

"MYFORD SERIES 7 LATHE MANUAL AVAIABLE AGAIN £10.95 INC POSTAGE UK!!"

Online Catalogue: www.chronos.ltd.uk

VISIT OUR ONLINE ENGINEERING SUPERSTORE WWW.CHRONOS.LTD.UK FOR THE FOLLOWING

LATHES

EMCO UNIMAT 4 & COMPACT 5, CLARKE & WABECO - MACHINES AND ACCESSORIES

LATHE TOOLS

A HUGE RANGE WITH SHANK SIZES BETWEEN 6MM & 16MM - BRAZED TCT TOOLS, STARTER PACKS, HSS TOOLS & SETS, HUGE RANGE OF PARTING TOOLS, GLANZE INDEXABLE LATHE TOOLS, HSS TOOLSTEEL BITS, KNURLING TOOLS & KNURLS, BORING & THREADING TOOLS

LATHE ACCESSORIES

3 & 4 JAW CHUCKS 50MM - 200MM DIAMETER, CHUCK BACKPLATES, DOGS, QUICK CHANGE TOOLPOSTS, FOUR WAY TOOLPOSTS, PISTON TOOLPOSTS, MILLING SLIDES, LIVE CENTRES, SOFT BLANK MORSE TAPER ARBORS, TAILSTOCK DIEHOLDERS, TEST BARS, SLEEVES, LATHE BELTING, HALOGEN MACHINE LAMPS

COOLANT SET UPS

LOCLINE COOLANT SYSTEM - FULL RANGE, COMPLETE COOLANT SYSTEMS WITH PUMPS & TANK, NEAT AND SOLUBLE CUTTING FLUIDS IN 1 & 5L CONTAINERS

MILLING MACHINES

CLARKE, EMCO AND WABECO - MACHINES PLUS A FULL RANGE OF ACCESSORIES

MILLING MACHINE ACCESSORIES

BORING HEADS, INDEXABLE & BRAZED TIP BORING BARS IN MANY SIZES, CLAMPS & CLAMPING KITS, MANY ANGLE PLATES, MACHINE JACKS, DIGITAL SCALE UNITS, COMPOUND TABLES, POWER TABLE FEED KITS, GLANZE INDEXABLE ENDMILLS, FLYCUTTERS & SETS, STUB ARBORS, MORSE TAPER CONVERTORS, MAGNETIC CHUCKS, ROTARY TABLES FROM 3" DIA - 16" DIA, DIVIDING ATTACHMENTS, TAILSTOCKS, TEE NUTS, DIVIDING HEADS, POSILOCK COLLET SYSTEMS, ER COLLET SYSTEMS, MORSE TAPER COLLETS, R8 COLLETS, 5C COLLETS & FIXTURES, LITERALLY DOZENS OF DIFFERENT MACHINE VICES FROM 2" TO 6"

CUTTING TOOLS

HSS ENDMILS & SLOT DRILLS FROM 2MM - 25MM, LONG SERIES CUTTERS, BALL NOSE CUTTERS, T SLOT & WOODRUFF CUTTERS, FC3 MINIMILLS 1MM - 6MM, SETS OF ENDMILLS & SLOT DRILLS, TITANIUM COATED ENDMILLS, GEAR CUTTERS, SIDE & FACE CUTTERS, HSS DRILLBITS AND DRILL SETS, BLACKSMITHS DRILLS, MICRODRILLS DOWN TO 0.3MM, CENTRE DRILLS, STEP DRILLS, TAPER DRILLS, HSS REAMERS, HSS COUNTERSINKS, HSS COUNTERBORES

TAPS, DIES & ACCESSORIES

APEX BRITISH MADE TAPS & DIES IN BA, MODEL ENGINEER 3/32 & 40 TPI, BSB, BSP, BSC, METRIC FINE & COARSE, BSW, BSF, UNF, UNC PLUS BOXED SETS, TAP WRENCHES, DIESTOCKS, TAPPING ATTACHMENTS SCREW GAUGES, TAPPING PASTE ETC

SAWS & SAWING

FRETSAWS, PEIRCING SAWS, COPING SAWS, HACKSAWS, ALL THE BLADES, ZONA RAZOR SAWS, BANDSAW MACHINES & BLADES, HSS SLITTING SAWS AND ARBORS

MEASURING EQUIPMENT

MICROMETERS, VERNIERS, DIGITAL MEASURING TOOLS, CALIPERS, DEPTH GAUGES, DIAL CALIPERS, HEIGHT GAUGES, THICKNESS GAUGES, BORE GAUGES, GAUGE BLOCK SETS, PROTRACTORS, RULES, PARALLELS, SQUARES, VEE BLOCKS, DIAL GAUGES, DIAL TEST INDICATORS, MAGNETIC STANDS, RADIUS GAUGES

MARKING OUT

SURFACE PLATES, SCRIBERS, SURFACE GAUGES, LAYOUT BLUE, PUNCHES, TRANSFER PUNCHES, PIN PUNCHES

EDGE & CENTREFINDERS

WIGGLERS, EDGEFINDERS, CENTREFINDERS, ELECTRONIC EDGE FINDERS, LASER EDGE & CENTREFINDERS WORKHOLDING SMALL TOOLS ETC PINVICES & SETS, GEM HOLDERS, HAND CLAMPS, TOOLMAKERS CLAMPS, BA SPANNERS, BA BOX SPANNERS, STORAGE SOULTIONS, CIRCLE CUTTERS, ALLEN KEYS, TWEEZERS

METALFORMING

METALBENDERS, BENDING BRAKES, TUBE CUTTERS, BENCH SHEARS, TUBE BENDING SPRINGS, RING ROLLER, ARBOR PRESSES, SLIP ROLL MACHINE

SOLDERING. BRAZING & METALBLACKING

ANTEX SOLDERING IRONS, SIEVERT SOLDERING, BRAZING EQUIPMENT, SKAMOLEX PRODUCTS, JOHNSON MATTHEY SILVER SOLDER FLUXES, FRYS & BAKERS PRODUCTS, CARRS SOLDERING & METALBLACKING PRODUCTS

OPTICAL AIDS & LIGHTING

HEADBAND MAGNIFIERS, EYEGLASSES, FLOURESCENT WORKSHOP LAMPS, DAYLIGHT MAGNIFIER LAMPS

12V TOOLS & EQUIPMENT

THE COMPLETE RANGE FROM, PROXXON, ROTOCRAFT, MINITOOL ETC PLUS ALL ACCESSORIES

ABRASIVES

EZELAP DIAMOND SHARPENERS - HUGE RANGE, VALLORBE SWISS FILES, ENGINEERS FILES, GRINDING WHEELS & DRESSERS, PERMAGRIT TUNGSTEN CARBIDE ABRASIVES, GARRYFLEX BLOCKS, POLICRAFT POLISHING KITS, POLISHING MOPS & COMPOUNDS

WORKBENCHES

THE SUPERB SWEDISH SJOBERG RANGE & OTHERS FROM CLARKE ETC

AIRBRUSHING

AIRBRUSHES, COMPRESSORS & STARTER KITS FROM THE MOST FAMOUS AIRBRUSH COMPANY BADGER!

OILS LUBRICANTS & ADHESIVES

SOLUBLE CUTTING FLUID, NEAT CUTTING FLUID, SLIDEWAY LUBRICANT, STEAM CYLINDER OIL, BARRIER CREAM, DELTA ADHESIVES, GORILLA GLUE, OILS CANS, ROCOL PRODUCTS, PLUS GAS, LANOLUBE

METAL BAR & SHEET

A HUGE RANGE - ALL FROM STOCK - SILVER STEEL, MILD STEEL, STAINLESS, COPPER, ALUMINIUM, PTFE, NYLON, BRASS, GAUGE PLATE, - ROUND, SQUARE, TUBE, ANGLE ETC!

MODEL ENGINEERING FASTENERS ETC

MASSIVE RANGE OF BA FASTENERS IN BRASS & STEEL - CHEESEHEAD, COUNTERSUNK, ROUND HEAD, SMALL HEAD, CAPHEAD, ALLEN SCREW, ALSO RIVETS, TAPER PINS, BRONZE & STEEL BALLS, O RINGS, KNOBS, BALLRACES, GASKET MATERIAL, BOILER LAGGING, SHIMPACKS

BOOKS & DVDS

HUGE STOCKS FOR FAST DELIVERY- WORKSHOP PRACTICE SERIES 1-36, NEXUS BOOKS, TEE PUBLISHING BOOKS, ENGINEERING DVDS BY SWARFRAT & RODRIGUEZ

MODEL ENGINEER

Published by

MAGICALIA PUBLISHING LTD.

Berwick House, 8-10 Knoll Rise.

Orpington, Kent BR6 0EL Tel: +44 (0) 1689 899200 Fax: +44 (0) 1689 899266

SUBSCRIPTIONS

UK SUBSCRIPTIONS NEW, RENEWALS AND ENQUIRIES Tel: 08456 777807

Email: modelengineer@subscription.co.uk

USA & CANADA, REST OF WORLD SUBSCRIPTIONS NEW, RENEWALS AND ENQUIRIES Tel: +44 (0) 1689 899200

TO SUBSCRIBE ONLINE, PLEASE TURN TO THIS ISSUE'S SUBSCRIPTION OFFER

PLANS, BACK ISSUES, BINDERS

Tel: +44 (0) 1689 899200 Email: customer.services@magicalia.com

EDITORIAL

Editor: David Carpenter Tel: 01689 899255 Technical Editor: Neil Read Tel: 01604 833670 Production Editor: Kelvin Barber Assistant Editor: Mike Jones

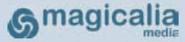
Associate Editor: Malcolm Stride PRODUCTION

Designer: Carol Philpott
Commercial Designer: Ben Wright
Creative Services Assistant: Michelle Briers
Senior Production Assistant: Richard Baldwin

SALES AND MARKETING

Sales Director: James Burton Tel: 01689 899237

Group Sales Manager: Paul Baldwin Tel: 01689 899217


Email: paul.baldwin@magicalia.com Sales Executive: Lee Smith Tel: 01689 899212 Email: lee.smith@magicalia.com

Marketing & Subscriptions Executive: Chris Webb

Email: chris.webb@magicalia.com

MANAGEMENT

Events Director: Jez Walters Creative Director: Nikki Parker Managing Director: Owen Davies Executive Board: Peter Harkness, Owen Davies, Adam Laird, Jeremy Tapp

© MAGICALIA PUBLISHING LTD. 2007 All rights reserved ISSN 0026-7325

The Publisher's written consent must be obtained before any part of this publication may be reproduced in any form whatsoever, including photocopiers, and information retrieval systems.

All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from negligence of our staff. Reliance placed upon the contents of this magazine is at reader's own risk.

IN THIS ISSUE IN THIS ISSUE IN THIS ISSUE IN THIS

Vol. 199 No. 4307 31 August - 13 September 2007

249 SMOKE RINGS

Preview of the Centenary Model Engineer Exhibition.

251 POST BAG

Letters to the editor.

253 IMLEC

Neil Read and Michael Jones report from South Wales on a most enjoyable event.

259 I/C TOPICS

Nemett continues his discourse on I/C engine balance with a look at multi-cylinder engine types.

262 THE DAVIDE MK.II STIRLING ENGINE

James G. Rizzo begins the second stage of the engine's assembly.

265 AYESHA II

Tony Weale completes the chassis before tackling the smokebox.

269 SUPERHEATING -IS IT REALLY HELPFUL?

D. A. G. Brown discusses the value of superheating to model locomotives.

272 DIVIDING WITH PAPER PLATES

Maurice Turnbull on how to produce gears and other components involving awkward numbers.

274 JULIE ANNA: FROM SKETCH TO STEAM

M. K. Ranson continues construction with the gas tanks, their valves and the engine.

278 LETTERS TO A GRANDSON

M. J. H. Ellis concludes his look at gear trains with a worked example.

279 KEITH'S COLUMN

Keith Wilson reports on needle roller bearings, stays and the rare sighting of a model Shay at the Echills Wood Railway!

282 NEWS

News from the trade and clubs in the UK and around the world.

285 DIARY

Forthcoming events.

ON THE COVER...

Steve Eaton on his winning run at IMLEC 2007 superbly hosted by the Llanelli club. Driving *Rough Diamond*, the Britannia 4-6-2 built by Steve's father, he overcame problems with the weather to emerge as the clear winner. For a full report see page 253.

(Photograph by Michael Jones)

TURN TO PAGE 249 FOR YOUR EXHIBITION PREVIEW

Jade Products, 43 Long Hassocks, Rugby Warks, CV23 0JS. Telephone 01788 573056 Telefax 01788 573057

©€75% Lathe & Mill DRO Systems 2 Axis Lathe Full System 2 Axis Mill Full System 3 Axis Mill Full System

£349.95 incl. VAT £349.95 incl. VAT £399.95 incl. VAT

Full systems at fixed prices - add only £5.95 UK postcode delivery charge. Choose your linear scales from our measuring range of 50 - 1,020mm. Included are display console, 2 /3 linear scales, scale covers and all necessary mechanical & electrical fitment accessories for a professional install to your machine.

Auto Darkening Welding Helmets 2 Models, Battery & Solar Powered - Easy use external £54.95 rotary shade control #9 - 13 12 month warranty - spare parts - prices incl. VAT UK Delivery £3.95 www.onyx-dro.co.uk www.autodarkhelmet.co.uk

Solar £67.95

C€ VISA

How (not) to paint a locomotive

A book by Christopher Vine, builder of Bongo, Gold Medal MEX 2004

Hardback, 168 pages, 130 colour photographs and 30 diagrams.

Covers: Choice of equipment, making a spray booth, paint, preparation, spray painting, hand painting, lining, transfers, a list of suppliers and more.....

To Order Please send cheque / Postal Order for £20 plus £1.50 P&P to

C Vine (ME), PO Box 9246, Bridge of Weir, PA11 3WD (United Kingdom)

Powell's Technical Books: www.powells.com Tel. 800 878 7323 In America

www.ploughbooksales.com.au Tel 03 5266 1262 or www.minitech.com.au Tel 07 3889 7689 In Australia

GLR DISTRIBUTORS HAVE NOW MOVED TO NEW PREMISES

We are now located in Daventry, Northamptonshire.

We apologise to all the local customers that visited us in Hoddesdon but hope you will make the journey to our new shop in Daventry from time to time. We needed larger premises to house increased stock and to be able to spend more time working and less time travelling. We hope anyone living closer to us will now visit us here.

We have increased our stock levels of raw materials and our popular discounted Budget Packs of Steel, Brass, Aluminium, Stainless, Silver Steel, Bronze, Copper Tube etc.

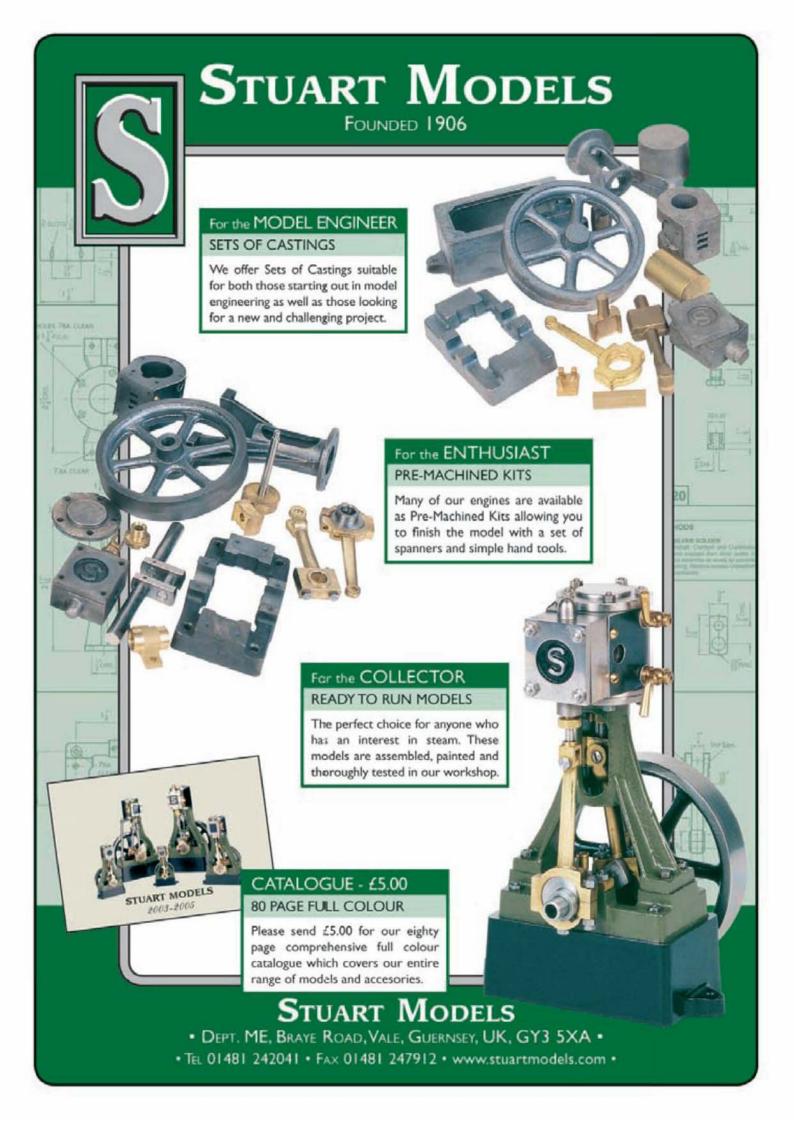
We stock an in excellent selection of Steam Fittings all available from stock which are illustrated in our Catalogue and on our website www.modelmakingsupplies.co.uk

SUMMER OFFER ON OUR POPULAR BUDGET PACKS OF MATERIALS AS ADVERTISED FOUR PACKS OR MORE SENT CARRIAGE FREE

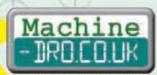
Apart from our large range of Materials and Tooling we supply:

Metal finishing kits: Nickel plating - Zinc Plating - Metal Blacking - Dry Acid Salts - Copper Sulphate etc. Locomotive Castings - Boiler Materials - Locomotive Drawings

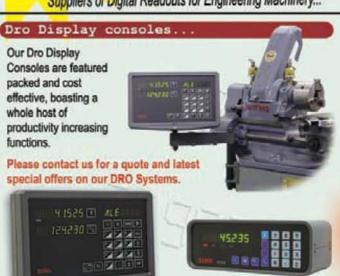
Visit us or send for delivery by Mail Order


GLR Distributors Ltd, Unit 3 Gresley Close,

Drayton Fields Industrial Estate, Daventry, Northants. NN11 8RZ

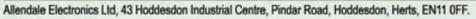

Tel. 01327 878988 Fax. 01327 876396 Email peteglr@btopenworld.com Order from our secure site on the internet - We accept all major Credit or Debit Cards

Send 6 first class stamps for our new catalogue and price list All Locomotives and Mill Engines listed



Visit us at Ascot Model Engineering Exhibition 2007

Suppliers of Digital Readouts for Engineering Machinery...


Precision glass type scales housed in an anodised aluminum extrusion. Scale lengths to fit all machines

Please contact us for further details

SDS3-1 Single Axis

Desktop Magnifying Lamp
suitable for close inspection work.
Adjustable Goose Neck
2 x Magnifying Glass
20 x High Magnification Spot
12W Fluorescent Tube & Ballast

£14.95 inc VAT

Tel: 01992 450780 Fax: 01992 450781

Quickly get over the edge with our electronic edgefinder

This Electronic Edge Finder is a top quality, of light ports - visible at any angle, precision instrument which allows quick and easy total to allow the edge of any electrically conducting to the edge of the edge of the instrument lights up symmotiately on contact. Move over 0.100°, and the spiritude is centred over the edge of the spiritude is centred over the edge of the complete with instruction sheet.

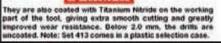
- SPECIAL OFFER PRICE £29.90 (MRRP = £52.08)

You don't need a degree to use this thermometer!

Our digital infrared non-contact thermometer is ideal for model engineers. Easy to use, it can help detect potential engine problems, as well as assisting model engineers to gain maximum performance, and prolong engine life. Carry the thermometer with you anywhere to check small combustion engines, electric motors, battery packs and ch, much more!

- Range of -33 to +250°C.
 0.1°C or 0.1°F resolution (switchable).
- Distance to target 6:1 ratio.
 Response time 1 second.
- Accuracy 4: 2% of reading or 4: 2°C Battery CR2032 life 40 hrs continuous Dimensions: 18 mm x 50 mm x 100 mm. Weight: 02 grammes including battery.

Neck strap and full operating instructions.


muco, much more: The TN2 is possibly the smallest non-contact infrared thermometer with laser alignment on the market today. Simply aim the thermometer at the target and press the read button to display the surface temperature. The TN2 covers the range of -33 to +250°C with a resolution of 0.1°C. The distance to target ratio is 6:1, therefore the thermometer should be positioned as close to the target as practical. The TN2 infrared thermometer incorporates maximum, minimum and lock (continuous) functions and is switchable between "C and "F.

SPECIAL OFFER PRICE £29.20 (MRRP = £35.25)

SETS of DORMER A002 TIN COATED DRILLS

Made in England, all these Dormer type A002 HSS drill sets are very special. The self-centring drills have Dormer's unique PS point for higher positional accuracy, removing the need to use spotting-drills.

DORMER

Set No.	Oty Drills	From	To size	Increments	MRRP	Offer Price #	
201	19	1.0 mm	10.0 mm	0.5 mm	€79,85	£39.39	
202	51	1.0 mm	6.0 mm	0.1 mm	£118.84	£57.40	
203	41	6.0 mm	10.0 mm	0.1 mm	£248.17	£116.61	
204	25	1.0 mm	13.0 mm	0.5 mm	€145,06	€72.53	
18	29	1/16"	1/2"	1/64"	£182.64	€68.77	
413	13	1.5 mm	6,5 mm	0.5 mm	£31.97	£16.80	

MINIATURE METRIC HSS TAP & DIE SET - T9133

This is a top quality, UK manufactured, 31-piece High Speed Steel Miniature Tap and Die Set. Part No.

The set comprises 2 taps and 1 die of each thread size, plus die-stock and tap wrench adaptors.

Sizes included: M1, M1.1, M1.2, M1.4, M1.6, M1.8, M2, M2 2 and M2.5

SPECIAL OFFER PRICE £49.35 (MRRP = £70.50)

HSS METRIC TAP & DIE SET - T9131

This is a top quality, UK manufactured, 32-piece High Speed Steel Metric Tap and Die Set. The taps are manufactured to ISO529 standards.

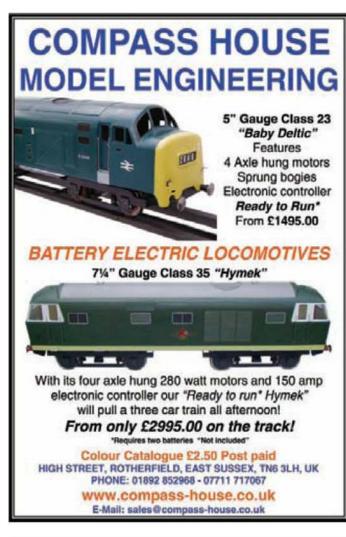
The set comprises 3 taps (taper, second and bottom) and 1 split die of each thread size, plus tap wrench, die-stock, pitch gauge and screwdriver.

Sizes included: M3, M4, M5, M6, M8, M10 and M12.

SPECIAL OFFER PRICE £85.80 (MRRP = £122.20)

Drill set prices include delivery to UK mainland address.

Otherwise, please add £2.00 for P&P, irrespective of order size or value.


Greenwood Tools Limited

2a Middlefield Road, Bromsgrove, Worcs. B60 2PW Phone: 01527 877576 - Fax: 01527 579365

Email: GreenwTool@aol.com

Buy securely online: www.greenwood-tools.co.uk

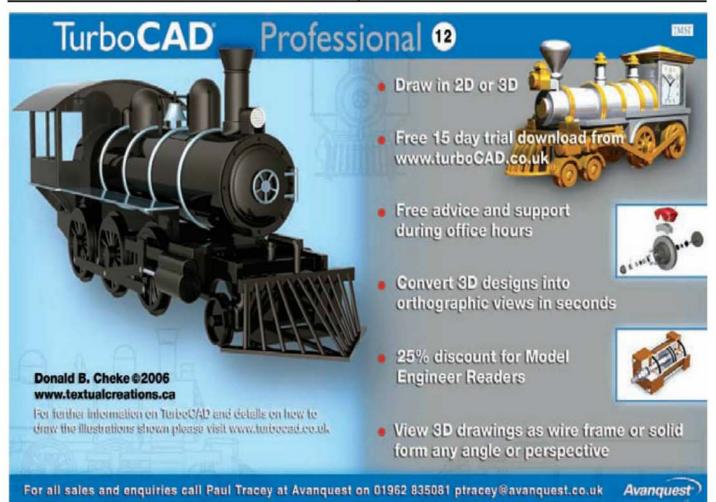
Folkestone Engineering Supplies.

Offers a fast friendly service, competitive prices, no minimum order value, no VAT, competitive delivery fee's and large stocks.

2007 Catalogue Now Available For Free Or Visit

www.metal2models.btinternet.co.uk

Comprehensive range of materials, fasteners, and quality small tools. especially for the model engineer.


"Specialist" range of miniature brass in round, hex, square, angle, flat and tube.

62 Canterbury Road, Hawkinge, Kent CT18 7BP

Telephone 01303 894611
Email: metal2models@btopenworld.com
Open weekdays (0900-1600 except Thursday)
Thursday & Saturday mornings (0900-1200)

-9

PRECISION 8 TRANSFERS

Railway Livery Specialists

Send a stamped, self addressed envelope(letter) (110mm x 220mm minimum) plus 2 first class stamps to receive either catalogue or 3 first class stamps plus sase [100gm large letter] for both.

Phoenix Precision Paints Ltd

P.O.Box 8238, CHELMSFORD, Essex, CM1 7WY. Tel: (01268) 730549 Monday - Friday 10.00 - 16.00

www.phoenix-paints.co.uk

POLLY MODEL

Polly Model Engineering Limited

Incorporating Bruce Engineering

For all your model engineering requirements.

Manufacturers of the renowned Polly 57 gauge possenger hanling, coal fired steam loco kits, which are easily assembled with hand tools and minimal skill. Polly loco kits provide an ideal introduction to the model engineering hobby. Latest Polly VI illustrated, kit price only £5995 inc VAT.

Manufacture is

complemented by our Bruce Engineering Model Supplies business, giving a comprehensive range of steam fittings, accessories, materials, books, etc. We specialise in supply of quality injectors (JC, Chiverton), pressure gauges, etc.

9

VIS4

Stationary engine kits: we produce a wide range of over 45 different models, including designs by Anthony Mount, our own large R&B gas engine, etc., and supply the full range of Stuart Models.

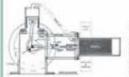
Practical Scale: Drawings, Castings, lost wax parts, laser cut frames, CNC rods, CNC platework, etc for the range of locos designed by Neville Evans and scrialised in Model Engineer.

See us at exhibitions or find these & other items in our Supplies Catalogue £1.75 posted UK \$5 worldwide Polly Loco Kit Catalogue £3 Stuart Models Catalogue £5

Polly Model Engineering Ltd (Inc.Bruce Engineering) Bridge Court, Bridge St., Long Eaton, Nottingham, NG10 4QQ tel. 0115 9736700 fax 0115 9727251 www.pollymodelengineering.co.uk

Next Project? Some Ideas!

Fun with Engines and Other Things • £14.30 Working Steam Engines • £14.60 Model Stirling Engines • £14.30


Three books containing model designs by the late, great Rudi Kouhoupt. The first has full drawings for a Three-cylinder Radial Engine, a Piston Valve Steam Engine, a Model Vertical Steam Engine, a Building a Small Steam Engine, a Compressed-Air V-4 Engine and a Revolutionary War Cannon. The second has the full drawings for a Walking Beam Engine, a Model Marine Engine, an Open Column Steam Engine, a Model Mill Engine, and Enclosed Crank Steam Engine, and a Model Horizontal Steam Engine, whilst the third contains three designs for three small hot air engines, all parallel cylinders types, one vertical and air-cooled, one horizontal and air-cooled, the third horizontal and water-cooled. NONE of these engines requires castings. Anything Rudi designed was good, but it must be stressed that you only get full drawings in these books, and a photograph of each model - NO building instructions, so you have to use the old grey matter a bit. 90, 104 & 84 spiral bound pages respectively. Card covers.

Building the Bentley BR2 World War I Rotary Aero Engine - Blackmore - £17.90

Fourth printing of this book on building a model of one of the last and most powerful rotary engines produced - the Bendey BR2. Lew Blackmore won the Duke of Edinburgh Challenge Trophy with his model at the 1982 MODEL ENGINEER EXHIBITION, so this book gives you all the drawings, information, construction details, tips and secrets to construct a medal winner, or just a

very interesting model to enjoy making 95 A4 format pages with complete drawings, photos of parts and machining set-ups etc, PLUS a full reprint of the 1925 MoD descriptive handbook for this engine. Paperback.

The Stirling Engine Manual • Rizzo • £32.75

This is the 5th reprint for this book, parts of which first appeared in the 1980s as "Modelling Stirling and Hot Air Engines". If you want a really good outline history of hot air engines, a comprehensive and intelligible description of how

they work, and drawings and construction details of models of all the major configurations of hot air engine, all of which can be built without castings, then this really is the book for you - as simple as that! Nearly 200 pages, including a 4 page colour section. Hardbound.

Building the Maltese Falcon • Shelley • £20.45

Want to build a BIG model I.C. engine? The author has a passion for big model aircraft, in his case a 15 ft wingspan Taylorcraft, and developed the Maltese Falcon to power this. The result is a 260cc Flat Four, Side Valve engine which turns a (scale) 34" x 18" propeller at 2500 rpm, and measures 8" in length and depth, and 13" in width across the heads. Essentially designed to be built from solid contrain parts in possible a magnetic kit and standard bloods.

solid, certain parts, notably a magneto kit, and standard Honda pistons can be used if you want to get your Maltese Falcon running as quickly as possible • parts suppliers are listed. Whilst not a beginner's project, this engine can be built by any competent model engineer and, with modifications to the cooling arrangements you could use this engine to power model road vehicles, 71/4" gauge railway motive power, an outboard motor, a GT fawn mower and a motor bike would all seem possible for the clever amongst you. Full drawing set of 11 sheets, reduced in size to fit A3 format, and 36 A4 pages of notes, hints and tips on building the engine, plus numerous photos of parts and set-ups for making them; this Isn't a construction manual in the sense of "Building the Bentley BR2...", but it is all good solid information aimed at helping the builder to make a 'model' I.C. engine which really will make people's jaws drop! Wirebound with card covers.

Falk No. I Locomotive . Harris . £11.70

Here are the drawings and building instructions for a delightful small 0-4-0 shunting engine, complete with its own winch; in 1½' scale it is just 22" long. As described the model is gas-fired and for 7½" gauge, so some reworking may be required by builders outside the U.S.A., but you will end up with an fascinating model. 63 pages with full drawings, photos and construction details. Paperback.

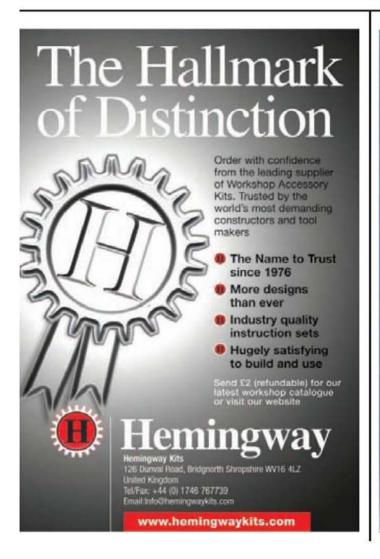
Prices shown INCLUDE delivery in the U.K.

(Overseus customers please allow 10% extra for airmail delivery)

MAIL ORDER (no stamp required in the U.K.) to:

CAMDEN MINIATURE STEAM SERVICES
FREEPOST (BA 1502) Rode Frome Somerset BA11 608
Tel: 01373-830151 Fax: 01373-830516
On-line ordering: www.camdenmin.co.uk

Assistant Engineer


Working as one of our team of three engineers the successful candidate will provide essential maintenance work for our steam and diesel locomotives and undertake major renovation projects as required.

This post is permanent and full time. Candidates must be physically fit to undertake the tasks involved. Assistance with accommodation may be available.

The successful candidates will be flexible and enthusiastic and share the company's vision for the development of the railway.

Closing date 15th September 2007

Ravenglass, Cumbria, CA18 1SW Tel: 01229 717171 Web: www.ravenglass-railway.co.uk

CENTENARY E

KERINGS SN SS SMOKERIN S SMOKER'S S SMOKER'S

ell, it's just a week away now. For visitors, here are some guides about what to see, how to get there, where to stay, and so on.

What you will see

The exhibition will occupy two complete levels of the Ascot Grandstand, recently rebuilt at a cost of £185million. The ground level concourse will house mainly the trade stands, while the galleria will contain mostly model displays and club stands. The exhibition will be opened by enthusiast, Pete Waterman. Here is just some of what he, and you, will see.

SMEE

The SMEE will look back on 100 years of model engineering exhibitions and reflect on what has been achieved. Also to look forward and make plans for the future.

On the SMEE stand this year you will find many important historic models including examples by the late Bill Carter

and Terry Aspin. You will also be able to find examples of our members' current activities, which feature the inspirational work of gold medal winners such as Cherry Hill, Herbert Stumm, Ron Jarvis and Chris Vine. There will also be an operational workshop together with a series of clinics and working demonstrations. This year the SMEE will be looking for individuals or groups to participate in the 2008 task driven robot competition which will be launched at Ascot.

The SMEE will be operating the following demonstrations and clinics:

- Model engineering training.
- Machine set-ups on a small lathe.
- The art of hand scraping machine slides.
- Making gears using both mechanical and CNC machines.
- Engraving and profile cutting using CNC equipment.
- Adapting machines for CNC applications.
- Tool grinding and experimental wheel balancing equipment designed to reduce vibration and improve accuracy when working with the Quorn and similar small machines.
- CAD and the use of threedimensional computer generated modelling for developing and communicating complex designs to improve human understanding and machine instruction.
- The construction of steam powered locomotives.
- Making and testing injectors
- Painting models for effect and durability.
- Designing and building robots for competition

SMEE lectures

The following daily talks have been arranged for all three days of the show, except where noted:

Room No 1

Brown.

11.00 - 11.50 Why not build an internal combustion engine - by Malcolm Stride. 12.30 - 1.20 The design and construction of competitive robots - by Alan Wragg and Mike Kapp.

1.30 - 2.20 The history of stationary engines and the fascination of reproducing them as working models - by Anthony Mount.
2.30 - 3.20 The design and construction of *Anna* a 71/4in. narrow gauge steam locomotive - by Derek

Room No 2 Friday 11.00 - 11.50 Direct and analytical methods of setting tool grinders - by Joerg Hugel

Sat and Sun 11.00 - 11.50
Designing models on screen using computer generated three dimensional knowledge-based components - by Chris Smith.

12.30 - 1.20 Modern industrial engineering processes which are useful for model engineering applications - by Peter Thomas

Fri & Sat 1.30 - 2.20 Choosing and using CNC machines in the home workshop - by John Stevenson

Sunday 1.30 - 2.20 Direct and analytical methods of setting tool grinders - by Joerg Hugel 2.30 - 3.20 Painting models - by Chris Vine

XHIBITION PREVIEW

The collections

Cherry Hill

All of Cherry's models of the past 30 years will be on display. The models on show are Gold Medal winners, and winners or runners up for the Duke of Edinburgh award, the top accolade in model engineering. Typically it takes five or six years, and 4,000 to 7,000 hours, to research, design and make one of these exquisite models.

Ron Jarvis

Now in his mid 90s Ron has produced a wonderful collection of Gold and Silver winning models of the earliest days of steam in the early 18th century. The latest one will be on show for the first time, and it is hoped to display his entire collection.

George Thomas

All of the tooling produced by the late George Thomas will be on display. George was one of the most popular contributors of all time, and thousands of items to his designs have been made by model engineers.

Arthur Bodily

Arthur is one of the finest model engineers today. His working Austin racing car is a wonder to all who have seen it. However, all of his models are top notch and all will be displayed at Ascot.

Len Mason Tribute

Len Mason was one of the most popular contributors to Model Engineer. All of Len's models will be on display including his Minnie, which went on to become the most popular model traction engine of all, his famous Mastiff 4-cylinder 4-stroke I/C engine, his other models, and workshop equipment.

Ron Isted

Ron's exquisite drawings for his Edwardian Elegance articles are greatly admired by readers of Model Engineer.

Martin Ranson

Martin's superb steam boats will be on display, including Julie Anna, powered by an unusual beam type engine, and which is being described in Model Engineer.

Tom Walshaw (Tubal Cain)

The many famous models created by Tom Walshaw will be on display. Under the nom de plume of Tubal Cain he was a stalwart of Model Engineer for many years with his numerous designs of steam engine.

Les Chenery

Les was one of the great model engineers of recent times. All of his magnificent aero engines will be displayed at Ascot.

Herbert Stumm

From Germany, Herbert is recognised as one of the great model engineers of his generation. His models of interesting and unusual prototypes, is beyond equal.

Harold Hall

Harold is a former editor of Model Engineers' Workshop and has introduced the necessary techniques and equipment to many newcomers to model engineering. All his tooling will be on display.

Avesha

The locomotive that launched the hobby of model engineering to the general public. Many of these outstanding little locomotives are now being built to Tony Weale's 'words and music' in Model Engineer. A number will be on display, alongside the LBSC original of 'Battle of the Boilers' fame.

Dr Bradbury Winter

This model of Stephenson's famous Rocket was built by one of the greatest model engineers of all time. Made in silver,

Rocket took 15,000 to 20,000 hours to produce.

Bill Connor

Amazing models of motor cycle engines are the life's work of Bill Connor. Winners of numerous gold medals, these are the pinnacle of I/C engine modelling. These models are correct to the smallest detail.

Roy Darlington

The amazing collection of hot air engines designed and built by Roy Darlington will be on show, along with some others from members of the Stirling Society. No-one has done more than Roy to promote interest in these fascinating machines.

Sir Hugh Ford

One of the top engineers in the UK, Sir Hugh has been President of both the SMEE and the Institution of Mechanical Engineers. His Dean 4-4-0 locomotive is a model of arguably the most attractive to come our of Swindon, where Sir Hugh was later an apprentice.

Anthony Mount

Anthony is a regular contributor to Model Engineer, who has described the building of numerous stationary steam and hot air engines. All of Anthony's models will be on display, and he will be demonstrating them in action.

Nederlandse Vereniging van Modelbouwers

Full title of the exhibition is the International Model Engineer Exhibition and we are grateful for a special display of some fine models being brought to Ascot from the Netherlands by the leading organization there, the Nederlandse Vereniging van Modelbouwers.

Nemett

A special competition is being held for builders of the Nemett NE15s I/C engine, which was designed to introduce

model engineers to I/C engine building.

Peter G. Smith

Royal State coaches are no strangers at Royal Ascot, and Peter G. Smith is bringing the collection of wonderful miniatures, some of which are Gold Medal winners.

Edgar T. Westbury

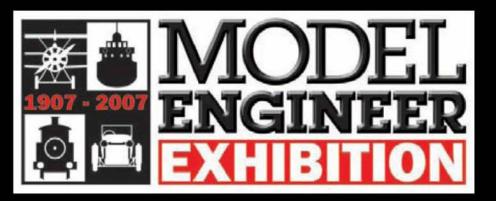
The late Edgar T. Westbury was the prolific stalwart of Model Engineer for decades, and his designs have become classics for steam and I/C engine builders alike, as has his workshop equipment. A number of his popular designs will be on display, including the petrol engines from Eric Offen.

Track running and clubs

There will be an opportunity for some live steam over the exhibition weekend at the Ascot Locomotive Society whose track is alongside Ascot Racecourse. Finally all the major national clubs and associations will be there.

How to get there Ascot is almost encircled by motorways M3, M4, M25, A329(M). When you get to Ascot, there are thousands of parking spaces. There is no charge.

The Exhibition entrance is a 500 yard walk from Ascot Railway Station. A taxi cab office is located outside the railway station.


Accommodation

For affordable accommodation, please see websites:

www.rhul.ac.uk www.premiertravelinn.com www.travelodge.co.uk

Opening hours

Friday and Saturday September 7 and 8: 10.00 - 17.00. Sunday September 9: 10.00 - 16.00

100 VEALS 7-9 September 2007 • Ascot Racecourse

Possibly the greatest collection of models ever assembled under one roof!

Dr Bradbury Winter's famous Stephenson's Rocket 15,000 – 20,000 hours work to produce this outstanding and unique model in silver from the 1930s.

Bill Connor's motorcycle engines. Winners of numerous gold medals, these are the pinnacle of I/C engine modelling.

The Cherry Hill Collection. All of Cherry's models for the last 30 years will be on show – gold medal winners, and winners or runners up for the prestigious Duke of Edinburgh award – the top accolade in model engineering.

Ron Jarvis. A wonderful collection of Gold and Silver winning models of the earliest days of steam. The latest model will be on show for the very first time.

Ayesha – the locomotive that launched the hobby of model engineering to the general public, a number of these models will be on display alongside the LBSC original of 'Battle of the Boilers' fame.

SMEE Collection. Reflecting 100 years of association with the Model Engineer Exhibition, encompassing the historical, contemporary and future. SMEE will also be operating a ground level railway for youngsters of all ages!

Anthony Mount • Roy Darlington • Nederlandse Vereniging Van Modelbouwers • Nemett Peter G Smith Collection • Herbert Stumm Collection • Edgar T Westbury.

Display of many of the designs from the great contributors to Model Engineer over the last century: Martin Evans, John Haining, George Thomas, Tubal Cain, Don Young, Stan Bray, Dave Lammas, John Radford, Bill Hughes, Len Mason, George Gentry, etc, etc

Many many other attractions to numerous to detail:

Boat pool • Over 1,000 models on show • 7.25" Ground level railway track • Club stands Unique models • Trade stands • 10.5" Gauge Assn • 7.25" Gauge Assn • Gauge One Assn Gas Turbine Builders Assn • I/C Engine Group

For up to date information on the attractions at the centenary Model Engineer exhibition please go to our website: www.model-engineer.co.uk

Further details will be published in future editions of this magazine.

Ticket hotline: 0870 444 5556 www.model-engineer.co.uk

Southern Railway companies

SIRS, - I would like to thank Marcus Rooks for his kind comments (M.E. 4300,

25 May 2007) about the Edwardian Elegance articles. I agree with all he says about the London Chatham & Dover Railway, except for one minor point: the company did not cease to exist when the "South Eastern and Chatham Railway Companies Joint Management Committee" was formed in 1899. The set-up was exactly what its long-winded title suggests and was not an amalgamation, both the SER and LCDR retaining their individual identities with separate boards of directors and accounts until the 1923 grouping.

Marcus implied that the salary of the LCDR chairman, James Staats Forbes, may

have been excessive and more than the impecunious company could afford. Has he by any chance the figures to prove this? It is not widely-known that Staats Forbes was quite a famous name in the world of art connoisseurs and collectors of the late 19th century and I have often wondered how he managed to acquire several extremely expensive paintings (some of which are now in the National Gallery), while employed by one of the most poverty-stricken railway companies in the country. Obviously 'Fat Cats' are not a new phenomenon!

On a more sombre note, I would like to pay my own small tribute to Phil Hains of the Harrow and Wembley Society, whose death was announced in the same issue. When I joined the society 40 years ago, Phil was a great inspiration to me, and I'm sure

to many other beginners. He was always happy to explain in non-technical terms the most complex workshop operations, yet like so many brilliant craftsmen, he was incredibly modest about his own achievements. He once told me that the secret of a successful miniature live steam locomotive was "plenty of slop in the bits that moved"! I may say this was NOT borne out by his own work, which was in a similar league to that of the late Bill Carter and Fred Cottam. I seem to remember that Phil was a toolmaker by trade, and I believe he spent almost every evening in his workshop - it was rumoured that the only way his wife Lorna could ever guarantee to meet up with him was to volunteer to do the catering for the Society! His production rate was amazing, including a Martin Evans Boxhill, a Stroudley 0-6-2T Barcelona, a German 4-4-4, an experimental locomotive of advanced design, at least one large scale traction engine and many others. They all had one thing in common: all of them had the appearance of a full-size machine that had been shrunk by some magical means, rather than a well-built and well-proportioned model. a subtle difference that is difficult to define. He will be sadly missed.

Ron Isted, by email.

Shaper parts needed

SIRS, - I have recently acquired an incomplete but otherwise good condition Adept hand shaping machine. I need an operating handle and the attaching parts which are missing. Could any reader provide details and dimensions of these parts so that I can make same?

Many thanks in anticipation. Brian Eldred, Derbyshire.

Sawdust heaters

SIRS, - Alec Farmer's description of a sawdust heater (M.E. 4300, 25 May 2007) brought back some memories. My mother was in the WVS during World War Two, and among the items they required >>>

Unimat lathe

SIRS, - I enjoyed reading the article by Tony Griffiths on the Unimat SL and Unimat 3 lathes.

I agree with him that they were brilliant little tools and filled a need at that time for a well-designed small lathe.

When the Unimat 3 was first introduced, my publisher at the time asked me if it would be possible to make a clock on this tool, as all my clocks had, up to then, been made on the Myford ML7. He felt that the use of a cheaper lathe might be an encouragement for beginners. Shestopal who were agents for this lathe agreed to lend me one with a modest selection of accessories, and I made a Foliot clock entirely on the Unimat 3. I was amazed at the versatility of this tool. The only difficulty I had was in dividing the wheel blanks when wheel cutting, because the divisions available on the Unimat 3 were not suitable for the high wheel counts found in clock work.

On my second clock I purchased a Chronos division plate and fitted that to the Unimat. I was then able to cut all the

wheels for my Castle clock, and finally the third clock I made on the Unimat was my Scissors clock. This clock had a fusee which was machined without difficulty on this lathe.

I agree with Tony Griffiths that there was a problem with the motor burning out; however this never happened to me. I made three clocks on that lathe and the motor never gave any trouble. After completion of the Scissor clock (I actually made two together) I handed the lathe back to Shestopal who donated it to the British Horological Institute's workshop.

During the time I was using that lathe I had much feedback from users. One man came up to me at one of the Model Engineer Exhibitions to tell me that he was the Captain of a Shell oil tanker and had made the Foliot clock in his cabin at sea.

When on holiday in Portugal a local resident invited me in to his home to show me his 'workshop'. He told me he didn't have a traditional workshop in a special room because he wanted to be with his family when he was working. He took me into his living room where he had a large wardrobe. He opened the doors and inside it was all beautifully equipped with his Unimat 3 lathe, workbench, shelving for all his stock and lathe accessories etc. He was at that time making Galileo's escapement.

J. H. Wilding MBE FBHI, Sussex.

were cooking stoves for field kitchens.

My father, a Captain in the Home Guard, and the General Manager of a coke oven plant, had a couple made up for them by the works. Each consisted of a 20-gallon steel drum with the top removed, and a central 2in. diameter hole in the bottom. A 3in. diameter wooden pole with a 2in. diameter peg on the end was placed in the hole and the space filled with packed down sawdust, which must have been dampened to keep it in place after the pole had been removed. I think sawdust was a waste product in those days, whereas today it would be used to make hardboard and MDF.

The stove was an unsophisticated device, and stood on three bricks: there was no control of the combustion air, so presumably the size of the central hole determined this. The pan rest on the top of the drum was a steel grid made from a piece of the 2 or 3in, mesh welded bar screens used for screening coke. The 'stove' was lit at the bottom of the central hole and burned for some hours on test, producing a lot of heat once well alight, but I don't remember it ever actually being used in the field in our part of the world, as the war had moved on and the need had disappeared.

Tony Finn, East Riding of Yorkshire.

Making cannon barrels

SIRS, - Recently I repaired a broken lever which in its basic form was a cylinder with two stub shafts at right angles to the main axis. At one stage I thought I might have to make the whole thing up from scratch and so started looking on the internet for a method of how to make one - I looked under cannon trunnions as this seemed the most common form of what I would need to do, but did not have much luck. The two methods suggested were to make up the trunnions separately and then attach them (weld or tapped hole) or to make them on a five-axis machining

Peter Brown's drill sharpening machine on which he is seeking information.

Drill sharpening machine

SIRS, - I attach some photographs of a drill sharpening machine which a friend was recently given. Unfortunately part of the maker's plate is missing and, as it is a rather elaborate unit, we would very much like to know more about it. Especially how to use it and whether it is complete. A copy of an instruction book/parts manual would be most helpful if any of your readers could assist, any expenses would be reimbursed.

Cast into the base is "MSE Drillmaster" and on the opposite side is a maker's plate for the motor, indicating that it is a "Brook Gryhpon" made in England. The drive is totally enclosed and runs very smoothly. A 4-jaw drill type chuck will accept drills to ¹/₂in. diameter; the unit has an illuminated setting plate, a permanently mounted diamond for truing the wheel and a quadrant for setting the angle. For sharpening, the drill sits on a hardened steel rest and is further secured by two adjustable hardened steel blocks which prevent it from moving laterally.

In all it is an extremely well made machine and has been designed for industrial use. Tony Griffiths' articles on machine tools have been most interesting and informative and it is good that someone has recorded this information for future reference.

Peter Brown, NSW, Australia.

centre. Changing the search slightly, another suggestion was to turn up the barrel, change axis and turn up the trunnions and then use a shaper or similar to clear off the material left. Can any one tell me how cannon barrels were turned in the days before five-axis machining centres or even shapers? I have always assumed that the outside was turned, but was it left in an 'as cast' condition, with a little fettling to remove any surface casting faults? In the Pete's Page of M.E. 4296, 30 March 2007 the author speaks of a model cannon turned from solid. How were the trunnions machined onto the barrel in this model? Michael Green, Adelaide, South Australia.

Jinties, Jockos and Ayesha's wheels

SIRS, - I would not for one moment wish to detract from Geoff Dowden's excellent model of a Midland Railway Class 3F tender engine, but please don't refer to an LMS Class 3F tank engine as a *Jinty* (M.E. 4292, 2 February 2007). To Midland men the *Jinty* was the Johnson

Class 0, 0-4-0 yard engine, possibly named after the Class J boiler they were fitted with.

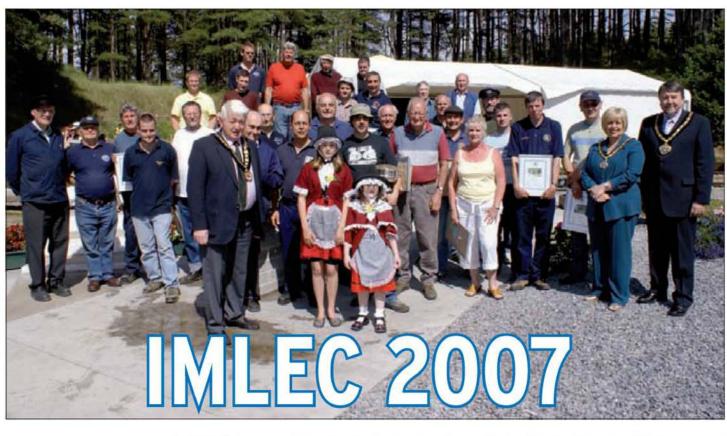
The nickname for the 3F tank engines was Jocko, some having been built in Glasgow by the North British Locomotive Works. This eventually became a generic term for any shunting locomotive, for I have heard the Derby C&W Works Yard Foreman refer to a 08 Diesel Shunter as a Jocko.

I believe that fundamentally the fault lies with Hornby who called their 00 gauge 3F tank a *Jinty*, but they obviously did not know any better and it was perpetuated by Martin Evens with his model.

Of course the 0-4-0 yard engines were rarely seen by the general public, for they spent their time working out of sight in works yards. Derby Locomotive Works own pet was No. 41509.

On a different topic, Tony Weale, in dealing with Ayesha's wheels (M.E. 4293, 16 February 2007), says that there is no need to cone the wheels, as it is easier to turn them parallel. A locomotive will run much more freely on coned wheels, and it is well worth that little bit

of extra effort setting over the top slide to 2^{3} /4deg. It does not have to be spot on, provided all the wheels are turned to the same setting by zeroing both the cross and top slides, so that all the wheels are of the same diameter and they have a good root radius.


Dennis Monk, Derbyshire.

Energy saving light bulbs - a hazard?

SIRS, - I feel that readers may be concerned about the implications of the impending demise of the conventional tungsten filament light bulb. I believe we have a serious problem looming over us model engineers.

As a student and apprentice, I was taught that under no circumstances should fluorescent lamps be the sole lighting source of moving, particularly rotating, machinery. This is because of the stroboscopic effect making such moving machinery appear to be stationary at certain speeds. The new energy saving light bulbs presumably exhibit the same phenomenon.

Brian Eldred, Derbyshire.

Neil Read and Michael Jones

report on a well supported and superbly run event held in Pembrey Country Park, South Wales.

Main photo. The contestants meet up with two young ladies in traditional Weish costume and the civic dignitaries who presented the awards.

Model Locomotive Efficiency Competition (IMLEC) was hosted by Llanelli and District Model Engineers and took place on the 7 and 8 July at their scenic track situated in Pembrey Country Park in South Wales. The organisation of the event was first class and no less than 31 entrants pitted their skills against the well-maintained track and terrain. Even the weather did its bit and stayed fine for most of the time despite the very wet conditions experienced by many parts of the UK this year.

his year the International

David Kane (1)

The first competitor to take the line was David Kane of the Levland Society with his Lancashire 2-4-2 tank. David made a clean start but approximately 8min, into the run he stopped on the rise just before the tunnel and had to back up to the start area and shed a passenger to get under way again. I understand he also had the pony truck derail adjacent to the turntable in the station area at some point in the run but, as often happens. we were on the wrong side of

the track to witness this. David continued to circulate at a steady pace and completed his run. His thermal efficiency was 0.840%.

Mike Harrison (2)

Mike Harrison of Kinver entered his GWR Grange and made a clean start with a load of 10 adults. His run was uneventful until after approximately 14min. he came to a stop just prior to the tunnel. After raising steam for 3min. or so and dropping two passengers he managed to restart and complete his run. His overall thermal efficiency was 0.715%.

Tony Vereker (3)

Tony Vereker of the Oxford

Society entered his Simplex and had a well judged, trouble free run. Indeed, he reported that his only problem was stopping the boiler pressure rising! His overall thermal efficiency was 0.555%.

Barbara Milton (4)

IMLEC stalwart Barbara Milton of the Bristol Society was campaigning her modified Simplex and appeared to be having a trouble free run. However, after approximately 20min. had elapsed, boiler water feed problems developed that unfortunately forced her retirement.

David Tompkins (5)

Also an active supporter of

IMLEC, Dave Tompkins entered his 3½n. gauge Mogul. His total load was three adults plus a youngster. He experienced various delays and had to shed passengers as the run proceeded. His final laps were quite fast and the observer was heard reminding him of the speed limit. Dave's overall thermal efficiency was 0.302%.

Karl Midgeley (6)

Representing the Gravesend Society, Karl had entered a freelance 4-6-4 tank engine. Our notes indicate that he had a trouble free run and that the locomotive finished the event looking as clean as when it had started. Certainly the

driver seemed pleased with his efforts and reported that very little fire was left in the firebox at the end. Overall thermal efficiency was 1.177%.

Michael Richardson (7)

Entered as a private entrant Michael Richardson was running his handsome 2-10-0 9F. We believe that 15min. into the run he had a short delay but otherwise it was uneventful. Indeed the driver's only comment at the finish was: "I enjoyed it", which is the main thing. Overall thermal efficiency was 0.634%.

Brian Remnant (8)
Although Brian, of Romney

water level related delay with his Sweet Pea his run was otherwise uneventful. He reported that he was quite pleased with his efforts, as well he might be as his overall thermal efficiency was 1.707%.

Marsh Society, had a short

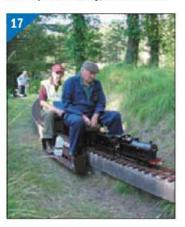
Ivor Roberts (9)

Local man Ivor Roberts must have been pleased with his trouble free run as his fellow club men told me that his GWR 61xx had been in pieces a day or two prior to the event. Overall thermal efficiency achieved by Ivor was 1.042%.

Paul Collins (10)

Paul from the Harlington Society

is another regular IMLEC contender and entered his 4-4-2 Atlantic. He lost boiler pressure on his second lap causing some delay on the climb to the tunnel but managed to restart


without rolling back to complete the run. Overall thermal efficiency was 0.471%.

David Mills (11)

Representing the Romney
Marsh Society, David was
campaigning his 0-6-0 Minx.
Our notes suggest that it was
a steady, relaxed run with no
untoward moments. Despite his
relaxed demeanour the driver
reported he felt nervous during
the run. The thermal efficiency
figure achieved was 0.520%

Ben Pavier (12)

It was time for another 3½in. gauge locomotive and Ben Pavier, representing the Southport Society, came to the

line with his 4-4-2 Atlantic. The run was reeled off in fine style and Ben's comment at the end says it all - "Good that, wasn't it!". No argument there! Overall thermal efficiency was 0.607%.

Geoffrey Symes (13)

Offering a change of tempo after the last run was Geoffrey Symes' impressive 5in. gauge 2-8-4 Dholpur. Geoffrey, representing Worthing Society, seemed to slow on the third and fourth laps but otherwise completed his run without noticeable problems. Overall thermal efficiency was 1.210%.

John Linkins (14)

Another contestant representing the Romney Marsh Society was John Linkins with his 2-6-0 BR Class 2. John's run was a joy to watch and we noticed no major problems. Carrying a total load of nine adults, the overall thermal efficiency achieved was 1.317%.

Jack Dibnah (15)

Another example of the popular Sweet Pea design was entered by Jack Dibnah, who was representing the Manx Model Engineers. Jack's run looked

like it might be delayed by a broken gauge glass but, in the event, repairs were smartly carried out and the locomotive brought to the start line in time. Although the locomotive was seen to struggle at times, on the incline the run was completed without major problems and resulted in an overall thermal efficiency of 0.545%.

Jimmy Woods (16)

Putting the word 'International' into the International Model Locomotive Efficiency Competition was New Zealander Jimmy Woods. Representing the Manx Model Engineers and running a 5in. gauge 4-6-2 Merchant Navy, Jimmy had problems on his opening lap and had to roll back on the incline and shed passengers. However, he then found his form and finished the run in fine style. Overall thermal efficiency was 0.741%.

David Mayall (17)

Representing the Bracknell Society and running his 3½nin. gauge Derby 4F was regular IMLEC entrant David Mayall. David chose to run with a

total load of two adults. According to our records, this experienced contestant had a clean run without any problems. Overall thermal efficiency was 0.501%.

Les Walters (18)

Yet another clean run was recorded by this representative of the Swansea Society. The sight of his 4-6-0 Manor circulating consistently must have gladdened the hearts of the many GWR fans present at the event. Les ran with a total load of nine adults and achieved an overall thermal efficiency figure of 1.084%.

Edgar Playfoot (19)

It was a pleasure to see this 0-8-0 LBSC Netta driven

by Edgar Playfoot of the Maidstone Society. Edgar did the great LBSC proud and had a trouble free run carrying a total load of seven adults. His overall thermal efficiency was 1.093%

Kenneth Parker (20)

Kenneth Parker of the North Wilts. Society entered his 2-6-2 Prairie and had a largely trouble free run with a total load of eight adults. It was noticed that some effort was needed to get

Run	Drivers name	Loco. type	Wheels	Gauge In.	Society	Av. speed mph	Passengers (adults)	Run time (min)	Distance run (ft.)	Coal type	Coal used	A
29	Steve Eaton	Britannia	4-6-2	5	Chesterfield	6.226	14	25.97	14,233	а	1.188	20
24	Paul Tompkins	S&R	2-8-0	5	Guildford	6.636	10.5	26.60	15,538	а	1.625	19
8	Brian Remnant	Sweet Pea	0-4-2	5	Romney Marsh	5.811	14	27.37	14,000	а	1.938	2
26	John Hurley	Royal Scot	4-6-0	5	Kinver	5.052	9	24.60	10,939	а	1.520	2:
14	John Linkins	BR Class 2	2-6-0	5	Romney Marsh	6.582	9	26.82	15,540	а	1.563	14
27	Glyn Winsall	Metro Tank	2-4-0	5	Rugby	6.931	5.5	25.47	15,540	а	1.125	9.
28	Andy Williams	BR 9F	2-10-0	5	Pembroke ME	6.432	12	27.45	15,543	а	2.344	20
13	Geoffrey Symes	Dholpur	2-8-4	5	Worthing	5.878	17	27.07	14,007	а	3.813	35
23	John Cottam	Merchant Navy	4-6-2	5	Chesterfield	6.658	8	26.52	15,543	а	2.000	16
6	Karl Midgeley	Freelance tank	4-6-4	5	Gravesend	6.449	9	27.37	15,538	а	1.938	15
19	Edgar Playfoot	LBSC Netta	0-8-0	5	Maldstone	7.191	7	26.97	17,072	а	2.125	14
18	Les. Walters	GWR Manor	4-6-0	5	Swansea	5.285	9	26.80	12,467	а	1.688	15
22	James Brunning	GWR 1500	0-6-0	5	Ascot	6.582	6	26.82	15,539	а	1.688	12
9	Ivor Roberts	GWR 61	2-6-2	5	LlaneIII	6.283	7	25.32	14,003	а	1.844	14
20	Kenneth Parker	Prairie	2-6-2	5	North Wilts	5.701	8	24.83	12,461	а	1.563	12
1	David Kane	Lanc. tank	2-4-2	5	Leyland	3.738	6	23.55	7,749	а	1.156	13
16	Jim Woods	Merchant Navy	4-6-2	5	Manx ME	4.427	11	27.08	10,554	а	2.279	17
31	Tom Parham	Enterprise tank	2-6-2	5	Maidstone	4.190	12	26.90	9,922	а	2.625	2:
2	Mike Harrison	GWR Grange	4-6-0	5	Kinver	4.302	10	20.77	7,865	а	2.969	29
7	M. Richardson	9F	2-10-0	5	Private	4.839	14	25.66	10,930	а	3.188	20
3	Tony Vereker	Simplex	0-6-0	5	Oxford	5.720	5	24.73	12,453	а	1.875	9.
15	Jack Dibnah	Sweet Pea	0-4-0	5	Manx ME	5.133	7	27.58	12,463	а	2.375	11
11	David Mills	Minx	0-6-0	5	Romney Marsh	5.461	5	22.73	10,927	а	1.656	8.
21	C. Weatherley	Sweet Pea	2-6-0	5	Worthing	4.375	6	25.17	9,694	а	1.938	11
10	Paul Collins	Atlantic	4-4-2	5	Harlington	4.211	6.5	26.13	9,685	а	2.625	13
4	Barbara Milton	Modified Simplex	2-6-0	5	Bristol					Retired		Г
25	Brian Eatock	Black Five	4-6-0	3.5	Chesterfield	6.244	3	25.48	14,005	а	1.594	9.
12	Ben Pavler	Atlantic	4-4-2	3.5	Southport	6.957	3	25.37	15,537	а	1.680	7.
17	David Mayall	Derby 4F	0-6-0	3.5	Bracknell	6.787	2	26.01	15,539	а	1.000	3.
30	Marcus Peel	B2	2-6-0	3.5	Southport	5.763	3	25.72	13,049	а	0.875	3.
5	Dave Tompkins	Mogul	2-6-0	3.5	Guildford	3.492	3	20.60	6,332	а	1.375	7.

up the incline but, with all the clean runs previously recorded, starting to become more an overall thermal efficiency of

Charles Weatherley (21) Last man to enter the contest on Saturday was Charles Weatherley with a 2-6-0 Sweet Pea. Yet another nice steady run was to be the order of the day with a total load of six adults. Mr. Weatherley,

representing the Worthing Society, seemed pleased with his run but mentioned that some work on the oiling system was still needed on his recently finished locomotive. Overall thermal efficiency was 0.513%.

James Brunning (22)

First man on Sunday morning was James Brunning. representing the Ascot Society. with his 0-6-0 GWR 1500. James had what appeared to be a very relaxed run even resorting to some extensive whistle blowing as he made his last lap - much to the delight of his younger passengers. His overall thermal efficiency was 1.077%.

John Cottam (23)

Handsome, powerful and fast are three adjectives that come to mind when considering John Cottam's 4-6-2 Merchant Naw locomotive. From a spectator's point of view the run went well without any noticeable problems. Representing the Chesterfield society, John's overall thermal efficiency was 1.178%.

Paul Tompkins (24)

Yet another regular entrant who has had some bad luck at previous events, Paul was again representing the Guildford society. His chosen locomotive was his 2-8-0 Somerset and Dorset and the blue paint work made a pleasant change from the usual blacks and greens. The run went well and Paul was heard to observe at the end that "he didn't think he could have done better". You cannot ask for more. Overall thermal efficiency was 1.723%.

Brian Eatock (25)

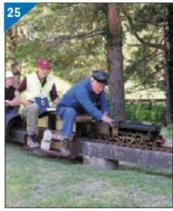
Next amongst the 31/2in. gauge entries was Brian Eatock from the Chesterfield Society. His 4-6-0 Black Five ran with a total of three adults and set a fast pace. Indeed, your reporters believe they heard the observer warning Brian once or twice that he was exceeding the speed limit. No other problems were observed and the overall thermal efficiency achieved was 0.745%.

John Hurley (26)

Representing the Kinver Society, John was running his 4-6-0 Royal Scot and made his run look very relaxed and stress free. John has had some bad luck at past events but this year the circuits of the track were reeled of in fine style and no problems were observed. The overall efficiency achieved was 1.434%.

Glyn Winsall (27)

Glyn first contested IMLEC as a youngster and has continued to support the event achieving a win at Kinver in 2004. He was representing, as usual, the Rugby society and running his 2-4-0 Metro tank. His run started with five adults plus one youngster but our photos suggest that one passenger was dropped during the opening lap. Glyn set a cracking pace and afterwards said that he felt the speed restrictions had cramped his style. Overall thermal efficiency achieved was 1.237%


Andrew Williams (28)

Andy Williams entered his handsome 2-10-0 BR 9F and was representing the Pembroke

your observers were perhaps critical. Never the less it was an excellent run and achieved 0.933%. Total work done Av. drawbar

Thermal eff. drawbar S.E.C C.C.R. H.P. (lb/DBHP.hr) (lb/hr) oull (lb) (ft. lbf) .540 292,346 0.341 8.050 2.745 2.259 .630 0.347 305,011 10.562 3.665 1.723 .740 360,360 0.399 10.647 4.248 1.707 .710 0.293 12.652 3.707 1.434 237,486 .430 224,242 0.253 13.822 3.497 1.317 750 151,515 0.180 14.722 2.650 1.237 0.346 14.806 5.123 1.227 .150 313,191 .880 502,571 0.563 15.011 8.451 1.210 .510 256,615 0.293 15.444 4.525 1.178 .990 0.275 248,453 15.447 4.248 1.177 .820 252,007 0.284 16.644 4.727 1.093 .990 0.225 16.796 1.084 199,347 3.779 .740 197,967 0.224 16.857 3.776 1.077 .950 0.251 17.410 4.370 1.042 209,345 .740 0.194 19.469 3.777 0.933 158,753 .650 105,774 0.136 21.654 2.945 0.840 .420 183,851 0.206 24.510 5.049 0.741 .190 0.237 5.855 0.735 210,247 24.705 .380 231,074 0.337 25.451 8.577 0.715 .150 220,240 0.260 28.669 7.454 0.634 4.549 100 113,322 0.139 32.727 0.555 .310 140,957 0.155 33.335 5.167 0.545 580 93,754 0.125 34.968 4.371 0.520 .180 108,379 0.130 35.538 4.620 0.513 .910 134,718 0.156 38.641 6.028 0.471 230 129,266 0.154 24.377 3.754 0.745 0.607 150 111,090 0.133 29.872 3.973 510 2.307 0.501 54.542 0.064 36.047 510 45,802 0.054 37.796 2.041 0.481 150 45,274 0.067 59.776 4.005 0.302

ME. Running with a load of 12 adults, our records reveal no drama or untoward moments. Each lap was run at speed but without effort. Andy's overall thermal efficiency was 1.227%.

on his opening lap and one passenger and the riding car were dropped. He splashed on under this reduced load to achieve an overall thermal efficiency of 0.481%.

Steve Eaton (29)

Another entrant representing Chesterfield was Steve Eaton with his 4-6-2 Britannia Rough Diamond. Steve was unlucky in the timing of his run as it coincided with a passing shower. Not surprisingly this gave him traction problems and at one point he reversed back from the incline all the way to the bridge. He also dropped off one truck and three passengers. Never the less the run was completed and a very creditable overall thermal efficiency figure of 2.259% achieved.

Marcus Peel (30)

Last of the 3½zin. entries was Marcus Peel of the Southport Society with his 2-6-0 B2. Marcus ran with a total of three adults and was also unlucky with the weather as another passing shower anointed his run. This caused him problems

Tom Parham (31)

So it was time for the last contestant and Tom Parham representing the Maidstone Society with his 2-6-2 Enterprise tank took to the track. The locomotive had sustained accidental damage the previous day and hurried repairs had been carried out to enable the run to take place. Under the circumstances Tom's run was relatively trouble free. One stoppage was noted approximately 16min, into the run but a restart was made and the laps continued for the allotted time. The overall thermal efficiency achieved was 0.735%.

Concluding ceremonies

While the runs had been continuing the indefatigable computer operator had been tallying the results and pretty soon after the last run it was clear that the winner of IMLEC

2007 was Steve Eaton. Best amongst the 3½in. gauge entries was Brian Eatock.

The Martin Evans Challenge Trophy and other awards were presented by Llanelli Deputy Town Mayor and Mayoress Mr. and Mrs. Nigel Bevan and the Vice Chairman Councillor

30

Hugh Richards. We extend our congratulations to the winners and our thanks to the civic dignitaries for their attendance. We also thank Llanelli and District ME for organising such a memorable event.

Look out for details of IMLEC 2008 in due course.

C TOPICS I/C S I/C TOPICS PICS I/C TOPICS TOPICS I/C

Nemett

For those wishing to contact me via email, I now have a direct email address – Nemett@vodafoneemail.co. uk which can be used for all Nemett related items. It should not be used for Model Engineer related contacts which should all be made via the editor at david.

carpenter@magicalia.com

The other consequence of my changing internet providers is that the I/C Engine Builders website is likely to disappear for a while until I can get a new site set up. In the meantime anyone wishing to contact or find out about the group should use the email address above.

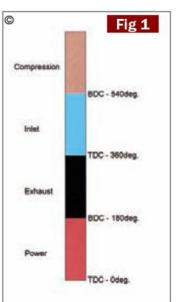
n this part of the discussion on engine balance I will look at multi-cylinder engines and will start with a 4-cylinder in-line engine. This may seem strange after the single, but the 4-cylinder engine is much simpler than the in-line twin which, as mentioned last time, comes with its own unique set of problems. I do not intend to try to go into complex calculations (I shall only confuse myself!) but rather to try to illustrate the key points relating to the various engine lavouts.

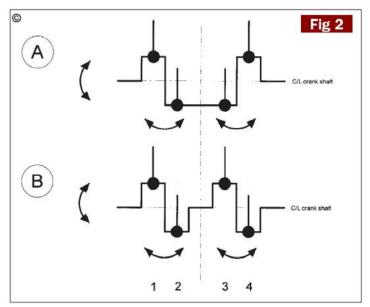
With multi-cylinder engines another dimension is added to the balance equation, that of the firing order and how regular (evenly spaced) the power strokes are. Engines with unevenly spaced power strokes will seem rough, even if the mechanical balance is good. Firing order also has an effect on any rocking motion imparted to engine by the power strokes, it is best to alternate firing strokes either side of the centre of the engine as in the firing order 1, 3, 4, 2.

One way of seeing clearly what is happening with multicylinder engines is to use linear diagrams to represent the power, exhaust, inlet, compression cycle of each cylinder. The basic diagram for a single cylinder engine is shown in fig 1. Moving up from the bottom, we have the power

stroke commencing at the Odeg. top dead centre, exhaust commencing at 180deg. bottom dead centre, inlet commencing at 360deg. top dead centre and compression commencing at 540deg. bottom dead centre.

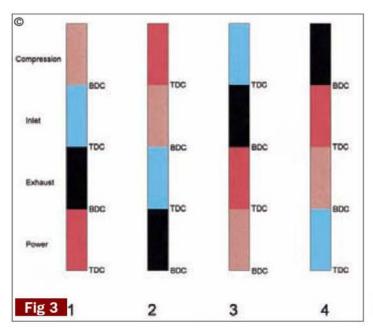
The diagram does not show any variations on the valve events from this basic situation. For our present purposes it does not need to because all the cylinders are identical. The segments are all of equal length and represent one stroke or 180deg. of crankshaft rotation. We will use this basic diagram to look at some firing sequences available for different engine configurations.


If we start with a typical 4-cylinder engine crankshaft layout (**fig 2**), we can see that the crankshaft as a whole is, in part, balanced against the forces introduced by the pistons reversing direction because when cylinder one is


at TDC, cylinder two is at BDC, thus cancelling out the forces. This is also the situation with cylinders three and four.

However, this is not the whole story because, although a pair of identical piston/connecting rod assemblies is acting in opposite directions, the pistons are not directly opposite each other (they can't be) so the forces create a bending motion at the crankshaft, shown by the lower paired arrows in fig 2. These forces will cause problems if the crankshaft is not stiff enough.

Older engines often only had main bearings at each end of the crankshaft, but later engines had 'three bearing' shafts with a centre bearing between cylinders two and three and most modern full-size engines have five bearing crankshafts with a bearing between each pair of cylinders.


The 40cc Schillings engine crankshaft (photo 1) is an

 An example of a very rigid five bearing crankshaft set-up for a 4-cylinder 4-stroke engine.
 Fig 1. The basic 4-stroke cycle in diagrammatic form.

Fig 2. Two crankshaft layouts for 4-cylinder in line engines.

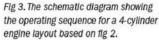
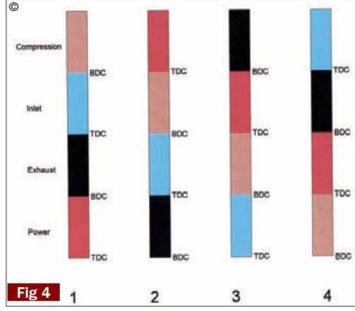


Fig 4. An alternative firing sequence for a 4-cylinder engine.

Fig 5. Two crankshaft layouts for flat, four-cylinder engines.

Fig 6. An operating sequence for a flat, four-cylinder engine.

excellent example of this with five ball race main bearings.


Engines with no intermediate main bearings will benefit from having longer crankshaft ends supported by extra bearings to provide greater rigidity. The sideways forces behave in a similar way, so many engine designs do not have balance

weights on the shaft (Edgar Westbury's Seal for example) but are still very smooth running.

For those wanting the ultimate in smoothness, balancing each cylinder as for a single-cylinder engine may give some benefits.

If we look at **fig 3**, showing the cycles for each of the four cylinders (applicable to fig 2a), it can be seen that I have placed the diagrams for each cylinder to match up with the cylinder positions (TDC or BDC), but with each cylinder at a different point in the cycle.

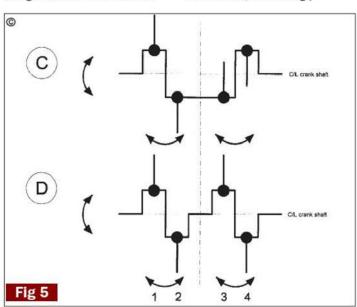
If we move up from the bottom of the diagram (equivalent to rotating the crankshaft through two revolutions, or 720deg.)

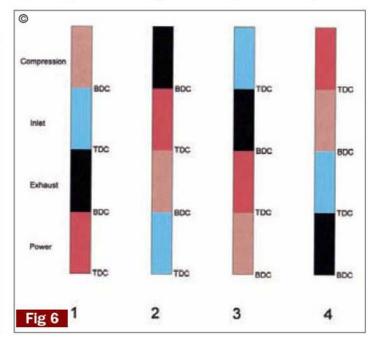
cylinder one fires first, followed by cylinder three, cylinder four and finally cylinder two, or a firing order of 1, 3, 4, 2.

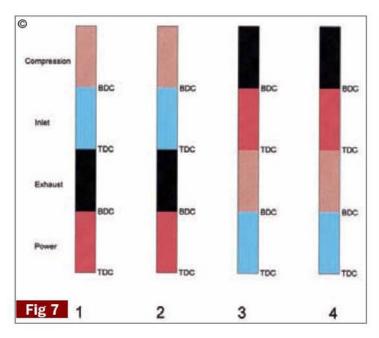
It will also be seen that the sequence is evenly spaced over the two crankshaft revolutions making the engine very smooth.

The firing order of in-line four cylinder 4-stroke engines is dependent on which crankshaft layout is used and the cam relationship.

Therefore, fig 2a can have firing orders of 1, 3, 4, 2 or 1, 2, 4, 3. Figure 2b can have 1, 4, 3, 2 (preferable) or 1, 2, 3, 4.


Firing order also has an effect on the smoothness of the engine because the power impulses generate a rocking


motion in the whole engine, shown by the left-hand side arrows in fig 2.


In this respect, the firing order options for fig 2a are identical, whilst fig 2b is best with the order 1, 4, 3, 2. Using these diagrams, the firing order can be changed by swapping any two sequences on the same crankpin.

Four cylinder 2-stroke engines with the same crankshaft layouts will have the cylinders firing in pairs as in fig 2(a), giving the smoothest running because no rocking motion is generated.

A better shaft layout for 2-strokes may be with the big ends spaced at 90deg. on the

shaft so that the firing order can then be made the same (but twice as often) as the 4stroke engine.

I don't believe that it is a good thing to have the cylinders firing 1, 2, 3, 4. I think it will 'wind up' the crankshaft but if anyone has greater knowledge of this aspect, I will be pleased to hear from you. The rocking motion will also tend to be slower and more pronounced.

The other thing that introduces itself with multicylinder engines is the question of evenly spaced power impulses. In the two examples shown, the firing strokes are evenly spaced and therefore do not introduce any additional unevenness into the engine.

Both the examples in figures 3 and 4 are examples of 'flat plane' layouts with all the crankpins lying in one plane.

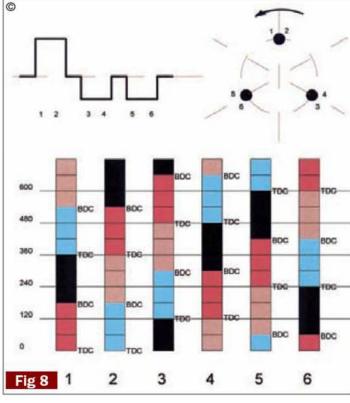
This type of crankshaft (photo 2) can be machined from a piece of flat bar and can be used in other multi-cylinder engine layouts, but the results may not be perfect in terms of even running.

An example is certain American V8 engines with flat plane cranks which had a characteristic 'lumpy' sound. V8 engines with the crankpins arranged to give even firing intervals are more difficult to make but result in a smoother running engine.

If we now look at a flat-four engine arrangement (fig 5) we

can see that the situation is much better.

The same crankshaft layouts can be used but the cylinders are now arranged in opposing pairs. The mechanical balance in both cases is good. Figure 5c is typical and gives possible firing orders of 1, 3, 2, 4 or 1, 4, 2, 3 (fig 6).


The big advantage with flat four engines (and flat twins) is that if the sets of opposing cylinders are timed to fire together in pairs (1+2, 3+4), the engine becomes very smooth because the power impulses cancel each other out and the rocking motion disappears completely. The engine will also generate more torque. The firing sequence in fig 7 illustrates this situation.

Firing order diagrams can be drawn for any number of cylinders. If done correctly

to scale, they work for

crankshafts with the cranks spaced round the crank as for 6-cylinder engines.

In this case, the bottom of the diagram for each cylinder will not always be on TDC or BDC: it will be raised in proportion to the relative angle

of the crankpins. Figure 8 shows the crankshaft layout and sequence diagram for a straight six engine with the crankpins spaced 120deg. apart.

With six cylinders firing over the full two revolutions of the crankshaft, the interval between them is 120deg.

The crankshaft layout is shown in diagrammatic form at the top of fig 8. Note that the crankpins are lined up in pairs. I used three common crankpins 120deg. apart, but other arrangements can be used if desired.

In the bottom half of the figure, the sequence for each cylinder is positioned to reflect the point at which it fires during the two rotations of the shaft. This is easy to do because each coloured block

on the sequence represents Fig 7. Alternative operating sequence for a flat four engine.

Fig 8. A full set of diagrams for an in-line 6-cylinder 4-stroke engine.

2. A part-machined flat plane crankshaft for a 4-cylinder engine.

by swapping any two cylinders on the same crankpin.

If you fancy making a 6cylinder 4-stroke engine with crank spacing of 60deg., you will find that it is impossible to obtain even firing intervals.

Use of these types of diagrammes helps ensure that the cam relationships are set correctly to give the correct firing order.

Even the master (Edgar Westbury) got it wrong occasionally; my Seal construction notes contain a correction to the firing order from that defined on the drawings.

> Next time I will use these techniques to look at twin-cylinder

> > engines in various

guises. ME

so 120deg. is 2/3 of a block. The firing order shown can be changed

180deg.

PART 5

Continued from page 156 (M.E. 4305, 3 August 2007)

James G. Rizzo describes the second stage in the assembly of this fascinating Stirling engine.

17. The fully assembled pressure pipe connections from the displacer cylinder to the power cylinders. Fig 20. A drawing of the sub-assembly when at stage 2.

THE DAVIDE Mk.II STIRLING ENGINE

his stage of assembly involved the power cylinders, power pistons, sealing discs and plugs. The process is rather fiddling and needs deft fingers and a modicum of patience! Reference is made to fig 20 and photo 17.

Step 1. The power piston rods were inserted into the scotch yoke with a smear of Loctite Screwlock.

Step 2. The internal plugs of both cylinders were placed on the piston rods. The rods were in turn inserted into the piston crowns with the Loctite Screwlock.

Step 3. The pistons were inserted into the power cylinders, which in turn were bolted to the crankcase. The internal plugs were inserted in the cylinders and fixed with Loctite.

Step 4. The power cylinders were bolted to the crankcase. Step 5. The sealing discs were bolted to the cylinders, the left-hand one with a thin gasket.

Sub-assembly of the displacer unit

The displacer unit, which consists of the displacer

cylinder, the displacer, displacer rod and the displacer plug were assembled together before the unit was inserted into the top of the crankcase. Reference is made to flg 21. The following steps were taken:

Step 1. The displacer rod was taken out of the crankcase (with the clevis removed) and screwed into the displacer with epoxy adhesive.

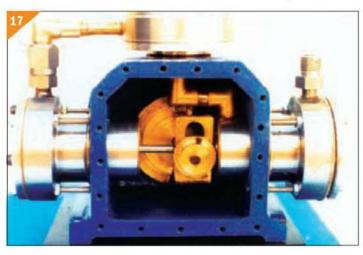
Step 2. The displacer was inserted into the displacer cylinder.

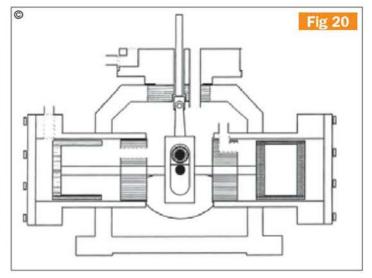
Step 3. The displacer plug was temporarily fitted into the cylinder and the latter drilled to allow an 8mm brass pipe to pass into the hole previously prepared in the plug (see fig 10, *M.E.* 4303, 6 July 2007).

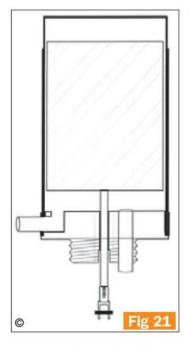
Step 4. The displacer plug was inserted into the cylinder with adhesive.

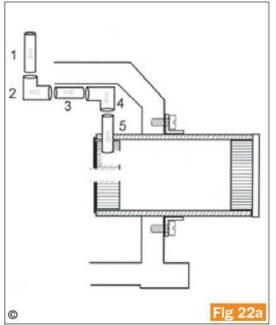
Step 5. A length of 8mm, thin walled brass pipe was inserted with epoxy adhesive into the plug with approximately ³/1sin. or 5mm protruding into the crankcase (the other pipe from the side of the cylinder was left until later.) Step 6. The clevis was screwed on the displacer rod.

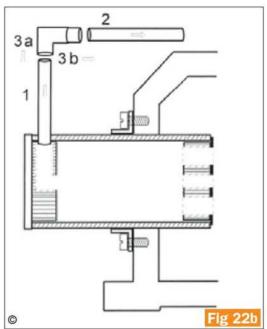
Step 7. The displacer unit, together with a 2mm O-ring, was screwed into the crankcase top.


Step 8. The clevis was once more attached to the displacer con-rod.


Step 9. The crankshaft was turned a few times to check that the mechanism was working correctly.


Pressure pipe fitting


The fitting of the pressure pipe connection to the right-hand power cylinder inside the crankcase appears visually rather complex but is, in fact, quite straightforward.


Two 90deg, bends and two short pieces of pipe connecting the bends with the displacer plug were prepared beforehand so that once the displacer unit was inserted into the crankcase, fitting of the parts would be relatively easy to handle. The bends mentioned above are those used in small bore plumbing or with gas pipes. Reference is made to fig 22a, shown here, and photo 15 which appeared in M.E. 4305, 3 August 2007.

The four pieces (Nos. 2, 3, 4 and 5 shown in fig 22a) were smeared with epoxy adhesive and in quick succession mounted into each other, then into the protruding pipe from the displacer unit, and finally into the power cylinder.

Long nose pliers were necessary for the final step. that of dragging the last piece of pipe (No. 5) into the power cylinder plug.

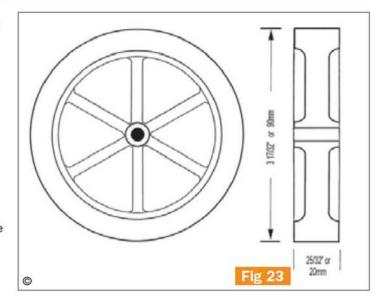
Fitting the connection between the displacer cylinder and the left-hand power cylinder was easier since this is completely external, requiring only one bend and two fairly long pieces of brass pipe, fig 22b and photo 16 (M.E. 4305, 3 August 2007).

The only minor difficulty was the bend, which needed the horizontal pipe to be slightly longer than the inserted length at each end. Thus, if the pipe length required was 2in. or 51mm, a longer piece - 27/32in. or 56mm was cut first, providing enough to have a 4mm insertion at each end, .

This was inserted into the bend as far as it could go, then with the vertical parts in place, the horizontal pipe was dragged into the displacer cylinder and fixed with epoxy adhesive. There could be other ways of managing these connections, and therefore the reader may wish to experiment further.

Two other points:

1. In order that the appearance of the engine gives an æsthetical balance, a 'false' pressure pipe connection was made on the right-hand power cylinder; it did not connect to the displacer cylinder.


2. The reader may prefer a shorter connection between the displacer cylinder and the left-hand power cylinder. This could be done by inserting a bent copper pipe (O/D 8mm, I/D 7mm) between the two components, using either a pipe bender or a long wire spring which can be extracted when the bending is finished.

Flywheel

The flywheel used on Davide Mk II is a bronze casting off a cast iron flywheel purchased at one of the engineering exhibitions. It was made for an I/C or steam engine is 317/32in. or 90mm 0/ D with a rim thickness 25/32in. or 20mm (fig 23). It is fairly heavy and of just the right type for this engine with a total of 32cc and with twin pistons acting in tandem.

Testing the power cylinders

Apart from tests that were made when each power cylinder was assembled with its respective pressure pipe outlet, another test was made when the pressure pipe connections with the displacer cylinder had been completed.

With the flywheel in place, the crank was turned in a clockwise direction while first blocking the two left-hand cylinder plug holes (inside the crankcase) and then blocking the right-hand cylinder external plug hole. In each case there was stiff resistance to the flywheel motion.

Engine assembly final stages

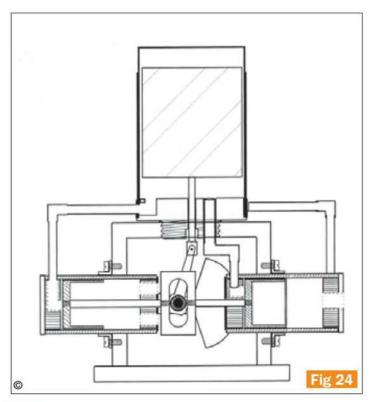
With the main components constructed and assembled and the parts thoroughly checked, it was the turn of the peripheral equipment to be constructed and installed. Contrary to good engineering practice a test run was made with a blowlamp and a water-soaked rag round the lower end of the displacer cylinder, a run which only took

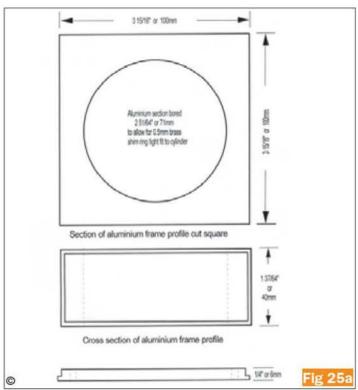
Fig 21. The assembled displacer unit. Fig 22a. Details of the assembly of the pressure pipe fittings to the right-hand power cylinder.

Fig 22b. Details of the assembly of the pressure pipe fittings to the left-hand power cylinder.

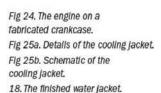
Fig 23. The flywheel.

seconds but proved that the engine could run easily and without problems.

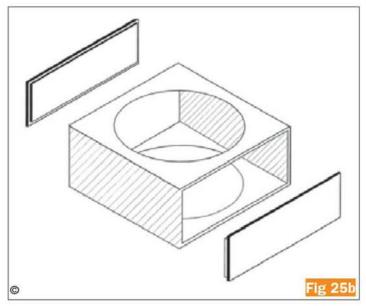

Figure 24 shows how a Davide Mk II with different power cylinders would look like on a fabricated crankcase.


Water cooling jacket

The water cooling jacket made for this engine was constructed >>>



STIRLING ENGINE



from an aluminium door section 100mm square and a 2mm wall thickness. It proved to be a relatively easy cooling gadget to make and quite efficient. The material came from the scrap bin of a manufacturer of doors and windows at no cost to myself.

A piece of the profile, which was 137/64 in. (40mm) deep, was cut, placed in a self-

centring 4-jaw chuck and bored $2^{3/4}$ in. or 70mm to fit tightly on the displacer cylinder. Two end-plates were cut from $^{1/4}$ in. (6mm actual) plate, 100mm x 40mm, milled around the edges to fit exactly into the profile. The plates were then drilled to take two steel studs, figs 25a and 25b, photo 18.

Before fitting the aluminium box-like structure on to the displacer cylinder a layer of Super Steel epoxy adhesive (by Plastic Padding) was smeared near the bottom, wider end of the displacer where the diameter increased to 2²⁷/32in. (72mm). This step provided a location for the cooling jacket and helped seal it at the bottom.

The next step was a little more complex as another layer of this epoxy had to be smeared pretty quickly (it has a short curing time after the catalyst has been mixed) on the displacer cylinder inside the box. This was done by smearing the adhesive round the inside top of the box and the cylinder using a narrow, Wflat screwdriver.

The box was turned round while doing this to ensure an even layer and the parts kept upside down so that both layers of the adhesive would penetrate the junctions between the

displacer cylinder and the aluminium profile. It was not as complicated as it sounds on reading this, and the result was just perfect.

Before sealing the water jacket the end plates were drilled on opposite sides and at different levels to take 8mm brass pipe and bends for connecting to the water tank.

The advantage of such a cooler is that water actually surrounds the displacer cylinder and the cooling effect is much greater than with a slip-on container or fins.

To be continued.

AYESHA II

PART 8

Continued from page 148 (M.E. 4305, 3 August 2007)

Tony Weale

finishes the chassis and describes the smokebox and chimney. oving to the grate and ashpan layout at the rear of the chassis, this is an awkward area on a wide firebox Atlantic. Space is restricted, and LBSC's own Ayesha had a slightly impractical fixed grate and ashpan. The 1930 design suggested a dropping centre section to the grate, which would be fiddly to make in 2½n. gauge, and would not drop very far with a shallow ashpan above the trailing axle.

The Ayesha II design is not ideal, but is easy to make (See issue 4305 for drawings). It allows complete removal of the grate and ashpan after a run. The ashpan can be also be dropped separately, with the grate left in place.

The first parts required are the two ash deflectors, which cover the trailing wheels. These are very simply made from 20swg, steel or brass, cut to the shape illustrated in the drawings published in *M.E.* 4305, and folded in the bench vice. They should be rigid enough without any jointing, but the sloping edges can be silver-soldered if preferred. Note the 6BA clearance hole at the lower rear corner to accept the ashpan support.

Attach each deflector to the trailing frame with two or three small screws or rivets, so that the top of the flange on the deflector is flush with the top edge of the frame. The screw heads will be hidden by the footplate valance.

The deflectors are bridged by the rear grate support, which is just a length of ¹/4in. square bar, drilled and countersunk for a 5BA fixing screw at each end. Directly below this is the ashpan support, On our prototype this is a length of ¹/sin. rod, threaded at each end for a pair of clamping nuts which attach it to the deflector.

With hindsight, a 6BA screw about 1/2in. long, put through the clearance hole in each deflector from the outside, with a retaining nut, would support the ashpan equally well and improve access to the rear of the ashpan for raking-out.

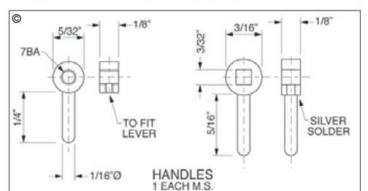
The grate bars are made from ¹/₄ by ¹/₈ in. mild steel. Black steel is more durable than bright material in this application, and an exhibition finish is quite unnecessary! Cut nine pieces, 2⁷/₈in. long, mark out and drill the ¹/₈in. clearance holes in one piece, then use this as a jig to drill all the others. Cut and file the two front supports from ¹/₄in. square mild steel, and cut the tie bars from ¹/₈in, rod.

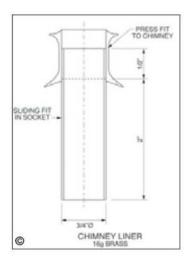
You can, if you like, turn and drill 14 little bushes to act as spacers for the grate bars, but it is easier to use ordinary steel hexagonal nuts of a suitable size.

With the grate assembled, offer it up to the chassis and determine the best position in the frames for the cross pin holes. These must be at least

³/₁₆in. below the top edge of the frames to clear the running plate valance, and are drilled ¹/₈in. clearance. It does not matter if the grate slopes gently forwards.

The ashpan is another simple piece of folded sheet steel or brass, slotted at the rear to hook over the rear retaining rod. and drilled at the front for a ¹/8in. cross pin. Both grate and ashpan should be made to fit loosely in the space available, otherwise when hot and choked with ash they will become very tight and difficult to remove,


Smokebox


The chassis is now complete, and we can move on to the smokebox and saddle. The smokebox barrel is a piece of 3¹/4in. dia. 16 gauge brass or copper tube. Steel could be used, but will not last as long.

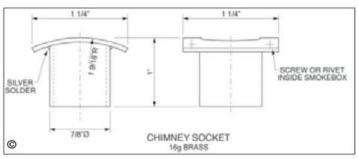
Start by squaring-up the ends of the tube in the lathe, using the 3-jaw chuck to the finished length: 13/8in. for Ayesha II herself and 111/16in, for the variations. A piece of tube like this can be a slippery customer in the lathe, and it is highly advisable to turn a wooden plug, say 3/4in. thick, which can be driven into each end of the tube to support the external chuck jaws. Also place soft packing between the iaws and the tube to protect the surface.

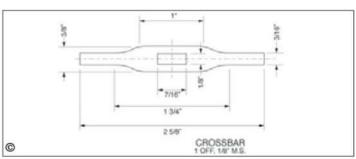
While the tube is in the lathe, mark off a top and bottom centre-line, 180deg. apart, and locate the chimney, blast pipe and steam pipe centres. Remove from the lathe and open these holes out to size.

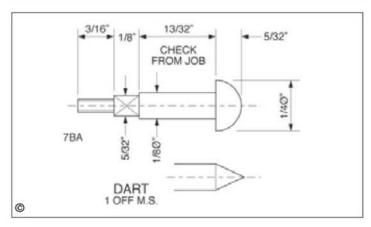
The smokebox requires a joint ring to match it to the boiler barrel diameter. This can

be produced from an off-cut of the smokebox tube itself, or from a ½2in. wide strip of 16 gauge brass, bent and silversoldered to form a 3½8in. dia. ring to be a push-fit inside the smokebox tube and over the boiler barrel.

Leave about ¹/₄in. of the ring projecting at the rear of the smokebox to form the seating for the boiler cladding.


Smokebox door and ring


The smokebox door and ring will be available as aluminium castings, although they can be made from solid brass if preferred. To machine the cast door ring, chuck it as truly as possible by the outside diameter, standing proud of the jaws so that the front can be faced. Then bore the centre hole to 2¹/4in. diameter.


Re-chuck the opposite way round, with the jaws gripping on the centre hole, and face the back of the ring, finishing ^{5/16}in. thick. Turn the outside diameter to a smooth finish and a tight hand-push fit in the smokebox tube. The inside of the door ring can now be cleaned up if necessary.

The smokebox door casting will have a chucking spigot on the outside. Hold the door by its rim in the 3-jaw chuck, setting it back against the steps of the jaws, or a packing piece, and turn the spigot parallel. Next, chuck the door casting by the spigot, turn to 2^{1} /4in. dia., and face the mating surface, finishing the door 5 /32in. thick.

Now centre-drill for the dart hole opening this up to ½sin.,

and cut off the spigot flush with the door. If the casting is reasonably smooth, the outside of the door can be left as it is.

If not, turn up a brass spigot, say ¹/2in. dia., and an inch or so long with a ¹/8in. dia. pip to fit into the hole in the door, and solder it to the inside of the door. Chuck the door by this new spigot, check that it runs reasonably true, and smooth off the outside of the casting with files and abrasive paper. Finally melt off the spigot.

The door-securing dart and hinges are some of the smallest components of the locomotive, but are very satisfying when they work properly. Make the hinge lugs first.

Chuck a length of ⁵/₃₂in. square mild steel in the 4-jaw, set to run truly, reduce ⁵/₃₂in. length to 0.087in. dia. and thread 8BA. Part off at ⁵/₁₆in., advance the material in the

chuck and repeat. Drill one lug for the hinge pin, and use as a jig for drilling the second one, then file to shape.

Offer up the smokebox door to the door ring, centralize it, and decide on the best position for the lugs, then drill and tap the ring 8BA and screw the lugs in, aligning them with the hinge pin, which is just a piece of ¹/16in. mild steel rod.

Now cut the hinge straps from 1 /16 x 1 /4in. mild steel, rounding off one end of each. Leave them over length, so that they can be bent round the hinge pin. Offer them up to the door, and bend them so that they will lie flat on the casting, yet remain parallel. Clamp them in position, then drill and attach with countersunk rivets or very small screws.

Note that the outer fixings will emerge on the mating face of the door and must be filed flush.

Now bend the outer ends of the straps around the hinge pin,

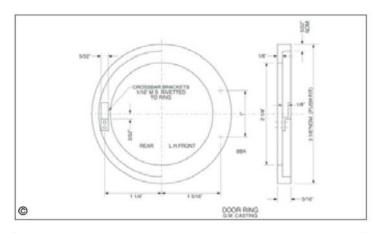
and cut off the excess length. If the hinge pin is reasonably tight in the lugs it will probably stay put, but if necessary the top end can be threaded for a 12BA nut. You should now have a pair of workable hinges.

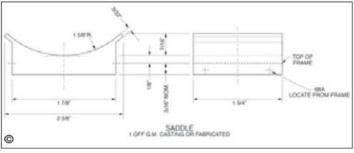
Ivatt and Brighton builders may like to vary the design here, and adapt the hinge dimensions to the style of their chosen prototype.

The door dart starts life as a piece of ¹/4in. mild steel rod. Chuck in the 3-jaw with about 1in. projecting. Decide the overall length required for the stem of the dart, and turn this down to ¹/sin. diameter. The exact length will depend on the thickness of the door, crossbar and smokebox front ring.

If in doubt, it is better to have it slightly too long, and it can be adjusted with a washer behind the handles. Reduce a ³/16in. length of the outer end to 0.098in. and thread 7BA. File the next ¹/8in. length to a ³/32in. square. This can be done accurately enough with reference to one of the chuck jaws.

Now reverse the component in the chuck, finish the large end to 5/32in. thickness, and file this to shape to form the pointed head of the dart.


The two handles are basically similar, each consisting of a turned cylindrical bush with a ¹/16in. steel wire handle silver-soldered into a hole drilled in one side. The outer handle is tapped 7BA, while the inner one requires a ³/₃2in. square hole to match the dart. This is a job for a small needle file.


By comparison, the crossbar is easy to make, being basically a piece of mild steel, ¹/₈ x ³/₈in., with a slot in the middle to accept the dart. The external profile in the drawing is copied from LBSC's own locomotive, and should not need any further explanation.

When complete, assemble the dart, handles and crossbar to the smokebox and determine the best positions for the crossbar brackets. These are bent from sheet steel or brass and riveted to the inside of the door ring.

The rivets must be countersunk and filed flush on

CLASSIC LOCOMOTIVE

the outside of the ring, since this has to form an airtight seal against the door. Alternatively, small screws could be used, inserted from inside into tapped holes in the door ring.

The crossbar should drop easily into the brackets and should not be longer than necessary or it may be difficult to remove and refit through the door aperture.

Chimney and blast pipe

The chimney and blast pipe layout is unconventional, but very practical and efficient.

It owes nothing to LBSC, but is the work of National 2½" Gauge Association member, Peter Gardner, and complements his redesign of the boiler.

The chimney has a long liner, which is a sliding fit in a socket mounted inside the smokebox. The blast pipe is very short, virtually a nozzle mounted on the floor of the smokebox. The chimney can thus be removed easily, leaving the smokebox completely clear for access to the tubes and pipework. Our prototype, with the

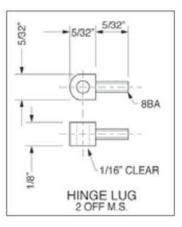
1 3/16" AYESHA 1 3/16"

1 1/2" VARIATIONS

JOINT RING AS RECTO

SMOKEBOX
16g BRASS

dimensions shown, steamed extremely well first time out, and no adjustments have been necessary.

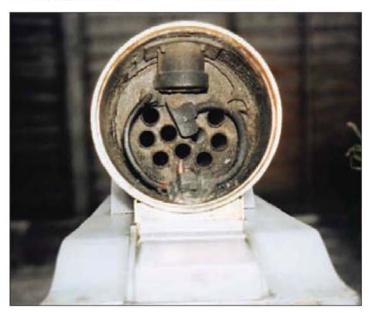

Tackle the chimney socket first. Make the flange from a 1¹/4in. square of 16swg brass or copper, bent to fit against the internal curve of the smokebox. Centre it on the chimney hole and cut a matching hole in it.

Obtain a piece of brass or copper tube 1in. long and ³/4in. internal diameter to slide over the chimney liner. Square-up one end, file the other to fit against the flange, then silversolder the two parts together. Secure the assembly inside the smokebox with a countersunk screw or rivet near each corner.

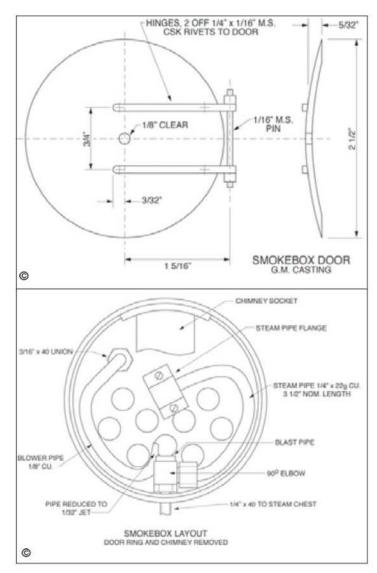
A casting will be available for the chimney. Alternatively it can be turned from solid, or from a fabrication comprising a tube with a generous-sized ring silver-soldered to each end. In any case the sequence of operations is similar.

First, hold the job in the 3-jaw chuck as truly as possible. Face the top of the chimney, and bore the internal diameter to just under ³/4in. to be a press-fit on the chimney liner. Now make a mandrel, chucking any suitable piece of round or square section brass or steel and turning ³/4in. of the length down so that the chimney will push tightly over it, with the top towards the chuck.

Use a round-nosed tool to profile the exterior of the chimney cap clean up the


outside diameter of the shank, and rough-turn the flared base. Study the shape required here, before removing too much metal.

The upper part of the flared base can be finished to the profile visible on the side elevation of the locomotive. but the profile of the lower sides - the end elevation - cannot be finalised until the base has been radiused to fit the smokebox. This can either be done by fly cutting or, with a small chimney like this, by careful hand filing. Nothing looks worse on a locomotive than a crooked chimney, so whichever method is chosen make sure that it sits absolutely straight on the smokebox.


To fly-cut the base, mount the chimney horizontally with

Inside the smokebox.

CLASSIC LOCOMOTIVE

a mandrel in the vertical slide, clamp it in the toolpost or directly to the top-slide. Adjust so that the axis of the chimney is at centre height, and at right angles to the lathe axis.

Various types of fly cutter are available, and will either be mounted in the chuck or on the faceplate, or on a mandrel between centres.

Adjust the cutting bit to 15/sin. radius. Run the lathe fairly fast, and apply light cuts and a slow feed with the cross and top slides. Have the smokebox to hand, to check the result.

There will now be a ridge remaining on either side of the chimney base, which cannot be removed by plain turning methods, so this stage will require some careful work with round and half-round files.

Finally, remove the chimney from the mandrel and press - fit the liner, which is just a

piece of $^{3}/_{4}$ in. diameter, 16 gauge copper or brass tube $2^{1}/_{2}$ in. long and squared at both ends.

Smokebox saddle

The smokebox saddle can either be a casting or a fabrication. If a clean casting is available it should not need much more than smoothing over with files, though if necessary the fly cutter can be used again to produce the radius.

If preferred, the saddle can easily be fabricated from 16 or 18swg brass, cut and filed to size to form the sides and ends, topped with a rectangular plate curved to fit around the smokebox, and silver-soldered together. The top plate will require a large clearance hole or slot to admit the steam and exhaust pipes.

The saddle fits between the frames and is secured to them

by four 6BA countersunk screws. The exact height of the saddle will depend on the position of the top of the steam chest, and some adjustment may also be required to get the boiler and smokebox level, so final assembly of the saddle is best left until the boiler is fitted.

The smokebox is retained on the saddle by a running nut on the blast pipe, which in turn screws into the top of the steam chest.

Smokebox fittings

The blast pipe is a length of ¹/4in. diameter copper tube of at least 18 gauge, threaded 40tpi all the way along. Alternatively it could be turned from brass or bronze rod, and bored ⁵/32in. right through. The threading is best done in the lathe to maintain straightness.

The overall length of the tube is about 1½sin. but this may need to be adjusted on assembly to achieve the ½sin. distance from the face of the blast nozzle to the base of the chimney liner.

The blast nozzle is turned from ³/sin. hexagonal brass. Chuck the material, centre-drill and open to ¹/sin., about ¹/4in. deep, then enlarge this to ⁷/32in. for ⁵/32in. depth and tap ¹/4 x 40. Finally, part off at ³/16in. overall length. The retaining nut is similar, but tapped right through, and radiused on one side with a file so that it will seat in the ⁵/16in. hole in the base of the smokebox.

Continuing with the smokebox fittings, the steam connection to the steam chest is another externallyDrawings are available from: PO Box 87, Leominster, Herefordshire, HR6 6AJ

Details of castings are available from:

Box 2500, Model Engineer, Berwick House, 8-10 Knoll Rise, Orpington, Kent, BR6 0EL

Membership details of the National 2½" Gauge Association: Peter De Salis-Johnston,

> 7 Tudor Court, Fulford, Stoke-on-Trent, ST11 9RX

threaded ¹/4in. diameter tube, similar to the blast pipe, but approximately ⁵/8in. longer. It does not require a retaining nut inside the smokebox and can either be connected directly to the main steam pipe with a straight union, or by a 90deg. elbow as shown in the drawing. This is the neater method and maximises access to the smokebox.

To make the elbow, chuck a length of 1/2in. or 3/8in. square brass or bronze bar in the 3-jaw with about 3/4in. projecting. Face the end and turn 1/4in, down to 3/sin, diameter. Then thread this 3/8 x 32 from the tailstock. Centre-drill, then drill 5/32in, dia... 1/2in. deep. Part off at 5/8in... then centre-pop in the middle of one of the flat sides. Drill a pilot hole at this point, breaking through into the previous 5/32in. drilling, enlarge the pilot hole to 7/32in. and tap 1/4 x 40 to accept the steam chest connection.

To be continued.

AYESHA II DRAWING AMENDMENTS

PUMP STAY

The dimension from the centre of the hole to the top of the stay should be $\frac{1}{2}$ in. rather than $\frac{7}{16}$ in.

VALVE ECCENTRIC AND STOP COLLAR

The width of the stop collar should be $\frac{1}{4}$ in. not $\frac{5}{16}$ in. and the distance from the centre of the hole to the flat should be $\frac{3}{12}$ in. not $\frac{1}{16}$ in.

GRATE

The distance from the centre lines of the spacers to the outside edge is decreased from $\frac{1}{2}$ in. to $\frac{3}{8}$ in.

SUPERHEATING - is it really helpful?

D. A. G. Brown
applies his
professional
knowledge of
thermodynamics
to assess the value
of superheating
for model steam
locomotives.

ince the first half of the 20th century there has been a definite fashion to incorporate superheaters into our miniature locomotives. My professional background in thermodynamics has led my idle curiosity to investigate just how much benefit accrues from this added complication to model engineering. After all. superheaters do cost money to build; they can be vulnerable to decay by corrosion and leakages in them can be frustrating to mend. I am assuming that the boiler pressure at which we are running is of the order of 80 to 100psi gauge (psig), rather far removed from mid-20th century practice on main line railways.

Just take a step back to understand where the great locomotive designers were coming from. Originally it must have been guesswork and lucky inspiration, because the first complete set of scientific data to be available was Callendar's steam tables in 1900. Over the years these have been refined and developed, to the extent that my own set of tables (in SI units) runs to over 120 pages of tightly packed information - riveting reading some might say!

For those who prefer pictures, the data has been put into graphical form by Mollier. His chart provides an excellent quick reference for looking at how an engine might perform.

In the past I have used it for scheming out just what effect modified turbine blades might have in a generating set; also looking at boiler conditions, including the influence of superheating. The chart is an excellent tool for rough sighting work, but the tables are needed for accurate detailed calculations.

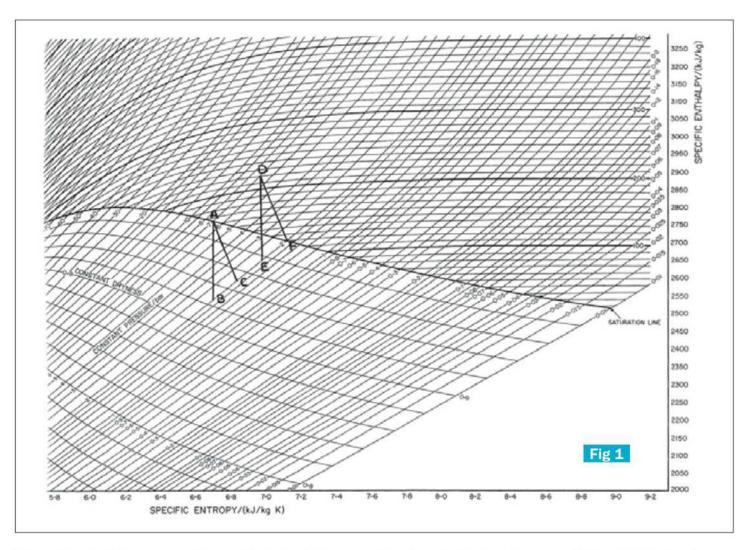
Let us look at a section of the Mollier chart, reproduced in fig 1. The complete original is about A2 size and represents the whole gamut of steam conditions, right into the supercritical range. Photocopying the useful area for our purposes still requires a size reduction, but it retains the flavour of our argument, although it is not good enough for accurate interrogation.

On the chart the y-axis represents the level of heat (H), or total energy in the steam, otherwise called enthalpy. Along the bottom, the scale is entropy (S), which represents the level of disorder of the system. This is a difficult concept to get hold of, but suffice it to say that all processes used in this world are less than 100% efficient and lead to an increase in entropy.

The ideal process is 'isentropic' and would lead to no increase in entropy, but a reduction of enthalpy. It can therefore be represented by a vertical line on the chart. That reduction in enthalpy represents useful work taken out of the steam via an engine.

On the other hand, a process in which no use is made of an energy drop is said to be 'isenthalpic' (or at constant enthalpy) and is represented by a horizontal line on the chart. No useful energy is taken out of the steam and such an example is the passing of steam through a reducing valve.

Just stop and look at a real engine. At each stroke of the piston, the steam does not suddenly fill the available volume of the cylinder, nor is its departure instantaneous. The valve gear and steam passages have a lot to answer for, and an indicator diagram measures precisely how far the practical performance of steam is from ideal. I am arguing in our case that the indicated performance of the steam will be about 75% of the theoretical value. It is unlikely to be better than this figure.


The bold saturation line on the chart refers to dry saturated steam, whose temperature rises with pressure. The pressure is measured in absolute units of Bar, so that atmospheric pressure (14.7psi absolute) is 1.013 Bar. If we are working at 90psig, this is almost the same as 7 Bar, and this is the value that we shall use in our examples.

Below the line, the steam is partially wet (or partially dry depending on whether you are an optimist or a pessimist). In an engine working well, we can expect the exhaust to come out wet with a characteristic white plume. In the area above the line, the steam is superheated, its increasing temperature being clearly indicated on the lines which are nearly horizontal.

Enough of this lecturing! Let us now look at a practical example. The figures that apply will be accurately entered from the steam tables, which also contain data about steam volumes and water properties.

Steam at 7 Bar pressure has a specific volume of 273m³/kilogram. If it is put to work in the engine with a cut-off of say 30%, this results in its volume being expanded to 910m³/

kilogram. In this state the exhaust pressure is 1.95 Bar, or about $14^{1/2}$ psig, which is not unreasonable. Starting with feed water at 20deg. C, the heat in the water h = 84kj/k kilogram. Steam at 7 Bar contains H, 2,763kj/kg, with entropy S, 1.5301.

An isentropic (or ideal) heat drop is given by a vertical line to 2 Bar at which point the steam would be 92.5% dry, at an energy level 2,541.7kj/kilogram. Taking one heat level from t'other, the ideal heat drop is therefore 221.3kj/kg (line AB on the chart).

But in the real world, nothing is ideal and we can assume an isentropic efficiency of 75%, meaning that the likely heat drop would be 166kj/kg and the exhaust steam condition is 0.95 dry (5% wet, line AC on the chart). The vertical distance between points A and C is 75% of AB.

Now the energy input had been (2,763 - 84) = 2,679 and

the useful output is 166. Therefore, the thermal efficiency is 6.2%.

A digression

So that we may understand the significance of the 'wet' steam issuing from the exhaust, just look at the densities involved. One kilogram of steam at 2 Bar occupies a volume of 886m³. Whereas, the 5% of water liquid discharged with the steam occupies only 0.00005m³, in other words, only a tiny volume of the exhaust, finely divided as an aerosol. This is characteristically observed as a white plume.

If you have ever stood downwind of a steam locomotive on a fairly humid day, you will understand the significance of what I am getting at.

Back to the plot

We shall now explore the effect of superheating. Consider say 55deg. C superheat applied to the steam. Steam from the superheater is at 220deg. C and the total heat starts off at 2,889kj/kilogram. The isentropic heat drop is calculated as 241.0kj/kg (line DE). At 75% efficiency this is reduced to 180.8kj/kilogram.

Doing the same sums as before, the steam exhausts with still about 1deg. of superheat, virtually dry saturated (line DF), and the thermal efficiency becomes 6.44%, only marginally better than the saturated steam case.

Let us now look over our shoulder at the position if superheat were increased still further, say by another 50 degrees. For 7 Bar steam superheated to 270deg. C, the total enthalpy is calculated as 2,996kj/kilogram. Again isentropic expansion to 2 Bar would yield 11deg. of superheat and an enthalpy level of 2,729kj/kg, i.e., an isentropic heat drop of 267kj/kilogram.

Again applying an isentropic

efficiency of 75%, the actual heat drop is 200.25kj/kg and the thermal efficiency rises to 6.9%.

The effect of pressure drop

One thing which we have not considered is the effect of installing a superheater. Not only does it reduce the conventional tube surface area by taking up tube space, but there must also be a pressure drop across the superheater tubes from end to end. The effect of such a pressure drop is to lower the pressure at entry to the cylinders, not an easy quantity to calculate.

So, as an example, let us take a 3psig (or 0.2 Bar) drop across the superheater elements and rework the calculation for 55deg. of superheat.

The starting point now becomes 6.8 Bar and an enthalpy of 2,889.9kj/kg, associated with an entropy of 6.9929. Isentropic expansion to 2 Bar at 75% isentropic efficiency leads to a heat drop of 177.1kj/kilogram. Thermal efficiency is 6.3%, or very little different from the example without superheat.

The superheat temperatures in these examples are conjecture; in any case, conditions must vary greatly, depending upon the firing rate and the condition of the fire. So, although we may determine a certain set of conditions for analysis, the real world is very variable.

Achieving a superheat temperature

We have been examining various levels of superheat, without considering the temperatures which might be achieved in practice.

Stainless steel superheater elements are well-accepted installations, run in the firebox for maximum effect. However, to raise 55deg. of superheat in steam at 7 Bar pressure requires the addition of 4.7% of heat above the boiling point by the superheater itself.

Within the firebox, heat transfer from the fire is by a combination of conduction, convection and radiation.

Conduction from the solid materials in the area of the fire itself must account for much of the heat transfer.

Radiation from the incandescent mass occurs to the benefit of the water jacket around the firebox and also the superheater, the relative surface areas determining primarily how much heat is transferred in the two portions of the system.

However, within the superheater elements themselves, heat travels readily through the metal walls, but not very well into the steam itself.

On the other hand, in the firebox walls and roof, heat transfer to the water is extremely good. We know, therefore, that for like areas, heat transfer through the firebox walls to the water is significantly better than that through the superheater elements to the steam.

A lesser amount of heat transfer takes place by convection through the fire tubes, where turbulent movement of the exhaust gases passes heat through the walls both of the fire tubes and of the superheater elements.

The performance of the tubes will obviously deteriorate as they soot up or become blocked.

It would be possible to measure the thermal efficiency of the boiler itself, by measuring the temperature of the exhaust gases in the smokebox. The efficiency depends also on the composition of the exhaust gases, as indicated by the level of oxygen remaining in them. If the oxygen level is too low, accompanied by the presence of carbon monoxide, this indicates incomplete combustion and the efficiency drops dramatically below the ideal value when the combustion is complete and most of the oxygen is used up.

On the other hand, if the oxygen is too high, due to the presence of excess air, say by the firehole door being left open, then the efficiency also drops off significantly.

It is impossible to say just how high the boiler efficiency might be in our small sizes. From the industrial analogy it is likely to be in the range of 60% or so, but this value is likely to fluctuate wildly during operation.

A sting in the tail

It appears from this mathematical analysis that, in our process conditions, superheat is largely a waste of time; this must be true if the boiler is steaming freely and if dry saturated steam reaches the cylinders.

However, especially if the boiler design is fairly squat with little steam space, such as that in a Gresley Pacific, Stanier Duchess or Collett 4-6-0, the steam generation is likely to yield a certain amount of water spray, or priming, especially if the steam takeoff is anywhere near the top surface of the firebox.

In such circumstances, the function of the superheater becomes that of a steam dryer, merely evaporating the droplets of water that escape the evaporating surface.

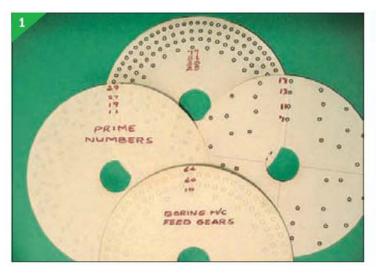
In such conditions, the superheater's value outweighs its disadvantage and you are likely to end up with dry steam entering the cylinders.

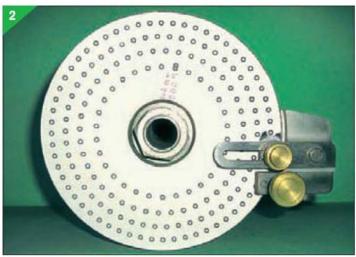
It would be interesting if we could see inside the steam generation space of a boiler. Would the violent rate of steam release lead to dense clouds of water droplets, or not?

The nearest I have got to it is during my years in the sugar industry. Saturated syrup was boiled in large steam heated pans to encourage crystallisation. The syrup circulated through vertical tubes, which were steam jacketed and the whole thing worked under vacuum. In order that the operators could see what was going on, glass portholes were provided for illumination and observation. So, the boiling process was visible; no steamy atmosphere was apparent and no obvious entrainment of the liquid in the vapour leaving on its way to condensation. Such an example is not directly transferable to our operations, but the point it teaches is that steam release

from a liquid surface can be neat and orderly.

On the other hand, the phenomenon of priming is well known, especially if the water level gets too high. It is not unreasonable to assume that water entrainment will take place in the miniature environment.


So you can weigh up the position for yourself; in a large mainline prototype of boiler, superheat is likely to be a worthwhile proposition adding to the efficiency of working, or rather making sure that the steam is dry. In a narrow gauge industrial type of locomotive it is a waste of time, provided that there is a good separation area for the steam above the firebox crown.


I thought long and hard about what to put into my *Anna* design and opted for saturated working. In this case I was running true to prototype.

Incidentally, a side benefit accruing from saturated working is the possibility of lubricating the cylinders with the thinner grade of steam oil, which is likely to reduce friction, albeit imperceptibly in a freerunning design.

Anna photographed at a recent exhibition (photo: Neil Read).

DIVIDING WITH PAPER PLATES

Maurice Turnbull

describes his method of producing gears and other components that involve prime numbers or awkward indexing arrangements.

1. A selection of paper dividing plates made by the author.

A paper plate in use on the home made dividing head.

n M.E. 4298, 27 April 2007, Mr. Dick Clifton of the Isle of Wight wrote a letter describing his ideas and methods on dividing, particularly awkward numbers. I would like to describe a method I devised some years ago to do the same. I have two dividing heads, one commercial and one home-made. Like most model engineers, when cutting gears I have waited with trepidation to see if after one revolution the cutter will pass cleanly through the gap between the first and second tooth. So far it always has done, but the stress I can well do without.

My preferred method therefore is to use my home made head with the worm removed and the plate mounted on the end of the spindle for direct dividing. This of course means that in most cases a plate with the exact number of holes is required, but if one is not available this is not a problem as I can print one on a computer. Various examples can be seen in **photo 1**.

I think that the most basic CAD programs (i.e. cheap) have

the ability to do radial copying.

To start making a plate, first draw vertical and horizontal centre lines. About the intersection draw a circle equal to the diameter of your normal division plate, mine is 6 inches. Again draw another circle, but this time slightly smaller than the mounting hole of the normal plate. Why smaller? That will be explained later.

At a short distance inside the outer circle draw a much smaller circle, say about 0.125in. (3mm) dia.; this represents the 'hole'.

Using the radial copy/circular array facility copy this 'hole' as many times as required. This is usually done by, indicating the object, the 'hole', the number of copies required including the original, the angle of rotation (360deg.) and the centre of rotation. The computer doesn't care how many it has to draw, or if they are prime numbers or not (note: CAD for Model Engineers by D. A. G. Brown, Workshop Series No. 29 explains this type of copying).

Personally I then delete the centre lines but this does not matter one way or the other.

The 'plate' can now be printed out using the printer's maximum dots/inch (resolution). Thick paper or thin card is best.

Roughly cut round the outside with scissors then place, printed side down, onto an ordinary division plate. Adjust it until it is truly concentric then clamp with strong paper clips of the bulldog type.

The 'slightly smaller' circle should be clearly visible in the centre hole of the metal plate. As a check of concentricity, this is very important. With a very sharp knife, of the scalpel type, cut out the centre of the paper or card, using the metal as a guide. Trim up the outside, write on it any information that is required, and the 'paper plate' is finished.

The new plate is fitted onto the dividing head spindle, backed up with an ordinary plate and clamped with a large washer (photo 2). As can be seen in photos 3 and 4, I rather went to town over the 'detent'. This was just for the fun of it (but isn't that what its all about?). A much simpler reference point would do just as well. All that is required is some kind of fixture with which to align the printed 'holes'.

The top knob allows the fiducial to be slid along its slot to cover different rings. The fiducial itself is a piece of shim steel which is bent to press lightly on the paper, so in effect giving a knife edge to align the circles with. It should also

should also be truly radial to the spindle. I always choose to align the bottom edge of the circles.

The lower knob operates what is a kind of calliper brake. Nylon pads clamp the plates front and back and are pivoted vertically so as to be self aligning, so preventing them from turning. This is used as well as the usual spindle lock. In Mr. Clifton's case the disc mounted on the lathe mandrel was much larger than my dividing plates, which is all to the good. The paper plates fixed onto the face can be up to the full diameter and, the bigger the 'hole' circle diameter, the better the radial accuracy.

Some years ago this system was exhibited at Alexandra Palace where it received some criticism as to accuracy, being regarded as only suitable for items like cylinder covers, etc. I would certainly argue about that, and though I would never claim this to be a precision system I do believe it is as good a way of getting practical results for unusual and prime numbers as many others and probably better than some.

Cards once printed can be kept and used again if required. I have used it to produce several sets of gears having unusual ratios, all of which run smoothly together.

I had the honour to be invited to exhibit at the Bristol Exhibition in August 2007 and I included this dividing head with all its accessories. It is also hoped that it will be on the SMEE stand at Ascot in September.

Postscript

After writing this article I wondered if there was any way it could be used with my other dividing head. This is a Vertex BS-0, which I believe is quite common amongst model engineers. Referring again to Mr. Crofton's need to make 63 divisions. I checked the tables in the manual and found that this was not possible with this machine using the division plates supplied. Differential indexing is really required and this would need the more complex BS-2 head. However, I thought that it may be possible to make a paper plate to give the necessary divisions and so, after some experimentation, it proved to be.

The angle between two adjacent 63 divisions is 5.71428 deg. The BS-0 ratio is 40:1, therefore one turn of the handle is equal to 9 degrees.

If a paper plate with 63 'holes' is made then 1 hole equals 0.14285deg. (9/63).

If 40 of those 63 holes are counted off then

 $0.14285 \times 40 = 5.71428 \text{deg.}$ which is the target division.

A plate with 63 divisions was quickly made up and attached to one of the commercial plates supplied with the machine. The fingers were set to count 40 divisions and the zero on the output faceplate protractor lined up with the marker on top of the head (see **photo 5**). Sixty-three movements later the zero was again in line, so obviously it worked.

However, there are a few points that need watching.

1. The paper needs backing

up with a normal plate but the

circle of printed 'holes' must lie between two rings, or the detent may punch through and cause misalignment. Perhaps a better solution would be to make up a dummy backing plate.

- 2. The outside of the plate is 100mm in diameter and the bore is 21. I found that a printed circle of 88mm dia. was suitable. The printed 'holes' should be about 3mm in diameter.
- 3. Cut out the paper as already described for the direct head and stick it on using small pieces of double sided tape (carpet tape is ideal). Cut holes for the mounting screws.
- 4. On the BS-0 the fingers are pressed on to the plate by a spring clip fitting into a groove. The addition of the thickness of the paper makes this tight, but with care it can be managed.
 5. Because the detent is not positively located care must

positively located care must be taken when moving the fingers so as not to knock it. **Photograph 5** shows the set up. Another view of the home-made dividing head.

A close-up of the fiducial and the fiduc

 A close-up of the fiducial and the clamping device.

5. A paper plate in use on the BS-0 dividing head.

This then is another way of using paper plates. Personally I would only use it for a one off. If I wanted to make more than one item I would use the paper plate to make a metal one with drilled holes. Any slight radial error which may occur with the paper plate will be reduced by 40 times on a drilled one and then again by 40 times on the workpiece. I do not know to what extent this method can be used as a substitute for differential indexing and I do not intend to try and find out. However, I offer the idea as a possible way of getting round a workshop problem. ME

PART 2

Continued from page 134 (M.E. 4305, 3rd August 2007)

M. K. Ranson

The construction notes for Julie Anna continue with descriptions of the gas tanks, their valves, and the engine.

5. Gas tank with valves (I. to r.) for venting, burner control and filling. 6. Heat shunt in position to transfer heat to gas tank.

JULIE ANNA: from Sketch to Steam

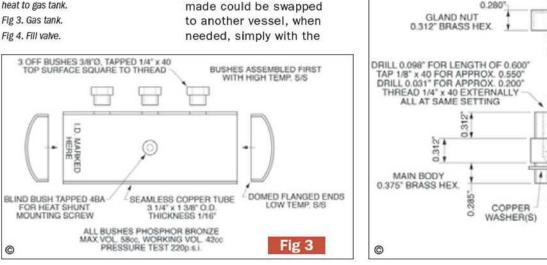
y methods of building gas tanks and their related valves (photo 5) have evolved as solutions to problems that arose from operating scale steamboats.

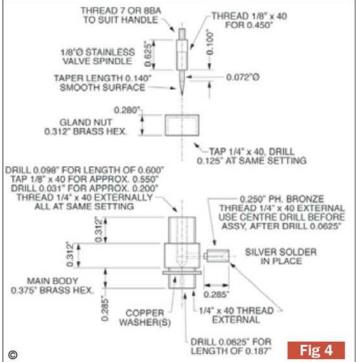
The layout of valves permits reliable filling and allows residual fuel to be removed at the end of the season without wasting gas.

Gas tank

The construction details of the gas tank are shown in flg 3.

There are only two common sizes of thread -- 3/16 x 40tpi and 1/4 x 40tpi, chosen so that any tank or burner I made could be swapped to another vessel, when


removal of one bolt and a union nut.


The bushings are straightforward turning jobs, but note that the bushing on the side of the tank is blind tapped for mounting the heat shunt.

Heat shunt

The tank features a small heat shunt device for warming it up a bit during cooler or cold

weather operation. It is a moveable copper strip attached to the tank and positioned, when needed, above the back end of the burner. Photograph 6 illustrates the shunt in the operating position, e.g., up where it is able to transfer a small quantity of heat into the tank, solving a few problems associated with gasfired steamboats.

In the North of England, even in summer, there are a few cold days. If this is not compensated for, burner operation differs markedly from the hot ones.

I discovered that the pressure inside a gas tank goes up and down like a yo-yo depending on ambient temperature. A tank

at 55deg. Celsius can have an internal pressure of about 100psi, but at seven deg. C just 20psi – quite a difference. These figures vary slightly between samples of supposedly identical gas or mixes.

Another reason for the heat shunt is that as gas is

consumed, its expansion cools the tank and with no external heat source the pressure goes down. Particularly on cool days, the flame may go out. So, it is necessary to warm the tank up a little, not too much, just a bit.

In the past, I made automatic pressure regulators to keep a steady pressure at the burner. They took a lot of work to make and did not function on a cold day. It took years to recognise that the tank was cold. Hence, the pressure went too low to work any regulator or keep the flame lit properly.

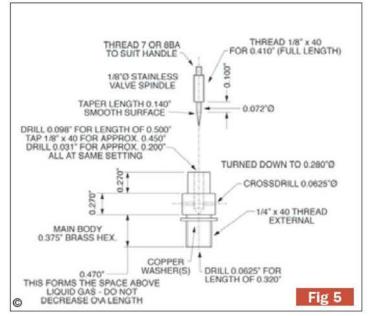
It became a priority to keep the tank warm, but, too hot is just as much a nuisance as either the flame blows out or the safety valve releases.

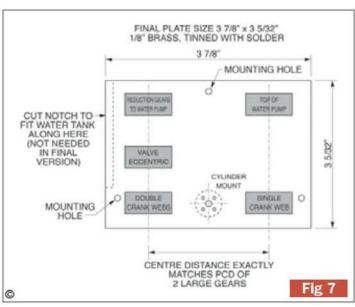
For a very hot summer day, the heat shunt can be easily removed with one nut. It could 7. Heat shunt in 'off' position. (see text for description)

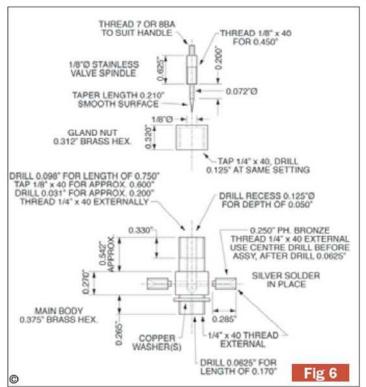
8. Close-up of gears showing thickness of rims for flywheel effect.

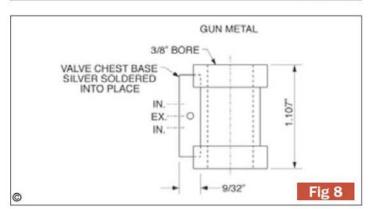
Fig 5. Vent valve.

Fig 6. Supply valve.

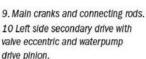

Fig 7. Base plate.

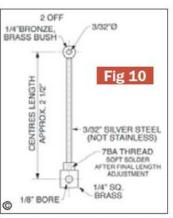

Fig 8. Cylinder.


even be made spring-loaded, or just pushed out of the way as shown in **photo 7**.


Shunt adjustment

A spare pressure gauge is easily attached to the fill valve bush and the tank pressure monitored over a period of time, say 15 minutes. For an example, a starting pressure of 35psi can be kept to about 30psi if the heat shunt is the

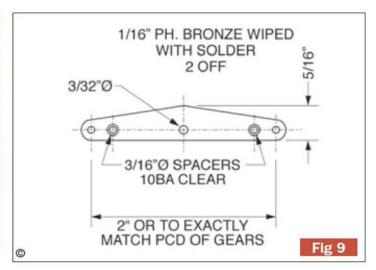





- 11. View of the valve rod's rocking arm drive and its mount.
- 12. Cross-beam assembled on piston rod.
- Fig 9. Crossbeam.
- Fig 10. Connecting rod.
- Fig 11. Small displacement lubricator.

right size and position. If the pressure goes up too much, snip a bit off the copper strip. No science in this, just do it slowly and patiently, then watch the spare pressure gauge


Tank valves


The three valves, filling, vent, and supply, are mounted on the gas tank (figs 4, 5 and 6). They follow a similar pattern and are straightforward to build.

The long taper on the stainless steel needles should be as smooth as possible and the internal drilling and tapping must all be done at the same setting.

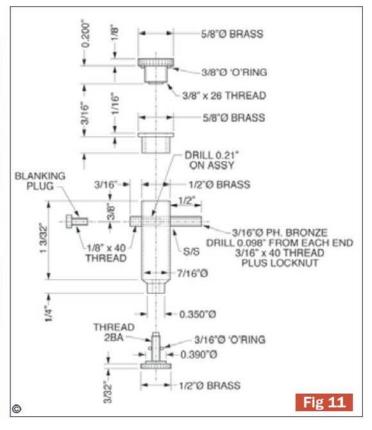
You could reduce the dimensions, if desired, they may be a bit heavy; very few are critical.

The packing is graphited yarn. The length of the lower threading on the fill valve is important as this determines

The supply valve has two outlets threaded 3/16in. x 40tpi, one feeds the burner, the second is for a pressure gauge.

Pressure gauge

The pressure gauge (about 3/4in, dia.) is needed to observe the pressure in the supply line to the burner (photo 5). Because the pressure can be easily observed, if the jet is blocked, the tank is empty, or it is a very cold day, these will all be indicated on the gauge.


Adding the gauge means a bit more work and time, but with this installed, you will not be baffled at the pond-side

because the burner will not light. A glance at the gauge will tell you the problem!

Engine

There are few detail drawings for the engine because I did not draw many at the time. However, three things were sketched out: the base-plate, the cylinder, and the cross-beam.

The distance between the propeller-shaft centres must be the starting point for all other dimensions. This determines the size of the gears. After much head-scratching, I decided to make the centre-line distance exactly 2 inches.

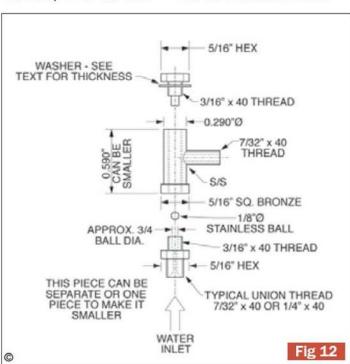
Gears

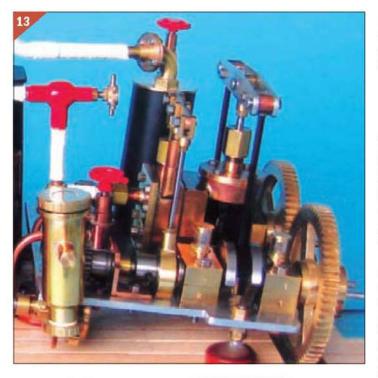
I studied the gears in the two photographs of the prototype and counted 16 teeth in one-quarter of the circumference - a total of 64 teeth. The gears needed for a centre-line distance of 2in. were 32DP (0.8MOD might due) and were purchased.

As delivered, the gears were solid, so the centres were recessed, drilled and filed to make four spokes or quadrants. Looking at them in the photo the rims may seem quite thick. This is necessary to act as flywheels (photo 8).

Bearing supports

Next, I made the two bearing blocks for the gear shafts (**photo 9**). The blocks each house two ball bearings.


The valve eccentric bearing support contains another two ball bearings in the block stamped, '2' (photo 10).


The engine just grew gently towards the space allocated for the water-pump, with each item being fitted as it was constructed.

The cylinder block was temporarily fitted in place with a small amount of epoxy resin after the crossbeam and two crank webs had been made.

Baseplate

The base plate is 1/8in, thick

with a width of 3⁷/8 by 3⁵/32in. long (**fig 7**). On the left-hand side can be seen a cut-out notch, this was originally 'plan A' to allow for the installation of the water tank. However, 'plan B' saw the displacement lubricator fitted there instead.

Cylinder

The cylinder (**fig 8**) was another 'guesstimate'. It has a bore of ³/sin and a stroke of ⁵/s inch. The cylinder's length is 1.107 inches and a rectangular valve chest base is silver-soldered on the side.

Valve spindle

I determined that the valve spindle should be driven from the top and the valve eccentric would be down low, driven from the crankshaft. This meant a vertical support bracket silver-soldered on the top corner of the valve chest. Thickness of the chest is 0.325 inches (photo 11).

The valve rod is driven by a small horizontal rocking beam with a slot at the end above the valve chest. This slot compensates for the slight difference in length needed as the beam rocks up and down. Valve travel is ½ inch.

Piston rod

There are no guides whatsoever on the piston rod. Providing the two cranks are synchronised exactly, there should be no sideways force on the piston rod and the main cross beam should go up and down always remaining perfectly horizontal. To allow for any tiny differences, the top end of the piston rod pushes the cross beam via a fork and pin which can swivel (photo 11).

Once, I managed to set the engine up with a slight error; all that happens is the beam rocks like a see-saw and the engine does not rotate.

Cross beam

The cross beam (fig 9) is an

 Left side of the engine showing double crank bearing supports, valve eccentric and waterpump drives.
 Fig 12. Boiler check valve.

assembly built-up from two pieces of ¹/₁₆in. flat phosphorbronze (**photo 12**). These two pieces are held apart by two bronze ³/₁₆in. dia. spacers. All the beam parts are wiped with soft solder prior to assembly with 10BA bolts.

The three pins for the piston and connecting rods are mild steel and are ³/₃₂in. diameter, retained with small split pins.

Connecting rods

At each end of the beam is a connecting rod made from ³/₃₂in. dia. silver steel, not stainless (**fig 10**. They are soft soldered at the lower end after a final adjustment of the length. They could have been made from ¹/₁₆in. dia. rod instead. It would have been lighter, but also might have been rather wobbly on the 'push' stroke.

Crankshaft

The crank pins are made from ¹/sin. dia. mild steel mounted on turned and cut-out steel webs. On the right side of the engine is a single web. In photo 13, are two bearing blocks labelled '1' and '2'. This split crankshaft arrangement allows the webs to be separated to allow insertion of the connecting rod.

The second shaft (passing through block '2'), is supported by two ball bearings and also drives the valve eccentric. The drive continues to the waterpump pinion gear which is supported by a sleeve bearing (photo 10).

To be continued.

Boiler thread correction

In the previous article in this series, *M.E.* 4305, 3 August 2007, page 133, the safety valve bush should **not** be made with a fine thread as stated.

LETTERS ERS TO A GRANDSON GRANDSON FRS TO

NO. 104

M. J. H. Ellis concludes his look at gear trains with a worked example plus a summary of results. ontinuing from last time, my procedure was now to use this table (fig 3, M.E. 4305, 3 August 2007) in the way I am going to describe. As an example,

describe. As an example, I will choose a thread at random; I will take OBA. Incidentally, there is something a little odd about OBA as both my engineers' tables show it as 25.38tpi, whereas OBA is supposed to be identical with 6mm, which has a pitch of 1.0 millimetre. Confusion is only worse confounded when I turn to Fowler's Mechanics and Machinists' Pocket Book, in which the pitch is confirmed as 1.0mm, but the Imperial equivalent is shown as 0.0394in., which translates into 25.381tpi. And all the time, the

Now, I don't pretend that these discrepancies are of much practical importance. Yet I am fussy enough to think that such discrepancies ought not to exist; if you think that I

Metric equivalent is 25.40mm

= 1 inch.

am excessively pernickety over such a matter, let me remind you that there have been occasions when apparently trivial discrepancies have had very important consequences.

I call to mind, for example, the discovery by the distinguished physicist Lord Rayleigh that the density of nitrogen obtained by decomposing nitrogenous compounds was a little less, (just under half a percent) than of that extracted from the atmosphere by the removal of the oxygen, carbon dioxide and water-vapour.

Further investigation by Lord Rayleigh and William (later, Sir William) Ramsay revealed that the nitrogen from the atmosphere contained in small proportions the inert gases helium, neon, argon, krypton, and xenon. In the course of the inquiries, 120 tons of air were examined. From the practical point of view the inconsistency was well worth investigating, if only because it made argon-arc welding possible.

Digressing again! I see

2007) is merely fortuitous. Under each of these I now enter the quotient obtained by dividing it into the ratio required overall: 3.175. If the top line is regarded as trial values of *x*, the second line now gives the corresponding ideal values of *y*.

Finally, I compare each of these possibly desirable values of *y* with the available values (i.e., those listed in fig 2) to see if any of them are close to each other. In practice, I found that this meant a difference of no more than about 0.0050. This difference I then entered underneath. All this may seem at first sight rather complicated, but with a little practice I found myself running through the procedure quite smartly.

You will see that for x = 2.60 and 2.20 the differences in the fourth line are quite small, and the figures in the first and third lines correspond to ratios of $13/5 \times 11/9$ and $11/5 \times 13/9$, which are actually identical, and would give a thread of $8 \times 13/5 \times 11/9 = 8 \times 65/25 \times 55/45$, = 25.42tpi.

The error amounts to only 0.02 of a thread in the inch, and this is representative of the kind of result which the method is capable of producing, even using no more than the shorter range of change wheels with from 20 to 65 teeth.

You may like to note that I did not carry the process beyond x = 1.75. This was because up to this point the figure in the top line had been greater than that in the second line, but with 1.75 and 1.8143 this became reversed. To have carried the calculations any further would have been pointless, since they would only have produced the same ratios in the reverse order. On the graph, this is tantamount to moving along the graph across the axis of symmetry KZ.

By using this same procedure plus a certain amount of patience, I was able to produce the results which are summarised in the table (fig 5) On a final blast on my own trumpets, I observe with Toad-like gratification that at 19.067 my approximation to 19tpi is a little better than I claimed in the first place.

Your affectionate Grandpa.

FIGURE 4 Worked example:	No. OBA 25.4t	pi. Reductio	n Factor red	uired, 25.4	/8 = 3.175				
Value of x.	3.25	3.00	2.75	2.60	2.50	2.40	2.25	2.20	
3.175 / x	0.9769	1.0583	1.1545	1.2212	1.2700	1.3229	1.4111	1.4432	
Nearest value				1.2222				1.4444	
Difference				0.0010				0.0012	
(Continues	2.1667	2.00	1.857	1.833	1.80	1.75		505055	
(**************************************	1.4654	1.5875	1.7097	1.7321	1.7639	1.8143	etc.)		

The best fits are obtained with 2.60 x 1.2222 and 2.20 x 1.4444. From the table (fig 3) these correspond to $13/5 \times 11/9 = 65/25 \times 55/45$ and $11/5 \times 13/9 = 55/25 \times 65/45$, both of which give 8 x 55/25 x 65/45, = 25.42tpi. Error, 0.02 of a thread per inch.

		Y OF RESULTS		FRRAR	
THREAD	TPI	GEAR TRAIN	TD:	ERROR	
	40	COMBINATION	TPI	TPI	%
¼in. and	19	55/25 x 65/60	19.067	0.067	0.35
%in. pipe					
0BA	25.4	55/25 x 65/45	25.42	0.02	0.079
1BA	28.25	55/20 x 45/35	28.29	0.04	0.14
2BA	31.35	50/20 x 55/35	31.43	0.08	0.26
3BA	34.84	40/20 x 65/30	34.67	0.17	0.49
4BA	38.46	35/20 x 55/20	38.50	0.04	0.10
5BA	43.1	45/20 x 60/25	43.20	0.10	0.23
6BA	47.85	50/20 x 60/25	48.00	0.15	0.31
7BA	52.91	55/20 x 60/25	52.80	0.11	0.21
Metric Pitch 0.6mm	42.33	65/20 x 65/40	42.25	0.08	0.19
0.75mm	33.87	65/20 x 65/50, or	33.8	0.07	0.21
		65/25 x 65/40	33.8	0.07	0.21
0.9mm	28.22	65/30 x 65/40, or	28.167	0.05	0.18
N. 100 (100 (100 (100 (100 (100 (100 (100		55/25 x 40/25	28.160	0.06	0.21
1.0mm	25.40	55/25 x 65/45	25.42	0.02	0.079
1.25mm	20.32	60/20 x 55/65	20.31	0.01	0.05
1.5mm	16.93	50/20 x 55/65	16.92	0.01	0.06
1.75mm	14.51	40/20 x 50/55	14.55	0.04	0.28
2.0mm	12.70	35/20 x 50/55	12.73	0.03	0.24
2.5mm	10.16	50/35 x 40/45	10.159	0.001	0.01
3.0mm	8.467	55/40 x 50/65	8.462	0.005	0.06

no good reason not to take the pitch of OBA as 25.4tpi; in one of my letters (*No.* 86 - Ed.) I mentioned that the Weights and Measures Act, 1963 established the Imperial Yard as 0.9144 of a metre, so that the legal conversion factor, inches to centimetres, is 91.44/36 = 2.5400.

Accordingly, we can now take the pitch of OBA as 25.40tpi, and the reduction ratio required by an 8tpi leadscrew is 25.40/8 = 3.175.

Please refer now to my working sheet (**fig 4**). First, I set out in a row the available values of x and y; the fact that they are in inverse order to my list (fig 3, *M.E.* 4305, 3 August

ON NEEDLE ROLLER BEARINGS, SHAYS and other matters...

Keith Wilson

discusses how he solved a problem with a needle roller bearing application, then describes a fine model Shay locomotive and the grand opening of the new Echills Wood Railway.

t would not be quite correct to ignore a certain point on the use of needle roller bearings. As used in 'our' sizes they are generally completely 'snag free' and I only know of one minor worry.

Our puffers utilise understressed bearings, mainly because of the old 'squarecube' law of physics. This means that main bearings such as all axles are suitable for many miles of operation on ordinary silver steel. It may come as a surprise that silver steel is often easier to machine than mild steel. Of course slightly different methods have to be used. such as slower cutting speeds, but with a sharp tool - preferably a carbide tipped lathe tool or titanium nitride coated - and some juice (soluble cutting oil) with marginally slower speeds and finer cuts there is no problem.

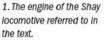
From my own experience, on main or driving axles after something like 3,000 miles of heavy duty working you can only see where the bearing has rolled, wear is undetectable. An interesting verification of this lies in my first GWR 4700 in 7¹/4in. gauge. I used only a set of ¹/8in. dia. rollers, running in the outer race (axlebox) of cast iron and an inner bearing surface of mild steel (axle).

This Consolidation was made about 1967, and has done some worldly work in Bahrain, Mombasa, and Wales; and I understand is still going strong. Not much wrong with those bearings!

However, there is one position (at least!) where trouble can arise. Assuming that your quartering is immaculate, the highest forces in 'the works' are in both ends of the connecting rods.

In the case of my own Prairie the main crank pin had worn away until it was about ¹/₃₂in. below diameter. Wear was not uniform, for the loads are oscillating. I had tried hardening the main crank pins of my own 1366, and one of them snapped like the proverbial rotten carrot with very little force when I tried to line-up the little end with the crosshead.

A bit of thinking took place and I theorised that it might be possible to harden only the outside of the pins, leaving the core relatively soft. The trick is to make the crank pin, with a tapped hole in the 'inside' of the pin (the part to be bonded into the wheel) and thread it onto a piece of mild steel to act as a handle.


Using preferably an oxyacetylene torch, heat up to bright red as fast as you can and immediately quench in water. The theory is that the outside is the only part to reach hardening temperature and therefore the only part hardened, the inside or core remaining soft and therefore much more shock resistant.

As long as the pin is heated up quickly and not held in the flame, the core remains relatively cool. In any case only the outside is quenched quickly enough to harden, for it takes time for the core to cool.

I therefore made two new crank pins and heat-treated as above, bonding them into the crank pin holes in the wheels. I then gave of the old crank pins a dose of the same treatment and gripped it firmly in a vice. Taking a 7lb club hammer, I smote it pretty hard, of course at right angles to the vice jaws. The pin remained immaculate, but a small dent appeared in the hammer; so I decided the heat treatment was okay.

HSFI

It must be obvious that there are jobs of almost incredible risk, but if people know what they are doing all goes well. I am writing of a fascinating piece of work I did back in the '50s, in fact 1953.

2. The locomotive itself taken at rest.

3. The Shay cab and control layout.
4. The non-drive side of the Shay.
5. Another example of a model Shay.
This one was built by Mr. E. Addington and is to 3¹/2in. gauge. It was seen at the Harrogate Show this year (photo: Neil Read).

I was described officiously as a student assistant, in fact, working at the Research Laboratories of the General Electric Co. at East Lane, North Wembley. One of the research tasks was dealing with the making of glass in furnaces in the range of 1,000deg. C to 1,800 ditto depending on the type of glass.

It may come as a surprise, but as temperatures rise, electrical conductivity increases in many substances, particularly in this case, glass. At about 500deg. C. the conductivity starts up, the hotter the better, if you follow me. It follows that it can be better to cook up the furnace (size - a small swimming pool!) with electricity.

Now one problem is: What do we make the furnace of? Obviously, most metals are ruled out except those with a melting point of at least

WILSON'S WORDS OF WISDOM

There is honesty in disbelief, whereas there is none in the distortion of facts.

Elizabeth van Buren

2,000deg. C, preferably more. One firm, at least in America, has or did have a tank of platinum. I don't know its cost, but the tanks we dealt with in Wembley were ceramic (correctly pronounced 'keramick').

On the tank we were dealing with, quite small compared to the 'commercial ones', the two sides were built with specially shaped blocks leaving three 'portholes' each side. Tank was loaded with a mixture of cullet, sand, etc. and cooked up by a big fat oil-burning jet over it. This took it up to the 1,400-1,500 mark, and of course the semi-liquid glass ran through the portholes and froze, (yes, Froze) thus acting as a plug (not the famous 13 amp one!).

It was therefore necessary to melt these plugs (one at a time!), insert a big graphite electrode, bolt on its shield (hollow, water-cooled) and chuck some water to freeze the porthole. This had to be done six times. How to melt the plugs in the first place?

For some reason oxyacetylene would not or could not do, so we did it electrically. I, wearing thick asbestos gloves, held a wedge-shaped piece of graphite in each hand, my 'boss' had the control of a twin Variac set plus a hefty ballast resistor capable of about 100 amps. (Variac - a rotary autotransformer adjusting voltage from zero to about 280)

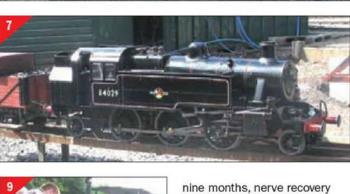
Once switched on, I went close to the porthole and touched the graphite electrodes together. This, of course, stuck

a nice fat arc with which I started melting at one edge of a porthole. Once we had a bit melted, it was possible to use the glass itself as one of the electrodes. When we had melted all across it was a case of shoving up the voltage and lowering the ballast resistance, the glass could be seen actually boiling! Now was the time to shove in the main electrode and couple up the water supply.

The ambient temperature (the air temperature around the tank) was not actually low, I can only guess that it was below 50, about the highest temperature that can be borne on the back of the hand. After a rest of about an hour, we started on the next porthole. It took the two of us a good long day to complete the job, and after the last one I was too knackered to do anything but sit in a cool draft for a time. Any questions?

The point of this story, which is perfectly true, is what would the HSE say about it? Perhaps just as well that in general, scientists were not covered overmuch on the grounds that we knew what we were doing!

Make (S)hay while the sun shines


Visiting the Echills Wood Railway at Kingsbury Water Park, my attention was taken (and how!) by the second Shay that I have ever seen. The first one is not far south of the Columbia River, which marks the southern boundary of Washington state in north-west America. Unfortunately, it is 'stuffed and mounted' on a big concrete plinth, barred off by a sort of tiger-cage which makes photography difficult.

The one shown here is somewhat more accessible, and whilst I am a teeny bit biased toward a certain Railway, I can tell an impressive

locomotive when I see one. I did not get a chance to take any measurements, because as some readers know I cannot get around as well as I would like. I'm not too bad within the house on flat surfaces, but to step outside even into my own back garden is another matter, preferably I require two walking sticks, mainly to keep balanced.

When in hospital recovering from my spinal re-bore, I was being 'kept in' by a very nice physiotherapist, mainly because I occasionally stumbled. It took the original top surgeon to authorise my discharge. I firmly believed that this was due to the evil habit now commonplace in this country; that of grossly exaggerating a minor injury in order to sue anyone in sight. In actual practice, if I fall it is my own fault. I have for amusement kept count of the number of falls since discharge, only counting those when I have gone all the way to the ground, total so far 46, one or two minor scrapes and a cracked rib or two. Not bad for

and toning of the peripatetic muscles cannot be fast. Lucky I learned how to fall about 70 vears ago!

I do not see any great point in describing how a Shay works: it is pretty clear from the photographs. The driving of it is similar to any steam locomotive, but the exhaust is interesting having no simple relationship to the ordinary 2, 3 or 4-cylindered locomotive. I don't know what its nominal tractive effort is, apart from "sufficient, Sir" rather like the horsepower of a Rolls-Royce.

My wife Brenda and I had a trip all the way round the current layout, before it was open for passengers. A special train was laid on for staff only; the eight carriages were pulled with very little noise from the exhaust, which was quite rapid. Of course, running is quite steady, as occasionally doesn't happen with 'normal types of locomotive'. I believe full-size Shays were mainly used on logging trains, slow speed and good pulling being the rule. Old Ephraim Shay certainly had a good idea!

To modern times

The above was written several months ago, about March. Since then, on 14 July, the 'official opening' took place. Pete Waterman cut the famous 'pink ribbon'. There were some other 'bigwigs' present - no offence intended. I have no pictures, for electric chair and

I were located where there was a reasonable chance of getting pix of the 'grand parade'. I couldn't get all of them, but considering there were at least 26 steamers plus numerous diesel-electrics, good working locomotives, like a Hymech, and a Western class, and some that might best be described as modified lawn mowers. I intend no disrespect. for they demonstrate much sheer ingenuity on behalf of the builders thereof. It is encouraging to the newcomers, for such are vital for us all to survive.

With public paying passengers no longer around. one or two of the youngsters present had a go at driving the steam trains. There was no danger in this, at least I have never heard of any, and generally some of them are better than some of the oldsters. I was pleased to see some of the youngsters that I had helped this way back when we were still at Stoneleigh.

I found that I had taken over 150 pix, but when shoved in the computer and 'customised' there remained 90 to be considered as possibles for publication, so I have tried to settle a good selection. There were eight GWR puffers: King, (modest blush) Hall, County, 1400 class, 1501, 3150 (another blush, but its present finish is far better than anything I could do), two of the 55xx class ('Fireflies'). It was nice to see some double-heading - King

6. A nice Britannia. 7. BR. 2-6-2T 8. GWR small 2-6-2T. 9. The flying mangle.

and 3156 for example, and a County-Hall pair, Among other locomotives were a 4-4-0 inside cylinder job, a fine Britannia. some narrow-gauge types, a 'Black 5', a Garratt, the Shay above mentioned, a B2 (I think) a BR Standard Prairie, a Royal Scot, a couple of Darjeeling-Himalayas, even a locomotive with a snow-plough!

After the main ceremonies and grand procession. passenger trains were run. three at a time. Even so, there were long queues waiting. Some traction engines were in use on the Echills Wood car park, including one that looked like 6in. to the foot, half full-size.

As usual at Echills big events, fresh roast pork baps were available, plus large quantities of salad materials, drinks of wine all round etc. Not that it matters much, but I never drink any form of alcohol, even disliking sherry trifle.

The Saturday weather was perfect, Sunday somewhat different, but I managed a drive in spite of the rain. This presents one of the problems with a long circuit (about 3/4 of a mile) for if Jupiter Pluvious (rain!) strikes it can be some time before you can get back to the station.

To be continued.

Notices

The next two talks at

Chelmsford SME are Distilleries
by John Smith on 25 September
and Life as a Blacksmith by
Harold Clements on 30
October. Both events will
be at the Club House,
Meteor Way, Waterhouse
Lane, Chelmsford, Essex.
The contact for further
information is Tom Sharich
(T. 01277 222611).

Those who attended the Guildford Model Rally in July (as I did) will not need reminding that it took place in the middle of the severe wet weather that caused much devastation across the country. We are pleased to publish the following note received from John Jones:

"Despite the dreadful weather the Guildford Model **Engineering Society** was still able to continue with their Model Steam Rally and Exhibition over the weekend of the 21/22 July, albeit with reduced attractions to normal. The society would like to thank all those visitors, exhibitors and trade stand holders for their patience and forbearance under what were, to say the least, difficult conditions. Next year's rally will take place, as usual, on the 19/20 July 2008 and the society looks forward to seeing everyone under better and hopefully dryer circumstances. Thank you all."

The Southern Federation
Autumn Rally is being hosted
by Canvey Railway & MEC
over the weekend of 15/16
September at the society
track site off Somnes Road,
Canvey Island, Essex SS8 9RA.
Saturday will be the actual rally
day with the Sunday being an
open and public running day for
those staying on.

Barry Glover, President of the Australian Association of Live Steamers, intends to visit the rally at which the AALS Trophy will be awarded. The facilities at Canvey include a 1500ft. dual 3½ and 5in. gauge raised track, a 4,200ft. 7½ in. gauge ground level track, and extensive space to operate miniature road vehicles. Refreshments will be available (including a Saturday evening barbecue). Trade stands will be in attendance.

Camping facilities are available but must be booked in advance (contact Brian on 01702 512752). Further details can be obtained from Greg (T. 01375 373402) or the web site at www.cramec.org

The 60th Anniversary St.

Albans MES Model Show will take place over the weekend of 29/30 September at the Francis Bacon School, Drakes Drive, St. Albans, Herts.

The show will be open from 10.00am – 5.00pm each day. Admission is £3.50 (50p for

children) and car parking is free. The attractions include free train rides, working and static models, helicopter and control-line flying displays, vintage model displays, 'have a go' radio control model boats, Meccano models and a 'whole lot more'. Further information can be obtained from the society website at www.

stalbansmes.co.uk

The **Kew Bridge Steam Museum** will be holding its
Model Steam Extravaganza
over the weekend of 6/7
October 2007. The event will
be open from 11.00am until
5.00pm each day and further
information can be obtained
from the museum (T. 020 8568
4757, W. www.kbsm.org).

The National 2½" Gauge Association, South Eastern Area Autumn Rally will be held on 22 September (not the 29 as originally planned) at the Surrey SME track site at Mill Lane, Leatherhead, Surrey. Further information can be obtained from Des Adeley (T. 01722 718463) or Peter de Salis-Johnston (T. 01782 396990).

The New Jersey Live
Steamers have a new secretary.
Michael Plihcik (correct
spelling) has taken over
from Karl Pickles. Mike can
be contacted at 810 Brown
Road, Bridgewater, New Jersey
08807, USA. The society can
also be contacted by email at
nillvesteamers@gmail.com

UK Club News

The various rallies of the National 21/2" Gauge Association have suffered mixed fortunes so far this vear. Romney Marsh was very successful, there was a low turnout of locomotives at Cheltenham, Stafford had rain all day, but Rugby was an outstanding success and made up for things. The association has seen an influx of new members, possibly due to Tony Weale's articles describing the construction of Ayesha II in this journal.

Work continues apace at **Ascot Locomotive Society** on
the new track site. Derek Alford
behind his locomotive Wendy

1. Derek Alford having the very first run on the new track at Ascot.

A locomotive crossing the bridge at Canvey Railway and MEC.
 Store and Tm Harris' fine Politic at

3. Steve and Tim Harris' fine Deitic at Nottingham.

was the first to explore the relocated track on 21 May. The report states "it seemed a good idea after Wendy passed its boiler test." In all, 51 sections of railings, 57 posts and 100m of kerb stones have been laid in the last six months. This has consumed 45 bags of cement and seven tonnes of ballast.

The colour light signals made during the winter at Ashcombe Miniature Railway have been installed at Meadowbank. The process went well and they are now in use. Unfortunately, the society did suffer from some vandalism to the signals shortly after they were installed. Routine maintenance work, such as sleeper replacement, has also continued. The society visited the Mid-Hants Railway's wartime weekend on 23 June. In spite of mixed weather, it was an enjoyable visit. The visitors saw a good selection of locomotives and were also fortunate to see a flying display over Ropley station by a Hurricane from the RAF Memorial Flight and report that "Its Rolls-Royce Merlin engine sounded almost as good as a steam locomotive". At the last running night, locomotive No. 1, R. Davidson, failed at the start of the evening. A proper inspection still needs

to be carried out, but first signs are that the problem is with the motor. Members are hoping it is just worn brushes and that replacements can be found. If not, it looks as if the locomotive's future is not too certain. The present motor was fitted about 17 years ago as part of a power upgrade, but the locomotive is nearly 30 years old and that is a longer life than some full-size locomotives have managed.

Work on the raised track renewal at **Bristol SMEE** is progressing well and is currently completed up to the swinging beam. The society has acquired two new locomotives to boost the motive power available for running days. The first, built by member John Coleman between 1991 and 1993, is a GWR Class 28xx based on the Martin Evans Swindon design. The second is a BR Western Class 52 diesel locomotive.

The May Spring Rally at

Chesterfield DMES was a great success with good weather and a good collection of models both inside and out.

The May public running event at **Chichester DSME** was almost washed out, but "thanks to a few impermeable members," running did carry on throughout the afternoon. To make up for the low passenger count, an extra running day has been organised in October.

Activity during the working days at Crawley Model Engineers has centred on drinking tea by the gallon and putting the world to rights. The excuse is all the wet and windy weather at the time. In spite of this, the old coal bin was broken up and required two trips to the municipal dump to get rid of the concrete. The May Bank Holiday was particularly wet and cold with the result that passenger numbers were down in spite of the carnival in the park. Newsletter editor Jack Darby comments: "Most drivers could only manage a half hour session before hypothermia set in." Some activities in June fared much better with some fine weather and passenger numbers boosted by a band playing behind the big house in the park on Sunday 17.

An event at **Guildford MES** which did take place in reasonable weather was the annual Diesel & Electric Day and is the first visitors' event in the society calendar. Although visitor numbers were lower than recent years, those that came enjoyed themselves and could make full use of the un-crowded

track. The planning application for the redevelopment of the club house has been submitted, thanks to the sterling efforts of Harold Wells who produced the drawings, did the estimates and submitted the required six copies of everything to the planning authorities. I would say that makes Harold a "Sweet Po tater" – see Humour Time below.

Tony Smith was awarded the Tony Baker Award at Harrow & Wembley SME this year. Brian Tilbury is seeking information about a model engineering company set up in Essex in the 1950s by the late John Coombes. It is reported that the company made kits for miniature railways and aircraft. The proprietor also set up a Mid-Essex model railway club based in Chipping Ongar. If anyone has any information, we will be pleased to pass it on.

The wet weather has taken its toll at High Wycombe MEC. with the forced cancellation of the May event due to the torrential rain. A replacement event will have taken place by the time you read this and hopefully the weather will continue to improve. In spite of the weather, work on the track has included replacement of sleepers in the section from the bridge to the traverser, thorough overhaul of the traverser and replacement of several planks on the bridge. Four members have successfully completed their driving assessments and are now passed to drive on public running days. Members are being asked to check and

self-certify the wheel profiles on their locomotives and rolling stock to ensure that they meet the required standard.

North London SME hosted the Gauge 1 Model Railway Association 60th Anniversary celebrations on 13 June and the event was a great success with lots of larger locomotive and boating activity alongside the G1 activities. The sun shone for most of the day. so those attending were able to enjoy organiser Malcolm Read's barbecue in the evening. Another barbecue was held two days after this to start the evening and night running session for the locomotive section. Those who had camped overnight were treated to breakfast the next morning prior to the club invitation day on the Saturday. A very busy few days!

Members of the North Norfolk MEC have been busy with the result that several new facilities are now in operation including the new station Holt Minor, which is complete with hand painted station signs. The new turntable and points are also now working, although the heat caused some expansion problems on Easter Sunday. The star exhibit at the May Bits & Pieces meeting was the Napier Dagger engine being constructed by Norman Lawrence. Many readers will have seen this magnificent engine (most recently at Guildford at the time of writing) and are always amazed to learn that Norman does all the work by hand and makes great use of small mini-drills to achieve the high finish and fine detail. Another item at the meeting was Andrew Dawson's almost unused Seagull outboard motor. Anyone who has done any sailing will remember this once popular engine.

Adrian Pickering has set up the web site for Norwich DSME at www.ndsme.com and hopes to add to the site shortly. The return loop was opened in time for the Easter running session, which proved to be a very busy time. The visiting locomotives and drivers on the Sunday were

a great help in this respect.
The return loop has reduced
the queue times for passengers
and speeded up operations
generally.

The Diesel Gala Weekend at Nottingham SMEE was well attended and, from the photographs in the newsletter, was graced with blue skies and sunshine. Highlights included a well turned out Rio Grande diesel from Birmingham, the first outing of the Class 17 Clayton locomotive by Mick Roberts and Robert Whomsley, and Tim and Steve Harris's Deltic locomotive.

Work on the new ground level track at **Tyneside SMEE** has slowed due to the need to make the site safe for the open weekend. A load of ballast was brought in and stored across the site. The next task is to prepare the formwork for the concrete track bed.

I am pleased to welcome a new addition to this report. Winchester MES has sent a copy of their latest newsletter which reports that they need to attract more members. Anyone in the area who is interested can contact secretary, Nigel Woodham at 2 South Close, Alresford S024 9HS. Judging by the newsletter, the society has regular and interesting meetings. The March meeting featured a talk by David Cameron on repairing musical instruments. He showed a video of instruments being made in the Boosy & Hawkes factory before going on to demonstrate some of the techniques used in removing dents, etc., from brass instruments. The April meeting was a Bits & Pieces evening which included Nigel Woodham giving a brief talk on pen knives. Nigel demonstrated a special knife designed to cut quill pens (the origin of the pen knife) and members tried the knife before attempting to write with their pens. The May meeting was held jointly with the local horological institute and included a talk

by Eddie Cloutman entitled

Clock Hunting in Bermuda.

World Club News

Australia

The convention of the Australian Association of Locomotive Societies took place in May and the Bolton Cup was awarded to Adelaide Miniature Steam Railway Society member Bob Williams for his fine SAR 'X' Class Baldwin 2-6-0 locomotive.

A post-hole digger was hired to aid the erection of the fence round the waste bin and whilst it was available several other jobs were tackled. These included moving some unused seats to a better position, re-locating the flag pole and digging some sump holes near the level crossing to aid the drainage of standing water. I suppose I should not mention that during the digging of one sump hole some suspicious bits of red and white plastic were found which turned out to be the signal cable which had been drilled through exactly on centre. The cable has now been repaired by the "trusty electricians."

The Show of Work evening in May was less well attended than usual, although the size of the exhibits on display made up for this. Items included a finished locomotive, two others approaching completion, a 1927 motor-cycle engine, the back half of a Mallet locomotive and some other interesting smaller items.

Canada

A new locomotive has been acquired by the **British Columbia SME.** The new addition to the fleet is a battery electric FP45 in Canadian

Pacific Railroad colours. The locomotive was originally built by Walt McGowan and was powered with a 5hp Briggs and Stratton engine. It is now powered by a 10hp Etek motor controlled through a 4QD 300amp controller.

United States

Work at New Jersey Live Steamers has included repairs to the signalling system, and repairs and new panels for the 1in. scale and G1 tracks. In the grounds, the winter fall-out has been cleared up and some dead trees have been removed. Member Adam Madlinger has graduated from Massachusetts Institute of Technology (MIT) and also graduated as the Henry Ford Scholar for 2007. This prestigious award is given to the student "with the leadership skills and potential to make the most impact in the engineering field in the future". We express our heartiest congratulations to Adam on his achievement.

Humour Time

The following appeared in the **Norwich DSME** newsletter:

"Committees

Some people never seem motivated to participate, but are just content to watch while others do the work.

They are called "Spec Taters"

Some people never do anything to help, but are gifted at finding fault with the way others do things.

They are called "Comment Taters"

Some people are very bossy and like to tell others what to do, but don't want to soil their own hands.

They are called "Dick Taters".

Some people are always looking to cause problems by asking others to agree with them. It is too hot or too cold, too sour or too sweet.

They are called "Agie Taters".

There are those who say they will help, but somehow just never get around to actually doing anything.

They are called "Hezzi Taters".

Some people can put up a front and pretend to be something or someone else.

They are called "Immy Taters".

Then there are those who love others and do what they say they will. They are always prepared to stop whatever they are doing and lend a helping hand. They bring real sunshine into the lives of others.

They are called "Sweet Po Taters".

RY DIARY DIA

SEPTEMBER

- 1-2 Basingstoke DMES. Public Running. Contact Guy Harding: 01256 844861.
- 1-2 Bedford MES. Rally Weekend. Contact Ted Jolliffe: 01234 327791.
- Canvey R&MEC. Orsett Show. Contact Brian Baker: 01702 512752.
- 1-2 Chesterfield MES. Open Weekend. Contact Mike Rhodes: 01623 648676.
- High Wycombe MEC. Barbecue. Contact Eric Stevens: 01494 438761.
- 1 Ickenham DSME. Public Running. Contact David Sexton: 01895 630125.
- SM&EE. Eric Offen: Model engineering as I see it. Contact Maurice Fagg: 020 8669 1480.
- 1-2 Tyneside SMEE. Late Summer Rally. Contact Malcolm Halliday: 0191 2624141
- 1 York City & DSME. Summer Meeting. Contact Pat Martindale: 01262 676291.
- 2 Frimley & Ascot LC. Public Running. Contact Bob Dowman: 01252 835042.
- 2 Guildford MES. Driver Training. Contact Dave Longhurst: 01428 605424
- Maidstone MES (UK). Public Running. Contact Martin Parham: 01622 630298.
- Malden DSME. Public Running. Contact John Mottram: 01483 473786.
- Northampton SME. Public Running. Contact Pete Jarman: 01234 708501 (eve).
- Norwich DSME. Public Running. Contact Shirley Berry: 01379 740578.
- Nottingham SMEE. Public Running. Contact Pete Towle: 0115 987 9865.
- 2 Oxford (City of) SME. Public Running. Contact Chris Kelland: 01235 770836.
- Pinewood MRS. Members' Running. Contact Ivan Hurst: 01252 510340.
- 2 Plymouth MSLS. Public Running. Contact Malcom Preen: 01752 778083
- Reading SME. Public Running. Contact Brian Joslyn: 01491 873393.
- 2 Saffron Walden DSME. Public Running. Contact Jack Setterfield: 01843 596822.
- South Durham SME. Running Day. Contact B. Owens: 01325 721503.
- Sunderland (City of) MES. Open Day. Contact Albert Stephenson: 01429 299649.
- North Norfolk MEC. Bits & Pieces. Contact Gordon Ford: 01263 512350.

- 3 Peterborough SME. Bits & Pieces. Contact Ted Smith: 01775 640719.
- North Cornwall MES. Meeting & Maintenance Evening. Contact Geoff Wright: 01566 86032.
- 4 Romney Marsh MES. Track Meeting. Contact John Wimble: 01797 362295.
- South Durham SME. Meeting. Contact B. Owens: 01325 721503.
- 4 Taunton ME. Loco Running at Creech. Contact Don Martin: 01460 63162.
- 5 Bradford MES. Workshop Techniques & General Natter. Contact John Mills: 01943 467844
- 5 Bristol SMEE. Locomotive Evening. Contact Trevor Chambers: 0145 441 5085.
- 5 Chingford DMEC. Bits & Pieces. Contact Ron Manning: 020 8360 6144.
- 5 Hull DSME. Video Show. Contact Tony Finn: 01482 898434.
- 5 Leeds SMEE. Meeting. Contact Colin Abrey: 01132 649630.
- West Wiltshire SME. Steaming at club track. Contact R. Nev. Boulton: 01380 828101.
- Sutton MEC. Bits & Pieces. Contact Bob Wood: 0208 641 6258.
- 7 Aylesbury (Vale of) MES. Track Night. Contact Andy Rapley: 01296 420750.
- 7 Canvey R&MEC. Seen on the Table 5. Contact Brian Baker: 01702 512752.
- 7 Maidstone MES (UK). Evening Run & Food. Contact Martin Parham: 01622 630298.
- 7-9 CentenaryModel Engineer
 Exhibition at Ascot Racecourse,
 Berkshire. Admission: Adult
 £9.00, Senior Citizen £8.00,
 Child Free. Fri/Sat 10am-5pm,
 Sun 10am-4pm
- Sun 10am-4pm.

 North London SME. Forum:
 Milling in the Model Engineer's
 Workshop. Contact Rachael
 Chapman: 01442 275968.
- 7 Portsmouth MES. Meeting. Contact John Warren: 023 9259 5354.
- 7 Rochdale SMEE. Meeting. Contact Bob Denyer: 0161 959 1818.
- 7 Romford MEC. Competition Night. Contact Colin Hunt: 01708 709302.
- 8 Adelaide Miniature SRS. Inter-Club Run Day. Contact Peter Cooper: 8264 3471.
- 8-9 Ascot Locomotive Society.

 Model Engineer Exhibition 100.

 Contact Lee Porteus: 01344
 884385.
- 8-9 Birmingham SME. The National Locomotive Rally. Contact John Walker: 01789 266 065.

- 8 Cardiff MES. Steam-Up & Family Day. Contact Don Norman: 01656 784530.
- 8 Edinburgh SME. Night Running. Contact Robert McLucke: 01506 655270.
- 8-9 Leighton Buzzard NG Rly. Steam-Up Weekend. Enquiries: 01525 373888.
- 8-9 MELSA. Annual Competition & Display. Contact Graham Chadbone: 07 4121 4341.
- 8 Midland Railway Society. Meeting. Contact Andrew Surry: 01462 451090.
- 8-9 Urmston DSME. Open Weekend. Contact A. L. Fussell: 0161 748 0160.
- 9 Bedford MES. Members' Running Day. Contact Ted Jolliffe: 01234 327791.
- 9 Bristol SMEE. Public Running. Contact Trevor Chambers: 0145 441 5085.
- 9 Cambridge MES. Public Running. Contact Tim Coles: 01954 267359.
- 9 Canterbury DMES (UK). Public Running. Contact Mrs P. Barker: 01227 273357.
- 9 Harlington LS. Exhibition Day. Contact Peter Tarrant: 01895 851168.
- 9 High Wycombe MEC. Club Running. Contact Eric Stevens:
- 9 Leeds SMEE. Running Day. Contact Colin Abrey: 01132
- 9 Leyland SME. Boiler Testing Day. Contact A. P. Bibby: 01254 812049.
- 9 Lincoln DMES. Public Running. Contact Paul Thompson: 01522 888228.
- 9 Maidstone MES (UK). Public Running. Contact Martin Parham: 01622 630298.
- 9 Northern Mill Engine Society. Open Day. Contact John Phillip: 01257 265003.
- 9 Norwich DSME. Public Running. Contact Shirley Berry: 01379 740578.
- 9 Nottingham SMEE. Public Running. Contact Pete Towle: 0115 987 9865.
- 9 Plymouth MSLS. Member's Running. Contact Malcom Preen: 01752 778083.
- 9 Saffron Walden DSME. Public Running. Contact Jack Setterfield: 01843 596822.
- 9 South Durham SME.
 Stephenson Memorial Miniature
 Locomotive Association
 Locomotive Efficiency Trials.
 Contact B. Owens: 01325
 721503.
- 9 Stephenson Memorial Miniature Locomotive Ass'n. Locomotive Efficiency Trials hosted by South Durham Society

- of Model Engineers, Hurworth Grange, Nr Darlington. Start 10am. Contact Eddie Gibbons: 0191 4107564.
- Sutton MEC. Track Day. Contact Bob Wood: 0208 641 6258.
- Taunton ME. Public Running. Contact Don Martin: 01460 63162.
- Worthing DSME. Public Running. Contact Bob Phillips: 01903 243018.
- York City & DSME. Running Day. Contact Pat Martindale: 01262 676291.
- 10 Bedford MES. D. Combes: Aliens of Bedford - memories and history. Contact Ted Jolliffe: 01234 327791.
- 10 Saffron Walden DSME. Club Night. Contact Jack Setterfield: 01843 596822.
- 11 Basingstoke DMES. Meeting. Contact Guy Harding: 01256 844861.
- 11 Manx Steam & MEC. Meeting. Contact Richard Rake: 01624 671258.
- 11 Romney Marsh MES. Track Meeting. Contact John Wimble: 01797 362295.
- 12 Chingford DMEC. Derek Brown: Better by Design. Contact Ron Manning: 020 8360 6144.
- High Wycombe MEC. Bits & Pieces. Contact Eric Stevens: 01494 438761.
- 12 St. Albans DMES. Jeff Carter: HMS Kent and the Trafalgar Influence. Contact Roy Verden: 01923 220590.
- 13 Leyland SME. Giles Taylor: My Life at Crewe Works. Contact A. P. Bibby: 01254 812049.
- 13 Sutton MEC. Busy Night. Contact Bob Wood: 0208 641 6258.
- Worthing DSME. Mike Flannery: World of Tickers. Contact Bob Phillips: 01903 243018.
- 14 Canvey R&MEC. Visitors Running Day. Contact Brian Baker: 01702 512752.
- 14 Chichester DSME. Auction at Club. Contact Brian Bird: 01243 536468.
- Bristol SMEE. Fun Day. Contact Trevor Chambers: 0145 441 5085.
- 15 Canvey R&MEC. Southern Federation Rally. Contact Brian Baker: 01702 512752.
- 15-16Lincoln DMES. Miniature Steam Weekend. Contact Paul Thompson: 01522 888228.
- 15 Maxitrak Owners Club. Factory Open Day and MOC AGM. Contact Eric Penn 0208 979
- 15-16Nottingham SMEE. Thomas The Tank Engine. T. 0115 987 9865.
- Basingstoke DMES. Lions Event. Contact Guy Harding: 01256 844861.

Workshop Projects book when you subscribe

This collection of 18 unique projects for home workshop equipment enables the model engineer to create useful and even essential items that cannot be purchased commercially, including: An auxilliary workbench; Tap Holders; Distance and height gauges; Lathe back stop; Tailstock die-holder; Faceplate damps; Collets; DTI accessories; Sash clamps; Low profile damps; and Tapping stand. Each project is designed to make the model engineer's task in hand easier than it would have been had the items not been made. Each design is illustrated with good quality photographs and comprehensive working drawings. The projects are in themselves satisfying exercises in metalworking that once completed will make valuable additions to the model engineers'range of equipment.

HY/SUBSCRIBE?

- Free GIFT
- Save up to 27%*
- Free delivery*
- Never miss an issue

Subscribe online at www.subscription.co.uk/mde/E447

📧 Or call 08456 777 807, quote ref. E447 🔘 Or complete the form below

☐ I would like to subscribe to Model Engineer and SAVE 27%, paying £12.99 every 3 months by Direct Debit (UK ONLY)

	a subscribe to Man	del Ferinser (00	Inner a Neddle o
one-off payment	o subscribe to <i>Mod</i>	iei Engineer (26	issues)with a
UK (SAVE 25%) £53.50	Europe (incl Eire) £78.00 theque Uvisa/Mas	\$136.00	£85.00
Please make cheques	payable to Magicalia Pub	lishing Ltd and write o	ode E447 on the bac
Cardholder's name			
Card no:			
Expiry date	Switch i	ssue noV	alid date
Signature		Date	
YOUR DETAILS:			
Name Mr/Ms/Miss/N	IrsIntial	Surname	
Address			••••

TO SUBSCRIBE BY DIRECT DEBIT YOU MUST COMPLETE THIS BOX

Instructions to your bank or building society to pay by Direct Debit. Originator's reference 422562

Pay C12 99 avery 3 months by Direct Debit

Name of bank	t							
Address of ba	nk							
				Postc	ode			
Account hold	OF							
Account hold	er							
eres es								
eres es				Date				
eres es				Date				
Signature			Account number	Date	1 1	1		1
Signature			Account number]
ort code	your bai	k or build	Account number	se pay	Magical	ia Pub	blishing	
Signature ort code structions to rect Debits from the Direct De	your bai	nk or build unt detailed ee. I understa	Account number ing society: Pleas in this instruction su	se pay ibject to	Magical o the sa	ia Pub feguar in with	olishing rds assu Magica	ure
Signature ort code structions to rect Debits from the Direct De	your bai	nk or build unt detailed ee. I understa	Account number ing society: Pleas in this instruction su	se pay ibject to	Magical o the sa	ia Pub feguar in with	olishing rds assu Magica	ure alia

TERMS & CONDITIONS: Offer ends 13th September 2007. Subscriptions will begin with the first available issue. Please continue to buy your magazine until you receive your acknowledgement letter. Refund requests must be in writing to the Publisher and will not be given on accounts with less than £20 credit. A £5 admin charge will apply and will be deducted from any refund. Refunds will only be given at the Publisher's sole discretion. *UK ONLY We will use the contact details supplied to communicate with you regarding your Model Engineer subscription. If you are also happy for us to contact you about other products or services available from Model Engineer and Magicalia Publishing Ltd. please indicate here:

Contact by: □ email □ telephone □ mobile. If you are happy for us to pass your details on to other carefully selected companies to contact you about their products and services please indicate here:

Contact by: a email a telephone a mobile.

If you do NOT wish us to contact you by POST about products or services available from Model Engineer and Magicalia Publishing Ltd. please indicate here a If you do NOT wish us to pass your details on to other carefully selected companies to contact you by POST about their

Ne

Ask for our new 110 page full colour brochure or visit our website www.warco.co.uk for all your model engineering requirements

MINI MILL

Unique spring loaded plunger to locate column in vertical position

- LONGER, WIDER TABLE
- INCREASED LONGITUDINAL AND CROSS FEED
- MORE POWERFUL MOTOR
- METAL HANDWHEELS
- Table: 460 x 112mm
- Longitudinal travel: 300mm
- Cross travel: 130mm
 Motor: 550w

Still only £455 including VAT and delivery

Huge range of tooling available. Please see our website or ask for a brochure.

MINI LATHE

- LEVER OPERATED CAM LOCKING TAILSTOCK
- DIGITAL SPINDLE REV COUNTER
- PUSH BUTTON CONTROLS
- INDUCTION HARDENED BEDWAYS

Supplied with: 80mm three jaw chuck with inside and outside jaws • Faceplate Four way indexing tool post • Dead centre A choice of metric or imperial threading

- Centre height: 90mm Motor: 400w
- Distance between centres: 300mm

£415 including VAT and delivery

- BOTH MACHINES ARE FITTED WITH AMERICAN MADE ELECTRONICS FOR LONG TERM RELIABILITY
- ACCURACY TEST REPORT SUPPLIED WITH EACH MACHINE

Mini lathe Special Offer !!

Free tailstock drill chuck, arbor and live centre with each purchase

WM-16 VARIABLE SPEED MILLING MACHINE

NOW WITH LONGER 700MM/27" TABLE

- Table traverse: 480mm/19"
- x 180mm/7"
- Digital depth gauge to spindle
- Digital rev. counter
- * Large 600w 3/4hp motor
- Interlock chuck guard
- · Self ejecting drawbar
- Infinitely variable speeds
- Back gear for maximum torque
 Tilting head

£998.00

WM-18 VARIABLE SPEED MILLING MACHINE

EXCLUSIVE TO WARCO

- Speed range: 50 3000 infinitely variable
- Back gear for maximum torque in the low speed range
 Tilting head with plunger to
- locate vertical setting
- Digital rev. counter
- Digital depth gauge
- * 3MT spindle
- Table size: 27 1/2" x 8"
- * Traverse: 16 3/4" x 8 5/
- Motor: 1.5hp

£1250.00

GH-1224 LATHE

PACKED WITH

ADDITIONAL

FEATURES: • NEW THREAD CUTTING

HALOGEN I
 LOW
 VOLTAGE
 UGHTING

GEARBOX

- TELESCOPIC
 LEAD SCREW
 COVERS
- MICRO ADJUSTABLE BED STOP
- OVER-LOAD CLUTCH TO SADDLE FEED SHAFT

Specification remains unchanged:

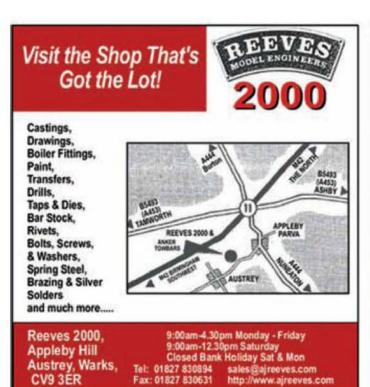
- · 6" centre height
- 24" between centres
- Removable gap bed allows 17" swing
- 11/2" spindle bore
- DI-4 camlock 3 and 4 jaw chucks
- Faceplate
- Fixed and travelling steadies
- 2hp single-phase motor
- Power cross feed
- Fully enclosed gear headstock
- no belt changes
- Speeds: 75 1400rpm

£1995.00

MIDLANDS MODEL ENGINEERING EXHIBITION

Warwickshire Exhibition Centre, Learnington Spa 12th – 16th October 2007.

Special offers and many new products



Prices include VAT Delivered UK mainland Please ring for comprehensive sales literature

Warco, Fisher Lane, Chiddingfold, Surrey, GU8 4TD Fax: 01428 685870

www.warco.co.uk Tel: 01428 682929 warco@warco.co.uk

The 'International Range' of Boiler Fittings

**SPECIAL WEB OFFER **

All online orders in June and July

10% off

enter WEB23 in 'promotional code' for your discount offer only available to orders placed at www.ajreeves.com between 01/06/07 and 31/07/07

www.ajreeves.com

SSIFIED ADVERTISING CLASSIFIED ADVERTISING CLASSING CLASSING CLASSIFIED ADVERTISING CLASSIFIED ADVERTISING

www.arceurotrade.co.uk

Unbeatable Value Engineering Products by Mail Order

Shop on-line or call us on 0116 269 5693 for our New Catalogue No.5

COMPLETE HOME WORKSHOPS

AND MODELS PURCHASED. DISTANCE NO OBJECT

> Tel: Mike Bidwell on 01245 222743

Carr's Solders

Cadbury Camp Lane, Clapton in Gordano, Bristol, BS20 7SD Tel:01 275 852 027 Fax:01 275 810 555 Email: sales@finescale.org.uk www.finescale.org.uk

CLOCK CONSTRUCTION & REPAIR Books by John Wilding and others

Free Catalogue 01420 487 747 www.ritetimepublishing.com

www.myhobbystore.com

THE TOOL BOX

For the best in used hand & light machine tools for all crafts

We also purchase good equipment and sell related books, as well as providing a world-wide back-issue service for Model Engineer and Engineering in miniature. we don't publish lists, but if there's something you need, get in touch.

> Open Monday - Saturday throughout the year Colyton, East Devon EX24 6LU Tel/fax: 01297 552868

E-mail: info@the toolbox.org.uk

www.thetoolbox.org.uk

WESTERN STEAM

Model Engineers


Member Assn of Copper Boiler Manufacturers (ME) COPPER BOILERS

For Locornotive, Traction, Marine & Stationary engines, to PER cut 2. All copper construction, silver soldered throughout using quality materials to standards required by the APCBMIN PER, & refevant Model Engineering Associations. CE marked and certific of trend test and confirmity supposed.

LL STEAM ENGINES WA

any age, size or condition considered - any distance, any time

ALL 5" GAUGE LOCO'S WANTED

Hunslett, Simplex, Speedy, BR Class 2, Horwich Crab, BR 8400 tank, Maid of Kent, Black Five, Jubilee, Royal Engineer, B1 Springbok, Torquay, Manor,

ALL 3½" GAUGE LOCO'S WANTED

Tich, Juliet, Rob Roy, Firefly, Jubilee, Maisie, Doris, GWR Hall, Britannia, Hielan Lassie, etc.

ALL 7¼" GAUGE LOCO'S WANTED

Hunslett, Hercules, Jessie, Romulus, Dart, Bridget, Holmeside, Paddington, GWR Mogul 43xx, GWR King,

Black Five, A3, B1, etc.

ALL TRACTION ENGINES WAN

Minnie, Burrell, Royal Chester, etc.

ALL PARTBUILT MODELS WANTED

For a professional friendly service, please telephone:

Graham Jones M.Sc. 0121 358 4320

www.antiquesteam.com

FIED ADVERTISING CLASSIFIED ADVERTISING CLASSIFIE CLASSIFIED ADVERTISING CLASSIFIED ADVERTISING CL

Railway cottages now available for great holidays have a look on www.railwaycottages.info

For a friendly informed chat call

ALL MODEL ENGINES WANTED ANY SIZE OR CONDITION

All steam, electric or petrol model engineered items required

Also stationary engines inc. Stuart Turner, Bassett Lowek, Bing, Marklin etc

All traction engines any size from 3/4" to 6"

All locos wanted from Gauge 1, 2 1/2, 3 1/2, 5, 7 1/4 and larger

Any part builts considered

Any size, age or condition considered

Also any rolling stock

Will collect personally from anywhere 7 days a week

01507 606772 or 07717753200

BA FASTENERS IN BRASS STEEL & STAINLESS

SPLIT PINS, TAPER PINS, ROLL PINS, TAPS, DIES, DRILLS, NUTS WASHERS, RIVETS, MATERIALS

Send Stamped addressed envelope plus four first class stamps for 28 Page List (Overseas £2.50) 'Quote Me'

"ITEMS" MAIL ORDER LTD, 46, ST. MARTINS ROAD, NORTH LEVERTON, RETFORD NOTTINGHAMSHIRE DN22 OAU Telephone 01427 884319 Fax 01427 884319 PARTBUILT MODELS BOUGHT.

All locomotives, at any stage of construction. Completed models also bought regardless of condition. Traction engines and all Stuart stationary engines wanted — beam, vertical, horizontal etc, part built or complete. Will travel any distance. Please telephone Graham, 0121 358 4320. (T)

Non-Ferrous material supplied in all forms, tailored to your need by size & quantity. Aluminium, Brass, Copper & Stainless steel, Silver steel, Gauge plate, B.M.S. steels.

Catalogue free.

P.L.Hill (Sales) Ltd

Unit 3 Crownworks, Bradford, BD4 8TJ Tel/Fax: 01274 733300

Email: plhillsales@aol.com www.plhillsales.com

Little Samson Steam Tractor Available in 3", 4" and 6"scale

Universal Carrier Steam Lorry

Available in 3" scale

Both Models serialised in the Model Engineer
Machine cut gears including differential
Comprehensive sets of laser cut components
Lost wax castings, name plates, spun brass chimney caps
Minature Steam Fittings

Book £35 inc p&p (UK), signed on request All normally in stock and posted by return Cast wheels option saves weeks of work Catalogue £2.50 post free (UK) Sorry cheques only

NEIL GRIFFIN

 St.Albans, Hertfordshire Engineering Services

Machining for Model Engineers From drawing, sketch, pattern etc. Friendly personal service.

Telephone / Fax: 01727 752865 Mobile: 07966 195910

(24 hr update) www.tradesalesdirect.co.uk (Trade Prices)

Don't wait for the next issue! Check out the Internet Web Site above. It contains a stocklist of used lathes, millers, grinders, drills, saws, miscellaneous machinery, accessories, items of interest, etc. A stocklist is also available 'FREE' by post.

Contact: David Anchell, Quillstar Ltd, Lower Regent Street, Beeston, Notts. NG9 2DJ
Tel 0115 9255944 Fax. 0115 9430858 or you can send an e-mail to: david@tradesalesdirect.co.uk.

WORLDWIDE SHIPPING. TRADE SALES DIRECT IS A SUBSIDIARY OF QUILLSTAR LTD.

SSIFIED ADVERTISING CLASSIFIED ADVERTISING CLASSING CLASSING CLASSIFIED ADVERTISING CLASSIFIED ADVERTISING

STATION ROAD STEAM

Good prices paid for live steam models in any condition, broken or part-built through to exhibition quality. Collections purchased. Locomotives, traction and stationary engines, bought, sold and part-exchanged.

- Locomotives from gauge 1 to 10 1/4 inch •
- Miniature railway equipment, rolling stock etc Traction engines from 3/4 inch to half full-size •
- Stationary engines from table-top models to full size, including designs by Stuart Turner, Westbury
 Spirit, gas and coal-fired boilers in all sizes
- All types of restoration projects & part-built models .

Fully serviced and tested locomotives and traction engines supplied with our renowned "no quibble" written warranty

Large range of items in stock, available for inspection and trial at our premises at any time, by appointment Comprehensive workshop facilities on site. Advice, valuations and driving tuition freely given World-wide mail-order service, goods supplied on 7 days approval, competitive shipping rates.

Fully illustrated and priced catalogue online at

www.stationroadsteam.com

Telephone Lincoln 01526 320012

0000000000000000 0 e MODEL 0 ENGINEERING @ 0 SUPPLIES e 0 0 (Romford) Suppliers of: Ferrous, Non-Ferrous metals 0 e B.A. Metric - nuts, bolts 0 @ Screws. S/H & New tools, cutters & tooling. 0 e Boiler Fittings 0 e NOVAT 0 0 Send £1.50 for catalogue 0 43 Dewsbury Road Romford 0 Essex RM3 8DN UK Tel: 01708 341216/722346 for details 0000000000000

PENNYFARTHING TOOLS Ltd. The Specialist Tool sho

Machine Tools at Sensible Prices We purchase complete Workshops,

Quality Secondhand

Machines, Models and Hand Tools. Agreed settlement on inspection -

Distance no object

Tel: Salisbury 01722 410090 Web Site: www.pennyfarthingtools.co.uk

TOOLS PURCHASED

Hand Tools and Machinery, whole or part collections — old and modern. Will call.

Tel: Alan Bryson. Tel: 01823 288135 (Taunton).

R. A. ATKINS

Cowells 90 Lathe fully tooled
Myford MI7 Lathe choice from
Myford Super 7 Lathes Choice 3
Myford Super 7 Lathes Choice 3
Myford Super 7 Lathes Choice 3
Myford Super 8 Lathes Cobinet PXF
Baxford Lathe Cabinet Loo spindle 13/8" HB
Weiler Matador Prec lathe fully tooled
Warco 30 Mill drill Cabinet Stand
Harrison Univ Mill and Vert Head
Myford VM-C Vert Mill RB Taper
Do-All 16" Vert metal bandsaw
Chester Vert Mill an stand
Myford 6" 4 jave English Chucks
Myford Vert Swivel slides
Foboo Star 16." bench drill
Clarkson MkII T&C grinder tooled
All prices inclusive, carriage extra
We buy workshops, prompt inspection/sett €500 £650 £1950 £2050 £1750 £525 £750 £925 £725 £495 £65.00 £125 \$275

We buy workshops, prompt inspection/settlement Tel: (01483) 811146 Fax: (01483) 811243 Hunts Hill House, Hunts Hill, Norm Guildford, Surrey GU3 2AH

RCM ENGINEERING LTD.

Machine Tools. Taps & Dies. Hand Tools. Materials.

B.A. Nuts & Bolts. Machining Service

23 Egerton Road, Dronfield, Sheffield S18 2LG Tel: 01246 292344

Fax: 01246 292355

Mon-Fri 8.30-5.30 Sat 10-3 Sun CLOSED

(Out of hours appointments also available)

SOCKET SCREWS

Cap. Cak. Button. Set (Grub). Shoulder
METRIC. BA. BSF. BSW. UNF. UNC
Hexagonal & Stothed Screws Must. & Washers.
Dowel & Spring Pins. Dormer HSS Taps & Drills. Draper Tools.
NO MINIMUM ORDER
Send 4 x 1st class stamps for our latest catalogue
Sepecial offer ""Workshop Discount Pack
30 different packets of socket, bex. and slotted screws
Deck 1. BA. 1972 App. 1881

Pack 1. BA 2BA to BBA

dock W Catalogue value of pack is over £15.00 plus P&P Each pack on offer to you for only £24.95 mercans Send for this offer and benefit from a very useful atook

of screws in your workshop. You will not be dissapointed. Refund Guaranteed

Emkay Screw Supplies (ME) 74 Pepys Way Strood Rochester Kent ME2 3LL

Email: emkaysupplies@talktalk.net Tel: 01634 717256 www.emkaysupplies.co.uk Mail Order Only

KITTLE HOBBY

Sharp milled (not rolled) brass sections from 1mm to 10mm. Sold in metres.

Send sae for list to: PO BOX 5, YSTALYFERA, SWANSEA, SA9 1YE TEL: 01639 731005

www.kittlehobby.com

Model Engineering Products (Bexhill)

www.model-engineering.co.uk Email: mep1@btconnect.com

Manufacturers of 5" and 71/4" diesel outline battery electric locomotives and rolling stock. Visit our shop to see the stock. Colour brochure inc. p&p £1.75 PHONE/FAX. 01424 223702 MOBILE 07743 337243

> 17, SEA ROAD, BEXHILL ON SEA. EAST SUSSEX. TN40 1EE.

COPPER TUBE, SHEET, BAR

and other non-ferrous metals. Send 9" x 4" SAE for lists.

R. Fardell, 49 Manor Road, Farnley Tyas, Huddersfield HD4 6UL Tel: 01484 661081

www.powercapacitors.co.uk

OPERATE THREE PHASE MACHINERY FROM YOUR SINGLE PHASE SUPPLY

- ROTARY CONVERTERS
- STATIC CONVERTERS IMO FREQUENCY CONVERTERS offering electronic motor control and a 2-year or 5-year warranty

PRICES from £89.00 + VAT

See the Market Leader at the London, Harrogate, Bristol, Ascot and Learnington Spa Model Engineering Exhibitions

Local Call: 0844 7700 272

transwave@powercapacitors.co.uk

FIED ADVERTISING CLASSIFIED ADVERTISING CLASSIFIE CLASSIFIED ADVERTISING CLASSIFIED ADVERTISING CLA

- TOOLCO

The home of good quality used tools and machinery

www.toolco.co.uk

Unit 4, Ebley Ind Park. Ebley, Stroud, Glos GL5 4SP Important: Phone for opening times before travelling. (Just 4 miles J13 M5 Motorway) Tel: 01452 770550 E.Mail: sales⊜toolco.co.uk Fax: 01452 770771

www.myhobbystore.com

BOOST PHASE CONVERTERS

The UK's most advanced phase converters with a unique 3 year guarantee. Never beaten on price.

Tel: 01344 303 311 Fax: 01344 303 312 Mob. 07952 717960 www.boost-energy.com info@boost-energy.com

BOOST HAS BEEN MANUFACTURING HIGH QUALITY PHASE CONVERTERS IN THE UK SINCE 1957

GB BOILER SERVICES

COPPER BOILERS FOR LOCOMOTIVES AND TRACTION ENGINES etc.

MADE TO ORDER

Constructed to latest European Standards
71/4" guage and P.E.D. category 2 Specialist
Enquiries, Prices and Delivery to:

Telephone: Coventry 02476 733461

Mobile: 07817 269164

E VENSON NGINEERING

Quality Machines and Tooling

Machine Sales

TOOUNG

D.14 18" face plate as new	125.00
D.16 12" face plate (Triumph 2000)	00.092
Harrison LSA boaring table excellent condition	125.00
Triumph 2000 3pt steady £	100.00
Most student Harrison etc face plates in stock	. P.O.A
Fobco 7. Eight pillar drill 2mt single phase jet brake mint condition. ©	850.00
J+ S dia form attachment model A.T as new in box	300.00
6" dividing head no tailstock	120.00

Union graduate bowl only wood turning lathe 1 phase
Bridgeport milling machine excellent condition
8" cap ajax power hacksaw
Bexford T.U.D training lathe good condition (no motor)
Kasto 8" power hacksaw modern machine£375.00
Wadkin herizontal surface grinder£500.00
Harrison vertical mill ex university£1,600
Harrison vertical mill as new CSOO DO

NEW MACHINERY IN STOCK

Harrison M300 gap bed lathe tools excellent condition
Harrison M300 gap bed lathe long bed tools good condition£2,000
Harrison vertical milling machine as new
Elliott '0 0' turret milling machine 27" x 7" table
includes universal head ex university

2 off Tom Senior m1 milling machines 1 single phase 1-3 phase good co	udition E1 200 each
Viceray AFW milling machine 30int good condition	£12,00
Harrison LS'A' lathe fully tooled outstanding condition	£1,150
Colchester student Mk II lathe tooled good condition	£1,500
Erro VP10 lathe good condition	

WE ALSO PURCHASE QUALITY MACHINES & TOOLING . DELIVERY SERVICE AVAILABLE PLEASE TELEPHONE BEFORE TRAVELLING - WEEKEND & EVENING VIEWING AND DELIVERY SERVICE

More machines always in stock. Tel: 01274 402208 & 780040 Mobile 07887 535868 4 Duchy Crescent, Bradford, BD9 5NJ

SSIFIED ADVERTISING CLASSIFIED ADVERTISING CLASSING CLASSING CLASSIFIED ADVERTISING CLASSIFIED ADVERTISING CLASSIFIED ADVERTISING

BOXFORD A. U. D LATHE, FULLY EQUIPPED WITH ALL GOODIES £1500.00 AJAX BENCH PILLAR DRILL £175.00 BOTH ARE HIGH QUALITY MACHINES. ALSO METAL POLISHING MACHINE, HEIGHT GAUGE AND ELECTRIC HAND TOOLS. EMIGRATING. DETAILS 01395 514443. SIDMOUTH

THINKING OF SELLING YOUR LATHE, MILL OR COMPLETE WORKSHOP

and want it handled in a quick, professional no fuss manner? Contact David Anchell, Quillstar (UK) Ltd (Nottingham).

Tel 0115 9255944 Fax 0115 9430858

COPPER BOILERS

Copper and Silver soldered boilers for Locomotives Traction marine and stationary engines.

Priory Boilers

R.L Radbourne Warwickshire 01789 293525

Cheddar Valley Steam

Bespoke copper boilers for the model engineer.

Handcrafted with over 25 years of experience. All boilers are tested & supplied with a certificate of conformity. Materials & kits also available.

Contact us for a no obligation quote: Cheddar Valley Steam Unit 4, Castle Mills Industrial Est, Biddisham, Somerset, BS26 2RH Tel: 07789 681977

www.cheddarvalleysteam.co.uk

Display Cabinets

Model boat 5 sided display cabinets Available to keep your model dust free

Any size up to 12ft long

DISPLAY CABINETS ALSO AVAILABLE

Wall mounted and reproduction display cases

Comer and Trophy Cabinets

For full colour, 48 page catalogue and price list please send £2.00 to:

Timbercraft Cabinets,

Abercom House,

Unit M, York Farm Business Centre, Watling Street, Towcester NN12 8E Tel: 01327 830663 Fax: 01327 830963

www.displaycases.co.uk

Credit and debit cards accepted

ALL LOCOS AND STEAM ENGINES REQUIRED $3^{1/2}$ " - 5" - $7^{1/4}$ "

Part built or Finished in any condition. Complete collections purchased
FOR CASH - Distance no object, available 7 days a week
Please telephone Kevin on 01507 606772 for a friendly and informal chat

www.modelsteamenginesuk.com

FIED ADVERTISING CLASSIFIED ADVERTISING CLASSIFIEI Classified advertising classified advertising CL*i*

LYNX MODEL WORKS LTD.

Descript Hone, Malely is March, Allind, Linux LNUS IIP Tal 2000 - 40000 Malely, Ellist 2004 Withole: 2009 June resident Research Enail: inferi International Confession and

WORKING SCALE MODELS AND SPECIALIST SERVICES

Lym Model Works - 5 Specialist Engineers working together to not only build beautiful Working Live Steam Leconnoises from gauge 0 to 10 ½, Traction Engines from ½, to 6° Scale, and Stationary Steam Plast Engines. We will also complete your unfinished project for your or networks the one you've just bought, inherited or simply wish to rejovenate in our Restocutions Division.

We have expertise in building, completing and removating the very beautiful and elegant Clarksonis of York range of Working Steam Models and currently have 4 of these highly respected focuseine designs being built as specialist commissions for clients.

Lynx Model Painting and Machining Services will give your cherished model that professional, fined finish and also belp you by manufacturing Specialist parts to assist you complete your current or planned project.

Lyes Model Boilers sells a range of Fully Certificated and EC Compliant Copper and Steel Boilers, some ex-stock.

We are also Agents for Stuart Models and build the ones that Stuart don't !

Visit our Website (www.lyozmodelworks.co.sk) or conact as xoday with your requirements for a no-obligation quote or discussion. A full colour A4 Brochure shortly availabletalephone or annul for further details.

> Renowned Quality & Service Together at the Right Price ALL MAJOR CREDIT AND DEBIT CARDS ACCEPTED

> > Call John Clarke on 01507-451565

Myford

MYFORD OPEN HOUSE

Thursday 25th October to

Saturday 27th October

0115 925 4222

or visit our showroom at

Wilmot Lane, Chilwell Road,

Beeston, Nottingham, NG9 1ER

CAD/CAM Tuition

Are you interested in CAD/CAM but do not know how to get started. Dick Stephen is offering a one week course in CAD/CAM in his new well equipped workshop on the idyllic holiday island of Alderney in the Channel Islands. Accommodation can be provided in his house on the island. Wives are most welcome. For further details please contact Dick Stephen on 01481 823761 (evenings only please) or by e-mail rstephen38@cwgsy.net

ENGINEERS TOOL ROOM

The tool supplier for Professional & Model Engineers

CUTTING TOOLS: HSS - COBALT - COATED

Drills: Metric, Fractional, Jobbers, Long Series, Boxed Sets

Reaming: Metric, Fractional Hand and Machine.

Threading: Taps, Straight Flute, Spiral Flute, Boxed Sets, Metric, Imperial, Unified, BA.

Dies: Split Dies, Solid Dies, Die Nuts, Metric, Imperial, Unified, BA.

Milling: End Mills, Slot Drills Plain and Screw Shank, Horizontal Cutters, Slitting Saws, Collets.

Turning: HSS Tool Bits, Tungsten Carbide Tipped Turning Tools, Insert Tools, Collets.

Measuring: Micrometers, Verniers, Dividers, Callipers, Setting up Tools

Workshop Machinery: Lathes, Milling Machines, Pillar Drills, Band Saws

Machining Services: full machining service available, turning, milling, grinding, wire and spark eroding, tool and mould making

"New" Tool Catalogue available FREE – Send for one today

CHECK OUT OUR SPECIFICATIONS & PRICES BEFORE ORDERING YOUR MACHINES — Contact us for a Quotation

Part Exchange on some machine tools welcomed
Tel: 01443 442651 Fax: 01443
435726 Mobile 07770 988840
Web Site: www.engineerstoolroom.co.uk
Email: regpugh@aol.com

UINT 23 & 24 ENTERPRISE CENTRE LLWYNYPIA ROAD, TONYPANDY, RHONDDA CF40 2ET

- * Boiler Feed Injector Reconditioning.
- * New Build & Reconditioned Projects From 3" scale Full Size Steam Engines.
- * Boilers & Fireboxes Flanged & Riveted.

AWRENCE ENGINEERING Highbridge, Somerset

* Gear Cutting - Spur & Helical Up To 56" dia.

* Large Machining Capacity 42" dia X 102".

For All Enquiries Call 07877 788230 or Email: Isleportsteam@tiscali.co.uk

J.C.T. SHOWTRACK & FITTINGS

2½", 3½" & 5" gauge Showtrack kits, bullhead rail, cast metal chairs, wooden sleepers, limestone ballast and instructions.

3½", 5" & 7¼" gauge Loco headlamp kits, GWR & BR pattern; LMS 5" & 7¼" gauge only.

31/2", 5" & 71/4" gauge washout plugs, brass lost wax castings.

Tel. or S.A.E. for price list & details to:

J. C. TIPTON

14 Pickenham Road, Birmingham B14 4TG Tel./Fax 0121 430 7778

HOME AND WORKSHOP MACHINERY

144 Maidstone Road, Foots Cray, Sidcup, Kent DA14 5HS

www.homeandworkshop.co.uk stevehwm@btopenworld.com

Genuine Used Machines & Tooling

Telephone: 0208 300 9070 - Evenings 01959 532199 - Facsimile 0208 309 6311

BCA Mk111 jig boring, drilling and milling machine + loads of tooling

Crompton Parkinson Motors NEW 3/4HP ideal for Myford

& Boxfords etc.

Boxford CUD MK111 5" x 22" lathe

Myford Super 7B lathe

an) and the same

Tom Senior Major horizontal vertical milling machine

SIP HDB600B bench drill to; 'Limited (39" high) special offer

Herbert Model 'B' (240 volts) precision drilling machine

Harrison 140 5 1/2" x 24" centres + cabinet 240 volts from new

Startrite 275 (240 volt) saw bench Blacksmith tooling from £10 Micrometers boxed from £10 Rapidor hacksaw £145

Hunton universal lever type press +

Boxford CUD 5" x 22" complete with

Myford milling head for Myford

Wadkin 12" planer / thicknessor

Boxford Model C lathe complete with 3 jaw,

Hayes Diemaster milling - sure quality!

Quaters and Smith 6" hacksaw

CMZ 40" rolls (brand new)

Myford Super 7B powercross feed, gearbox and stand

Harrison Graduate wood lathe

Meddings M10 precision drilling machine

Startrite 18-5-5 bandsaw; 18" throat / 5

Milling/Drilling ground X-Y table

Edwards 50" (1.5M) x 16g box and pan folder

Check out our large range here in Sidcup!

PLEASE PHONE 0208 300 9070 TO CHECK AVAILABILITY OR TO OBTAIN OUR LIST DEFINITELY WORTH A VISIT DISTANCE NO PROBLEM! ALL PRICES EXCLUSIVE OF VAT

Southern Open Days September 2007

Saturday 1st Sunday 2nd

10am-4pm 10am-4pm
Unit 4 Blackwater Close Fairview Ind. Park
Rainham Essex RM138UA

- Massive Discounts On A Huge Range Of Tooling
- Special Offers On All New Machines
- Used & Ex-Demo Machines Available
- Refreshments Available Throughout The Day
- Free Prize Draw For All Visitors

