that others could also build this famous historic racing engine. This, along with the quality of his work, was a major factor in his selection as this year's winner.

Other engines he has built include several live steam locomotives and a Case traction engine, as well as a number of hit and miss, radial, in-line, V8 and V-twin internal combustion engines.

The official presentation of the award will take place on Sunday, April 20, 2008 at the Joe Martin Foundation booth at the NAMES Exposition in Toledo, Ohio.

You can learn more about Ron on the foundation's online museum website at www.

CraftsmanshipMuseum.com/
Colonna htm

Joe Martin is a former modeller who owns Sherline Products, Inc., well-known for its range of small precision machine tools.

1. The Aveling and Porter roller built by Gerry Downend.

2. Ron Colonna with quarterscale 'Offy'.

J POSTBAG POST

3-phase supplies

SIRS, - I was rather puzzled and disappointed to read Mr. Eric Clark's article 3-phase electrical supply and the

> home workshop (M.E. 4315, 21 December 2007) as I am afraid that there are a number of factual errors and misconceptions that are to say the least misleading.

It should be stressed to all of your readers; please do not tamper with any electrical system unless you know what you are doing.

All electrical transmission systems are 3-phase with the voltages 120deg, apart. This phase relationship means that a 400V phase-to-phase voltage will result in 230V phase to ground. The dividing factor is 1.732 or the square root of 3; NOT the square root of 2 as stated in the article.

Three-phase systems work because the vectorial sum of a balanced system is zero; i.e. there is no return current in the neutral and the star point can be grounded at the distribution transformer.

As far as I am aware the rural 2-phase systems suggested by Mr. Clark are mythical and I suspect that Mr. Wells (M.E. 4308, 14 September 2007) may have been the victim of a rather odd sense of humour. The rural system will be 11Kv 3-phase and a transformer will drop it down to 400 volts line to line. Similarly I do not believe that 2-phase motors exist.

Many 3-phase motors (normally connected in *Star*) can have their windings connected in *Delta* so that they can be run from a lower voltage 3-phase supply, for example a static inverter providing a 230 Volt 3-phase controlled supply.

Static inverters have the advantage that the power delivered to the motor can be controlled giving speed control. The disadvantage of a static inverter is that the lower voltage results in lower torque which can lead to problems achieving top speed on some lathe conversions.

There is nothing 'backwoods' about a rotary converter

that uses an idler motor to derive the rotating field from a single-phase supply and many commercial units use this technique. In fact a rotary converter is probably the best and most efficient method of deriving a 3-phase supply the only disadvantage being the lack of speed control which may well be unnecessary on a multispeed machine.

Finally, I do feel that a magazine of the standing of the Model Engineer needs to be a little bit more careful when publishing information upon electrical matters. When dealing with electricity there is no room for the equivalent of the odd dimensional error.

Adrian D. Parker, C.Eng. M.I.E.T., by email.

More on Gunpowder Mills

SIRS, - In reply to Mr. John Wilson's letter Gunpowder Mills (M.E. 4315, 21 Dec 2007), I would like to thank him for the additional information about the Ruston Proctor petrol/paraffin locomotive and also for his interesting opinion regarding the demise of narrow gauge railways. The reference in my article to a 'standard' military gauge was not intended to refute the importance of the 18in. gauge system. As far as I know, there was no accepted standard gauge for military railways and the matter is somewhat subjective and depends of course on one's viewpoint.

As a person who spent the best part of 40 years dealing with chemistry-related issues

Unusual micrometer (1)

SIRS, - Re. the unusual micrometer (*M.E.* 4314, 7 December 2007), these are only found in high-class inspection rooms. Any books on the subject matter of 'Engineering Metrology' will provide all the answers Mr. Bellamy requires.

John Cornwall, Suffolk.

Unusual micrometer (2)

SIRS, - In answer to the request by Arthur Bellamy (*M.E.* 4314, 7 December 2007) I enclose a photograph of a set of three indicating micrometers and a box of slip gauges made by Carl Zeiss of Jena. These came from a London Transport auction some 20 years ago, I believe from the Snaresbrook works.

I hope this helps to answer Arthur's question. It is interesting to note that the micrometers are all metric and I think date from the 1930s.

Tony Spicer, West Sussex.

We have had a large response to Arthur Bellamy's query and thank all those readers who wrote in with the answer - Ed.

Tony Spicer's indicating micrometers and slip gauges.

Write to us

Views and opinions expressed in letters published in Post Bag should not be assumed to be in accordance with those of the Editors, other contributors, or Magicalia Publishing Ltd. Correspondence for Post Bag should be sent to: -

The Editor,
Model Engineer,
Berwick House,
8-10 Knoll Rise,
Orpington, Kent, BR6 0EL;
fax: 01689-899266 or to david.
carpenter@magicalla.com

Publication is at the discretion of the Editor.

The content of letters may be edited to suit the magazine style and space available.

Correspondents should note that production schedules normally involve a minimum lead time of six weeks for material submitted for publication. In the interests of security, correspondents' details are not published unless specific instructions to do so are given.

Responses to published letters are forwarded as appropriate. in the nuclear industry, I can assure Mr. Wilson that gunpowder is an 'inorganic' material and conversely, nitro-glycerine, nitro-cellulose (guncotton) etc. are 'organic' materials - if you don't believe me check it out on Wikipedia!

To expand, gunpowder is a 'mixture' of an 'inorganic' 'compound' - potassium nitrate (nitre or saltpetre) with two elemental 'inorganic' materials; carbon and sulphur. As prepared, gunpowder will have a long shelf life providing that the product is stored in a hermetically sealed environment; mainly to prevent absorption of atmospheric moisture by the deliquescent component, potassium nitrate. Nitro-glycerine (or to give it its correct name glyceryl trinitrate) however, is an aliphatic 'compound' consisting of carbon, hydrogen, oxygen and nitrogen and very definitely organic. Contrary to Mr. Wilson's comment, it deteriorates with time and has a limited shelf life.

Incidentally, it was probably one of the earliest materials to have a definite 'sell-by-date'! Hence the requirement for a 'Burning Ground' at Holton Heath; where life-expired cordite was disposed of regularly by burning. I hope this clarifies the basic chemistry of these two important explosive materials.

Terry Holland, Malaga, Spain.

Incandescent light bulbs

SIRS, - I was interested to see Malcolm Stride's comment (M.E. 4315, 21 December 2007) regarding the phasing out of incandescent light bulbs and its impact on signalling.

The answer is, of course, that the alternative will not be fluorescent tubes. Halogen bulbs (as used in most car headlamps) are about twice as efficient as 'normal bulbs' and are unlikely to be banned for many years yet. The obvious solution for signal lamps and similar applications are LEDs. These are now common in traffic lights, and as stop, tail, and indicator lamps on road vehicles. Interestingly the 'instant on' of LEDs compared

Screw plates

SIRS, - Mr. M. J. H. Ellis describes a 'screw plate' (*Letters to a Grandson, M.E.* 4315, 21 December 2007) for forming small screws. The plate in the photograph performs the same function though it is difficult to envisage its use for mass production. Dimensions are length 6in, width 1½in, and thickness ½z inch.

The holes along one side labelled 'Standard Size' are clearance holes and those on the opposite side labelled 'Tapping Size' have the appropriate size threads. At one end the logo is 'Pratt & Whitney Co. Hartford Conn USA' and at the other end the logo is 'Buck & Hickman London', the well-known London tool merchant.

Unless the end holes are for hanging the plate on a convenient nail their purpose is not immediately obvious to me.

I inherited this plate from my stepfather who was a colliery electrician before and after the 1914-18 War and later ran his own business as a commercial and domestic electrical contractor. He may have used the plate in his work but I am not certain he did so. I imagine that the number on the plate '1915' is a catalogue number rather than its date of manufacture which I guess would be no later than 1939. Whilst the dies are sharp, I have not used it to produce screws but it is very useful when sorting out screws of different sizes. No doubt another reader has better information as to the intended use of the plate.

P. J. Wright, Worcestershire.

to ordinary bulbs is supposed to allow several extra feet of stopping distance when used as brake lights or traffic lights!

The prices are getting low enough that their tremendous lifetime, compared to filament bulbs in an on/off situation, makes them an economic proposition. They are also much easier to power and control using low voltages.

On this subject, I wonder if any M.E. reader could settle a query for me - many buses in the West Midlands have LED turn indicators, but one spot in the LED cluster turns off after all the others. Opinions are divided - is this light on a separate safety circuit, or is it to stop the sudden flash causing epileptic fits - or something else?

One final thought. I saw a 2in. scale traction engine lamp lit by a white LED. Its surface had been 'roughed up' and it looked for all the world like the mantle of a paraffin lamp!

Neil Wyatt, by email.

Forged locomotive wheels

SIRS, - John Illingworth's letter (M.E. 4315, 21 December 2007) raises the conundrum of forged locomotive wheels. I spent a little time searching my library and came up with the following from C. J. Bowen

Cooke's British Locomotives first published in 1893.

"Until recently it was the invariable practice to make all locomotive wheels of wrought-iron with steel tyres, and some railway companies continue this system. Each spoke is forged separately on to the boss or hub of the wheel, a section of the rim being first welded on to the outer end of the spoke. Each rim section is afterwards welded up between the spokes".

The welds that Bowen Cooke refers to would have been forge welds where the components are heated white hot and then hammered together to form a homogeneous item, a practice that I was introduced to at school in the days when hands on tradecraft was still almost obligatory. Clearly forge welding was routine in Victorian factories and I have great admiration for the blacksmiths of the day who could build wheels with such accuracy and integrity.

Doncaster works certainly made wrought iron wheels until around 1885 when they began to cast them in steel. The last 8ft. single to be built with iron wheels was the famous No. 774 which was recorded at over 85mph by Charles Rouse-Martin. Number 1 has iron wheels, evidence the

rectangular section spokes, cast wheels having oval spokes. Cast iron was also used for smaller wheels and Bowen Cooke describes the wheels used by Webb on the LNWR for goods engines which had 'I' section spokes.

Mr. Wright's example of a

screw plate as described

by Monty Ellis.

John worries that these iron wheels were built without the aid of x-rays and ultrasonic testing, but these are relatively modern techniques. The old boys were not daft and learned over time what worked and what didn't and I suspect that their manufacturing techniques, built around long apprenticeships and years of experience, ensured the product was of the highest standard and that locomotives went on to the railway in a safe condition. I can't think of any incidents of wheel centres disintegrating, although there are cases of tyres breaking or detaching. I don't suppose many steam locomotives had the benefit of ultrasonic testing in their service lives, since practical ultrasonic testing didn't become available until the mid 1950s and wide spread use of the technique post dated the demise of steam. The wheel tapper was still a familiar sight on the railway into the 70s! Edward Gibbons, by email.

>>

Forged locomotive wheels (2)

SIRS, - I am a geriatric mechanical engineer, so geriatric in fact that I think I may be the last surviving person to have turned a mill engine flywheel in a lathe.

I was spurred to write by the letter from John Illingworth (M.E. 4315, 21 December 2007) regarding wrought iron locomotive wheels. In 1835, John Day developed a wheel made entirely from wrought iron components fire-welded together. This was taken up by Beyer Peacocks and thereafter used successfully for all their large locomotive wheels.

Full details can be found on pages 32 and 33 of Beyer Peacock – Locomotive Builder to the World.

Gordon Hobson, Holmfirth.

Forged locomotive wheels (3)

SIRS, - I read John Illingworth's letter Forged locomotive wheels with some interest (M.E. 4315, 21 December 2007). This is

because I have spent most of my career as an ornamental blacksmith, during which time I have always observed and examined all kinds of ironwork. with a particular view as to how items may have been constructed with regard to any fire welding being part of the process. It is well-known that many anvils have built up by fire welding the various parts together, such as the feet, the bick and also the heel. I myself possess two examples, 3 and 4cwt, made in this way, the joints being quite clear, so ways of handling work on this scale must have been well established.

Examination of very large and old ships anchors recovered from the sea and displayed at ports and harbours all around our coast show clear evidence of both material and constructional methods. The sea has corroded the iron revealing it to be fibrous wrought iron, and the joints at the flukes and where the stem is attached are clearly fire welds, the latter often being of

the split stud weld method for greater strength.

Some I have seen must weigh at least 1 ton so manipulation of parts weighing at least half a ton at white heat and at high speed was a well rehearsed procedure, bearing in mind that the operators had first to bring the two halves up to welding temperature simultaneously in two fires. They then had only a few seconds to remove them, position them accurately and then close the weld by rapid hammering on both sides. This would of course require the whole assembly to be turned over, and maybe be returned to the fire for a second heat to further close the edges of the joint.

In his book *Building Britain's Locomotives*, photo 60, James W. Lowe features eye ends of coupling rods awaiting fire welding to the centre portion of the rod at the Hunslet Engine Co. Leeds Works in 1899. They were obviously confident of the strength of such a joint for a high stress application. It must be assumed that if the Stirling

8ft, wheels are indeed of fire welded construction their size would not have been a limiting factor, but rather the shear complexity of a sequence of multiple welds both to the hub and to the rim. Keeping such a developing structure regular and even vaguely true would have been a huge challenge, and I have never heard of a fire welded structure that comes anywhere near as complex as a spoked locomotive wheel. Wagon wheels have been massed produced by the pressing of a billet in a 6,000 ton hydraulic press in a single stroke, and axles were forged under large steam hammers to impart the optimum grain structure. Access to the structure of the Stirling 8ft. wheels by sea water corrosion or perhaps by x-ray might settle this interesting puzzle.

Michael Malleson, Devon.

We have had a large response on this topic and thank all those readers who sent in information on the process – Ed.

ISSUE NEXT ISSUE NEXT ISSUE NEXT ISSUE NEXT IS E NEXT ISSUE NEXT ISSUE NEXT ISSUE NEXT ISSUE

- Super flame eater engine watch it at http://youtube.com/watch?v=XCp623s2WUU
- Practical superheating
- Peter Rich describes King Edward VIII
- Anna Update on the 7¹/₄in. Manning Wardle
- I/C Topics The latest from Nemett
- Steam turbine ships
- Self-start steam engine -Watch it on YouTube at Modelengineermedia.

Plus all your regular favourites

Contents subject to change

ON SALE 11 APRIL 2008

15-day skeleton timepiece L

John Parslow

describes how to make a skeleton timepiece designed especially for the beginner.

he aim was to design a modern, elegant, reasonably-sized clock suitable for the firsttime clock maker who already has some model engineering experience (photo 1). The clock has a Brocot escapement which is easy to make and capable of

better timekeeping than the more common recoil escapement. The length of the pendulum is 6.8in., which gives 144 beats/minute. The running duration is 15 days. The clock was inspired by A Beginners Clock

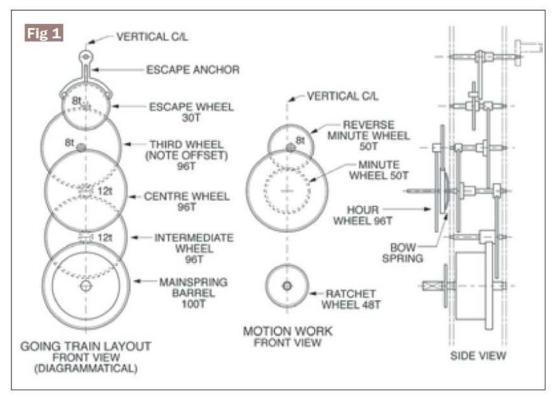
designed by Mr. E. Isaacs (ref. 1) modified to increase the running time by Mr. A. Price.

The size and shape of the clock was investigated using sketches and cardboard cutouts. The wheel, pinion count, and the pendulum length were designed to suit (fig 1 and photo 2). The train was laid out in a straight line, avoiding the need to insert the winding key through a hole in the dial. This gives a 'clean' appearance and prevents scratching the dial. The drawings of the clock parts show two alternative positions for the winding ratchet. This can be at the front of the clock (as a decorative feature), or at the back, leaving the front plate clear for the makers name and hometown.

The tools needed to make the clock are a lathe, small drilling machine, and the usual range of model engineering hand tools. The 4.4in. dia. dial plate is the largest turned diameter but this could be fabricated from separate parts. For clockmakers not wishing to cut their own wheels and pinions. a ready-cut supply is available (supplier 1). The wheels will need to be crossed out and the pinions finish machined. All other materials needed to make the clock are available from the same source.

Clockmakers who intend to make their own wheels and pinions will need a 0.6 module wheel cutter and a 0.55 module, eight leaf, pinion

> cutter. Incidentally, to make pinion cutting much easier, I


recommend use of a simple milling fixture (ref. 2). As an alternative to the 0.55 module 8 leaf pinion cutter, a 0.6 module 8 leaf cutter may be used. The pinion diameter remains the same but the addendum for this is 0.018 inches. Information on wheel and pinion cutting is given in excellent books by Alan Timmins, and John Wilding, or in recent articles in the Model Engineer and Clocks magazines.

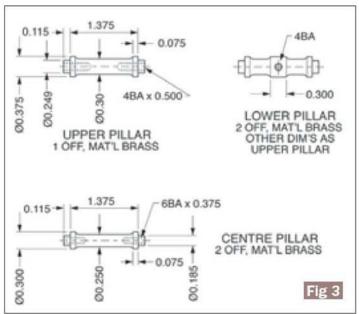
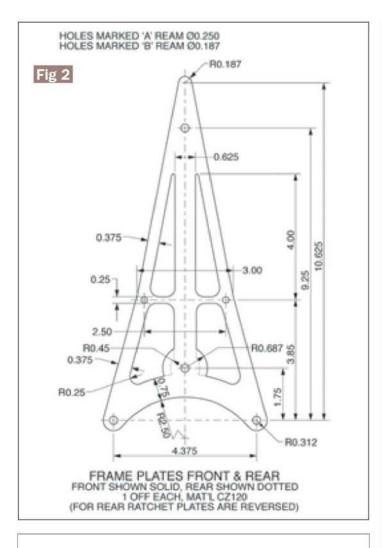

I strongly recommend that all brass parts are gold-plated to prevent tarnishing. This is not prohibitively expensive if you shop around. The clock has been designed so that it can be assembled for testing, disassembled for plating, then re-assembled permanently. This avoids costly blanking off of the steel parts such the arbor and pinions, which do not require plating.

Figure 2 shows the frame plates. These are made from 1/sin. thick polished engraving

1

brass. Plates can be cut from pieces 11¾ x 6½ inches. Polished plate is supplied with a protective film on both sides. I suggest stripping off this film and spraying both sides with two or three coats of red oxide primer paint, available in an aerosol can from motor accessory shops. This will protect the surface from accidental marks and scratches and provide an excellent surface for marking out with a pencil or scriber. The piece of plate can then be cut at an angle to make front and rear plates. Note that there is a difference in the size of the 'boss' at the winding arbor hole between front and rear plates. The winding ratchet fits next to the larger boss, so make this either the front or rear plate according to your choice of winding position. Mark out the profile of the frame with the larger boss using a sharp pencil followed by a sharppointed scriber, taking care not to scribe over what will be the finished surface of the plate. Do not be tempted to make the sides of the plates straight. The slight 'curves' may not look much but make guite a difference to the appearance of the clock.

With the marking out complete, clamp the two plates firmly together and drill and ream the four 1/4in. and two 3/16in.dia. holes. At this stage, make two shouldered dowels from about 5/16in.dia. mild steel. These should be a light push fit into the 1/4in. dia. holes and will provide accurate location of the plates for future work. The frame plates can now be sawn and filed to shape, taking care not to damage the surfaces. Final draw-filing and finishing the edges is done later.


Next make the five frame pillars (**fig 3**). All the shoulder lengths must be identical i.e. 1.375 inches. A slight taper on the location diameters, leaving about 0.050in. of full diameter, helps assembly. Assemble the frame using temporary screws and washers to ensure that everything is right.

This completes the clock frame for the time being.

Photograph 3 shows the plates after gold plating, and photo 4 the assembled frame.

To be continued.

Suppliers

1. Wheel and pinions with ready-cut teeth and leaves. Also, all other materials required for the clock. (Brass plate and sheet are sawn, rather than guillotined, to remain flat)

Mr. I. Cobb, 8 Poplar Avenue, Birstall, Leicester IE4 3DU.

T. 0116 267 6063. E. lan@lantcobb.co.uk

2. Zone Dial. Part No. D140S. 105 O/D x 67mm I/D

A. G.Thomas (Bradford) Ltd, Tompion House, Heaton Road, Bradford BD8 8RB.

T. 0127 449 7171. F. 0127 454 7407.

3. Suspension Spring, Part No. 070 S5553.

Clock oil, 2ml. Part No. 01070. Key. Part No. K4877 4mm. Cousins Material House, Unit 7, Chesham Close, Romford, Essex RM7 7PJ.

T. 01708 757800. F. 0800 7311095.

E. support@clockspares.com

4. Turned head screws. Live Steam Models Ltd, Unit 7, Old Hall Mills, Little Eaton, Derby DE21 5DN.

T. 01332 830811. F. 01332 830050.

W. www.livesteammodels.com

5. Mainspring. Part No. 0221 204515 20 x 45 x 45.

Alternative round glass dome. Part No. 0623-071415. 180 O/D x 350mm tall

Base to suit above. Part No. 0673-018015. (Supplied unfinished in beech)

Five-sided cutting broach. Part No. 0547-017515.

Meadows & Passmore Ltd, 1 Ellen Street, Portslade, Brighton, East Sussex BN41 1EU.

T. 01273 421321. E. sales@m-p.co.uk

Materials

Dimensions in inches

Sheet brass CZ120

1 - 113/4 x 61/2 x 1/8 Frame plates, backcock, crutch foot

1 - 1¾ x 1½ x ⅓ Escape anchor 1 - Ø 4½ x ¾ Dial plate 1 - 1¼ x ½ x ⅓ Bow spring

Wheels

2 - Ø $1\frac{1}{2}$ x $\frac{1}{16}$ Escapement wheel, reverse minute wheel 1 - Ø $2\frac{1}{2}$ x $\frac{1}{16}$ Intermediate, centre, third & hour wheels

1 - Ø 2 x ¾₃₂ Barrel end plate 1 - Ø 2½ x ¼ Great wheel 1 - Ø 1½ x ⅓ Ratchet wheel

Brass tube CZ126/121

1 - 2 O/D x 1 x1/8 Mainspring barrel

Brass rod CZ121

1 - Ø ¾ x 2½ Pendulum bob and nut

1 - Ø % x 8 Frame pillars

 $1 - \emptyset \frac{1}{2} \times 8$ Collets, bushes, frame washers etc $1 - \emptyset \frac{1}{4} \times 2$ Back cock pillars and bushes

1 - Ø % x 3 Dial pillars 1 - Ø % x 3 Frame feet

Brass bar CZ121

1 - 1/4 x 1/2 x 1 Ratchet retainer

1 - 1/4 x 1/4 x 1 Pendulum suspension block

Silversteel

1 - Ø ½ x 5 Barrel arbor, centre wheel collet,

crutch collet

2 - Ø 1/8 x 13 Arbors, pendulum rod, pallets

1 - Ø % x 1 Intermediate and centre wheel pinions 1 - Ø ¼ x 3 Third and escape wheel pinions,

reverse minute wheel arbor, click screw

1 - Ø 2.0mm x 21/2 Crutch rod

Gauge plate

1 - 2 x 1 x 1/8 Click spring and click

1 - 2½ x 1 x ⅓ Hands

Cheese head, machine cut, steel screws

7 - 4BA x 1/2

1 -8BA x 3/8

2 - 4BA x 11/2

6 - 6BA x 1/2

13 - 10BA x 1/4

2 - 2BA x 1/2

Wood and mouldings for the base. Glass for the cover. Material for making the depth tool (if required).

References

1. Isaacs, E., (1990), A Beginners Clock, The Clockmaker Vol. 1, April 1991 – March 1992, pp. 25 et al., Pub. Tee Publishing Ltd (a bound compendium of The Clockmaker magazine articles).

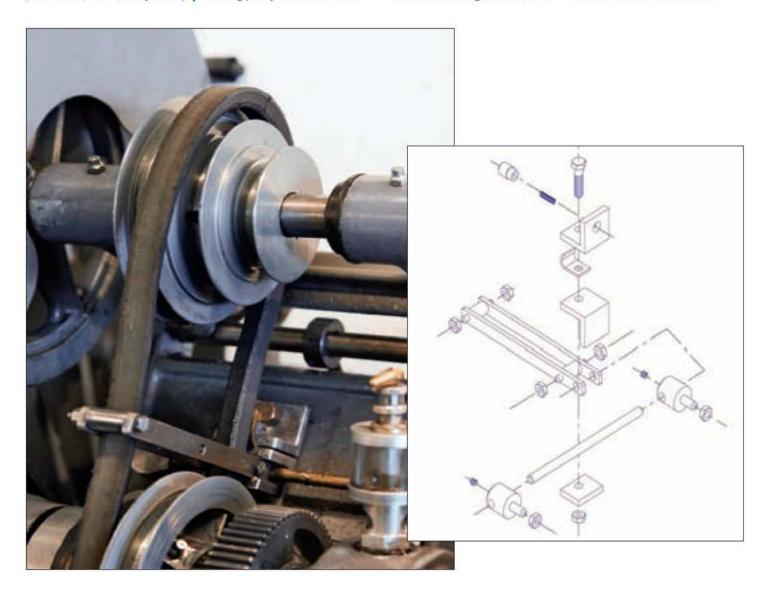
2. Parslow, J., 2004, Clock Pinion Cutting, *M.E.* 4218, 2 April 2004.

Making the most of the Myford

Graham Howe

describes a simple but effective home-made clutch for the Myford and offers his workshop hints and tips.

Continued from page 259 (M.E. 4320, 29 February 2008)


his is such a simple attachment, it can be made in about an hour, and yet provides exactly the same control as the Myford coned clutch. The design principle utilises the belt tension lever to operate engagement. When the lever is relaxed the belt is 'held' so that it is lifted away from the driving pulley and so no wear

occurs. Some minor adjustment can be made to 'hold' the belt by altering the diameter of the front belt guide.

If you look at the photo it can just be seen that the belt is lifted out of the pulley 'V' thus even though the countershaft is rotating no motion is imparted to the belt drive. A small spring is fitted in a pocket recess at the back of the guide rail, which

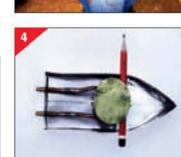
eliminates any vibration noises. I have operated with the same belt for 20 years!

It is important to switch off the motor before attempting to change the belt pulley diameters or touch the belt. Although a limited amount of 'slip' control can be achieved by the tension lever it is not recommended as this will cause belt wear and friction heat.

Graham Howe's Myford and other workshop hints and tips

- Make a slide way protector for the lathe out of a piece of thin brass sheet so that it fastens to the cross slide easily and covers the lathe ways for about 2 inches. The leading edge has a flat piece of felt super-glued on the underside to wipe the lathe way as it passes over.
- Have the lathe drive belt a little on the slack side so that if there is a calamity the belt will slip and not cause major damage to the lathe or operator.
- To machine a good finish on the lathe make sure the tool is sharp and the cutting edge honed so that it is smooth and then set the lathe in slow speed (back gear) with a fine cut on automatic. Add drops of soluble oil to the work as it progresses. It may be slow but the finish is excellent and needs no further finishing with emery.
- Damp-proofing material (the modern plastic variety) makes very good way protectors.
- Bright metal parts or machined cast iron will quickly rust if left as machined. I always give them a quick spray with WD-40 and leave then for five minutes and then lightly wipe off any excess. The WD-40 seems to form a thin protective skin.
- When making tools and jigs some bright metal parts will tend to rust. You can paint them but in most cases I prefer to heat the part until it changes to a dark purple colour and then submerge the part in engine oil (clean) and leave until cold. Make sure the oil container has a lid as the burning oil smells forever. The part comes out a dark purple/black colour and the oil provides rust protection.
- Keep marking out fluid in a small bottle which has a brush built into the lid. Use methylated spirit to remove after use.
- Dressing the surface grinder is very important to ensure the wheel cutting grains are clean. In order to minimize the replication
 of errors in the cross feed make sure the diamond is positioned directly below the wheel centre (6 o'clock). Errors show up as
 'steps' in the surface finish, which may be very small but very obvious.
- After sharpening a slot or end mill grind a small chamfer on the sharp corner with a relief angle. The cutter will perform very much better.
- Keep a sharp set of new drills for finish drilling or holes that need to be to size. These drills are also good for finishing holes in brass where a keen edge is essential.
- Look after your vice jaws and grind off the serrated teeth. A plain jaw face, which accurately closes to its matching jaw, will provide
 a good strong grip and not mark your work.
- If you use Loctite adhesive or similar to fasten wheels to their axles it is a good idea to provide an additional locking pin. Drill a small hole that is half in the axle and wheel at the joint and hammer in a pin that is slightly oversize.
- Where possible use a rear tool post on the lathe with the cutting tool positioned 'upside-down'. This allows cutting to take place with the normal anti-clockwise rotation of the chuck (which is a blessing in the case of the Myford with a screw mounting for the chuck). The cutting tool will take much heavier cuts in this position as the natural tendency of the leading edge of the cutting tool is to provide down forces on the headstock spindle which gives additional rigidity.
- When files become clogged you can remove the bits of metal from the teeth using a flat piece of brass (3/4 x 1/16 in. section). After a short while the brass edge forms the same profile as the file teeth and removes all obstacles with ease. If the file is constantly 'pinning' and bits are tearing into the work surface rub the file surface (after cleaning) over with chalk or rub soluble oil (one part oil to 10 water) into the teeth. The result is a much better finish with less grain.
- When two pieces need to be accurately marked out or drilled then they can be temporarily joined using instant glue or Loctite
 engineers adhesive and then use gentle heat to break the seal.
- Use a plastic film canister to hold a quantity of made-up flux ready for use in silver-soldering. The canister top is airtight and the
 contents will maintain their mixed consistency for many months.
- When placing a work piece in the milling vice, after an initial 'nipping' gently tap the work piece with a copper mallet to ensure it is positioned on it's base. If like me you have a 'Kurt' clone then make a small recess under both the movable slides near to the jaw with a 0.25in. drill about 0.093in. deep. Insert in these recesses a few coils of a fitted spring (ensuring when compressed it will fit flush in the recess). Next time you tighten the vice, the jaw will ensure the work and parallels are firmly locked especially at the moving jaw end.

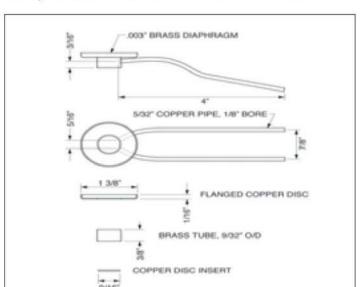
Pop-pop motors

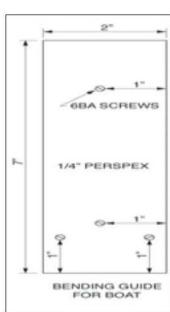

J. M. Ryder describes his experiments with simple pop-pop boat motors.

became interested in Pop-pop boats when I saw them in action at a Model Engineer Exhibition. These fascinating boats with their seemingly simple engine were made in England once upon a time but now are produced in China. The vibrating diaphragm in these boats is attached to its housing by folding over the surrounding material, a process not available in a small workshop, so has to be soft-soldered in position. This is vulnerable to meltdown due to excess heat.

The forgoing problem led me to try another approach to the construction of this engine, as seen in the drawings and, by making the motor in this way. I found that the soldered joint generally remained intact. Could it be that the water entering the cylinder now has a definite place of containment?

It seems most appropriate to apply heat under the diaphragm support and not under the cylinder, as doing this makes the contained water boil rather than simmer; boiling upsets the required action. Is it possible that the contained water cools the diaphragm more efficiently using the method of construction shown in the drawings? The diaphragm is certainly cooler at its centre than at





- 1. Clamped up and ready for soldering.
- 2. Using the bending aid.
- 3. The burner guide soldered into
- 4. Fitting and soldering the end tubes.
- 5. Just a teaspoon full of meths.
- 6. Testing a motor.
- 7. Burner guide fitted.
- 8. The completed boat ready for a coat
- 9. The fleet's In! A trio of Pop-Pop boats by the author.
- 10. Boller assembly ready for silversoldering.
- 11. Completed engine ready to fit into boat.
- 12. Lower view of the engine assembly.
- 13. Flanged diaphragms and other parts ready for assembly.
- 14. Completed boat showing correct height of boiler.
- 15. Not a great success!
- 16. Motor with 2in. diaphragm, tubes 7In. long, 5/32 I/D, 3/16 O/D brass. Boat 11in. long with 2in. beam.
- 17. Pipette used for filling boat with fuel/water.
- 18. Completed longer-version boat resplendent in a coat of blue paint.

its periphery, as is shown by placing a drop of water at these points.

These little motors also require the correct conditions to start operating. Too much water in the boiler when hot can heat the exit tubes so much that a temperature gradient does not develop; the motor will then only start by cooling the tubes with a damp cloth.

Then again, such a powerful vacuum can develop that the inrush of water appears to buckle or distort the diaphragm and it becomes necessary to replace it to get the thing working. The length of the tubes and thickness of the diaphragm all influence these effects it seems.

You will notice that I have been pumping water in and out of a tin can during my simple experiments so, as might be expected, the tank of water gets warm and usually after a while the required action stops.

The height to which I have set the boiler is shown in the drawing, but if the motor runs erratically then this can generally be corrected by changing the height. It is best to fill the boiler by means of a plastic syringe while the boat is sitting in the water. The water will then only enter to the height of the exit pipes. I have made the motor removable to make it possible to experiment with other motors or for repairs to

be carried out.

The boat itself is made from sheet tinplate obtained from food cans or from new sheet which, together with copper, brass tubes and brass shim, are available at good model shops. The flanged copper disc was made from a short length of 22mm copper pipe cut lengthways and flattened out. All the parts are silver-soldered except the diaphragm which was attached using multicore electrical solder. The methylated spirits burner has a small round magnet at the base attached by super glue; this stops the burner moving about. The motor likes a constant source of heat.

It is advisable to keep the exit tubes straight at the cold end as these have to slide through the back of the boat. This is the reason that I have added the joints seen in the photographs. Why not experiment with engines of a larger diaphragm and longer tubes? These can also work satisfactorily. One I made has a diaphragm of 2in. dia. and tubes 7in. long, 5/32in. bore of brass in a boat 11in. long.

When constructing the motor, make all the parts fit tightly together so as to avoid them falling apart when soldering. Drill the holes for the exit pipes when the copper disc insert, round brass cylinder and the flanged plate have been soldered. Then you can solder up the pipes.

GIT ALDRIG BOTTED LARS

FOLIALINE

OUT

FOLIALINE

FOLIALI

The flanged disc must be rubbed flat on emery paper, and then tinned with soft solder round its edge. Following this, cut a suitable piece of 0.003in, brass shim for the diaphragm. Smear this all over with flux paste (as used by plumbers). Place the brass sheet on a flat piece of wood with the previously tinned flanged disc over it and using a blow lamp gently heat the flanged disc until the solder runs. It is important to keep the flame away from the thin diaphragm, and of course the wood support. Finally, test for leaks by immersing in water and blowing down the tubes.

Hope all this makes sense and that you will have a try at one.

ME

SMALL SHAPING MACHINES JOLS MACH FOR THE MODEL ENGINEER

IL IUUL

Tony Griffiths looks at small

shapers, useful machines for the model engineer.

Ithough shapers might be thought to be obsolete and especially anything operated by hand they can in fact provide a very useful extension to the model and experimental engineer's workshop, being quick to set up and very economical to tool. With really sharp cutters it is quite astonishing what a variety of useful work these machines can do, even very small ones. In harder times they offered the home engineer an economical way of accomplishing tasks that would otherwise have involved

a great deal of laborious, and

often inaccurate, hand-filing and

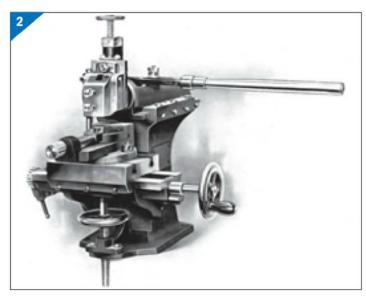
One of the most popular makes, and that most frequently appearing on the used market, is the tiny Adept in 1A and 2A forms. F. W. Portass of Sheffield was responsible for these and. together with two models of small lathe, manufactured them both before and after WW2. Although just two types are known, rumours persist of a third, even smaller version - the OA - but will one ever surface? Both the 1A and 2A were of similar construction

and hand-operated with the 2A being considerably more massive. It weighed a considerable 56lbs and was sometimes fitted with an automatic cross feed. The table of the 1A was just 4.5 x 4in., with vertical T-slots 3.5in. high, and the ram travel was 4 inches. The 2A was considerably bigger with a 7 x 6in. table carried on vertical T-slots, which allowed it to be lifted up and down through 4inches. The ram travel was 6.25 inches.

During the early 1950s Mr. F.J. Haynes of Audenshaw, Manchester converted his Adept No. 2 shaper to incorporate a powered ram. So impressed were Portass by this professional-looking design that they adopted a modified version of it for production.

Another older make that must have been produced in some numbers, was the hand-operated 7in. Drummond. A splendid example of late Victorian engineering it was a well-made, rugged little machine with an automatic feed in both directions. The 8 by 9in. table had both two straight and one circular T-slot in its top surface. The latter


allowing a standard machine vice to be rotated. The table travel was 6in. horizontally and 3in. vertically.


Of more recent production both the Cowells and Perfecto (the latter surviving into the mid-1970s) sold in some numbers. The former was capable of machining an area 6 by 6in, with five rates of automatic cross feed from 0.0025in. to 0.125inches. The latter was similar in arrangement to the Tom Senior shaper produced during the 1930s. This was a more accomplished machine and available with either a 5 or 7in, stroke, hand or power operation, and with or without an automatic cross feed. Judging by the number offered for sale the powered 7in. version appears to have been the more popular model.

The machines were well built and specified, all versions being constructed from ribbed box iron castings and of considerable weight - 130lb for the powered 7in, and 80lb for the 5 inch. For their capacity they were remarkably compact, each model needing only 20 x 17in., plus room for the recommended 0.25hp,

1. Perfecto 7in. hand-powered auto feed.

2. Drummond hand-powered.

3. Adept No. 2 motorised with auto feed.

- 4. Boxford neat and compact.
- 5. Substantial Elliott 10M.
- 6. Cowells a late survivor.

1,425rpm motor. The 7in. had a 14.5in. long ram, the 5in. one being some 4.5in. shorter. Both had a maximum cross traverse of 9in., with a reversing, automatic feed as slow as 0.005 inches. They had identical 6in. tables with three T-slots.

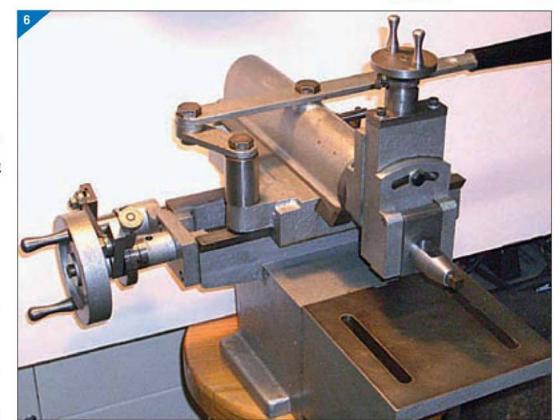
The tables could be adjusted up and down 2in. on alternative tapped holes. The toolpost could be swivelling through 360deg. and had 2.25in. of height adjustment. Three rates of stroke were available: 60, 70 and 80 per minute.

If hand-operating a shaper is too much trouble there is still a wide choice of compact and useful powered models. Probably the best of these, though rather heavy to shift, is the Elliott 10M. A development of the Alba 1A, itself a version of the even earlier Royal model, this was an extremely well made and finished machine.

It was popular in both training and production workshops and many thousands are still in use. Automatic cross feed (with a safety over-run device) was fitted as standard and a vertical feed (though with no safety device) available as an option. The machine box table could be swivelled and featured two T-slotted and one V-grooved sides.

Also popular and easily found is the slightly smaller and more easily moved Boxford 8in., also listed as the Model S200. The Boxford was also widely employed in schools and

colleges and, as a result, many of them emerged onto the second-hand market in pristine condition – the great majority of them having never been used. The Boxford was driven by a motor and countershaft unit neatly contained within the stand and had four speeds. Horizontal power feed to the table was standard and a vertical feed (very rarely fitted) available as an option.


When equipped with both power feeds, the operating mechanism was cleverly designed to allow its pawl and ratchet assembly to be swung through 180deg. to engage either of the movements – only one at a time being available, of course. On balance, a Boxford is probably the ideal shaper for the home workshop. The motor is easily changed to a single-phase unit. The whole machine is light enough to be moved easily in a hatchback car, yet there is sufficient strength and capacity to tackle even larger jobs successfully.

The 10in. South Bend shaper, from the makers of South Bend lathes in the USA, was introduced during 1950 and was a rather elegant little machine,

capable of being bench mounted but normally supplied on a neat stand with two locking drawers. Besides those mentioned, other makes of small shaper occasional surface. The most common of these are the Senior 8-inch, Britannia, Pools and Robblak – the last even advertised until the mid 1950s.

For more on shapers go to lathes.co.uk

ME

Michael Jones

focuses on the steam-powered stationary and marine models at the Sinsheim Exhibition and examines a few unusual non-steam engines, too.

Continued from page 334 (M.E. 4321, 15 March 2008)

Steam sensa

ore steamenthusiast joy
awaits in the other
halls at the Messe
Sinsheim. While steam trains
clearly have the most space
by virtue of their trackage,
there are enormous numbers
of stationary engines, marine
models, Stirling, I/C and vacuum
engines. It was in these halls
that I found the smallest Stirling
engine I've ever seen.

Stationary steam models

On the stand space of Eberhardt Rau, was this marvellous large mill engine setup complete with Yarrow boiler and ancillary equipment. (photos 1 and 2). Mounted on the left-most platform is the Yarrow-type water-tube boiler which is gas fired. The centre platform holds a Worthington-style, twin-cylinder boiler feedwater pump, feedwater by-pass valve, and a domed copper make-up water tank. The horizontal mill engine (photo 2) exhausts into a condenser located behind the engine. It drives an auxiliary feed water pump. The flywheel is about 12in. dia., and the twinringed piston is approximately 1in. diameter. The engine ran nearly continuously throughout most of the most exhibition.

Photograph 3 is based on a much-modified Stuart D-10

coupled to a generator. It has a jet condenser (at the right rear side) and was complete with a control board and was running when the photo was taken.

This side-level marine engine was actually turning over at a fairly sedate speed (photo 4). However, without using the camera's flash the photograph gives the impression that the engine is turning over at a furious pace. It featured feathering paddle wheels which was fascinating to watch - the naked eye caught the motion very well-but not the camera.

This elaborate, over-crank engine was displayed in a cut-away engine house (photo 5). Next door was the oneman joinery shop powered by overhead line-shafting (photo 6). Considerable effort must have gone into these displays to build, not only the steam engine, but all the ancillary equipment, work buildings, and engine rooms (sometimes complete with operating boilers).

Simple steam engines can give hours of amusement. This curious, three-wheeled beastie burns Esbit tablets to make low pressure steam in the beaker (photo 7). The steam runs a little oscillating cylinder held on the valve port by an 0-ring, an arrangement which doubles as a safety valve for the 'boiler'. It

is made in a variety of forms, rail and road, and these are available as kits or ready to run. All were seen on the Mini-Steam stand. W. http://www.hielscherdampfmodelle.de/

An unusual model was a steam-powered gang-saw which specialised in sawing trees (twigs) into timbers (photo 8). The stacked boards ready to dry can just be seen to the right of the photo. The saw uses a series of parallel blades into which the logs are fed. Weighted knurled rollers keep the log from lifting off the carriage on the return stroke. A steam boiler and engine are located off to the left. The crowds around this made it impossible to capture the whole scene in one picture.

Steamboats

Marine steam is quite popular and there was a large, circular pool set up to demonstrate models. One modeller had a better solution. He created a shallow box filled with water into which rested his side-wheeler boat model (photo 9). From this close vantage point, he could remove the deck houses and show visitors the engine and boiler, point out the way the paddle wheels worked and they could see the churning made in the water at close range.

Titan was a 62m-long suction

tion at Sinsheim

dredger built in 1914 to work along the Kiel Canal (photo 10). The prototype was equipped with three steam engines, two for propellers, the third for the suction pump. The model, similarly, has three steam engines; these are oscillating. This 115cm long model, built by Dr. Hugo Sanneck, also has twin propellers and rudders and water discharge over the stem per the prototype.

Small launches were big favourites on the stands and in the pool. Solent is one such example (photo 11). It's mannequin gives it less of a 'ghost ship' look in photographs.

Two full-size steamboats and marine engines were displayed near the boat pool by members of the German Steamboat Society (DDV). June Zephyr,

from Germany, had a particularly nice compound engine with twin piston valves (**photo 12**). Apologies for the diagonal photo, it was the only way everything would fit in one frame.

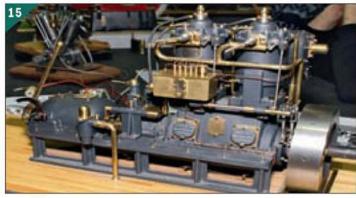
Flame Lickers

Photograph 13 is a water-cooled, flame licker (gulper) engine running. It is cooled with water pumped up from the reservoir under that 'A'-frame base. The flame is shielded by a brass shield and an exhaust flue.

If one flame works well, four might be better (photo 14). This 4-cylinder flame licker makes an interesting noise. It runs very smoothly indeed was unaffected by draughts - when a flame (or two) was diverted, the others were sufficient to keep the engine running steadily.

I/C engines


A unique model of a Swedish Ellwe diesel was displayed by Nick Müller of Munich (photo 15). Although this is a convincing diesel-look engine, it is in fact, a petrol engine with the high tension leads to the sparkplugs disguised as high pressure fuel injection pipes. Lifting the cylinder tops off reveals small spark plugs neatly nestled underneath. Additionally, the model has a reversing gear-box, air-start controls and working mechanical lubrication.



2005 - 6) of a 2-stroke design by Alexis de Bischoff of 1871 (**photo** 17). The engine was run several times during the exhibition and attracted a crowd to watch and admire its noisy operation.

Herr Müller has produced a video tour and demonstration of the engine. W. http://www.youtube.com/watch?v=3Pa7K287VIU

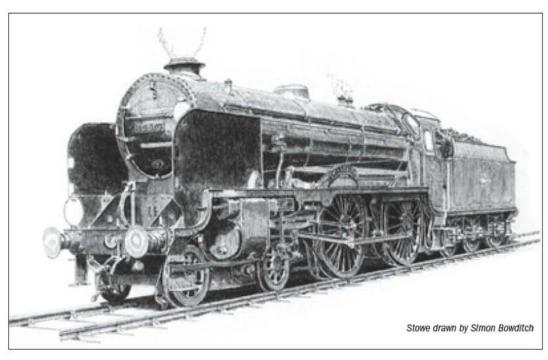
Castings for this and the single cylinder version are available from Ambrosi and Gattafoni in Italy. Their website is in Italian, but they will answer e-mails in

English. W. http://digilander. ibero.it/liguori

On the stand of Joachim Schurig several wooden patterns were shown assembled into complete engines (photo 16). These stood alongside the finished models (this one built by C. Dietricht Grumpe between

Stirling Engines

Many Stirling engines were running at the exhibition. Possibly the most artistic in design is shown in **photo 18**. Just as I was leaving the exhibition to join the coach for the return trip, I was directed to the work of Günter Bettinger. At his display table was the smallest Stirling engine I've ever seen (**photo 19**). The builder has named it 'die Mücke' or 'the gnat'. It weighs about 4 grammes and


is 16mm (about 0.63in.) in diameter. The builder's fingers in the photo give some scale to this diminutive machine. Next year he is planning on building an even smaller motor. W. http://tinyurl.com/3y9x8z W. http://bettigue.blogspot.com/

And finally...

The one locomotive I kept photographing was this large 71/4in. narrow gauge 2-6-0 which was being built for service on a rack and pinion line (photo 20). Only the wheels are castings, all other bits are fabricated (with CNC machinery). It opens up a range of new miniature railway possibilities over terrain that was previously considered too steep. What a great train ride that will make when it's finished. The Echtdampf-Treffenhallen in Sinsheim returns next January mark your calendars now!

ME

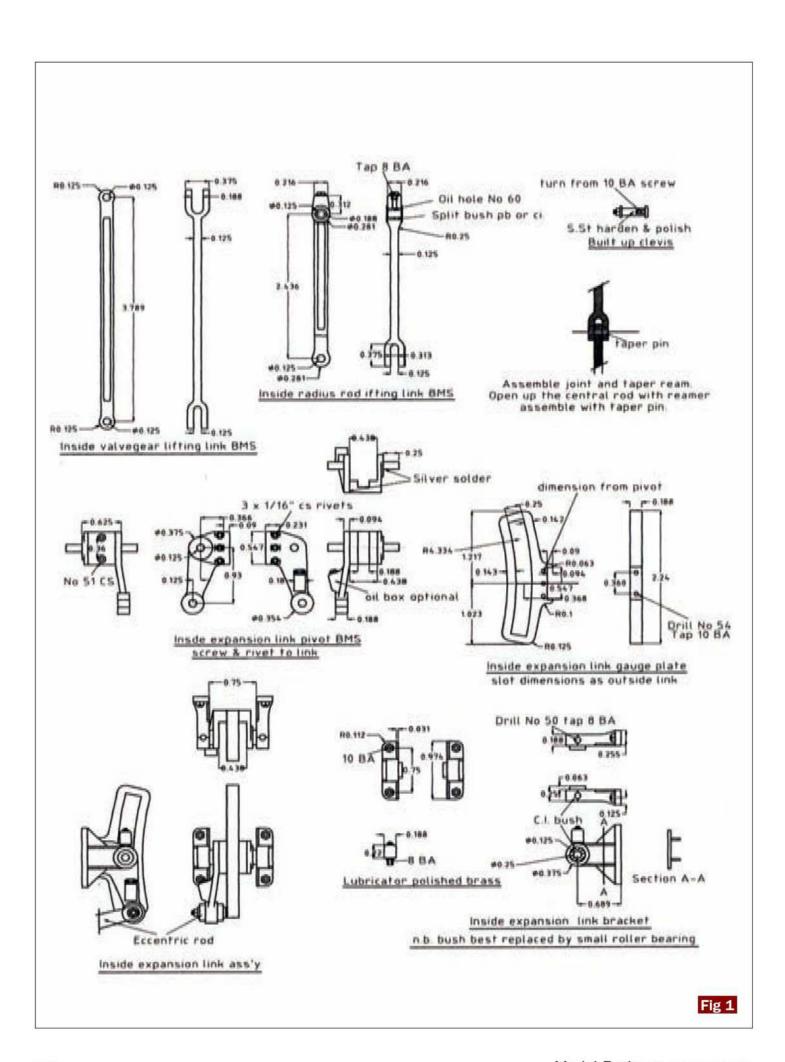
STOWE - Southern Railway Schools class locomotive

Neville Evans

provides revised inside valve gear and describes the blastpipe and blower arrangements.

Continued from page 268 (M.E. 4320, 29 February 2008)

t may be recalled that I experienced a great deal of difficulty in trying to fit in the driving arrangements for the inside expansion link. Despite close perusal of the drawings. both G/A and detailed, none of us, and I include such luminaries as Prof. Pete Thomas, Simon Bowditch, Derek Tulley, and my wife's uncle Tom, was able to arrive at a satisfactory explanation as to why the driving pin impinged on the slot in such an obtrusive manner. The answer came when I was talking to Paul Norrington. who, importantly, is not only building a Schools but is also a member of the Bluebell Railway Society, and therefore is able to crawl around under their preserved locomotive Stowe. Paul asked me why I didn't stick to the prototype more closely with the inside valve gear? The penny, having been nudged. finally dropped. The Schools is, in fact, an Eastleigh


engine and the tradition at Eastleigh was to drive the expansion link through a drop arm, as on the brilliant LSWR Drummond D15 class. which was, of course, fitted with inside Walschaert's valve gear. Everything now fell into place as can be seen from the supplementary drawings in this article. If you've already made the inside motion according to my earlier drawings, do not despair as the basic layout of the link drive is the same. in fact the early arrangement is easier to make than the revised version; it's simply a matter of authenticity.

Revised inside valve gear

The drop arm, in this application, takes the form of a plate extension to the inside expansion link pivot, as can be seen from the appended artwork (fig 1) and Paul Norrington's splendid photos (see photos 1-3). The eccentric rod is, of course, forked and remains of the

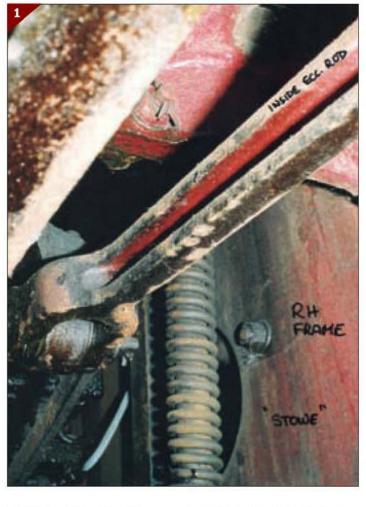
same basic dimensions as my previous effort. I would suggest that the expansion link is best fabricated from a machined block with the drop arm plate silversoldered on to the right-hand side. The best thing that I can say is that you are only going to need one inside link pivot, and that the two outside links are quite straightforward and much easier to make.

One problem, that occurs with regularity in the construction of small locos. is that of the fixing of small pins into the ends of various links and other gadgets so that they don't fall out at crucial moments. I've tried many assorted ways and generally find it best to stick to the prototype method, if it isn't too inconvenient. The eccentric rod is a case in point. I'm sure that the best method is simply to follow the prototype and use a clevis with nut and washer. A point to bear in mind is

that while some joints need to be broken for the purpose of dismantling the engine, others need only to be attended to when wear has taken place.

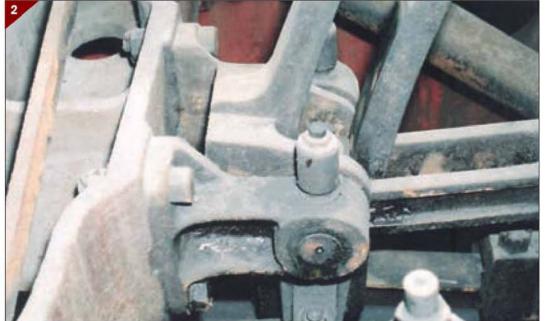
I've detailed a few quite satisfactory methods on the drawing, use whichever takes your fancy. As a general rule, the pin should be made of silver steel, hardened through. I tend not to machine shouldered clevises from larger stock, but to use the ready ground bar in the raw state so to speak. If a shoulder is essential then a groove can be cut and a C-clip of appropriate size can be fitted.

Another realistic method is to drill and tap the ½in. dia. silver steel rod 10BA and to Loctite a stainless steel 10BA slotted screw into it. The screw head can then be turned down to whatever size takes your fancy. This method combines realism with the convenience of a ready made, hardened and ground bearing surface.


The Great Northern
Railway, I'm told, used taper
pins fitted tightly in the fork
part and loose in the bearing.
The GWR commonly used a
clevis and lock plate for pin
joints, as well as castellated
nuts and split pins. Curly
Lawrence used a press fitted
pin. He used a push fit in

one fork half, a sliding fit in the bearing and a press fit in the other fork half. Ivor uses a sliding pin and Loctite. All five of these schemes work very well; take your pick.

Whichever way you fit the pin, the bush must be of bronze or better, of cast iron which will outlast bronze by a factor of three or four, better still of polished hard steel on polished hard steel (ask any clock maker), this latter is obtained by case hardening the eye of the bearing and then polishing with a piece of suitably dimensioned dowel and a fine abrasive. Buy a tin of case hardening powder and follow the simple instructions.


In such places as the expansion link assembly, which can be difficult of access with an oil-can if placed between the frames. try to plan lubrication holes so that oil splashed liberally onto the top of the link drains into them. A very useful tool is a pump oil-can with a thin 6in. long copper tube soldered into the spout which will enable one to reach those spots that are otherwise so frustratingly inaccessible.

The blastpipe and draughting arrangements A great deal of work has been carried out over

the years into the ideal proportions of the draughting arrangements of steam locos. The early work of Andre Chapelon was based upon the need for a big hot fire to produce steam rapidly, which meant that increased draught through

- Note that the inside eccentric rod is fluted on one side only.
- The expansion link bracket with lubricators on top.
- 2. Fig 1. Stowe Revised Inside valve gear.

the fire was required, which in turn necessitated a greater degree of vacuum in the smokebox. Easy enough, but the main thrust of his original work was to obtain this vacuum without increasing back pressure in the cylinders.

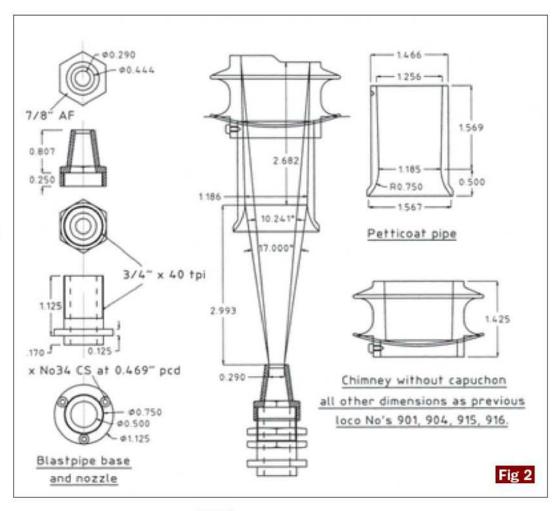
The triumphant results of his researches meant that huge increases of power and/or reductions in fuel consumption were available. These advances, together with the doubling of steam pipe diameters, meant that full-size locomotives became far more capable than before.

With small engines however, of 15in. gauge and below, there is a smaller

STOWE

proportional increase in power, as back pressure in properly designed cylinders is pretty low anyway. There is also the fact that the increases are largely negated by the fact of our much smaller adhesive weight in proportion to tractive effort due to scale effect.

A few days ago I re-drew the blast arrangements of Stowe using Henry Greenley's simple formula of, I suppose, 100 years ago and found that it differed so little from the very most modern ideas that I doubt that it would make very much difference.

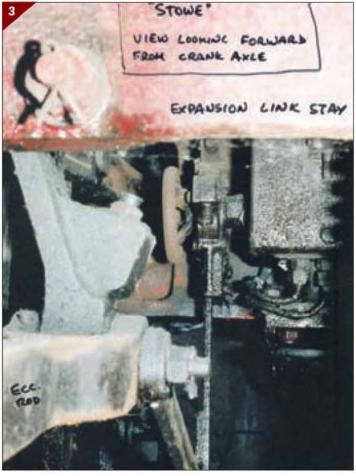

Please don't run away with the idea that I am against development. In fact, the opposite is true and I am very conscious of the advances made by people like Gordon Smith, Lionel Flippance, Don Ashton and Bill Hall, to mention a very few, in the field of greater efficiency and effectiveness.

As to the practicalities, I can envisage no problems in the making of these important parts. The petticoat itself would be improved by turning it from bronze pipe, or even stainless steel pipe, as there is no doubt that a certain amount of erosion due to hard sharp particles of grit from the firebed will take place more readily in a softer material such as brass.

The blower

As is my normal practice, I have simplified the business end of the blower assembly as far as I possibly can. I can't see the point of elaborate assemblies when a simple pipe will do perhaps a better job.

An important operation is that of forming the nozzle of the plain blower pipe by swaging. Anneal the pipe by heating to cherry red and plunging into cool water, push a short length of 1mm stainless steel wire into the hole and gently hammer the tube against a flat surface, while slowly turning it. When the tube is neatly tapered and closed up, extract the wire


3. A view looking forward from the crank axle. Note the drive to the lubricator from the bottom of the link and the oil box. Fig 2. Blastpipe and draughting arrangements.

with a pair of pliers. A suitable spark arrester, a necessary fitment these days, will be detailed later.

Most people who maintain an interest in these lovely engines, will know that they were subject to draughting modifications, which often included new improved cylinders by Oliver Bullied, from January 1939. The first engine to be given a Lemaitre multi-nozzle blastpipe was 914 Eastbourne and nearly half the class were similarly modified.

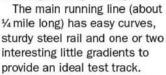
I am looking into the possibility of following suit with a Koopman or a Lempor blastpipe and large chimney, the problem being that they take up a large amount of volume in the smokebox. Watch this space.

To be continued.

L and B hosts SEQLEC 2008

This year's SEQLEC will take place in Essex.

he 'Railway Gang' of the Langford and Beeleigh Miniature Railway (L and B) have decided to put their new line 'on the map' by staging SEQLEC (Seven and a **Ouarter Locomotive Efficiency** Competition) over the weekend of 19-20 July 2008.


Situated on the grounds of one of the last steam pumping stations built between the two world wars, the Langford and Beeleigh Miniature Railway takes its name from nearby Langford Station on a now discontinued railway linking Maldon to the main line to Liverpool Street Station in London.

From the 50 or so volunteers who gather weekly to work on displays at the main museum buildings, in 2003 a 'splinter group' built a 71/4in. gauge railway on the grounds.

Track and shed

The L and B's substantially-built main line circles the grounds and has 60ft, radius curves and turn outs, a two-platform station at Langford and a wayside halt. The track is controlled by automatic coloured light signals with level crossing warnings and lights.

The main station with its two platforms long headshunt, water tower and coal stage will enable trains to be marshalled to suit the requirements of each driver.

The MPD (motive power depot) boasts a three-road shed (40ft, long) has a 14ft. turntable which can access two carriage roads, a steaming and disposal road and a one-ton capacity adjustable loading and unloading ramp. Water, compressed air, mains electricity and 12V DC are available in the engine shed and adjacent workshop.

Rolling stock and water

The rolling stock is comprised of six heavy carriages. One driving and passenger car has a 16-gallon water capacity which

is electrically-pumped and can be controlled by the driver to top up locomotive tanks and tenders during their circuits. There are also three lighter-weight cars, one of which is also a driving car.

All the rolling stock is vacuumbraked on all eight wheels. For the benefit of non-vacuum equipped visiting locomotives, a vacuum generator is available to be fitted to the train which provides the guard with a brake valve and vacuum gauge. A brake valve is also fitted to the driving car. Locomotives driven from their tenders or in other ways, can be braked by means of a valve on a 'wandering lead'.

Accommodation and caravans

The 11-acre site is surrounded by a high steel fence and there is adequate space for secure parking of vans and trailers in the station vard and for caravans and camping in the field or the woods the other side of the river, all part of the museum grounds and gardens.

Plenty of accommodation can be found in the ancient seaport town of Maldon and good pubs and places to eat. There are supermarkets as well as traditional high street shops.

The sights

A river trip on the Blackwater with its boats and fleet of spritsail barges (now carrying passengers, not cargo) can be enjoyed and the 'promenade' offers river views, the lakes (boating and ornamental) and amusements. The larger towns of Colchester and Chelmsford are within easy reach.

The museum itself, situated just outside the old seaport town of Maldon in Essex at the head of the Blackwater Estuary, houses a wide spectrum of 'power' displays from the huge steam pumps to examples of I/C engines and wind and water power. There is a complete operating line shaft-driven workshop.

Entry details from: John Dines. c/o Museum of Power. Hatfield Road, Langford, Maldon, Essex CM9 6QA

ME

Brighton Modelworld

Malcolm Stride takes a trip to Brighton to visit this popular show in its 30th anniversary year.

- Peter Ballard's triple-expansion generating set on the Reading SME display.
- 2. The Fowler 9/11 tine turning cultivator by Dave White on the Mid Sussex MEC stand.
- 3. A selection Edgar Westbury designed I/C engines by Tony Grantham.
- The Society of Model & Experimental Engineers' SMEELEC Low Energy Challenge rig was being shown by Mike Kapp and Alan Wragg.
- 5. Phil Brien's Tyne and Wear Metro electric locomotive on the Fareham stand.
- 6. The Isle of Man locomotive Peveril by L. Marshall on the Brighton & Hove Society of Miniature Locomotive Engineers stand.

had never visited this show before, so I set out to Brighton with no preconceived ideas as to what to expect. The show is held in the Brighton Centre, located right on the sea front and about 10 minutes walk from the main railway station. I arrived at the centre to be welcomed by Tim Steven the show organiser and was soon inside having a first look round. This show is a general modelling show so although I have concentrated on the engineering subjects for my report, I must say I enjoyed seeing many of the other exhibits.

My own club, **Reading SME**, was at the show, so I got rid of my coat and other things before finding Peter Ballard's fine triple-expansion generating set (**photo 1**) on the stand. I have seen several examples of this engine recently, so it is obviously still a popular subject.

Next door to Reading was the **Mid Sussex MEC** which had a very varied display including the fine Fowler 9/11 tine turning cultivator (**photo 2**) by Dave White. The prototype

dates from around 1910 and the standard of workmanship on this unpainted model was top class. Another unusual exhibit on this stand was the display of engines to Edgar Westbury designs (photo 3) by Tony Grantham. Tony had a card listing all the engines and they are (left to right, top to bottom): water-cooled 15cc Kiwi Mk. II 4-stroke (built from the

solid); Dolphin 10cc 4-stroke; Atom V 30cc two-stroke; Cadet 5cc 2-stroke; two Atom Minor 2-strokes – one with front disc induction; Ensign 10cc car engine; Craftsman Twin 10cc flat twin; Cherub 10cc twin, Kestrel 5cc 2-stroke and finally the Ladybird 2.5cc twin diesel.

The Society of Model & Experimental Engineers was promoting the SMEELEC Low Energy Challenge competition which will take place at the Model Engineer Exhibition and details can be found on page 399. The test rig was being shown by Mike Kapp and Alan Wragg (photo 4), organisers of the competition. Further details can be obtained from the SMEE website at www.sm-ee.co.uk

Fareham DSME had another

2008

good range of models on its stand and I picked this nice Tyne and Wear Metro electric locomotive (**photo 5**) by Phil Brien for my picture. The full-size locomotive is battery-powered with the batteries charged from the overhead supply.

The next locomotive was being displayed on the very local **Brighton & Hove Society of Miniature Locomotive Engineers** stand. This was the superb Isle of Man locomotive *Peveril* (**photo 6**) by L. Marshall. *Peveril* is one of 15 identical Beyer Peacock locomotives built for the railway. This society was providing train rides for the visitors alongside the **Bentley Miniature Railway** with some familiar faces from SMEE doing the driving.

Several of the famous (or should that be 'infamous')
Daleks were happily trundling around the show. They were being controlled by the **Dalek Builders Guild** and my picture (**photo 7**) shows Vince Martyn (on the left!) from Reading SME with his monster which had the temerity to attack your scribe later on!

Among the many things taking place in the arena was the tank and military vehicle display by the **UK Tank Group**. My picture (**photo 8**) shows a typical example of these detailed R.C. models.

We have covered land-based vehicles and locomotives, in addition there were several model boat displays at the show, including a boating pool on which I found a fine cargo ship, the *Venture* (**photo 9**) being put through its paces.

For those who prefer a faster mode of water transport, the Spirit of Seattle 3 Point Hydroplane (photo 10) should be fast enough. This model was displayed with a collection of other fast boats by the very newly-formed Brighton & Hove Model Power Boat Club. The club operates at Hove Lagoon (at the east end of

Several Daleks were on the loose, this
one by Vince Martyn from Reading SME.
 An American Stuart M5A1 Light Tank in
the display by the UK Tank Group.
 Venture, one of the boats being
operated on the pool.
 The Spirit of Seattle 3 Point

10. The Spirit of Seattle 3 Point Hydroplane displayed by the Brighton & Hove Model Power Boat Club.

11. Peggy from the South Downs Light Railway Society was popular in the foyer. 12. The electric-powered Lion locomotive under construction by 14 year-old Joe Addis of Fareham DSME.

Shoreham Harbour) on Saturday afternoons for members and further details can be obtained from the founders Dave Monck (T. 01273 415102) or Andy Davis (T. 01273 883822).

Reverting back to large model engineering, the 0-4-0 locomotive Peggy (photo 11) from the South Downs Light Railway Society was in the foyer and provided a contrast between the very large and very small scales on display at the show.

For my final picture, I have saved the unusual electric-powered *Lion* locomotive (photo 12) being built (with assistance) by 14 year-old Joe Addis from the Fareham DSME. The locomotive is driven by toothed belts from an upright motor and the battery is carried in the tender.

My notes and pictures can only convey a small part of this show which, although not primarily a model engineering show, has much to interest model engineers. I certainly enjoyed my visit.

A'S PAGE PE and A SE PETE'S PAGE PETE'S PAGE PETE'S PAGE PETE'S PAGE PETE SPAGE PETE SPA

Peter Spenlove-Spenlove

concludes his description of making custom washers with some hints and tips.

Continued from page 269 (M.E. 4320, 29 Feb. 2008)

A double-ended punch and die set.
 The larger punch has a 'pip' for locating the centre hole.

A washer illustrates how the fixture makes nice, concentric parts. o make a good true
washer, the middle hole
is made first. Punches
with retracting springs
are often used to make the
middle holes. Then a larger
punch with a pip is used.
The centre hole is hand
located on the pip before
hitting the punch to cut
the washer.

Photograph 7 shows a double-ended punch/die set which does not have springs. The pip (in photo 8) must align with the middle hole before striking. The finished washers, in this case ½in. O/D x ½in. I/D, were cut in 0.025in. thick Mylar as shown in photo 9.

For bigger washers, the cutting end of the punches is 'as-turned' in a lathe. Some people used to make punches with a sloping end. An angle of 5 to 10 deg. was used and the punch and die were hardened. The face of the hole in the fixture was not on a slope. Such tools were sold to amateur radio builders who had to cut holes in 16 or 18swg aluminium chassis for fitting tuning coils and valve bases. However, an angled punch can distort the flatness of a washer. especially if the material is thin metal.

Curing sticky washers

When punching several washers, the earlier one may tend to stick in the lower half of the tool instead of dropping out. There are two ways to cure this: Run a taper reamer into

the hole, but don't ream the cutting edge nor the area for about 1/10 in. below that. Taper pin reamers can be used but, as few people have these, an alternative method can be used.

Set the slotted and reamed block in the machine vice with the lower hole uppermost. Fill the slot with a flat piece of steel. Use a drill which is very slightly larger than the reamed hole and open it out. The drill point will touch the flat 'obstruction' in the slot and thus it will not open out the hole close to the punching area.

Caution: Use the steel 'obstruction' in the slot. Do not rely on your drilling 'technique' as it is very possible that the drill could snatch and go too far! The aim is to leave about 0.05 to 0.07in. of the hole at the original reamed size.

General reminders

As most of the punch and die sets, whether used freehand or in a press or vice, will be used to make washers, some reminders are worth while.

- 1. Punch the small hole first.
- Use a punch with a pip to locate the small hole while it cuts the outer (larger) diameter. When working freehand, this is easy; one can 'feel' if the pip is

engaged.

- 3. Punches with return springs under the head have to be treated more carefully. You will NOT hold the punch while hitting it. In this cases, make the pip a bit longer. Some spacers under the spring may help adjustment, so that the pip just drops into the middle hole while the punch body is just clear of the potential washer.
- 4. Don't bash the pip into the anvil it will be damaged!
- If many washers are to be made, set the punch/die assembly on a surface of block with a hole big enough to let finished washers drop through.

ME

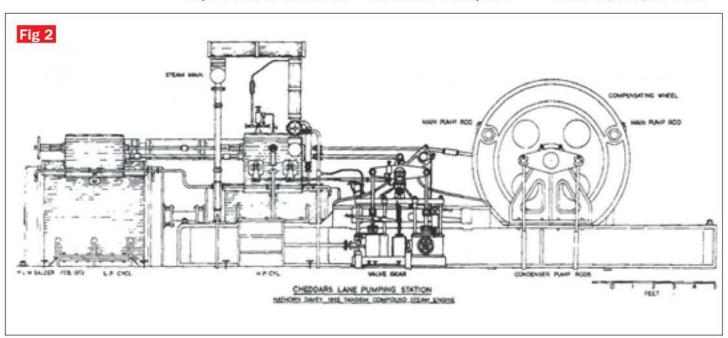
The Cambridge Old Sewage Pumping Station and replica pumping engine

Donald Unwin

describes the full-size Hathorn Davey Sewage Pumping Engine.

Continued from page 254 (M.E. 4320, 29 February 2008) ince the closure of the station in 1968, the sewage input culvert and delivery rising main have been blanked off, and the sewage sump cleaned out and filled with water. To enable the engine to be operated realistically, water is pumped and re-circulated back to the sewage sump.

Figure 2 shows a diagram of the tandem compound cylinders of the pumping engine with the connecting rod coupled to compensating wheels (which act as bell cranks), and the pump rods dropping vertically downwards to the pump cylinders below ground. Davey was anxious to design the engines to have greater pumping efficiency than the Cornish engines used at that time. His heavy compensating wheels (instead of the lighter bell cranks) were one of the ways he used to maximise the


kinetic energy available.

The engine assembly is mounted on a bedplate consisting of two long castings. The high-pressure cylinder, valve bearing castings and the compensating wheel shaft bearings are bolted to the bedplate. Two extension castings, bolted to the ends of the main castings, carry the low-pressure cylinder. The whole bedplate is mounted on a 10ft, high brick plinth rising out of the basement. Below the floor of the basement is the sump from which the sewage, from the incoming culvert, was collected (fig 3).

Above each cylinder are the main slide valves, with Meyer type valves on top of them, to enable the cut-off to be adjusted. Although the Meyer valves are operated by a valve rod, hand wheels on the back of each valve chest enable the valves of each cylinder

to be adjusted individually. In addition, the high-pressure cylinder has 'cushioning' or 'snubbing' valves in the exhaust passages to cushion the piston at the end of each strike. These valves perform an important function since the engine is non-rotating and has no flywheel and crankpin to restrain the piston at the ends of the stroke.

Originally, both raw sewage and storm water flowed into the sewers so the depth of fluid in the sump varied considerably altering the load on the pumping engines. The engines had to be self-governing under such conditions. To provide this control, Henry Davey designed an ingenious device he called the 'Differential Valve Gear', now known as the 'Steam Man' (photo 11). This admits steam for a longer or shorter portion of the stroke depending on the load. Davey designed several

versions of this gear, including

force on the piston in the event

of a sudden reduction in load.

fitted to the Steam Man, each

cataract cylinder to enable the

piston speed to be regulated.

piston being connected via an

adjustable flow control valve.

These consist of closed

cylinders, each side of the

Two steam cylinders are

is connected to a water-filled

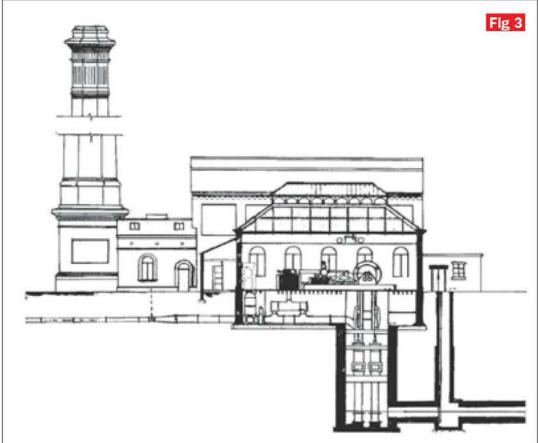
one that reversed the steam

Hence, once set, the speed of the pistons remained constant irrespective of engine load. A smaller 'pause' cylinder operates the slide valve of the larger 'subsidiary' cylinder that, in turn, operates the main engine slide valves through links (photo 12).

During normal running, steam admission is controlled by the constant velocity subsidiary piston operating

the main slide valves. Cutoff is controlled by the Meyer valves, operated by the engine. Providing that the load on the engine is sufficient to keep its speed slower than that of the subsidiary piston, the cut-off is controlled by its motion. However, if the speed of the engine exceeds that of the subsidiary piston, due to a reduction of load or rise of steam pressure, then

the Meyer valves will cut off the steam earlier. The Meyer valves are operated via a cross shaft mounted in the two valve bearing castings. This shaft is partially rotated by a link, connected to an arm on the cross shaft, to a pivot on the end of the compensating wheel shaft, on the opposite side to the Steam Man (photo 13).


At the end of the engine stroke, a link from the Meyer valve cross shaft, connected to the 'Pause' steam cylinder slide valve of the Steam Man (to the left of the stroke counter), initiates the sequence that controls the return stroke of the main engine (photo 14).

On the end of the common piston rod is the crosshead. with a shaft carrying slippers running in guideways on the bedplate castings. The connecting rod big end is on the crosshead shaft and the little end coupled to the bottom of the large compensating wheels. The crank pins of the pump connecting rods are symmetrically positioned in the upper quadrants of the wheels (fig 2). Hence, the compensating wheels drive the two sewage pumps located below in the sewage sump. Crossheads with guideways are also fitted to the top ends of the pump rods in the basement (photo 15).

The delivery from the two sewage pump cylinders went into the main discharge pipe, that passes along the basement floor, to the rising main that lead to the Milton Sewage Farm. In the basement is a surface condenser that used the raw sewage discharge as cooling fluid. It is mounted horizontally above the main discharge pipe and connected by a short pipe at each end to the discharge pipe.

Between the two connecting pipes is a diversion valve to divert some of the discharge into the condenser. Just before the junction, at the end of the basement, is an air chamber to reduce hydraulic shock and a large gate valve to close the discharge completely.

This enables one pumping engine to be isolated whilst

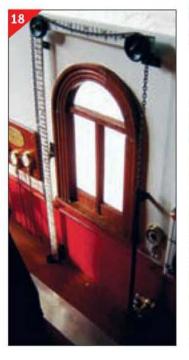
the other remains working. Photography of parts of the basement is very difficult so **photo 16** of the condenser and air chamber assembly is of the replica.

The compensating wheel shaft has a cross arm that has two connecting rods which drive the condenser pumps located below the engine room floor. These pumps draw the condensate from the surface condenser and deliver it to the oil separator (photo 17, right). The water sinks below the oil and the clean separated water flows along a pipe into the hot well tank at the back.

On the wall behind the main engines, in full view of the engine man, are two large level indicators, one showing the sewage level and the other the hot well water level.

Also on the wall is a panel of gauges indicating boiler pressure, vacuum and water pump delivery pressures (photo 18).

Contemporary with the main engines is a Mumford, double-acting, donkey pump Model No. 6 (**photo 19**). This can either pump water from the river or the hot well tank and deliver it to the boiler or to a header tank in the roof. In addition, there are two Weir, horizontal, reciprocating boiler feed pumps.


To be continued.

Finishing the Bristol Hydra (THAT ALMOST FINISHED ME!)

help,

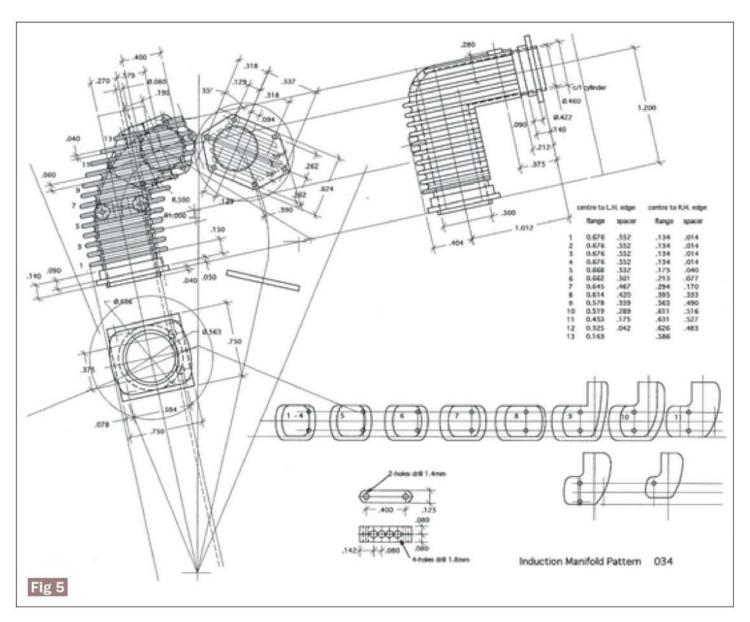
Brian Perkins

struggles with valve timing and the temptations of the scrap bin.

Continued from page 257 (M.E. 4320, 29 February 2007)

he next job was to connect the cam drives (photos 6a and b). However, when I turned the engine over, to my horror, the camshafts on each head were turning in opposing directions, and the left and right heads were, as should have been obvious, going in opposing directions. I visited the Trust to see the full-size engine. The cam drive gearboxes had cast-in arrows to show the direction of rotation. so there was really no excuse for missing the point. Mad panic, was I going to have to remake all the cams? Earlier, I mentioned my

concern about setting


the valve timing because the cams are hidden within the cam boxes. To

ny ch fa ing

I had drilled a hole in each cam so that, with the hole vertical and the piston at TDC, the valve should be in the correct position - but now the shafts were

going in opposite directions! After a break for thought, I realised that, purely by chance, I had made the cams symmetrical lengthways so it was just a matter of turning them end-to-end where necessary. A huge

sigh of relief! Having sorted that problem out, it was off with the cam boxes again so that the double valve springs and tappets could be fitted. The valve spring load was calculated from the acceleration figures obtained from the cam design program. This were surprisingly light so it was not possible to use standard springs. So, back to the piano shop for more wire. The springs were wound left and right-handed to avoid any coil binding and the ends ground square (photo 7). The valves were fitted to the heads and the springs and tappets installed so that a preliminary

test of tappet clearances could be made.

Valve timing

It was then time to begin the serious business of setting up the valve timing. This took seven months! At one time I was sorely tempted to put the whole lot in the bin (hence the title of the article). I started with the rear row of cylinders but, after setting the first two, there was a click from somewhere inside as a gear jumped a tooth. Initially, I thought it was the fault of the eight bevel pinions driving the cams since, because of the layout, where the gears all come to a point, it had been necessary to skim the top of the 48dp teeth to ensure clearance. So I threw that lot away and remade the pinions

and their drive bevel using 40dp and a wider tooth face.

I reassembled. This time I got to about No. 5 before the dreaded click, so down it came again. This time I suspected the 18t. x 48dp pinion, driving the cam drive, might be causing the problem so this, and it's 138t driven wheel, was remade with 15t. x 40dp and 115t respectively.

I reassemble again. This time I got to No. 6 before it failed. I was now getting rather upset! I decided that the problem was probably bearing play in the eight bevel pinions. These were mounted in plain bushes so, after stripping down yet again, I modified the housings and gears to accept ball bearings to reduce lateral movement.

The next problem was that a gear, which was fastened to

its shaft by Loctite, slipped; which meant another strip down. I pinned the gear to the shaft and reassembled. Then one of the cross shaft bevels, connecting the two camshafts, also slipped so those bevel gears were remade using a hexagon shaft rather than relying on Loctite.

You can imagine that I was now very annoyed - to put it mildly, and the engine

was nearly thrown in the bin!
However, after a few days off
over Christmas, I reassembled
it yet again and finally
managed to connect all the
drives to the rear cylinders.
I even managed to get all
the cams set up in the right
sense. I now had an engine
with 8 cylinders in which the
cams were all going in the right
direction and the valves were
actually going up and down. Of

course, I still had the task of setting the tappet clearances, but this was progress.

Drive couplings

The front cams are driven through a coupling from the rear boxes. This coupling was originally a disc and pin type. However, it quickly became apparent that it would be impossible to use this type of coupling since the cam box has to be slid into place and there is not enough movement in the coupling to allow this. Thinking cap back on. I modified the coupling to the Oldham type, which can be lined up and slid into engagement without any difficulty. Obviously the cams could not be set until the cam box was in place. But, by making them free on the shaft, it was possible to rotate the coupling and cam to its correct position, relative to the rear cam, and lock with a grub screw. Once all the cylinders were set, and I was satisfied that firing order was correct. the couplings were drilled and pinned in place.

In future, I have decided that anything to do with valve timing, and associated drive, needs to be positively fixed with keys, serrations, or by pinning rather than relying on Loctite. However, the chances of me ever undertaking another engine of this type again are remote! The main problem is that, since everything is tucked away within the cases, setting up is extremely difficult – one just cannot see where the problems are.

Inlet manifolds

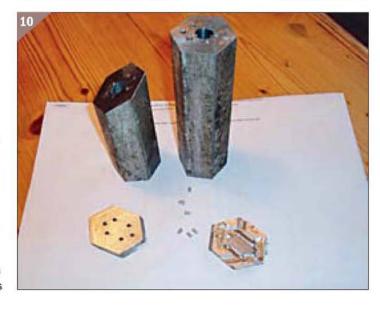
To ease my frustration, I began to consider producing the finned inlet manifolds, the inlet manifold flanges/covers and the propeller hub:

The inlet manifolds are in the form of double bend tubes with fins. These carry the mixture from the supercharger stubs to the inlet manifold on the rear cylinder (fig 5). The front cylinder is fed by a simple tube between the two inlets. The manifolds are left and right handed so the first thing was to produce a pattern for each. This

was done by bonding together a series of plates to produce the forms and from these make a silicon rubber mould. A second pattern was produced for the core and a mould made from this (photo 8).

End tubes were turned from aluminium which were then fitted to the ends of the cores. I tried wax and Cerrobend for these but gave up on the wax when I scrapped a number of castings because the end tubes moved due to the weakness of the wax cores. The core was placed in the mould and resin poured in to produce the casting (photo 9): then the core was melted out. I tried polyurethane, polyester and epoxy resins but eventually chose epoxy. This seemed to give the best results and were even better when I cast in a vacuum. When it came to final assembly, it was very difficult to position them due to the tight spaces and minimum clearance involved.

The inlet manifold flanges and front covers were jobs that looked simple but turn out to be difficult. Each cover is held on with six 12BA studs, which are fitted through drilled bosses. The rear ones are flat, and were fairly straightforward, but the front ones are fitted to a face at 30deg. to the centre line of the cylinder with the studs in line with the centre line.


To produce them, the hole pattern was drilled and then the covers and bosses sawn off at the 30deg, angle (photo

10). The front covers had no central hole and were left thicker to allow for the fins. which had to be machined once they were parted off. The bosses were made longer than necessary, bonded into place, finished to length, and the flange profiled when cured. I had several attempts to make these parts, particularly the angled ones, before achieving success. Drilling and tapping 12BA holes on the angled faces was a bit fraught; the flat faces were not quite so bad. Drill jigs were made in much the same way as the covers with pre-drilled bosses attached to the flanges. However, this time, these parts were made in steel and silversoldered together.

Tapped holes

There are over 600-12BA tapped holes on the engine which gave me nightmares just thinking about them. In the event, it all went well and I only broke one tap, which was spark eroded out by a friend of someone at the Trust. All the tapped holes on the engine. including the 148-14BA holes in the cam box bearing covers, were tapped using my normal method of holding the tap in a pin chuck with a four-slit collet so that the square on the tap was held across the corners. The shank of the pin chuck was then held loosely in the chuck of my bench drill and turned with finger pressure only.

To be continued.

SMEELEC

A NEW COMPETITION FOR THE MODEL ENGINEER EXHIBITION

Mike Kapp outlines the SMEE's energy saving competition that is open to all. nybody wandering around the recent exhibitions may have stumbled across a peculiar white contraption with a tall plastic column at one end and a jumble of electronics and a computer screen at the other. Oh, and it also sported a series of pulleys with bits of string running round them. Standing behind this thing you may have noticed two men in blue coats nervously trying to tell all who would listen what it was about.

So what is it about? Well, it is called SMEELEC, short for the 'Society of Model and Experimental Engineers Low Energy Challenge'. It is a competition aimed at anyone who has a yen for doing something that is based on experimental prototyping skills. Basically, it is an exercise in efficient energy conversion. Contestants are required to build a device that can

extract and store energy from a low rate source and then release it as kinetic energy to lift a weight as rapidly as possible. We are not after beautifully finished models – as long as it works we don't care what it looks like. The shortest time wins – finish has nothing to do with it. The device just has to be safe and follow the rules.

There are actually two competition categories and they are differentiated by energy source, being either electrical or heat. The electrical category uses a button cell type LR44 as the energy source. This is the cell commonly used in digital callipers. Energy can be drawn from this for up 5 minutes, and this energy must be used to lift the weight before the time expires. The heat category uses the flame from a tea light (night light) as the source, but here 10 minutes are allowed for energy accumulation.

The weight is 100 grams, and it must be lifted 500 millimetres in the shortest possible time. The lift time is electronically measured in microseconds (hence the plastic tube which houses the sensors), and the shortest time in each category wins.

How the energy is stored and

converted is entirely up to the contestant, but there are, of course, a few rules. The device must be built on a base of 16mm thick MDF, chipboard, or similar material with a 300mm square footprint. This is so that it can be fitted to the test rig on competition day. It can be up to a metre tall, but nothing may extend beyond these boundaries at any time.

ALL of the energy used for lifting must come from the supplied source – no other energy may be pre-stored or added during the test. Also, the source may not be modified in anyway.

So there you have it. If you want to see the rig in action, visit the SM&EE stand at Harrogate in May. However, if you would like to know more now, the full rules are available as a download from the SM&EE website at www.sm-ee.co.uk

If anybody wants to have a go at this challenge, they can register by E-mail or snail-mail at the following addresses:

smeelec@sm-ee.co.uk

or SMEELEC Competition Organiser, 35 Singleton Road, Broadbridge Heath, Horsham RH12 3NP

Here are some FAOs:

Q. Where and when will the competition be held?
A. At the Model Engineer Exhibition to be held at Ascot on 19 to 21 of September 2008.

Q. Is there in fact enough energy in a button cell or candle flame to lift the weight? A. Hugely more than necessary. It only requires about half a joule to lift the weight against gravity. The cell is capable of delivering around 30 joules in 5 minutes, while the candle can deliver over 1,000 joules in 10 minutes. However, efficient conversion from a small heat source is of course more difficult.

Q. What lift times have been achieved in practice?
A. For demonstration purposes a simple boost

regulator circuit was used to charge some fairly large electrolytic capacitors to around 14 Volts. This was then used to run a motor, the weight being lifted by string winding round the motor pulley. Our 14 Volt output (30 Volts is allowed in the competition) was reached in under 2 minutes. The motor and pulley sizes were by no means optimal, but even so, lift time was consistently less than a quarter second, so contestants should be able to do much better than this.

Q. Heat engines can take a long time to reach operating temperature, but will still be hot at the end of the run, which seems unfair.

A. Contestants will be allowed to get their engines to operating temperature before the run, but they must be run to a standstill before the new candle is inserted and the timer started.

Q. Many heat engines do not self-start.

A. Contestants will be allowed to 'flick the flywheel' to get engines running.

Q. If energy is stored in a flywheel, a clutch is required to couple the flywheel to the pull mechanism. Can external energy be used to energise the clutch?

A. External energy may be used for coupling or triggering as long as it does not add to the lift energy.

Q. Are there any prizes and if so what are they?

A. Yes, there will be prizes in both categories. A cash prize of at least £100 for the fastest lift in each category is available. We are hoping for other prizes donated by model engineering related businesses (we've had some already, and if anyone else out there would be prepared to donate a prize, please contact us and become a named sponsor). Every entrant who brings a device will also get a free entry to the exhibition as an exhibitor.

Q. When is the closing date for entries?

A. We have been registering people who have expressed an interest and are sending information to them. We plan to send out an entry from to all registered contestants towards the end of April, and will also have these available at Harrogate. The closing date will probably be August 31, but that will be confirmed later.

NCH BRAY'S BU'S BENCH BRAY'

Stan Bray explains the process of machining a flywheel.

Continued from page 264 (M.E. 4320, 29 Feb. 2008)

RACHEL A wall steam engine

o complete the pump, the knuckle joint for joining the pump ram to the connecting rods (Item 26) is unusual. The best way to make it is to machine a disk and drill a hole in the edge at some point. Make a suitably shaped piece with a thread to fit the ram the other end to fit in the hole in the disk; the parts can either be joined with retaining compound or silver-soldered. The gland takes the same cuplike shape as all others and like this is best made with one of the form tools that have already been mentioned.

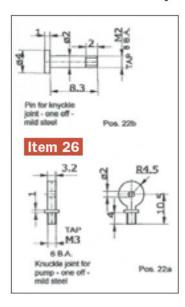
Flywheel (Item 27)

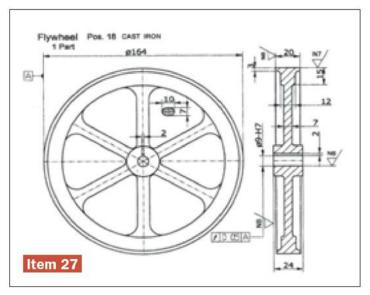
First thing to do will be to give the wheel a good dressing over with a file in order to try and remove as much of the surface coarseness as possible.

Cast iron flywheels are more often than not difficult to machine, for a variety of reasons. They are frequently so large that there is no easy way to mount then on the lathe and they also tend to suffer from not being cast accurately.

For anyone unfamiliar with the casting process this had better be explained.

Most will already know the basic principle, whereby a pattern is laid in a box of sand, which is then rammed down hard, the pattern removed. two grooved made, one for the molten iron to run into the impression and the other for surplus to run out. The founder knows he has poured sufficient iron when it starts to flow from this groove. However, unless an item is a very basic shape it is necessary for the mould to have two parts, half of the pattern impression is in the top and half in the bottom.


As a rule this is achieved by the pattern being made in two halves, but just occasionally, depending on the item to be cast there will be a single pattern and this will be laid half depth in the moulding box and half in the top. Such an arrangement relies on the skill of the founder to ensure both halves line up accurately.


Where problems might occur with an item such as a flywheel, whichever method is used, is if the pattern is laid incorrectly in the box and a very slight misalignment occurs. It is highly unlikely that there will be any major misalignment as both boxes have dowels to ensure they close accurately and the two halves of the pattern also are dowelled to ensure correct alignment. Problems, therefore, can only occur when the pattern is set at a slightly uneven depth i.e. deeper at one side than the other.

If this does happen the flywheel can be slightly incorrect in a number of ways, none of which will be disastrous but it is always necessary to check thoroughly for any misalignment, which will frequently show itself by a slight stepping effect on either the inner or outer rim. It can also take the form of a rim of varying thickness, or a slightly misaligned boss. There is no need to panic, it is most probable that the flywheel supplied in this case is perfect as was the one machined for this article.

These points should be looked out for as it might be necessary to make slight adjustments to compensate when setting the work up for machining. Therefore, the casting must be checked thoroughly and if there is any slight misalignment a little iudicious packing with shims is all that is needed to put matters right, and to line the casting correctly for machining. This applies whether it is to be machined on a faceplate or in a chuck.

In the case of the flywheel in question it was decided to machine on the faceplate, the 3-jaw chuck was not large enough to hold it and although it would fit in the 4-jaw this would have meant it fouling the bed of the Myford, whereas

when on the faceplate it fitted nicely in the gap in the bed.

To prevent damage to the faceplate when machining the rim, three short lengths of rectangular steel bar were stuck to it with cyanoacrylic adhesive. Should there be any misalignment of the casting then sticking shims on top of the spacing pieces should correct matters. The wheel must be secured at three points, with T-bolts through the slots and with dogs covering two spokes. Get these as near to the centre as possible in order to obtain sufficient clearance to allow work to be carried out on the rim. With the bolts partially tightened the casting can be lined up using a soft mallet and a surface gauge. There is no point in using a dial gauge as the surfaces will not be sufficiently accurate due to the sand residue on the iron. A little tip worth remembering here is to mark any places that need adjustment with chalk, it is easy to see a chalk mark, not quite so easy with a scratch from a scriber.

Once the casting is set up tighten the bolts hard, and use a carbide tipped tool for the machining. The textbooks tell us that the first cut must be deep enough to penetrate underneath the hard outer surface, this may well have been true in the days of carbon steel tooling, but does not apply with either tipped or high speed tools. In point of fact, on the lightweight lathes used in the home workshop, it probably isn't possible to take

a cut to such a depth anyway. So take cuts to whatever depth you might feel is suitable for your lathe. One thing that is essential is that the lathe is running at the slowest possible speed, use back gear if the lathe has one.

At this stage inner and outer rims can be machined. Doing the latter will just involve running the tool into the three spacing pieces, but that is what they are there for and so don't panic when you start to hear three clicks it is exactly what you want to hear. Once these have been brought to size our attention must go the boss, the face of which can be machined and the bore then has to be made. It must be started with a centre drill and can then be drilled and reamed. However, using a boring bar will give greater accuracy and should be considered.

A small keyway is needed and cutting this can be problematic. Some readers will no doubt have a suitable slotting tool. Those without might like to consider making a tool rather like a boring bar, but fitted with a tool of the correct width for the slot and ground square on the cutting edge. Mounted at centre height this can be pushed through the bore using the carriage mechanism. After all this is the way a slotting machine works anyway.

Some readers may feel uncertain at making a slot in this way and there is another method. First of all increase the bore of the wheel to the standard figure plus twice the height of the keyway.

Say the bore is 9mm and the keyway is 3mm deep, it needs to be opened 15mm. Now machine a piece of steel to the outside diameter and bore to the original size, in the case of the example it will be 15mm outside diameter and 9mm inside. Machine a slit lengthways in the piece to the width of the keyway, taking it right through, leaving a rounded C-shaped piece of bar. Use a retaining compound to secure it in the bore of the wheel and there you have a flywheel complete with a very accurate keyway.

Once the machining has been completed the wheel can be turned round on the faceplate. By putting a bar in the tailstock chuck and passing it through the bore in the flywheel it is possible to locate its position on the faceplate fairly accurately, just a couple of light taps with a mallet will centralise it. And the rest of the machining can be completed.

To be concluded.

73. Although generally quite clean some fettling was required on the flywheel before machining could commence.

74. Three pieces of flat mild steel were stuck to the faceplate with cyanoacrylic adhesive in such a position that they would be in contact with the rim edge, the wheel was then bolted to the faceplate using three sets of bolts and clamps. It was rotated by hand against a surface gauge and discrepancies in casting thickness, etc. were marked on the wheel by chalk crosses. Gradually adjustments were made until the wheel ran as true as possible. It is necessary to check the inside and outside of the rim as the thickness is likely to vary, also the position of the central boss both for concentricity and its relationship with the inside of the rim. Care taken at this stage will be more than repaid when machining takes place. 75. The photograph shows the outside of the rim being machined, using a carbide tipped tool, the three pieces stuck to the faceplate allowed the tool to be taken right across the circumference without any worries about damage to the faceplate It was necessary to use a different tool to machine the inside of the rim and another for the boss. The wheel was also bored to accept the crankshaft at this stage and the slot for the wedge must also be dealt with before the casting is turned around in order to machine the other side.

Malcolm Stride reports

 Members of Birmingham Society of Model Engineers celebrate the completion of the footbridge over the raised track.

2. Harry Dryden being presented with his Honorary Membership certificate by Chairman Russell Ainslie at Edinburgh SME.

he organisation of this year's Model Engineer Exhibition is moving forward and we have received several offers of models for display at the show. However, in order to make this a memorable show for locomotives, we are still actively looking for more. Models to designs by all the well-known builders and designers are still sought. Originals models constructed by the designers will be particularly welcome, but good examples of locomotives by other builders will ensure that we have a representative selection by each designer on display. So if you have, or know of any models which you feel would be suitable, please contact the Editor (david. carpenter@magicalia.com) so that we can make some tentative arrangements.

Model Engineer goes multi-media

As I write this column, work is well advanced in setting up a YouTube channel to enable us to bring you additional content and to publicise the magazine. We are looking for short video clips of models in action for use on the site. The clips should not be too long, a minute or two is probably ample. How about sending a video of that

tricky machining set-up, the latest model in action, or some club activity? All this will help to generate interest in model engineering among the younger members of society which can only be a good thing.

Leda power boats

Following my comments about the *Leda* power boats (*News*, *M.E.* 4319, 15 February 2007), Chris Orchard has refreshed my memory regarding the builder. It was of course Ted Vanner who built and raced a series of these boats over many years. I thank Chris for the kick for my memory.

Notices

Leicester SME has announced the following special events for this year: Wednesday 11 June - Evening running for visitors from local clubs at Abbey Park, Leicester; Sunday 22 June - Open Day for visiting locomotives at Abbey Park, Leicester; Sunday 28 September - Traction and Track Open Day for visiting locomotives and miniature road vehicles at Abbey Park, Leicester.

Further information can be obtained from John Lowe, Publicity Secretary, T. 01455 272047, E. greenbriar@tiscall. co.uk

The annual rally of the Model Steam Road Vehicle Society will be held, as usual, at the Tewkesbury Rugby Club ground over the weekend of 28/29 June this year.

Rochdale SMEE has confirmed the date for the Northern Association Narrow Gauge IMLEC competition as the weekend of the 14/15 June this year. Further details will follow.

City of Sunderland MES has notified us of two open days to be held this year. The dates are Sunday 1 June and Sunday 7 September.

Worthing DSME will be holding the Worthing 2008 Model Scene exhibition on Saturday/Sunday 26/27 April at Field Place, in the Barn, Pavilion Club House, track and grounds. The exhibition will be open on Saturday from 10.00am to 5.00pm and on Sunday from 10.00am to 4.30pm. This exhibition of model engineering includes boats, clocks, locomotives, traction engines, model railways, a boat pool, workshop demonstrations and more. Live steam train rides will be available throughout the day. For Further information, contact the Society Publicity Officer on 01903 235102.

UK club news

The National 21/2" Gauge Association calendar for 2008 has sold well with very few left at the time of writing. Simon Clough has taken on the role of south east area secretary and Steve Terris has taken over as trade officer. This is an important role in this society which supplies castings and drawings for several designs. With the recent discussions about metrication in this magazine, Neil Heppenstall purchased a letter 'G' drill from a local shop at a cost of £6.61 plus VAT. The next day he enquired what the price of the equivalent 6.6mm metric drill would be - £3.50 plus VAT. It seems that Imperial items may suffer from being priced out of the market. The association is making good progress with an electric locomotive, in this case a Class 66 freight locomotive. The project is being undertaken in conjunction with

Maxitrak and an initial order for components has been placed. If there is sufficient interest, another electric design, a Swiss *Crocodile* will be pursued.

A visitor to the St. Albans **DMES** annual exhibition last year arrived with an unusual model for the boat pool. The visitor was Brian Spinks from the Welwyn Garden City SME who arrived with a radio controlled duck. The duck's head moved with the rudder and it had flashing red and green eyes. There were various competitions organised at the Christmas social evening including a memory test in which contestants had to memorise as many items as possible from a box of 40 in 45 seconds, a sweet quiz, where sweets had to be identified from cryptic clues (such as "self-assembly feline") and a task requiring the identification of everyday items from advertisements with the branding removed. Roger Stephen found an unusual model locomotive in the Museum of Barnstaple and North Devon. The model won the Championship Cup at the 1937 Model Engineer Exhibition and appears to be a 3½in. gauge version of the LBSC Fayette 4-6-2. Roger is interested to find out if the design was published in 31/2 in. gauge. I can't find any reference to the larger version in Brian Hollingsworth's book on LBSC, so if anybody out there knows otherwise, please let us know.

The Birmingham Society of Model Engineers celebrated the completion of the footbridge over the raised track at the New Year's Day steam-up (photo 1). The bridge builder, centre right, Keith Bloor and President Peter Flavel, centre left, and members of the society carried out a load test. Both the bridge and the refurbishment of the clubhouse were funded by a lottery grant. The steam-up was held in fine weather with 14 locomotives running and hot soup and rolls provided to keep out the cold.

Following a risk assessment, **Bournemouth DSME** has decided that no reverse running shall be permitted on clockwise running days. This will be reviewed following the installation of track signalling. The society has published an updated Code of Safe Practice as a reminder to all.

The December competition day at Bradford MES was a good social occasion with plenty of models on display. There were 23 models entered into the competition, including 11 junior entries but with few finished models this year. The junior members did well in the competition, with Peter Gosbee gaining three awards for his 71/4in. gauge electric locomotive, Stanley Ashworth being awarded the Dodwell trophy for "the junior who has done most to promote the interests of the society", and Sidney Ashworth taking the Junior Prize for a wooden model workshop. Congratulations to all on their achievements. The society has found a new use for its leaf blower. After washing the portable track, the blower was used to dry the track and supporting pillars before storing it for the winter. This brings a whole new dimension to the phrase 'wash and blow dry.' Let's hope that the pillars do not go curly after the treatment. The local council is helping to celebrate the club centenary this year by creating a commemorative "carpet flower bed" in recognition of the occasion. The club has produced some commemorative centenary badges for members.

Cardiff MES is celebrating its 60th anniversary this year and has started the year well with some changes to the design of the new clubhouse extension cutting costs and also resulting in the work being able to start earlier than had been thought. The rebuilding work will also be carried out with less disruption to club activities than expected. One of the younger members, Rhys Sully, has written an article on the construction of multi-gauge points. This sounds fine, but these are designed to cope with gauges '1' and '0'. so it is probably a good thing that Rhys has a young set of eyes in his head. Rhys started this project because he "was

fed up of having to lean over the all the tracks whenever I wanted to steam my engine up". Rhys used a "flange plate" to ensure that the '0' gauge flanges would be supported through the point. Member Wallace Hook celebrated his 90th birthday at the club in September. May we express our belated congratulations to Wallace on this milestone? Wallace has been a member for almost 50 years which says a lot for the life-enhancing effects of model engineering.

The December meetings of the Wednesday Mob at Crawley Model Engineers have been devoted to drinking tea and eating biscuits due to the inclement weather. On one occasion the members went home at 11.30, "not wishing to die of hypothermia". Even the renowned dog had a rest from chasing the ball after developing a strain. The Fish and Chip Supper, a regular feature of the winter season went off very well apart from a 20-minute wait because the fish and chip shop had forgotten about the order. It is reported that the pangs of hunger were kept at bay during the wait with some wine and peanuts!

The first meeting of Edinburgh SME at the new venue, the Scout Hall in Broxburn, took place in January, with 18 members in attendance. The hall is very suitable with a bright interior and is extremely well heated. The winter programme has started with the first event being the film night. This was successful with a few interesting DVDs and videos

being shown to the members.

An opportunity is being provided for a group of members to work together as a team to produce a freelance 7½ in. gauge petrol locomotive. The power unit for this locomotive will come from the club lawnmower which still has a good working engine and gearbox. It is a 3.5hp engine with a three-speed gearbox and should be ideal as the power plant for a strong locomotive.

On the afternoon of the Christmas track running day, Harry Dryden was awarded an honorary membership (photo 2) for his long-term commitment and dedication to the society. A certificate was presented to Harry by the Chairman, Russell Ainslie, who also thanked him for his services. Harry has been involved with ESME since the previous track site at Eddleston and was part of the group involved in setting up the original track layout at Newliston.

A wide range of members' work was on display at the Bits & Pieces night in November. Items shown included a hydraulic ram, a V-twin launch engine, a range of locomotives in various stages of completion and small workshop items. The members present voted the largely complete 2in. scale Fowler tractor by Ross Mark the winner of the Farr Trophy.

The last meeting of 2007 at Melton Mowbray DMES was a "string of stories" by Allen Walker about his life from narrow boat building, his time at Springer Engineering and finally his lifelong connection with all types of historic transport. The

meeting was described as "a good evening's entertainment, a laugh a minute". The New Year's Day steam-up was well attended with eight steam and two electric locomotives and a large crowd assisting members of the traction engine group. The 'Professor of Engineering, University of Life's Experience' has passed on a useful tip for those drilling deep holes in bronze or copper. In order to prevent the drill binding in such materials sharpen the drills slightly off-centre. This is a case where very accurate machine sharpening can cause problems. Apparently just 0.001in, extra off one face of 1/sin. drill solved the binding problems.

I have received information from a club that has not featured in this column in recent times. Polegate DMEC has sent details of its lecture programme for the year. The next meeting is on 11 April and is The Bluebell Railway: a look back at 45 years by David Jones. Further information can be obtained from society programme secretary D. F. Pratt, T. 01323 645872.

Winter work at Rochdale SMEE has included reconditioning the portable track passenger cars which needed "a touch of TLC". The work included re-furbishing the running gear and brakes and re-paining in a new livery complete with a large society emblem on the sides. The "brains" of the society are now focussing their attention on how to improve access to the steaming bay area and the introduction of suitable tamperproof connections between the riding cars.

We have received an update of activities from last year

at Stafford DMES. The year is reported as having been very successful by Secretary Edward Hodson. An air operated cross-over was fitted to the main ground level line to access the steaming bays and sidings and construction of a new carriage shed is almost complete. A level crossing has been constructed to improve access. This was done with the help of a grant from the local council. A raised garden railway track for 16mm/gauge 1 has also been constructed. A successful application was made to the National Lottery 'Awards for All' scheme to finance a new 71/4in. gauge diesel locomotive and easy access passenger carriage.

The club Royal Scot at the City of Sunderland MES is now operational and in order to ensure that this and other club locomotives are kept in good condition a paraffin/air gun has been purchased to aid cleaning after use. The 7½in. gauge passenger bogies are being altered to improve the brake system equalising. One bogie has been updated and tested and much less effort is now required to apply the brakes effectively.

Matthew Edmondson is assessing the interest at York Model Engineers in the creation of a running track for small scale locomotives in 16mm and gauge 1. Work continues at the track site with the removal of potentially dangerous trees. Work on the fence to improve the appearance of the site is making progress with frames set in 19 post holes filled with concrete in around 90 minutes by a group of eight members. The fence has now been fitted with the vertical palings.

World club news

In Memoriam

It is with the deepest regret that we record the passing of the following members of model engineering societies. The sympathy of staff at *Model Engineer* is extended to the family and friends they leave behind.

> Tom Gaitt Ron Poulter Ken Sewell Douglas Webb

Docklands & East London MES Harrow & Wembley SME Melton Mowbray DMES Cardiff MES

Australia

Bruce Hielsher of the Model **Engineers and Live Steamers** Association (Maryborough) is celebrating the completion of his Don Young designed Railmotor which performs well on the track. Many of Bruce's family enjoy being at the regulator of "this marvellous little locomotive". Having built and run a Railmotor, I can agree wholeheartedly with that sentiment. The timber for nine new riding trucks has been acquired and three wagons are well advanced. Membership of the society is increasing. The coal crusher built by Chris Arnold has been used in anger for the first time and after a couple of teething problems is now fully operational.

Canada

Martin Rogers has been made a life member of the British Columbia SME for his work and dedication to the club since becoming a member in 1975. Member (and Newsletter Editor) Edwin Bissey was awarded the Member of the Year award for 2007 because he "has quietly put in much effort, more than most, to make the club run well". Congratulations to both members and, from my point of view, thanks to Edwin for his efforts with the newsletter. The annual Christmas season run at the local shopping mall was a big success and came close to being the best ever. A volunteer dinner will be held for those who helped out with the event.

Trade news

Mammoet PCT crane model kit During the 59th

Spielwarenmesse, International Toy Fair in Nürnberg, Germany in February Mammoet and WSI Collectibles introduced the world's biggest scale model in a series.

The new model is a replica of the Mammoet PTC crane. A great deal of attention has been paid to details when constructing the model. The model has been given sufficient counterweight so that just as with the prototype the boom can be lifted from the ground.

The new model is produced in a limited edition and has a height of 1.92 metres at a scale of 1:50.

The PTC crane model is the biggest scale model in the world that has been produced in series and weighs 26 kilos.

The model was developed in close cooperation between WSI Models B.V. and Mammoet Holding B.V. The real PTC crane is deployed particularly in the offshore industry, in power plants and the petrochemical

RY DIARY DIA RY **DIARY** DIAR

MARCH

- 28 Hereford SME. Mike Chrisp: Going for Gold. Contact Nigel Linwood: 01432 880649.
- 29 Brighton & Hove SMLE. Public Running. Contact Mick Funnell: 01323 892042.
- 29 Romney Marsh MES. Boiler Testing. Contact John Wimble: 01797 362295.
- 29 York City & DSME. Jim Burlingham: Especially for Beginners. Contact Pat Martindale: 01262 676291.
- 30 Chichester DSME. Steam on Sunday. Contact Brian Bird: 01243 536468.
- 30 Guildford MES. Boiler Testing Day. Contact Dave Longhurst: 01428 605424.
- 30 Harrow & Wembley SME. Public Running. Contact Roy Goddard: E. RSGwatford@aol.com
- 30 Maidstone MES (UK). Public Running. Contact Martin Parham: 01622 630298.
- 30 MELSA. Sunday in the Park. Contact Graham Chadbone: 0741 21 4341.
- 31 Canterbury DMES (UK). AGM. Contact Mrs P. Barker: 01227 273357.

APRIL

- Romney Marsh MES. Track Meeting. Contact John Wimble: 01797 362295.
- 2 Bristol SMEE. Chris Macdonald: Life and Times of LBSC. Contact Trevor Chambers: 0145 441 5085.
- 2 Chingford DMEC. Bits & Pieces. Contact Ron Manning: 020 8360 6144.
- 2 Leeds SMEE. Meeting. Contact Geoff Shackleton: 01977 798138.
- Tyneside SMEE. DVD selections. Contact Malcolm Halliday: 0191 2624141.
- 3 Bournemouth DSME. Tech-Chat. Contact Dave Finn: 01202 474599.

industry where the really heavy loads have to be lifted. PTC is a practical crane because the crane is transported easily in containers.

So transportation by ship, rail and road is possible. The capacity of the real PTC is 1,600 tons. Mammoet has four PTC's in its fleet.

For more information visit the PTC website at www.ptcmodel. com The model can be ordered online: www.mammoetstore. com

Chronos

One of our regular advertisers, Chronos has recently added several new items to its already extensive range. The new items include a "threading, parting and profiling lathe tool set" comprising external threading, internal threading, parting and profiling tools by Glanz with replaceable tips.

Also new is a range of indexable tip face-milling cutters and arbors in 50 and 63mm cutter diameters with

either 3MT or R8 arbours.

For those needing to line up milling machine heads, a new product is now available, Spindlesquare, which comes fully assembled with two dial type indicators and is described as self-calibrating. The whole is packaged in an aluminium case.

The final new item on the list is a 500 gram jar of dry acid pickling salts which makes up to eight litres of acid dip solution.

Chronos can be contacted at Unit 14, Dukeminster Estate, Church Street, Dunstable LU5 4HU, T. 01582 471900, E. sales@chronos.ltd.uk, W. www. chronos.ltd.uk

Humour time

This was from Northampton SME:

The Tail End

Why does mineral water that "has trickled through mountains for centuries" have a "use by" date?

Y DIARY DIARY

- 3 Halesworth DMES. Annual Auction. Contact Chris Walliman: 01362 695735.
- South Lakeland MES. Meeting. Contact Adrian Dixon: 01229 869915.
- 3 Sutton MEC. Bits & Pieces. Contact Bob Wood: 020 8641 6258.
- Westland & Yeovil DMES. AGM. Contact Gerald Martyn: 01935 434126.
- 4 Colchester SMEE. Mike Gipson: From the Paxman Archive. Contact Jon Mottershaw: 01206 383456.
- 4 Maidstone MES (UK). Bring & Buy. Contact Martin Parham: 01622 630298.
- 4 North Norfolk MEC. Club Auction. Contact Gordon Ford: 01263 512350.
- 4 Rochdale SMEE. Bits & Pieces. Contact Bob Denyer: 0161 959 1818.
- 4 Romford MEC. Competition Night. Contact Colin Hunt: 01708 709302.
- 5,6 Dockland & E. London MES. Public Running. Contact John Slocombe: 01708 222658.
- 5 Ickenham DSME. Public Running. Contact Ian Mortimer: 01895 635596.
- 5 Isle of Wight MES. Track & Pond. Contact Malcolm Hollyman: 01983 564568.
- 5 SM&EE. Training Seminar. Contact Maurice Fagg: 020 8669 1480.
- 5 Sunderland (City of) MES. Meeting. Contact Albert Stephenson: 01429 299649.
- 5,6 Taunton ME Exhibition 2008 at Heathfield Community School, Monkton Heathfield, Taunton, Somerset. 10am-4.30pm.£5 Adult, £4 Senior Citizens, £1 Children. Information: 01460 63162.
- 6 Bristol SMEE. Public Running. Contact Trevor Chambers: 0145 441 5085.

- 6 Cardiff MES. Steam-Up & Family Day. Contact Don Norman: 01656 784530.
- 6 Frimley & Ascot LC. Public Running. Contact Bob Dowman: 01252 835042.
- 6 Leicester SME. Public Running. Contact John Lowe: 01455 272047.
- 6 Northampton SME. Boiler Testing Day. Contact Pete Jarman: 01234 708501 (eve).
- 6 Norwich DSME. Running Day. Contact Shirley Berry: 01379 740578.
- Oxford (City of) SME. Running Day. Contact Chris Kelland: 01235 770836.
- 6 Plymouth MSLS. Public Running. Contact Malcom Preen: 01752 778083.
- 6 York City & DSME. Running Day. Contact Pat Martindale: 01262 676291.
- 8 King's Lynn DSME. AGM. Contact Mike Coote: 01533 673728.
- 8 Romney Marsh MES. Track Meeting. Contact John Wimble: 01797 362295.
- 8,9 Saffron Walden DSME. Public Running. Contact Jack Setterfield: 01843 596822.
- 9 Chingford DMEC. Martin Masterson: Helicopters & Fixed Wing Models. Contact Ron Manning: 020 8360 6144.
- 9 Norwich DSME. Bob Hines: Gauge 1 Model Railways. Contact Shirley Berry: 01379 740578.
- 9 St. Albans DMES. AGM & Models in Progress. Contact Roy Verden: 01923 220590.
- 11 Ascot Locomotive Society. Racing at Ascot. Contact Lee Porteus: 01344 884385.
- 11 Brighton & Hove SMLE. Derek Green: Slides of the Society. Contact Mick Funnell: 01323 892042.
- 11 Hereford SME. Richard Donovan: More from Down Under. Contact

- Nigel Linwood: 01432 880649.
- 11 Polegate & District MEC. David Jones: The Bluebell Railway. Contact D. F. Pratt: 01323 645872.
- 12 SM&EE. Mel Martin: Fault monitoring on Gatwick Express. Contact Maurice Fagg: 020 8669 1480.
- 12 York City & DSME. Stephen Greener: CNC Machines – A Primer. Contact Pat Martindale: 01262 676291.
- 13 Bristol SMEE. Public Running. Contact Trevor Chambers: 0145 441 5085.
- 13 Canterbury DMES (UK). Public Running. Contact Mrs P. Barker: 01227 273357.
- 13 Edinburgh SME. Track Running Day. Contact Robert McLucke: 01506 655270.
- 13 Harlington LS. Public Running. Contact Peter Tarrant: 01895 851168.
- 13 Leeds SMEE. Running Day. Contact Geoff Shackleton: 01977 798138.
- 13 Leicester SME. Public Running. Contact John Lowe: 01455 272047.
- 13 Norwich DSME. Running Day. Contact Shirley Berry: 01379 740578.
- 13 Sutton MEC. Track Day. Contact Bob Wood: 020 8641 6258.
- 13 Worthing DSME. Public Running. Contact Bob Phillips: 01903 243018.
- 14 Bedford MES. Peter Titterton: Digital Photography for the Modeller. Contact Ted Jolliffe: 01234 327791.
- 14 Melton Mowbray DMES. Ladies Night - Air Ambulance Service. Contact Phil Tansley: 0116 2673646.
- 15 Chesterfield MES. M. Melbourne: Railways in Colorado. Contact Mike Rhodes: 01623 648676.
- 15 Northampton SME. Bits & Pieces.

- Contact Pete Jarman: 01234 708501 (eve).
- 15 Nottingham SMEE. Malcolm High: Laser Cutting. Contact Graham Davenport: 0115 8496703.
- 15 Romney Marsh MES. Track Meeting. Contact John Wimble: 01797 362295.
- 15 Saffron Walden DSME. Public Running. Contact Jack Setterfield: 01843 596822.
- 15 Taunton ME. Roger Goodchild: Working in the Dark. Contact Nick Nicholls: 01404 891238.
- 16 Bournemouth DSME. David Howell: RNLI. Contact Dave Finn: 01202 474599.
- 16 Bristol SMEE. Mike Horlick: Gears. Contact Trevor Chambers: 0145 441 5085.
- 16 Chingford DMEC. An evening with Ralph Lance. Contact Ron Manning: 020 8360 6144.
- 16 Leeds SMEE. Video Evening. Contact Geoff Shackleton: 01977 798138.
- 16 Maidstone MES (UK). Members' Playtime Run. Contact Martin Parham: 01622 630298.
- 16 MELSA. Meeting. Contact Graham Chadbone: 0741 21 4341.
- 16 Saffron Walden DSME. Club Night. Contact Jack Setterfield: 01843 596822.
- 17 Isle of Wight MES. Meeting. Contact Malcolm Hollyman: 01983 564568.
- 17 Sutton MEC. AGM. Contact Bob Wood: 020 8641 6258.
- 18 Rochdale SMEE. Brian Howarth: Parkside Electronics. Contact Bob Denyer: 0161 959 1818.
- 18 Romford MEC. David Callaghan: VC. Contact Colin Hunt: 01708 709302.
- 19 Chesterfield MES. Public Running. Contact Mike Rhodes: 01623 648676.
- 19 SM&EE. Gauge 1 Track Day. Contact Maurice Fagg: 020 8669 1480.

probably the best website for machines and tooling in the model engineering world!

just a selection from our current stock

Go to the "new arrival" section of our website: www.gandmtools.co.uk for our latest additions to stock. Check out our ebay shop for many more bargains, go to: www.stores.ebay.co.uk/gandmtoolsales

Ultrasonic Cleaning Tank, 240 Volt, New, £65.00 plus vat.

Myford Coolant Unit, 240 Volt, £200.00 plus vat.

Jones & Shipman 4" Swivel & Tilt Vice, £325.00 plus vat.

Per Cast Investment Casting Unit, £350.00 plus vat.

Boxford STS 1020 Centre Lathe, Tooled, 3ph, £1250.00

March Radius Fixture For Tool & Cutter Grinder £300.00 plus vat.

Myford 3 Point Steady, £85.00 plus vat.

Schaublin 102N Bench Instrument Lathe with Tooling, Excellent Condition with Inverter, £5500.00 plus vat.

Herbert High Speed Bench Drill, 3ph, £295.00 plus vat.

Startrite 18-S-5 Bandsaw with Speed Controller, £850.00 plus vat.

Kennedy Portable Bench Power Hacksaw, 1ph, £225.00 plus vat.

In future we will be closed on Saturdays on all Bank Holiday weekends

- Telephone enquiries welcome on any item of stock. We hold thousands of items not listed above. All items are subject to availability.
 All prices are subject to carriage and VAT @ 17.5%.
 - We can deliver to all parts of the UK and deliver worldwide.
 - Over 7,000 square feet of tools, machines and workshop equipment.

G and M Tools, The Mill, Mill Lane Ashington, West Sussex RH20 3BX

Opening times: 9am -1pm & 2pm - 5pm Monday to Friday. 9am -12am Saturday.

CLOSED SUNDAY

e-mail: sales@gandmtools.co.uk Telephone: 01903 892510

web: www.gandmtools.co.uk fax: 01903 892221

Suggestions and special offers for the medium size workshop

WM240 Variable Speed Lathe

Supplied with 3 and 4 jaw chucks, fixed and travelling steadies, face plate, dead centres, swarf tray. Hardened and ground bedways.

- · Centre height 5"
- Distance between centres 20"
- Speed range 50 2200rpm with back gear for more torque

Supplied with metric or imperial leadscrews Drill chuck, arbor and live centre free of charge

£699.00

WM18 Variable Speed Mill

- 1.1 kw motor
- 3MT Spindle
- · Digital rev counter
- Digital spindle depth gauge
- Available with metric or imperial leadscrews
- Back gear for maximum torque

4 direct collets free of charge

£1250.00

que ge

WM16 Variable Speed Mill

- Infinitely variable from 50 - 2250rpm
- Dovetail column ensures positive head location
- Table size 27½" x 7"

Set of 3 direct collets free of charge

£998.00

Plate Shears

WM250 Variable Speed Lathe

Supplied with 3 and 4 jaw chucks, fixed and travelling steadies, face plate, dead centres, swarf tray. Hardened and ground bedways.

- Centre height 5"
- Distance between centres 22"
- Screw cutting gear box with 3 feed rates and reverse leadscrew facility

Supplied with metric or imperial leadscrews Drill chuck, arbor and live centre free of charge

£999.00

Croppit

- · Effortlessly cuts through 3mm mild steel
- · Straight line cutting any length
- · Near perfect radius cutting
- Designed for bench (vice) mounting

£99.00

41/2" Universal Bandsaw

- Supplied with steel table for vertical operation
- 6" x 4" capacity
- Mitre vice
- 1/2hp motor

Additional flexible carbon blade free of charge

£175.00

2F VS Variable Speed Floor Standing Drill

- Infinite speed control via expanding pulley system
- Speed range 350–2200rpm
- Digital rev counter
- 1HP motor
- Accurate keyless chuck
- 2MT spindle
- Rigid cast iron construction

19 piece drill set, metric, free of charge

£318.00

2B 12 VS Variable Speed Bench Drill

- Infinite speed control via expanding pulley system
- Speed range 350-2200rpm
- Digital rev counter
- 1HP motor
- · Accurate keyless chuck
- 2MT spindle
- · Rigid cast iron construction

19 piece drill set, metric, free of charge

£228.00

Tool Cabinet

- Part of a wide range. Please send for full details.
- Professional, industrial quality
- · Ball bearing drawer runners
- Fully lockable
- Rubber lining to drawers
- Heavy duty castors, two locking

Tool cabinet £199.00 Tool chest £110.00

6" Bench Grinder

- Powerful machine fitted with strong tool rests
- · Lock on safety switch
- Eye shields have insert magnification for precise work
- Smooth running, with large, high quality bearings and balanced components

£75.00 (Optional stand £49.00)

Prices include VAT • Delivered UK mainland • Please ring for comprehensive sales literature

We are unable to take all small tooling items to exhibitions due to space restrictions. If you wish to purchase any spares, bulbs, collets wish to purchase any space, bulbs, collets or backplates, please contact us before the exhibition, so that we can the exhibition, so that we can bring the item for you.

WARCO Fisher Lane, Chiddingfold, Surrey GU8 4TD fax. 01428 685870 warco@warco.co.uk

tel.01428 682 929 www.warco.co.uk

when you subscribe to Model Engineers' Workshop

Digital Caliper -**100**mm

- Worth £24.99
- Quality stainless steel frame
- LCD 4 way measurement
- 0.01 mm graduation

LIK ONLY SUBSCRIPTIONS

E-mail

- True mm/inch conversion
- Locking screw

HURRY

Offer ends: 10th April 2008

BY PHONE: 08456 777 807 quote ref. E743 (**) ONLINE: www.subscription.co.uk/mew/E743 Alternatively, you can complete the form below and return, with payment, to the address provided

OVEDSEAS SUI	CODIDT	IONIC.					
OVERSEAS SUI							
☐ I would like to s			-		with a o	ne-orr payme	nt:
☐ Europe (incl Eire)							
For all Canadian, North an	South America	an subscriptio	ns please call	001 732 424	7811 or go t	to www.ewamags.co	im
PAYMENT DETAIL	ç.						
PATINENT DETAIL	J						

						the book	
Please make cheques p	ayable to Ma	gicalia Publi	iehing Ltd an	d write code	e E743 on t		
Please make cheques p	ayable to Ma	gicalia Publi	iehing Ltd an	d write code	e E743 on t		
Please make cheques p Cardholder's name	ayable to Ma	gicalia Publi	iehing Ltd an	d write code	e E743 on t		
Please make cheques p Cardholder's name	ayable to Ma	gicalia Publi	iehing Ltd an	d write code	e E743 on t		7
Postal Order/Ch Please make cheques p Cardholder's name Card no:	ayable to Ma	gicalia Publi	iehing Ltd an	d write code	e E743 on t	(Maestro)]
Please make cheques p Cardholder's name Card no:	ayable to Ma	gicalia Publi	iehing Ltd an	d write code	e E743 on t	(Maestro)]
Please make cheques p Cardholder's name	nayable to Ma	gicalia Publi	sue no	d write code	e E743 on t	(Maestro)]
Please make cheques p Cardholder's name Card no: Expiry date	nayable to Ma	gicalia Publi	sue no	d write code	e E743 on t	(Maestro)]
Please make cheques p Cardholder's name Card no: Expiry date Signature YOUR DETAILS:	ayable to Ma	gicalia Publi	ishing Ltd an	d write code	e E743 on t	(Maestro)]
Please make cheques p Cardholder's name Card no: Expiry date	ayable to Ma	gicalia Publi	ishing Ltd an	d write code	e E743 on t	(Maestro)]

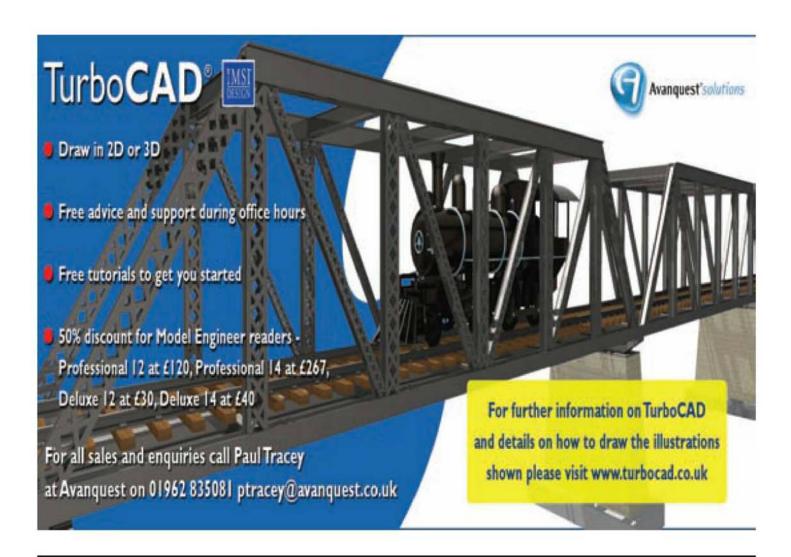
Country

DINECT DEDI	SUBSCHIFT	IONS (JR ONLI).
□ I would like t	o subscribe to	Model	Engineers
· CAVE 45	.0/ .		

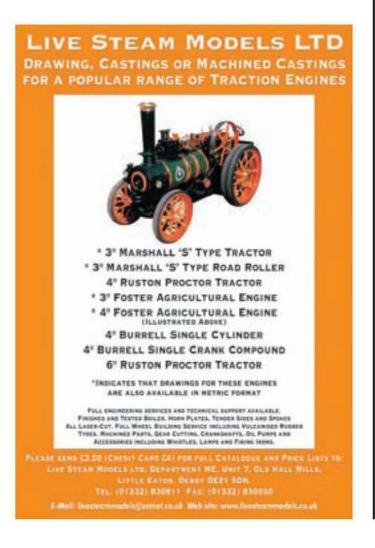
CODE E743 ' Workshop and SAVE 15%, by paying just £9.50 every 3 months by Direct Debit

(UK ONLY) Please complete form below

Instructions to your bank or building society to pay by Direct Debit. Originator's reference 422562


□ Pay £9.50 every 3 mon	ths by Direct Debit (please tick)	Debit
Name of bank		
Address of bank		

	Postcode	
Account holder		
Signature	Date	
Sort code	Account number	


Instructions to your bank or building society: Please pay Magicalia Publishing Ltd.
Direct Debits from the account detailed in this instruction subject to the safeguards assured by the
Direct Debit Guarantee. I understand that this instruction may remain with Magicalia Publishing Ltd and
if so, details will be passed electronically to my bank/building society.

Reference Number (Official use only)

Please note that banks and building societies may not accept Direct Debit instructions from some types of account. TERMS & CONDITIONS: Offer ends 10th April 2008. Subscriptions will begin with the first available issue. Please continue to buy your TEHMS & CONDITIONS: Ofter ends 10th April 2008. Subscriptions will begin with the first available issue. Hease continue to buy your magazine until you receive your admondedpenment later. Refund requeste must be in writing to the Publisher and will not be given on accounts with less than £20 credit. A5 admin charge will apply and will be deducted from any refund. Refunds will only be given at the Publisher's sche discretion. We will use the contact details supplied to communicate with you regarding your Model Engineers' Workshop and Magicalla Publishing Ltd. please indicate here: Contact by: [] credit [] telephone [] mobile. If you are happy for us to pass your details on to other carefully selected companies to contact you about other products or services available from Model Engineers' Workshop and [] telephone [] mobile. If you do NOT wish us to contact you by POST about products or services evaluable from Model Engineers' Models En Workshop and Magicalia Publishing Ltd. please indicate here ☐ If you do NOT wish us to pass your details on to other carefully selected companies to contact you by POST about their products or services please indicate here ☐

SEND TO: MODEL ENGINEERS' WORKSHOP SUBSCRIPTIONS, TOWER HOUSE, SOVEREIGN PARK, MARKET HARBOROUGH, LEICS LE16 9EF

Model Engineer Classified

BOOST PHASE CONVERTERS

The UK's most advanced phase converters with a unique 3 year guarantee. Never beaten on price.

Tel: 01344 303 311 Fax: 01344 303 312 Mob. 07952 717960 www.boost-energy.com info@boost-energy.com

BOOST HAS BEEN MANUFACTURING HIGH QUALITY PHASE CONVERTERS IN THE UK SINCE 1957

For more than 25 years I have been serving model engineers, offering services including the supply of top quality 'used' machines and accessories, valuations, pre-purchase inspection of third party machines plus general advice and information. For an online stocklist plus details of services available please go to my website or contact David Anchell direct.

www.quillstar.co.uk

Tel: 0115 9206123

Mob: 07779432060 Fax: 0115 9430858

PARTBUILT MODELS BOUGHT. All locomotives, at any stage of construction. Completed models also construction. Completed models also bought regardless of condition. Traction engines and all Stuart stationary engines wanted – beam, vertical, horizontal etc, part built or complete. Will travel any distance. Please telephone Graham, 0121 358 4320. (T)

5"g A4 Gresley Pacific and any Mike Breeze model

wanted by serious collector Please Tel: Graham Jones on 0121 358 4320

LOCONAMES

For high quality cast type solid brass nameplates for locos, traction engines etc. 7 1/4" gauge and agreeards

t: 02920 861 443 c: johnstyles@btconnect.com

> John Styles 5 Heoly Berth Caerphilly CF83 1SP

TESLA

SMOOTH, QUIET, HIGH PERFORMANCE ARIABLE SPEED CONTROL FOR YOUR LATHE OR MILL

Hose large 127%, I'm, I'm I'm will fin-

AMAZONG 10 YEAR WARRANTYIII

1987-1987

Non-Ferrous material supplied in all form tailored to your need by size & quantity Silver steel, Gauge plate, B.M.S. steels.

Catalogue free.

P.L.Hill (Sales) Ltd

Unit 3 Crownworks, Bradford, StD4 8T3

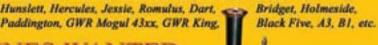
Tel/Fax: 01274 733300

mail: pthillsalevicaol.com www.pthillsales.co

L STEAM ENGINES WAS

any age, size or condition considered - any distance, any time

ALL 5" GAUGE LOCO'S WANTED


Hunslett, Simplex, Speedy. BR Class 2, Horwich Crab, BR 8400 tank, Maid of Kent, Black Five, Jubilee, Royal Engineer, B1 Springbok, Torquay, Manor,

ALL 31/2" GAUGE LOCO'S WANTED

Tich, Juliet, Rob Roy, Firefly, Jubilee, Maisie, Doris, GWR Hall, Britannia, Hielan Lassie, etc.

ALL 7¼" GAUGE LOCO'S WANTED

Paddington, GWR Mogul 43xx, GWR King,

ALL TRACTION ENGINES WANTED

Minnie, Burrell, Royal Chester, etc.

ALL PARTBUILT MODELS WANTED

For a professional friendly service, please telephone:

Graham Jones M.Sc. 0121 358 4320

www.antiquesteam.com

Model Engineer Classified

Manufacturer of the famous Super 7 lathe and leading supplier of premier quality pre-owned machinery, all refurbished by time served, skilled craftsmen.

To find out more contact Malcolm

0115 925 4222

Website: www.myford.com Email: sales@myford.com

> or visit our showroom at Wilmot Lane, Chilwell Road, Beeston, Nottingham, NG9 1ER

PENNYFARTHING TOOLS Ltd. The Specialist Tool shop

Quality Secondhand Machine Tools at Sensible Prices

We purchase complete Workshops, Machines, Models and Hand Tools. Agreed settlement on inspection -Distance no object

Tel: Salisbury 01722 410090 Web Site: www.pennyfarthingtools.co.uk

KITTLE HOBBY

Sharp milled (not rolled) brass sections from 1mm to 10mm.

Sold in metres.

Send sae for list to: PO BOX 5, YSTALYFERA, SWANSEA, SA9 1YE

> TEL: 01639 731005 www.kittlehobby.com

B.C.A. MkIII Universal Jig Boring & Milling Machine

A precision & robust machine for producing many types of components. Milling, boring, drilling, indexing operations for example.

Swivel R&F head • 10 Spindle Speeds • 8" Rotary Table on compound slides • X.Y.Z. Movements • Many other features

Widely used in all types of manufacturing and model engineering.

Used Models - choice available. Ring for information & inspection by appointment.

Telephone (01425) 622567 Fax (01425) 622789

Tenga Eng Co Ltd Machine Tool Div, Britannia House Stem Lane Ind Estate, New Milton, Hants UK. BH25 5NN

NEIL GRIFFIN

 St.Albans, Hertfordshire Engineering Services

Machining for Model Engineers From drawing, sketch, pattern etc.

Friendly personal service.

Telephone / Fax: 01727 752865 Mobile: 07966 195910

RCM ENGINEERING LTD.

Machine Tools. Taps & Dies. Hand Tools. Materials.

B.A. Nuts & Bolts. Machining Service

23 Egerton Road, Dronfield, Sheffield S18 2LG Tel: 01246 292344

Fax: 01246 292355

Mon-Fri 8.30-5.30 Sat 10-3 Sun CLOSED

(Out of hours appointments also available)

GB BOILER SERVICES

COPPER BOILERS FOR LOCOMOTIVES AND TRACTION ENGINES etc.

MADE TO ORDER

Constructed to latest European Standards 71/4" guage and P.E.D. category 2 Specialist

Enquiries, Prices and Delivery to:

Telephone: Coventry 02476 733461 Mobile: 07817 269164

WANTED

We are constantly looking to purchase complete home workshops, especially those with good quality Myford lathes and equipment Distance no object.

> Please contact Malcolm on 0115 925 4222

Carr's Solders

Cadbury Camp Lane, Clapton in Gordano, Bristol. BS20 7SD Tel:01 275 852 027 Fax:01 275 810 555

Email: sales@finescale.org.uk www.finescale.org.uk

ALL LOCOS AND STEAM ENGINES,

TRACTION ENGINES, BOATS, LORRIES AND STATIONARY PLANTS STUART TURNER, ETC. REQUIRED.

ANY SIZE OR CONDITION EVEN PLAIN WORN OUT! COMPLETE COLLECTIONS PURCHASED FOR CASH! DISTANCE NO OBJECT, AVAILABLE 7 DAYS A WEEK.

PLEASE TELEPHONE 01507 606772 FOR A FRIENDLY AND INFORMAL CHAT.

Model Engineer Classified

Model Engineer Classified/directory

Send Stamped addressed envelope plus four first class rps for 26 Page List (Overseas £2.50) 'Quote Me'

"ITEMS" MAIL ORDER LTD.
Mayfield, Marsh Lane, Saundby,
Nr Retford, Nottinghamshire, DN22 9ES
Telephone 01427 848880 Fex 01427848880

STATION ROAD STEAM

Good prices paid for live steam models in any condition, broken or part-hailt through to exhibition quality, Collections purchased. Laconnotives, traction and stationary engines, bought, sold and part-excharged.

- Locomotives from gauge 1 to 10 1/4 inch •
- Ministrate railway equipment, colling stock etc.

 Traction engines from 3/4 inch to half full-size.
- Stationary engines from table-top models to full size, including designs by Stuar Turner, Westbary
 Spirit, gas and coal-fired boilers in all sizes
- All types of restoration projects & part-built models *

Fully serviced and tested locomotives and traction engines supplied with our renowned no quabble written warranty

se of items in stock, available for impection and trial at our premises at any time, by appointment Comprehensive workshop facilities on site, Advice, valuations and driving fution freely given World-wide mail-order service, goods supplied on 7 days approval, competitive shipping rates.

www.stationroadsteam.com

Telephone Lincoln 01526 320012

Model Engineering Products (Bexhill)

www.model-engineering.co.uk Email: mep1@btconnect.com

Manufacturers of 5" and 71/4" diesel outline battery electric locomotives and rolling stock. Visit our shop to see the stock. Colour brochure inc. p&p £1.75 PHONE/FAX. 01424 223702 MOBILE 07743 337243

> 17, SEA ROAD, BEXHILL ON SEA, EAST SUSSEX. TN40 1EE.

TOOLS PURCHASED

Hand Tools and Machinery, whole or part collections - old and modern. Will call.

Tel: Alan Bryson. Tel: 01823 288135 (Taunton).

Cheddar Valley Steam

for the model engineer.

Handcrafted with over 25 years of experience. All boilers are tested & supplied with a certificate of conformity. Materials & kits also available.

te: Cheddar Valley St strial Est, Biddisham, Somerset, 8535-28H Tel: 07789-681977

monuk

CLOCK CONSTRUCTION & REPAIR Books by John Wilding and others

Free Catalogue 01420 487 747

www.ritetimepublishing.com

COMPLETE HOME WORKSHOPS

AND MODELS PURCHASED. DISTANCE NO OBJECT

> Tel: Mike Bidwell on 01245 222743

THE TOOL BOX

For the best in used hand & light machine tools for all crafts

We also purchase good equipment and set related books, as well as providing a world-wide back-issue service for Model Engineer and Engineering in miniature. we don't publish lists, but if there's something you need, get in touch.

> Open Monday - Saturday throughout the year Tel/fax: 01297 552868 Colyton, East Devon EX24 6LU

E-mail: info@the toolbox.org.uk

www.thetoolbox.org.uk

Mallard Metal Packs Ltd

Worldwide mail order, www.mallardmetals.co.uk

NO MINIMUM DROER CATALOGUE ANALABLE

J.C.T. SHOWTRACK & FITTINGS

Tot. or S.A.E. for price for & defaits to: J. C. TIPTON 14 Pickeeham Read, Erreinigham 814 4TG Tel. Fex 9121 430 7778

Dreweatt

BRISTOL STEAM AUCTION

Tuesday 1st April 2008. Entries close February 2008

71/4 in gaage B1 Mayflower Locomotive. Please note: We will look at your term, give free advice and make o collection arrangements for you.

Consultant: Michael Matthews MRICS.IRRV Telephone: 01404 47593 Email: mmatthews@dnfa.com Auctions to be held at Dreweatt Neate-Bristol.

St John's Place, Aspley Road, Clifton, Bristol. BS8 2ST

Beam engine, Solid Brass, 15" diameter flywheel. Glass cased on stand.

Museum quality, motorised and illuminated. Large model total height including stand, 6'. £4750.00.

Congreve rolling ball clock. Set into wooden case. £1450.00.

Orrery. Nearly 40 brass gears internally. £1600.00.

Aero engine. 9 cylinder rotary including propeller and controls to run. 2950.00

> Photos available by email. Tel: 01704 540047 office hours only.

HOME AND WORKSHOP MACHINERY

144 Maidstone Road, Foots Cray, Sidcup, Kent DA14 5HS

Telephone: 0208 300 9070 - Evenings: 01959 532199 - Facsimile: 0208 309 6311

Genuine Used Machines & Tooling

www.homeandworkshop.co.uk stevehwm@btopenworld.com

Opening Times: Monday-Friday 9am-5.30pm - Saturday Morning 9am-1pm 10 minutes from M25 - Junction 3 and South Circular - A205

Meddings, Fobco & Startrite bench drills

Elliot '00' Omnimill, one of the best ones yet!! vertical and horizontal

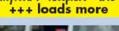
Boxford 280 precision lathe

Myford ML7 + clutch lathe Last one available

Dronsfield Eagle Model 3 surface grinder immaculate for its year!

Raglan 5" lathe + gearbox and variable speed

Boxford 1130 5 1/2" x 30" + stand


Astra horizontal / vertical milling machine 240 volts!

Boxford CUD 5" centre height precision lathe

Colchester Student, gearbox + gap

sure quality!!

Harrison pedestal grinder

Eagle Model 3 + magnetic chuck

Elliot 2G pedestal 7/8" - 2MT drilling machine

Tom Senior 'E' type milling machine, extremely rare in this condition

Milling/Drilling ground X-Y table

SIP 39" high, 16 speed, 2MT 5/8", rack table NEW

faceplates Various!

Bridgeport slotting head

PLEASE PHONE 0208 300 9070 TO CHECK AVAILABILITY OR TO OBTAIN OUR LIST **DEFINITELY WORTH A VISIT** ALL PRICES EXCLUSIVE OF VAT DISTANCE NO PROBLEM!

Just a small selection of our current stock photographed!

certificate) NEW £30 · Baty 0-25mm (calibration certificate) New £30 · Micrometer 11"-12"

M & W £55 · Micrometer 12"-18" M & W £120

Myford Fixed steady £90 Myford travelling steady £40 • Colchester Bantam

travelling steady £45

 Viceroy fixed steady £125 Baty 0-1" (calibration

 CEJ metric slips (as new) £245 Engineers flat's £125 each

· Harrison (lathe) jig boring table £175

· Boxford (lathe) jig boring table £145 Burnerd 3 jaw chuck for

Graduate wood lathe £70 Meddings EMG tool grinder £475

 Marlow vertical mill (3MT) £950

Viceroy vertical mill (301NT) from £495

Super Brown cut-off-saw £345 Pedrazzoli Aluminium

cut-off-saw £345 Viceroy sharpedge 10" wheel £150

Clarke Strongarm 1 ton

(fold up) crane £125 · Epco 1 ton quality engine crane £245

Clarke profile router 145 £175 RJH Gerbil 2020 vacuum plastic cutting mch. £275 · Clarke 812V vacuum

forming machine £345 * Draper WTL 100 wood

lathe £100 Multico K3 mortiser £475

Startrite 145 sawbench £395 Startrite 275 sawbench + sliding table £1950

 Startrite TA1250 sawbench + bells & whistles £2250

 Startrite 14-S-5 bandsaw £595

Black & Decker radial saw £345

Minor linisher 4" wide/ bench type £145 Oxford 110amp oil cooled

welder £90 Jones and Shipman No.2 arbor

press £175 Hearths (small pedestal

model) £70 Flamefast DS220 hearth £245

Crompton 240 volt Myford motors NEW £155 G & C 2hp 240 volts 1420 revs

£120 each

Brook 3hp 240 volts 2850 revs motor £120

Denford CNC Microrouter £625 Hunton Universal 12 Universal press £425

Boxford PD4 2MT pedestal drills £245 - £295

· Hearths just £70 each

Burnerd 10" D14 Harrison M300 4 jaw £245

 Triumph fixed steady (round head)

Boxford STS 1020 lathe

Hunton Universal 12 / 12" throat press

Flamefast PB250 power burner

Myford MA99E collet chuck collets

Gabro 24" folder

EME (Elliot) swivel tilt vice

Myford ML7B + gearbox, lathe

Gear involute cutters 'More just in'

More broaches metric and imperial

Q and S 6" power hacksaw + coolant

Colchester Chipmaster lathe

Boxford dividing headcomplete

Clarkson 40INT collet chuck + collets (we have 2MT-5MT and 30INT to 50INT in stock!!)

Burnerd Boxford 4jaw chuck (more variations available)

Myford Super 7B lathe + power cross feed and stand

EMG tool grinder

Dickson toolposts to suit Colchester Mascot (others available)

Denford Micromill like new

Crown Windley magnetic sine table MSPM44

Colchester Triumph steady

Sharpe MK11 vertical milling

Micrometers in (most sizes and makes)

Tom Senior slotting head

Harrison L5 travelling steady (L5A, L6, Student, Master also)

Colchester Student fixed steady (more sizes avaiable)

Boxford PD4 pedestal drill

Archer tapping head 2MT (more sizes available)

Denford Viceroy buffer's

Eclipse angle plates

Burnerd 'LO', D13 & D14 collet chucks

Emco FB2 vertical mill + stand and Schaublin chuck

RJH vertical linisher + built in extractor

H110 BANDSAW

Chester Machine Tools

COBRA MILL

Angled milling Head Adjustable Gib Strips Quill Fine Feed Standard Acc Drill Chuck

CENTURION MACHINE CENTRE Features
Powered Crossfeed • 2 Motors • 28mm Spindle
Bors • Large Milling Table • Taper Roller Bearings
Standard Access ories
3-Janv Chuck • Drill Chuck • Steel Centres
Change Gears • Lather Tools • Vice

100mm 3-Jaw Chuck £41.12

V Type Vice 5" £49.00

£99.00

Centring 4 - Jaw Chuck

£75.00

Boring **Tool Set** MT2 MT3 £59.00

D13 Drill £49.00

Hand

Change

Holders £115.00

8"Vernier

Imp/Met Pozi Lock Collet Set

£80.00

Hobby System

£65.00

Magnifying Lamp

£35.00

£15.00

£35.00 Chuck £39.00

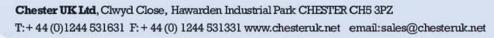
Slip Rolls 12" £99.00 / 16" £109.00

Lifting £130.00 Crane 1 Ton

Gauge

£30.00

Scissors


Knurler 3 sets knurls £20.00

12" £199.00 / 24" £299.00

All prices include VAT. Delivery Free to UK mainland - excluding certain Scottish postcodes. Prices valid for duration of this issue only.

