
TOOOLVOILING* HAND, POWER & GREEN WOODWORKING • TURNING • RESTORATION • DIY CRAFTS

THE EDITOR'S TOOLBOX ● WOODEN WHEEL ● TRITON JOINTER TEST ● MEMORY BOX

.

150kg 800x300x1500 £29.98 £3 350kg 900x400x1800 £49.98 £5

CPT800 CPT1000

£215:98

120mm £219.98

- Over 12, 24 or 36 months
- Purchases over £300
- 12.9% APR, 10% Deposit*

TOUSE WEBSITE

GET YOUR NOM

- **IN-STORE**
- ONLINE **PHONE**

844 880 1269

210/30 60/120 £ 254/30 78/340 £1 CMS210S CMS10S2 MITRE SAWS Clark¢ Einhell # Laser Guide

 Quality Range of Mitre saws and blades in stock

MODEL BLADE DIA/ MAX CUT EXC.

BORE (mm) DEPTH/CROSS VAT INC VA CMS210* 21 210/30 55/120mm £59.98 £71.98

Einheil 210/30 55/120mm £59.98 TC-MS 212 Einheil 17C-SM 2131#210/30 62/310mm£129.98 Einheil 250/30 75/340mm£159.98 TC-SM 2534‡

29: 35:

Clarke WORK TABLE SUPPORTS

t Slidina

(PAIR) CWTS1

• Ideal if you have your own work top or want to build a steel or wood vorkhench • Inc

mounting holes for worktop, tor worktop, shelf and floor

Clarke **DRILL PRESSES**

 Range of precision bench & floor presses for enthusiast, engineering & industrial applications

FROM ONLY E66.99 Exc.va £80.39

B = Bench mounted

F = FIOOFS	tanding		-	
	MOTOR (W			П
MODEL	SPEEDS			ш
CDP5EB	350 / 5	£66.99	£80.39	ш
CDP102B	350 / 5	£79.98	£95.98	
CDP152B	450 / 12	£149.98	£179.98	10
CDP202B	450 / 16	£189.00	£226.80	М.,
CDP10B	370 / 12	£198.99	£238.79	
CDP452B	550 / 16	£229.00	£274.80	
CDP352F	550 / 16	£229.00	£274.80	
CDP502F	1100 / 12	£499.00	£598.80	

Clarke Clarke BOSCH **JIGSAWS** CON750 *DIY #Professional £19

2JS380* 420W 55/6mm 215.99 219.19 CON750# 750W 80/10mm 227.99 233.59 30sch PST700E* 500W 70/4mm 249.98 259.98

BISCUIT JOINTER 11000rpm Operating Speed
 860W motor • 14mm Cutting Depth • Inc. dust bag, storage case and face spanner for cutter change

 lable tilts 	0-45°	_		
		SPEED	EXC.	INC.
MODEL	_ MOTOR	RPM	VAT	VAT
CSS400D C	120W	400-1600	£79.98	£95.98
CSS16VB	90W	550-1600	£94.99	£113.99
CSS400C	90W	550-1600	£114.99	£137.99

Clarke CORDLESS STAPLE/ NAIL GUN
• All models include nail/staple pack and tough moulded case • 18V 2Ah Li-ion

power pack • 18 Staple/Nail Gauge

dust from cutting area

SPARE NAILS / STAPLES IN STOCK

Clarke MULTI FUNCTION **TOOL WITH ACCESSORY KIT**

Great for sawing, cutting, sanding, polishing, chiselling & much more • 250W motor

Clarke **BENCH** BANDSAWS

Produces fast,

precise mitre & longitudinal cuts 350W motor

7.5" throat size Cuts in all types of wood

£129:98 £155:98 CBS190E -

> Great for both home & professional use Induction 300W motor • Table tilts up to 45° • 9" throat size

CBS300

Clarke

(A) BOSC

Powerful heavy duty machines

ideal for

DIY use

*DIY

POF1400ACE CR2

J

trade and

ROUTERS

E EXC.VAT

0-55 0-50 0-55

CRT-1

2100 0-60

227^{.98} INC.VAT REMOVABLE DUST TRAY

Clarke STATIC PHASE CONVERTERS

Run big 3 phase woodwork supply
Variable output power to match HP

CBS225

PC60 £274 ONVERT 230V

1PH TO 400V 3PH 10Amps 20Amps 32Amps

Clarké **DOVETAIL JIG** Simple, easy to set up & use for producing a variety of joints
 Cuts work pieces with a

emplate guide k holes for bench mounting CDT.I12

Clarke **PROFESSIONAL BANDSAWS**

PROFESSIONAL BANDSAW:
Top Quality Bandsaws - ideal for
professional workshop use. Strong steel
body with solid cast iron table
- Table tilts 45° - Adjustable blade guide
- Supplied with stand, 4TPI wood cutting
blade, rip fence, mitre guide, mitre gauge
and push stick - induction motors
- Includes stand

as £478.80 inc.VAT # was £597.60 inc.VAT

ROAT MAX MAX PTH CUT 90° CUT 45° CBS250 250mm/10"100mm 75mm £219.98 £2

Clarke GRINDERS & STANDS

With sanding belt *8" whetstone &

			U	ui yotono	
	MODEL	DUT	Y WHEEL		
			DIA.	EXC.VAT	INC.VAT
	CBG6RP	DIY	150mm	£32.99	£39.59
	CBG6RZ	PR0	150mm	£42.99	£51.59
	CBG6RSC	HD	150mm	£54.99	£65.99
	CBG6SB#	PR0	150mm	£54.99	£65.99
	CBG6RWC	HD	150mm	£59.98	£71.98
l	CBG8W* (wet)	HD	150/200mn	£56.99	£68.39

Machine

Professional woodworking tools and Sheppach, SIP and more! n

www.machinemart.co.uk

OPEN MON-FRI 8.30-6.00, SAT 8.30-5.30, SUN 10.00-OUR) I Or TOR 4.00

BARNSLEY Pontefract Rd, Barnsley, S71 1EZ
B'HAM GREAT BARR 4 Birmingham Rd.
B'HAM MAY MILLS 1152 Coventry Rd, Hay Mills
BLACKPOOL 380-382 Talbot Road
BOLTON 1 Thynne St. B13 6BD
BRADFORD 105-107 Manningham Lane. BD1 3BN
BRIGHTON 123 Lewes Rd, BN2 30B
BRISTOL 1-3 Church Rd, Lawrence Hill. BS5 9JJ
BURTON UPON TRENT 12a Lichfield St. DE14 302
CAMBRIDGE 181-183 Histon Road, Cambridge. CB4 3HL
CARDIFF 44-46 City Rd, CF24 3DN
CARDISTE 81 London Rd, CA1 2LG
CHELTENHAM 84 Fairview Road, GL52 2EH
CHESTER 43-45 St. James Street. CH1 3EY
COLCHESTER 43-45 Horth Station Rd. CO1 1 RE
COVENTRY Bishop St. CV1 1HT
COVENTRY Bishop St. CV1 1HT
COVENTRY B18-186 High St. CT14 6BQ
DEAL (KENT) 182-186 High St. CT14 6BQ
DEAL (KENT) 182-186 High St. CT14 6BQ
DERBY Derivent St. DE1 2ED
DONCASTER Wheatley Hall Road
DUNDEE 24-26 Trades Lane. DD1 3ET
28018RH
Calls to the catalogue reque

EDINBURGH 163-171 Piersfield Terrace 0131 659 5919 EXETER 16 Trusham Rd. EX2 80G 01392 256 744 GATESHEAD 50 Lobley Hill Rd. NE8 4VJ 0191 493 2520 GLASGOW 280 GT Western Rd. G4 9EJ 0141 332 9231 GLOUCESTER 221A Barton St. GL1 4HY 01452 417 948 GRIMSBY ELLIS WAY, DN32 9BD 01472 35435 HULL 8-10 Holderness Rd. HU9 1EG 01482 22316 HULL 8-10 Holderness Rd. HU9 1EG 01482 22316 LIFORD 746-748 Eastern Ave. IG2 7HU 0200 518 4286 IPSWICH Unit 1 Ipswich Trade Centre, Commercial Road 01473 221253 LEEDS 227-229 Kirkstall Rd. LS4 2AS 01473 221253 LEICES 227-229 Kirkstall Rd. LS4 2AS 0113 231 0400 LIFORD 746-748 Eastern Ave. IG2 7HU 0113 231 0400 LIFORD 746-748 Eastern Ave. IG2 7HU 0200 518 4286 UPSWICH Unit 5. The Pelham Centre. LN5 8HG 01522 543 036 LIVERPOOL 80-88 London Rd. L3 5NF 0151 709 4484 LONDON 6 Kendal Parade, Edmonton N18 020 8830 8651 LONDON 503-507 Lea Bridge Rd. Leyton, E10 020 855 8824 LUTON Unit 1, 326 Dunstable Rd, Luton LU4 8LS MAIDSTONE 57 Upper Stone St. ME15 6HE 01622 769 572 MANCHESTER ALTRINCHAM 71 Manchester Rd. Altrincham 0161 9412 666 MANSFIELD 169 Chesterfield Rd. South 0167 32 622160 DVC (0844 880 1265) cost 7p per minute plus your telephone composed of the composition of the c

SAT 8.30-5.30, SUN 10.00

MIDDLESBROUGH Mandale Triangle, Thornaby
NORWICH 282a Heigham St. NR2 4LZ
NOTTINGHAM 211 Lower Parliament St.
PETERBOROUGH 417 Lincoln Rd. Millfield
PLYMOUTH 58-64 Embankment Rd. PL4 9HY
POOLE 137-138 Bournemouth Rd. Parkstone
PORTSMOUTH 277-283 Copnor Rd. Copnor
PRESTON 53 Blackpool Rd. PR2 6BU
SHEFFIELD 453 London Rd. Heeley. S2 4HJ
SICCUP 13 Blackfen Parade, Blackfen Rd
SOUTHAMPTON 516-518 Portswood Rd.
SOUTHEND 1139-1141 London Rd. Leigh on Sea
STOKE-ON-TRENT 382-396 Waterloo Rd. Hanley
SUNDERLAND 13-15 Ryhope Rd. Grangetown
SWANSEA 7 Samlet Rd. Llansamlet. SAT 9AG
SWINDON 21 Victoria Rd. SN1 3AW
TWICKENHAM 83-85 Heath Rd. TW1 4AW
WARRINGTON Unit 3, Hawley's Trade Pk.
WIGAN 2 Harrisson Street, WNS 9AU
WOLVERHAMPTON Parkfield Rd. Bilston
WOLVERHAMPTON Parkfield Rd. Bilston
WOLVERHAMPTON Parkfield Rd. Bilston WORCESTER 48a Upper Tything. WR1 1JZ

5 EASY WAYS TO BUY.

SUPERSTORES NATIONWIDE

ONLINE www.machinemart.co.uk TELESALES

0115 956 5555 CLICK & COLLEC OVER 10.000 LOCATION

CALL & COLLECT STORES TODAY In the October issue.

Hello everyone and welcome to the October issue of Woodworking Crafts

It's been a busy year for me when I'm away from my desk. I seem to have been making, restoring, reorganising and managing to fit in some holiday in what has been a remarkably hot summer which, as usual, us Brits have had an excuse to complain about. All good things come to an end and we have winter ahead of us, and who knows what weather?

Thinking 'inside the box'

In this issue I finally manage to complete my toolbox. It has been a bit of a mission and, reflecting on it, a bit of an ego trip as it had to be done my way - not just any old toolbox. I learned various things along the way and hopefully you can benefit from some of my trial-and-error experiences if you want to make your own. Every project is a prototype. Perhaps our mission statement should be: 'We make the mistakes, so you don't have to.' Anyway, it has worked out well and the toolbox is ready for teaching and demonstrations, which is the primary purpose.

Astronomical event

Talking of time, you may have seen on television a programme some time ago about the discovery of an ancient analogue computing device called an Antikythera mechanism, which dates from more than 2,000 years ago. Well, we have as our feature the man who decided to make a scaled-up version on a scrollsaw – beyond most of us I suspect. What it does show is the sheer breadth of knowledge and understanding and supreme engineering skill which the ancients possessed with far fewer technological resources than we can boast of today.

The common theme in this issue, therefore, is time. So now it is time to settle back to read and enjoy the magazine.

To me - to you

That sounds like a reference to the late lamented Barry Chuckle of the Chuckle Brothers, but it is my way of saying – when you saw wood, do you push or do you pull? Most readers I imagine use standard push-type handsaws, whether ripping down board or cutting fine jointwork. We have an article which is an attempt to get more people to use Japanese pullsaws, of which I am an ardent user. As the saying goes, don't knock it till you've tried it...

Anthon &

Anthony Bailey, Editor Email: anthonyb@ thegmcgroup.com

71

PROJECTS

- 5 Chris Tribe makes a veneered memory box
- **16** Kevin Ley builds an oak indoor planter
- **33** Duane Cartwright carves a Koi Carp in basswood
- **49** Gareth Irwin's slab-top pig bench
- 71 The Editor's Toolbox Part III
- 78 Plans 4 You Mini-shed hideaway

TECHNIQUES

- 23 Louise Biggs repairs a traditional coffee table
- **39** Michael T Collins makes a wooden wheel
- 56 Japanese pullsaw primer
- **64** Quentin Smith makes an intricate lattice-work pattern
- **81** Tricks of the Trade Sub-tables

KIT & TOOLS

- 26 Kitted out Rider smoothing plane
- 28 Triton Doweller test

COMMUNITY

- 13 Woodworking glossary - the letters X, Y & Z
- 22 This month's contributors
- 30 News & events
- 44 Feature Building an Antikythera mechanism
- 53 Coming next month
- 54 Ask the Experts
- 60 Trees for life Softwoods
- 67 Book reviews
- 68 Woodland Ways by Gary Marshall
- 88 Focus on Police boxes

Woodwork on the web

To find more great projects, tests and techniques like these, visit our fantastic website at: www. woodworkersinstitute.com

Plane & Simple

450W MINI PLANER 60MM

TMN PL

The **TMNPL** Mini Planer is powerful, easy to handle, and includes all the features of a conventional-sized planer and more.

Utilising twin 60mm reversible blades, the **TMNPL** offers the perfect combination of power and balance. Equipped with excellent grip for safe, one-handed operation, while cutting at 32,000cpm.

The 400W motor and 60mm planning width make this planer ideal for fast material removal on small to medium-sized workpieces. Planing depth is adjustable: up to 1.5mm of material can be removed in one pass. Also features 'V' grooves for accurate chamfering in 2 different sizes.

FIND YOUR NEAREST STOCKIST tritontools.com 9000

This box is designed for holding documents and objects of a sentimental value. You can change the dimensions and interior configuration depending on its intended use, perhaps as a jewellery or collector's box. The internal dimensions of this design mean it can take A4 sheets. In this example, the main wood is American walnut, while the top is a quartered burr oak veneer with a boxwood inlay round the edge. Burr oak contrasts well with the walnut. When making boxes, I like the grain to run unbroken round the outside, although there has to be a discontinuity at one corner. Select the wood from a single board, chosen so that there is attractive grain at the front of the box and along the sides. I personally prefer walnut sap free, others like the variation provided by the lighter sapwood. Boxes of this design are made as a single piece, the lid being cut off after glueing. This ensures a perfect fit between top and bottom.

METHOD Mitring the corners

Prepare the parts for the box front, back and sides as a single board. Mark out the position of the parts along the length of the board so that the grain will run round the box when it is constructed. This should be just an approximate layout at the moment, with about 15mm (%in) allowance for cutting between each piece. Check and

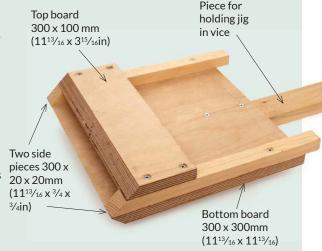
Cutting list					
DESCRIPTION	QUANTITY	WOOD TYPE	LENGTH	WIDTH	THICKNESS
a Front/back	2	American walnut	400mm (15in)	172mm (6 ²⁵ / ₃₂ in)	18mm (¹¹/₁6in)
b Side	2	American walnut	300 mm (11 ¹³ / ₁₆ in)	172mm (6 ²⁵ / ₃₂ in)	18mm (¹¹ / ₁₆ in)
с Тор	1	MDF	374 mm (14 ²³ / ₃₂ in)	274 mm (10 ¹³ / ₁₆ in)	6 mm (½in)
d Bottom	1	MDF or ply	374 mm (14 ²³ / ₃₂ in)		
e Top veneer	4	Burr oak veneer	*	*	0.6mm (0.02in)
f Balance veneer	1	Walnut	*	*	0.6 mm (0.02in)
g Inlay	2	Boxwood stringing	*	*	2mm (½16in)sq
h False bottom	1	Birch ply or MDF	*	*	
Cut and prepare front, back and sides as a single length approximately $1500 \times 172 \times 18$ mm ($59 \times 6^{3/4} \times 3^{4}$ in). Boxwood stringing for inlay comes in 1m (39in) lengths to be cut to fit.			* Trimmed as appropriate during making		

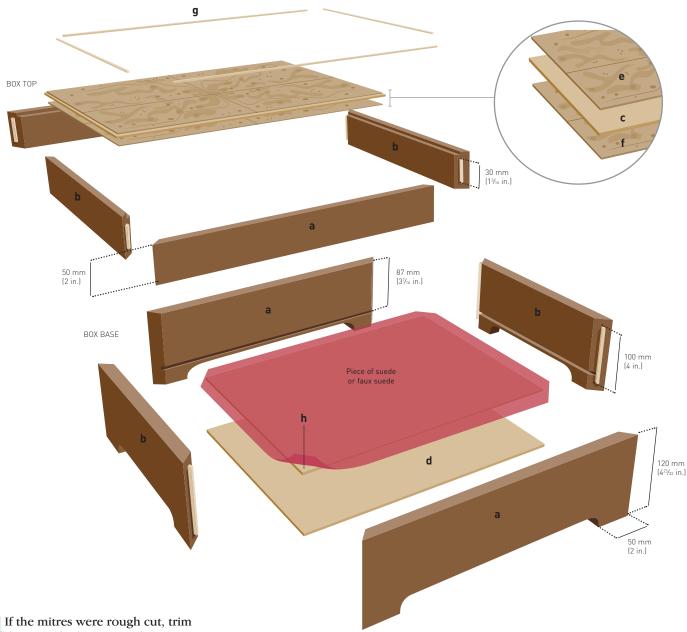
mark the face side and face edge on each piece before cutting. The face side should be on the inside, with the face edge at the top.

2You could groove for the bottom and rebate for the top while everything is in one length. However, there's the possibility of breakout when planing the mitres, so leave this until later. If using the chopsaw, you could groove and rebate now.

3Cut out the parts. This is straightforward if you have a

compound mitre or chopsaw. Set the tilt on the saw to 45°. Take two test cuts and check the two together form a right angle. Make the cut proper when you are ready. Use a stop to ensure that the paired parts are equal length. If you are hand cutting, rough cut the mitred corners or just cut square across and rely on the shooting board to remove most of the waste. If rough mitring, mark the line of the mitres, then saw just shy of the line with a cross-cut backsaw. Whichever method you use, the face of the mitres should be facing the face side. Check this before sawing.


Making the spline/jig


This jig may be useful in other situations, so it's worth making it so that it can take thicker pieces if necessary.

- 1 Mitre the ends of two pieces of 18mm (11/16in) MDF or ply for the top and bottom boards. Check that the mitred ends are square with the sides.
- **2** Prepare two side pieces with mitred ends.
- 3 Drill and countersink 4mm (3/16in) diameter holes in the top and bottom boards at the positions shown. The countersinking should be on the mitred side.

- 4 Position and clamp the two side pieces on to the bottom board, as shown in the photograph. The mitred ends of the side piece and the board should form a 90° angle. Pilot drill and screw on the side pieces.
- 5 Position, clamp and screw the top board, as shown. Again, the angle between the mitre on the bottom board and the side pieces and top board should be 90°.
- 6 Screw a piece underneath, as shown. This is just to hold the jig in the vice at an appropriate angle, so any piece of offcut will do as long as it can locate firmly in the vice.

7 In use, the workpiece is offered up so that the mitred face is flush with the top surface, the router fence bears against the bottom board mitred face and the top board face supports the router base.

If the mitres were rough cut, trim them on the box mitre shooting board. Check that the paired parts are equal length.

Reinforcing the mitres

The mitres on their own will not be strong enough – they need reinforcing. My preferred method is to route grooves for splines in the mitre faces. Another method is to fit veneer keys across the corner. If you do use keys, make up a test mitre so that you can check your technique before going at the real thing.

There are two spline positions, one for the lid and another for the base. Mark for the groove position on the mitre faces. If you line up the mitred ends with the face edges aligned to create a single flat surface, you should be able to mark across a set.

Mark at 10, 40, 62 and 162mm ($\frac{3}{8}$, $\frac{1}{16}$, $\frac{2}{16}$, $\frac{6}{8}$ in) from the face edge.

Shoot the mitres

Routing spline grooves

Cut splines to width minus 1mm (1/12in) for wriggle room.

The spline will consist of a piece of 6mm (1/4in) thick MDF or ply 12mm (15/32in) wide, so the grooves in the mitre faces will be 6 mm (1/4in) wide and 6.5mm (1/4in) deep. Make sure vour router cutter will make a groove no wider than your spline material, otherwise you may have to make up some solid pieces for the splines.

The problem with routing mitres Ois that there is no end for the fence to run against. You will need a jig (see panel).

9 Use an offcut of the same thickness as the sides to set up the router. Mitre the end of the offcut and mark the position of the groove on the face, 7mm (%32in) from the inside edge. Clamp the test piece in the jig so that the mitred face is flush with the top. With a 6mm (1/4in) straight flute cutter in the router, set the fence so that the cutter is aligned with the marked line and adjust the depth stop to give a depth of 6.5mm (1/4in). Make a test cut and adjust until the depth and position are correct.

Mark the spline positions

Groove the mitred faces of each side within the previously marked lines.

Make up some splines to fit the grooves. Hopefully your 6mm (1/4in) ply or MDF is a snug fit in the grooves - do a test with an offcut. It's best to make the splines as a long strip of the correct width - that is, 99mm $(3^{15}/16in)$ and 29mm $(1^{3}/16in)$. Plane a rounding on the edge, then cut to length – 12mm ($\frac{1}{2}$ in).

You can now do a test assembly Lto check that the joints are OK.

Grooving for top and bottom

The top panel fits in a rebate in the top and the bottom is fitted into a groove in the sides. These must be formed before the box is assembled.

The groove for the bottom is 6 x 6mm (¼ x ¼in) 25mm (1in) from the bottom (non-face edge). Make the groove on the router table with a straight flute or grooving cutter. It can also be done with the hand-held router, but it's easier on the table. Make test

Check mitre is flush with top of jig

cuts to check the fit. Your cutter is not likely to be exactly the correct size, just as long as it's not too big. If it's too small, you will have to groove in two cuts, adjusting in between.

Tip: When making test cuts for grooving or rebating, make the first cut quite long and keep the second cut short. If you make the second cut the full length of the first and it's too wide, you have lost the original groove width for further tests.

While you are in this mode, you can form the rebate for the top. The top panel is 6mm (1/4in) board veneered with two leaves of veneer about 0.6 mm (0.02in) thick, so it should be about 7.2mm (32in). Check this with a Vernier gauge. You want the rebate to be 6mm (1/4in) wide and 0.25mm (0.01in) deeper than the veneered panel. This will mean minimal cleaning up after fitting. This is best done on the router table, but can be achieved using a hand-held router – use an 18mm (¾in) cutter. Take test cuts, adjusting the fence and checking with the top panel until you have the desired fit - aim for just a smidgen protruding above the panel surface. When you are ready, make the cut in one pass.

Creating the 'feet'

The bottom of the box sides are profiled to give the appearance of feet. This is most easily done using a stopped cut on the router table.

Fit a 25mm (1in) straight flute cutter. The recess is 20mm (13/16in) wide, so set the fence to 20mm

Make a 6mm (¼in) saw-cut 50mm (2in) from back edge to prevent breakout

Make a series of cuts to form the feet

(13/16in) from the outside edge of the cutter. The cut will be made between stops. For the front and back, the stops should be 350mm (13in) from the far edge of the cutter and 250mm (9²⁷/₃₂in) for the sides.

16 Set the router speed a couple of notches below maximum and the cutter height at about 5mm (½16in) and make stopped cuts in the bottom. Repeat, raising the cutter 4-5mm (½2-½16in) each time, until the recess is complete. If there is evidence of burning after the first cut, reduce the cutter speed slightly. There is a danger of breakout at the end of the cut. Prevent this by making a slight saw cut about 6mm (½in) deep at 50mm (2in) from the back end on each cut.

Glue up

Clamp the box by using either a pair of

strap clamps or mitre clamping blocks. I prefer to use clamping blocks.

17 Before assembly, clean up and sand all parts, lightly planing or scraping, then sanding to 180 grit. Do not try planing the veneered panel. The panels will be sanded further when the inlay is applied.

18 If using clamping blocks, dry assemble and clamp each joint individually and check for square and that there are no gaps. If using strap clamps, dry clamp the whole assembly with the bottom in (the top will be fitted later) and check all joints and diagonals.

19 When you are ready, apply glue to the spline grooves and mitre faces. If using straps, clamp up the whole assembly and check. If using

mitre clamping blocks, glue and clamp diagonally opposite corners and check for square on the internal corner with an engineer's square. When the corners have fully set, glue up the other corners with the bottom in place. Make a series of cuts to form the feet. Make a 6mm (¼in) saw cut 50mm (2in) from back edge to prevent breakout.

Now fit the burr panel. The axes of the quartering need to be square and central in the panel. Hopefully the alignment will have been correct when the veneer was laid. To centralise the axes, measure the size of the opening the panel will fit into, then halve these dimensions and mark them from the axes to the edge. This should give you lines to cut to, to fit the panel into the recess. Final fitting should be by trimming with a block plane.

2 1 When the panel is a snug fit into the recess, apply a thin bead of glue to the corner of the rebate and clamp the top in place with G, F or quick clamps with narrow clamping strips at the edge. Light pressure only needs to be applied at the very edge of the panel – if you clamp away from the edge, you will dish the top. Be sparing with glue, as any squeeze-out will have to be cut away with a chisel after the lid is cut off. The lid can now be cut off (see panel on page 10).

Cutting off the lid

Having made the lid and bottom as one piece, they should be a perfect fit when the lid is removed. The best way of cutting the lid is with a slitting cutter on the router table. You could do it with a rip-sharpened backsaw, but it's tricky and you would have more cleaning up to do afterwards.

1 When the top panel is glued, clean up the top – the edges may protrude slightly above the surface. Lightly cut them back with a sharp block plane or scraper.

2 To cut the lid with the slitting cutter, set up the router table with the 1.5mm ($\frac{1}{16}$ in) slitting cutter on a long arbor at a height of 52mm ($\frac{21}{16}$ in). Set the fence so that the cutter just fails to cut through

the side, leaving a paper-thin wafer. You can check the setting on a suitable thickness offcut. You leave this piece to support the body of the box at the end of the cut, so that it doesn't drop down on to the cutter. A light twist or cutting through with a scalpel will detach the two parts.

3 Now make the cut. Place the box top down on the table and run it against the cutter. Rotate the box anti-clockwise to repeat on the other faces, then detach the lid. The cut surfaces may need cleaning up with a block plane.

4 To saw off the lid by hand, use a cutting gauge to mark carefully round the faces of the box 50mm and 52mm ($1^{31}/_{32}$ and $2^{1}/_{16}$ in) from the top. Place the box in

End of first cut. Now turn the box anticlockwise for the second cut

You can use a rip-sharpened tenon saw or backsaw to saw off the lid.

the vice, angled so that one corner is uppermost, and saw down between the lines, preferably with a rip-sharpened tenon saw. Turn the box and angle the saw as the cut progresses. When you have to clamp the cut part of the box in the vice, slip a narrow packing piece into the kerf. The cut will require some cleaning up. Mark the lid and box to ensure you offer them up the right way round when checking fit.

Left: Setting the cutter to 52mm (21/16in)

Inlaying the lid

The join between the burr panel and the solid walnut lid is covered up by 1.8mm (3/32in) or less inlayed boxwood stringing. The groove for the stringing is cut with the router.

22 Set up the router with a 1.8mm (3/32in) or less straight flute cutter. Set the depth stop to cut slightly shallower than the depth of the stringing. If you have a micro-adjuster on your router, insert the stringing into

Make a test cut in some scrap wood before you attempt to fit the inlay

the gap of the depth stop, then tweak the micro-adjuster to get the final depth. Set the fence so that the cutter straddles the join between burr and walnut, with a bias to the burr side.

23 Make a test cut in a long piece of scrap wood. Check the groove is not wider than the stringing and a smidgen 0.25mm (1/64in) shallower than the thickness of the stringing. Now make the cut. Start and end at the line between burr and walnut – do not

Rout the inlay groove with end packing to support the router

overshoot. Carefully position the cutter before plunging at the start of the cut and take a steady cut to just shy of the join at the other end. There's a lot invested in this piece and it is possible to go wrong. There can be a problem with the router dropping at the end of the cut as the corner drops into the gap in the base. You could arrange some support packing beyond the end of the box. Check it works with a test run before making the cut. Remember to breathe when making these cuts.

Make a test cut in some scrap wood before you attempt to fit the inlay

Repeat the cut on all four edges. Adjust the fence slightly to get a snug fit for the stringing. Keep testing with short cuts on the test piece until you are happy with the fit, then repeat the cut on all edges.

24 You now have a groove all round the edge, but the corners will be a bit untidy, especially the outside edges. Use a wide chisel aligned along the groove edge to cut into the corners to define them. I use a small tool made from a sharpened nail to remove the cut waste from the corners and along the groove.

📘 Hopefully your stringing will fit smoothly into the groove. If it's tight in places, you can ease it slightly using a cabinet scraper. The stringing is mitred into the corners. Start by mitring one end of a piece. Cut the stringing with a very sharp, wide chisel. You can ensure that the cut is a true mitre by looking at the reflection of the stringing in the back of the chisel. If it's at 90° to the actual stringing, the cut will be at 45°. The chisel is only good for trimming – it does not cut cleanly or square vertically if you cut off more than about 0.5mm ($\frac{1}{32}$ in). With one end mitred, lay the stringing in the groove, with the mitred end butted up to the end, and mark the cut position at the other end with a scalpel or chisel. Cut the piece over size with the chisel, then mitre trim back to the line.

Rout the inlay groove with end packing to support the router

Rout the inlay groove with end packing to support the router

Check and repeat for the other pieces. When checking fit, especially if the fit is tight, avoid putting all the inlay in at the same time – it can be a right pain getting it out again. Always make sure that one piece is not fully inserted.

Once you are happy with the fit, you can glue up. Remove one piece of stringing and use a narrownozzled dispenser to put a very thin bead of glue in the groove. Offer the stringing into the groove with the mitre

Make a test cut in some scrap wood before you attempt to fit the inlay

Scrape back the inlay with a cabinet scraper

butted up, but before you press it home lift the next piece. Press the first piece home and proceed with the next piece in the same way and so on.

27Press the inlay home fully by rubbing down with a tool handle or similar.

28 Leave overnight for the glue to fully cure, then scrape and sand the stringing back to the veneer surface.

Hinging the lid

The lid is fitted using $62 \text{mm} (2^{1/2} \text{in})$ -long solid brass butt hinges. You could use quadrant hinges, but I find them fiddly to fit. Box hinges with an integral stop are stylish and easy to fit with a router table, but they are quite expensive. Badly fitted hinges can spoil the look of a box, so you may want to practise on some scrap before fitting them.

1 Start by fitting the hinges to the box base. With a pencil and square, mark off the position of the hinges 50mm (2in) from the side. Offer the hinges up and mark the length.

2 Set a marking gauge to the width of the hinge – this is from the flap edge to the middle of the hinge pin. Mark the hinge width between the pencil marks, with the gauge stock on the outside face.

3 Now define the hinge length more precisely with a marking knife or scalpel. With square and knife, mark one of the pencil lines, stopping on the gauge line. Offer the hinge precisely on the cut line and mark the length again with the knife point.

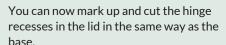
4 Square across with a knife. If using a marking knife, arrange for the square to be on the outside of the hinge area so that the flat of the knife is facing out.

5 Mark the hinge length a short way down the outside face with a pencil. Set the marking gauge to very slightly under half the thickness of the hinge knuckle and mark this between the pencilled lines. If you have two marking gauges, set one to the width and the other to the thickness. Then you can keep these settings for marking the lid later – this ensures greater accuracy.

6 Make light, sloping saw cuts that stop at the gauge lines. Now break up the waste further with chisel chops down at right angles to the gauge lines, stopping short of the knife lines at either end.

7 Pare away the waste, working down to the gauge line. The biggest danger here is overshooting and cutting beyond the width gauge line. Use your index finger against the back to control this.

8 When the waste has been removed, locate the chisel in the knifed lines at either end and chop the length.


9 Offer the hinge up to check the fit and make adjustments. It should be a press fit, with the top of the flap flush with the surface or just below. Fit the hinges into the recesses and mark the centre of the middle screw hole with an awl. The mark could be offset very slightly towards the interior so that the screw pulls the hinge into the recess. Drill pilot holes and screw the hinges in with one screw.

Now offer the lid up so that it is precisely aligned on the base (make sure it's the right way round) and mark the hinge position with knife or scalpel.

10 Fit the hinges initially with single screws and check the alignment of the lid. It may be possible to correct any misalignment by adjusting the recesses.

Having just one screw allows slight repositioning using the other screw holes. Check also that the lid sits down on the base easily. If the hinge recesses are too deep, the lid will not come down properly and will leave a slight gap at the front. Correct by planing the areas where the lid is bearing on the base.

Finishing

A hardwax oil or Danish oil would be a good finish for this piece. The inside can be left unfinished or sealed with shellac sanding sealer.

29 The false base for fitting the suede or fabric bottom should be smaller than the box interior all round by the thickness of the suede. The suede I used was 1mm (1/32in) thick – yours may be different. Test the fit of the false bottom by pressing it into the box with the suede loosely fitted. Trim the suede so that there is an overhang of about 15mm (5/8in) all round and trim off the corners so there is no overlap when the suede is folded over. Lightly stretch and stick the suede where it folds underneath, using a

contact adhesive. Now stick the false bottom in with PVA, weighing it down while it is sticking.

Polish up the hinges and fit the lid, avoiding overtightening and breaking the screws. The lid can drop right back when opened. You could fit a light chain to prevent this.

This is an abridged chapter from **Complete Woodworking**

By Chris Tribe

ISBN: 978-0-85762-146-7

RRP £20.00, offer price £14.00 plus p&p

To order please call 01273 488005 or go to www.thegmcgroup.com and quote code: R5364. Closing date: 5 January 2019

Please note: p&p is £2.95 for the first item and £1.95 for each additional item

A woodworking glossary The letters X, Y & Z

X-ACTO KNIFE This is a razor-like blade in a handle. The blades come in various shapes, very handy for fine work.

X-AXIS Conventionally the left-or-right movement of the cutting tool on a CNC machine.

CNC machining of a wooden propeller using x,y,z axis programming

XYLEM One of the two types of transport tissue in vascular plants, phloem being the other. The basic function of xylem is to transport water from roots to shoots and leaves, but it also transports nutrients. Commonly found in trees and shrubs.

XYLOLOGY The study of trees and wooded plants. Also known as dendrology.

YARDSTICK A wooden rule 36in long, most commonly used for setting out and marking joinery work.

A David Barron high-angle plane similar to a York Pitch

Y-AXIS Conventionally the in-or-out movement of the cutting tool on a CNC machine.

YOKE A connection between two parts so they move together. An example is the yoke linking the thumbwheel and blade assembly on a hand plane.

YORK PITCH A plane blade bedded at a high 50° angle for working difficult timber.

YORKSHIRE LIGHT A solid window frame, one half of which is fitted with a sliding sash.

Z-AXIS Conventionally the up-or-down movement of the cutting tool on a CNC machine.

ZERO CLEARANCE INSERT Tablesaws

have a gap around the blade to allow the angle of cut to be adjusted without cutting into the table. A blank homemade insert called a zero clearance insert closes up this gap so that the workpiece is supported all the way up to the blade, allowing neater cuts.

ZONE LINES The black lines in spalted timber which are demarcation lines between different colonies of fungi as they advance through the timber.

A standard insert plate replaced with a homemade zero clearance version

Right: Xylology is tree ring analysis otherwise known as dendrochronology

Follow us on: @Real_Deals4You

BUY ONE ROLL OF FROGTAPE

AND GET ONE ROLL OF ALL PURPOSE MASKING TAPE FREE

CORDED MULTI-TOOL WITH BAG

DWE315B Corded Multi-Tool with a powerful motor and a variable speed trigger for complete control. For ease of use, it features quick accessory change and adjustment, no hex key required.

Supplied with:

1x Wood with Nails Blade, 1x Fastcut Wood Blade, 1x Wood Detail Blade, 1x Semi Circle Wood Blade, 1x Semi Circle Grout Removal Blade, 1x Rigid Scraper, 1x Sanding Plate, 25 x Sanding Sheets (Assorted Grades), 1x Universal Adaptor, 2 x Hex Keys: 3mm and 5mm, 1x Dust Extraction Adaptor, 1x Depth Stop/Straight Cut Guide and 1x Tool Bag Input Power: 300W No Load Speed: 0-22,000/min. Weight: 1.5kg

EX VAT £99.99

£119.99 INC VAT

MOUSE® DETAIL SANDER

KA161BC Mouse® Detail Sander with single speed, designed to give better results when sanding intricate areas. Input Power: 55W No Load Speed: 11,000/min. Oscillating Diameter: 1.5mm Platen Size: 105mm² Platen Shape: Tear drop

EX VAT £16.66

£19.99 inc vat

MULTI-SURFAC

FROGTAPE

41M MULTI-SURFACE FROGTAPE®

Designed for water-based emulsion paints PaintBlock® technology Instantly gels to form a micro-barrier

EX VAT £4.57

Masking Tape

15CM (6") TURBOCLAMP™ SPEED CLAMP ROU38010

Ideal for clamping work pieces in the home, workshop or industry Quick, single handed lever action Plastic clamping faces to protect the workpiece

EX VAT £6.66

£7.99 INC VAT

Shurtape & FROGTAPE

FATMAX® OPEN TOTE WITH COVER

3131/9214

Heavy-duty 600 denier fabric with leather reinforcements
Rigid waterproof plastic base
Rain cover to help keep tools dry and secure
Multiple use compartments to suit most

storage needs Steel handlebar and shoulder strap for easier carrying of heavy loads

EX VAT £33.32

£39.98 inc vat

Follow us on: @Real_Deals4You

Alloy steel head with a polished, clear lacquer finish

Heat treated and tempered for longevity Genuine american hickory, FSC® 100% handle

Handle is smoke treated for moisture resistance Certified to DIN 5129 and GS standards

EX VAT £41.65

DUAL HEIGHT WORKMATE

Durable steel frame construction Folds flat for compact storage and easy transport Dual clamping cranks increase clamping force and versatility Adjustable swivel pegs and jaw retention grooves Jaw length: 610mm Jaw opening: 0-136mm

EX VAT £45.83

EX VAT £3.75

EX VAT £13.33

Oak indoor planter

Kevin Ley builds a lovely planter

y wife and I received a large indoor plant as a gift and were warned that it would grow to be more than 2m tall. My wife wanted it in our dining room but wanted the pot hidden, so I was tasked with making a suitable planter.

Design

Our dining room is furnished in English country style and the planter was to be in keeping with that. It also had to be large enough for the present pot and stable enough for the potential future size of the plant, without looking too agricultural.

I decided on this simple frame and panel design, refined with a taper to the outside faces of the legs. All the edges of the legs, including the top and bottom, but excluding the inside edge that butts on to the top and bottom rails, were rounded over to soften the look.

The panels would be made from oakfaced ply so they could be glued in all around for added strength.

The base would be a 'drop-in' loose fit so that it could be removed and replaced easily in case of water damage. A satin polyurethane finish would protect the wood from any water splashes or dampness associated with the plant.

Timber selection

The dining room is furnished entirely in English oak, so that was the obvious choice of timber for the planter, and I happened to have a piece of 50mm-thick stock in my wood store that, with careful cutting out, would just be enough for the job. It was originally kiln-dried and had been in my store ever since, so it was ready for immediate use.

1 The stock was surfaced and thicknessed and two blanks, each for a pair of legs, were cut out.

2 Strips for the rails and base supports were cut next. The pieces were sticked and stacked in the workshop to allow even drying of the exposed surfaces, and to condition the wood during the making.

Legs

The blanks for the legs had been thicknessed to the correct dimension and were now cut to length. The width of the oblong blank was the sum of the width of the top of the leg, plus the width of the bottom of the leg, plus 4mm for a saw cut down the diagonal and cleaning up with a plane.

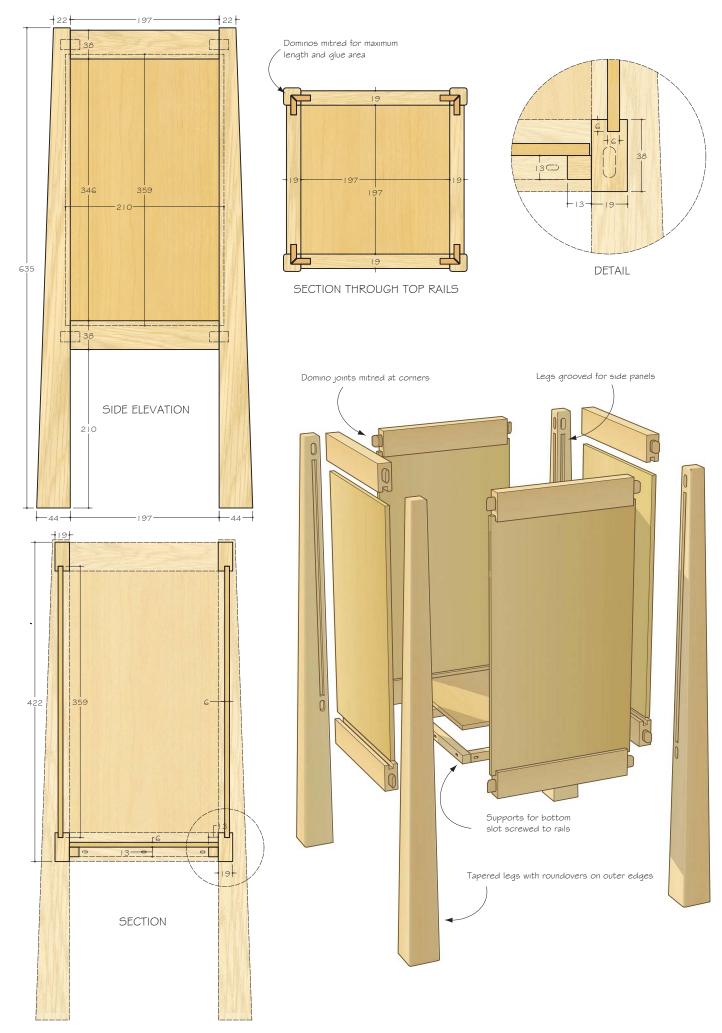
4-5 The diagonal was marked on the blank and the first cut made on the bandsaw – this gave the taper to one side of the leg. An adjoining face was marked and the taper cut again on the bandsaw to give the second tapered face at right angles to the first. All the faces of the legs were planed to correct size and sanded down to 150 grit.

The outside long edges and all four top and bottom edges of the legs were rounded over with a bearing-guided 3mm radius cutter on the router table.

Domino slots were cut for the rail joints and stopped housings for the panels.

Rails

Of the rails were faced and thicknessed to the correct size then cut to length, and the long edges rounded over with the same 3mm radius cutter. Housings were cut for the panels, and domino slots cut in the ends.



Project

A dry test-fit found that the dominos ran into each other in the leg and would not allow the joint to close properly. The solution was to either shorten the dominos or mitre the ends - I chose the latter as it made for a stronger joint. The dominos were glued into the rails and mitred on the bandsaw.

Panels

The panels were cut to size from a suitable piece of oakfaced ply and sanded, ready for fitting into the housings in the legs and rails.

Assembly

1 1 All the individual components were power- and hand-sanded down to 240 grit, and one set of joints and a panel test-fitted dry.

12-13 When I was happy, glue was applied to the domino slots in the legs, and the panel housings and the front and back were assembled.

I then clamped up the panels, checking the diagonals for square by measuring across the diagonals. Adjustments were made as necessary and they were left to set. When they were ready, the front and back were attached by fitting the side rails and panels in a similar way and clamping up. All the diagonals were checked and adjusted, and the whole piece stood on a level surface and left to cure.

Mouse plane

15-16 The glue ooze was removed using, as well as my usual scraper and abrasive paper, my new mouse plane. I find this a very useful little tool, ideal for removing glue ooze, particularly inside drawers. Its prime function is to flatten hot plastic filler, but I have found myriad uses around the workshop where it is awkward to get a cutting edge flat and up to a face. As with any other edge tool, the sharper the blade the more effective it is, and I keep mine well honed. Well worth the small cost of around £10.

17 I then glued and clamped the two remaining side panels in place with their bearers, being careful to use blocks so that I did not mar the surface of the oak.

Base

18 Bearer strips for the drop-in base were screwed to the bottom rails, and a ply base cut and fitted.

Preparing for finish

Most of the individual components had been power sanded down to 240 grit prior to assembly. The whole piece was now checked over, any blemishes and clamping marks removed, and finally hand-sanded ready for the PU varnish.

Finishing

1 Puring plant watering this piece was vulnerable to water splashes, so I chose a PU floor varnish by Liberon, as it has a high resistance to water and is less likely to mark.

A satin finish most closely matched the oiled finish on the oak furniture in the room. The first coat was diluted with 20% white spirit and applied with a sponge. I prefer to apply finishes with a 'one-use' sponge or pad – there are no brush marks or stray hairs, and no brushes to clean.

Once it was dry, a light sanding removed any blemishes missed before that had been highlighted by the first coat. Two more coats of undiluted varnish were applied at eight-hour intervals, with a light sanding to de-nib

between coats, again with a sponge. The piece was left in the workshop for a full week to harden fully.

Conclusion

I had made the planter larger than the existing pot to allow for future repotting, so I put a wooden block on the base to stand it on in the meantime. Once the plant and planter were in position I received huge praise and a reward from my better half – well I got a 'that's nice dear' and a cup of tea. Who could ask for more?

FOUR IN ONE

18V Router Trimmer DRT50

Meet the contributors...

We put all of this month's professional and reader contributors here, so you know exactly who they are and what they do

Louise Biggs

Having completed her City & Guilds, Louise trained for a further four years at the London College of Furniture. She joined a London firm working for the top antique dealers and interior designers in London before starting her own business designing and making

bespoke furniture and restoring furniture. Web: www.anthemion-furniture.co.uk

Michael T Collins

British-born Michael has been working with wood off and on for 40 years. He moved to New York in 1996 and over the years has made bespoke furniture, including clocks, inlay work, Adam fireplaces, book cases and reproduction furniture.

Web: www.sawdustandwoodchips.com

Gareth Irwin

Gareth is a hand tool-only woodworker from Mid Wales who uses both green and seasoned timber to make everything from Welsh stick chairs to pole lathe turned bowls to spoons.

Duane Cartwright

Duane is a self-taught woodcarver based in Hartland, North Devon. He has been carving on and off for about 15 years. His interest in carving began while undertaking an apprenticeship in antique furniture restoration. His work can be found in the UK

and as far away as Australia. To see more of Duane's work, visit www.duanescarving.blogspot.co.uk.

Simon Rodway

Simon has been an illustrator for our magazine since 'the dawn of time' itself, drawing on his experience in the field of architecture. He also runs LineMine, a website with articles and online courses on drawing software. His course SketchUp for

Woodworkers is proving really popular.

Web: www.linemine.com/courses

Gary Marshall

Gary has had a life-long interest in woodlands and the countryside. He trained in countryside management and subsequently ran a company working with the local County Councils and Unitary Authority and their Countryside and Rights of Way Teams, as

well as a wide range of conservation organisations.

Your face and details could appear here in our 'rogues' gallery' if you write an article for the magazine, and you could be rewarded for your efforts too.

Editor Anthony Bailey Email: anthonyb@thegmcgroup.com, Designer Jan Morgan, Head of Woodworking Design Oliver Prentice, Senior Editorial Administrator Karen Scott, Illustrator Simon Rodway (www.linemine.com), Chief Photographer Anthony Bailey, Group Editor, Woodworking Mark Baker, Production Manager Jim Bulley, Production Controller Amanda Hoag Email: repro@thegmcgroup.com, Publisher Jonathan Grogan, Advertising Sales Executive Russell Higgins Email: russellh@thegmcgroup.com, Marketing Anne Guillot,

Subscriptions Tel: +44 (0)1273 488005 Email: pubs@thegmcgroup.com

Printed in the UK by Stephens and George Print Group, Distributed by Seymour Distribution Ltd Tel: 020 7429 4000 WOODWORKING CRAFTS (ISSN 2057-3456) is published every four weeks by GMC Publications Ltd, 86 High Street, Lewes, East Sussex, BN7 1XN

SUBSCRIPTION RATES (includes postage & packing)

UK Europe Rest of World 12 issues: £51.00 £63.75 £71.40 24 issues: £102.00 £127.50 £142.80

 ${\sf US}\ customers\ should\ call\ the\ Subscription\ Department\ for\ subscription\ rates\ in\ {\sf USD}\ (\$).$

Cheques made payable to: GMC Publications Ltd.

Current subscribers will automatically receive a renewal notice (excludes direct debit subscribers). Post your order to: The Subscription Department, GMC Publications Ltd, 166 High Street, Lewes, East Sussex, BN7 1XU, UK. Tel: +44 (0)1273 488 005 Fax: +44 (0) 1273 402866 Email: pubs@thegmcgroup.com Web: www.thegmcgroup.com

Woodworking is an inherently dangerous pursuit. Readers should not attempt the procedures described herein without seeking training and information on the safe use of tools and machines, and all readers should observe current safety legislation. Views and comments expressed by individuals in the magazine do not necessarily represent those of the publishers and no legal responsibility can be accepted for the results of the use by readers of information or advice of whatever kind given in this publication, either in editorial or advertisements. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission of the Guild of Master Craftsman Publications Ltd.

Traditional-style coffee table

It takes real skill to make awkward short-grain repairs, as **Louise Biggs** shows

his much-used coffee table had a rather unusual leg arrangement. It resembled two tripod bases with a leg missing on each and replaced by a stretcher rail. The tripod pedestal arrangement was traditionally used on smaller, round tables known as tripod tables. In some cases the top would tilt upright, but in nearly all cases they were a turned pedestal with three cabriole legs and dated from around 1730 up to Victorian times.

Stages of restoration

The table had suffered an accident leading to two of the cabriole legs becoming detached from their pedestal. The joints for the stretcher rail and other pedestal were still solid, so how best to restore the broken legs? Pieces of the sliding dovetails were on the pedestal and pieces of the pedestal were still attached to the legs.

2 First I separated the pedestal pieces from the legs – a gentle

Tool List

- Chisels various sizes
- Mallet
- 'G' clamps
- Waste clamping blocks
- Screwdriver
- Sliding bevel
- Mortise gauge
- Gent's saw
- Drill and drill bits

tap with a chisel and mallet along the joint line released the sections with little difficulty. The pieces could then be aligned back on the pedestal to ascertain whether they would fit cleanly back in their correct places.

The smaller pieces of the sliding dovetails were prised from the pedestal in the same way. Before doing anything else the old glue was removed from the legs, the pedestal and all the various pieces.

puzzle. What did become evident was that several much smaller pieces were missing, which prevented the pieces lining up, and left gaps in the sliding dovetail.

The pedestal pieces fitted cleanly and there would also be room to breaks it was clear how they went back together. Each piece was glued in turn forming a rub joint. This entails moving reinforce the joints. Initially using animal hide glue, the three sections the pieces side-to-side or up and down were glued in place. To hold the pieces with the glue until the glue becomes in place until the glue set, masking tacky and holds the piece. tape was wrapped around the pedestal as this put the required pressure on the angle of the breaks. Clamping blocks could have been cut to fit, allowing clamps to be used, but with

As a stronger and more economical repair option, I decided to replace the sliding dovetail. This entailed cutting a sliding dovetail into the leg then re-cutting the dovetail for the pedestal. First, two lines were marked which indicated where the dovetail joined the leg.

The damaged sliding dovetail was

sawn off and the pencil marks

followed round to the leg joint surface

using a mortise gauge. The depth

of the sliding dovetail could then

the top of the leg.

be established as well as the length,

keeping the top of the joint down from

5 While the pedestal was drying I separated which of the sliding dovetail pieces went with which leg. The first leg was straightforward - in four pieces and from the edges of the

three broken sections there was the

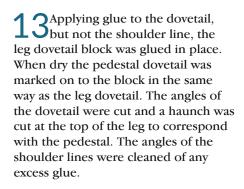
risk of one or more moving out of line.

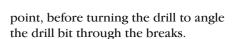
Using blocks that had been pre-cut to mirror the angle of the dovetail, the joint was clamped until dry. The blocks were coated in candle wax to prevent them sticking. Once dry the sliding dovetail would be strong.

The sides of the dovetail were cut using a gent's saw at an angle so the cut reached the furthest points on the dovetail. Care was taken not to disturb the shoulder line of the joint.

The second leg required a bit more work - I was faced with eight pieces and several much smaller pieces and trying to find which order to glue them and where they went was a jigsaw

Using a chisel and mallet, the remaining waste was removed by cutting down the dovetail sides and clearing out at the bottom.





In this situation I was aware of the grain direction of the leg when cutting down the sides as it could split the leg if the grain was running in the same direction.

12 A piece of timber was prepared, large enough to make the two sliding dovetails, and using the leg and a sliding bevel the leg dovetail was marked on the block. The dovetail was cut using the gents saw and trimmed to fit using a suitable chisel.



14 With the legs repaired, my attention turned back to the pedestal and how to strengthen the breaks on either side of the legs. There was enough shoulder line that small 3mm holes could be drilled to accept dowels. Initially, the drill was started square to the timber to get a starting

18

In each of the three shoulder lines two dowels were angled up and the top dowel was angled down, as shown by the extended ends in the upside down photograph. By angling the dowels it locks the repair in place. When stress is put on the joint it will be more difficult for the break to come apart again. Before gluing the dowels in place a small groove was carefully cut on both sides of the dowels with the corner point of the chisel. This allows any air trapped behind the dowel to be squeezed out with the excess glue as the dowels are inserted. Once the glue had dried the dowels were cut flush to the surface of the shoulder line.

17With the table back together the legs were checked with winding sticks to make sure they were level so that the table did not wobble.

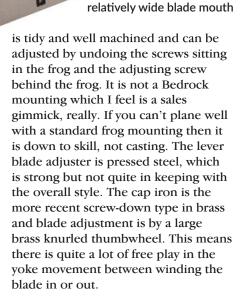
18 The repairs around the legs and pedestal were stained and polished out as required and the table was ready to be returned to its owners.

KITTED OUT

Take a look at the gadgets and gizmos that we think you will enjoy using in your workshop

TEST

Rider hand planes


That inveterate collector of handplanes gets his hands on a brand new one!

was given a No.4 Rider Smoothing plane to try out. It is part of a much wider range of handtools that have been designed by Axminster to meet the needs of the more demanding woodworker on a budget. They have a look and feel that ensures they do not seem out of place in even the smartest of workshops.

The No.4 is the smallest of the large bench planes which run -4, 41/2 Smoothing, 5, 51/2 Jack, 6 Fore, 7 Jointer plus a No.62 Low Angle Jack. There are also block and rebate planes to consider. It comes in the standard Rider box which has full foam lining to protect your new acquisition, instruction booklet, plane sock and a

spare blade. Because of its short soleplate, this is to be honest, not the trickiest to obtain a flat sole but it is a nicely turned out plane. Picking it up, the tote or rear handle and the front knob are commendably smooth and not particularly shiny, which I much prefer. The base casting has evenly matching sidewalls and a good thickness of metal all round. Unlike early Stanley planes which were advertised on the virtue of a thin blade, this one is a good thick 01 high carbon steel and equally thick chipbreaker held with a domed

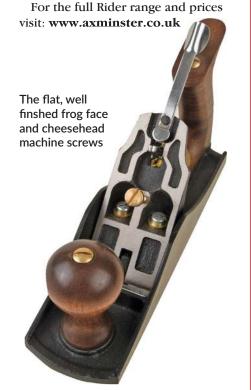
cheesehead screw. The frog casting

The very finely

ground plane sole and

Although each plane comes ready sharpened, I prefer to gain my own edge. However, it cut perfectly well

I managed to acquire some quite fine shavings on a piece of walnut


The high carbon steel blade and chipbreaker assembly plus spare blade

after simply adjusting the blade setting. I feel I improved the result marginally by going through my usual sharpening routine with a 1000 mesh diamond plate and then stropping to lose the fine burr and polish the edge. It was a pleasant plane to use and the carbon steel blades should keep their edge for some time in normal use, but I really need to work with it for a longer period to determine that.

Verdict

I do know that when the range was originally launched there were quality control issues which have been successfully addressed. I'm pleased to say that Rider are hitting the quality mark. The extra blade is intriguing; it's almost like giving away another plane – you could camber the edge or leave it straight and pop it into that cheap old No.5 you already own and for no extra cost have a jack plane as well! However, I suspect in time you will wish to add further Rider models to create a good workmanlike set of tools that deserve looking after.

Price is £89.96 standard or £104.96 to have personalised engraving.

The new Bosch GLM 120 C Professional Rangefinder – Laser spot visibility problems solved

For anyone whose work involves distance measurement on work sites, Bosch is offering upgraded performance in the shape of its new Bosch GLM 120 C Professional Rangefinder with a range 120 metres and accuracy +/- 1.5 mm. In addition to a camera as a viewfinder with integrated zoom function, which solves the common problem of target invisibility, this user-friendly laser measure enjoys all the benefits of Bosch connectivity.

Bluetooth connection with the free Bosch Measuring Master app gives access to a range of useful facilities for recording, processing and sharing information to speed up workflow. The device also comes with GLM Transfer Software which allows simple copying of data and pictures from its own memory to your laptop or PC.

The device's large 2.8inch colour screen with flip display, has a familiar smartphone look. Readability from all angles is possible thanks to IPS (inplane switching) technology, while optical bonding minimises the effects of condensation or reflected sunlight when viewing the screen outdoors.

The ability to control this laser measure remotely through your smartphone or tablet, from a range of about 10 metres, eliminates any need for assistance from a second person. A timer function adds further convenience.

As well as lengths, widths and heights, the Bosch GLM 120 C Professional Rangefinder's measurement functions include inclines, areas, volumes and more. It can be used to quickly create floor plans and pictures, complete with

measurements and notes. Date and time information can be saved with all records for easy reference and proof of work.

Up to 50 measurements, including pictures, can be stored in the device's internal memory and then transferred to your computer through a micro USB cable. When information needs to be shared urgently, connectivity via Bluetooth means you can send measured values, plans and comments to your colleagues or customers immediately, even while you are still on site.

Robustly constructed for challenging environments, the new rangefinder's housing is sealed to IP54 standard against dust and splashing water, while the screen's Dragontrail cover glass is resistant to scratching and other damage. The Bosch TrackMyTools app (as soon as this service is available) simplifies tool location and management.

Available from specialist retailers, RRP £283.19 (subject to change)
Visit: www.bosch-professional.co.uk

Xtra Xtra read all about it!

Coupled with the expansive range of tools and machinery on display at Machine Mart stores across the country, machinemart.co.uk is the place to go for harder to find specialist tools, with over 21,000 products online.

Machine Mart XTRA includes MORE power tools, hand tools, garage equipment, water pumps, wood & metal working, outdoor & construction – even football & pool tables.

Tools and machinery are available from all your favourite big brands, so whatever you're looking for, visit the XTRA section of the Machine Mart website. www.machinemart.co.uk/

f you are a professional woodworker then it makes sense to buy good quality kit which has a price tag to match. For the rest of us working on a smaller scale and a smaller budget that isn't a realistic option. This is where Triton comes in, powertools that can do the job but at a more budget price. Its incarnation of the Mafell Duo Doweller has to be worth checking out to see if it can in any way match the original.

Decked in the usual livery, it looks the part and has a fully adjustable fence and interchangeable dowel cutters for different size dowels. The premise is simple, take what is usually an unreliable system of jointing with standard beech dowels and turn it into a quick and precise portable jointing method. If you have enough of the right size dowels inserted it can deliver very strong and accurate joints without having to cut mortise and tenons. We looked at three jointing systems in the last issue but now we can use a cheaper doweller to try to achieve similar results.

On test

This test is all about the test – if it can't

joint well it fails, if it can, then it wins. Let's pick it up and examine the fixtures and fittings. The hinged fence and faceplace slide up and down and lock. So far, so good. The fence needs to lock positively at 90°, or at any other angle for that matter. In fact, it runs past 90° so you need to check it truly is correct using a reliable square. The pointer can be adjusted accordingly. There is a scale on one side for setting the fence height, rather like a biscuit jointer.

The edge of the faceplate has a series of bumps and dips. On the Mafell these would locate against a clamp-on fence for multiple hole drilling. In this case no additional fence is available and I'm not sure how accurately the shapes would mesh.

The operation is a plunge action with the mechanism sliding inside the lower casing with a spring return. There is a setting scale to suit different length dowels.

The TCT-tipped twin cutters are interchangeable, the kit came with 8mm and 10mm cutters, the 12mm size being currently unavailable. Changing cutters should be quite easy but, for some inexplicable reason, one cutter, after loosening the grub screw, needed

The fence height setting scale, adjustment and locking knobs

Fence tilt adjustment and drilling depth setting

8mm and 10mm paired TCT tipped dowelling bits

Using cranked pliers to remove a dowelling bit safely

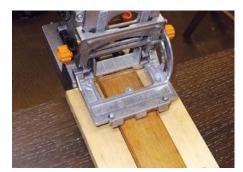
working free with pliers, although it eased after that. It did occur to me that if you were jointing into unequal size components fixed side by side you could fit different size cutters instead of a matched pair.

To drill the holes, make a mark across both components and use the clear plastic sighting plate with its centreline to position the tool, switch on and plunge. The cutters appeared sharp, but in hardwood a bit of effort was required, although it drilled neat holes. Assembling the joint was a slight puzzlement because one side of the end-drilled component was a fraction only a fraction – higher, which happened on repeat as well. So I cut through that component and reverse-fitted the cut slice, which should have made it dip instead of rise, but it did the same thing. One of life's mysteries which needs a little more research. However, the joint was within normal sanding tolerance. As a short-term means of adjustment, I put washers under each fixing for

Checking by touch to make sure the joint is flush

Pressing down on the fence to ensure accurate hole placement

the sighting plate so it was no longer recessed but sitting slightly proud. This did improve matters quite easily.


End-on narrow components may not sit evenly against the faceplace because of the rubber anti-slip devices. You have two choices – remove the rubbers or, more sensibly, as with a biscuit jointer, make up a simple jig to hold narrow components safely, so the faceplate sits against the jig properly. This is where sprung end stops instead of slightly projecting rubbers would give better location. Indeed, when choosing drilling positions you are reliant on the three indent lines on the sighting plate that show centreline and drill positions, so you need accurate marking on your components to show where to drill. Extraction is necessary to control dust output.

Conclusion

In terms of precision this machine isn't a Mafell, but with a bit of care in setting up and learning how to get

Typical dowel holes and alignment marks for a T-joint

A simple jig for end drilling to ensure accurate alignment

the best from it you can quickly and easily create frames for doors, panels and other furniture, since accurate dowelling will give stronger jointing under stress such as chair joints, than a biscuit jointer can. Dowels are reasonably cheap and this machine avoids the extra time and effort needed for mortise and tenoning at a reasonable price.

Tech spec

Triton 710w Dowelling Jointer
Motor input: 710 watts
Dowel drills: 8mm supplied
(optional 10mm, 12mm)
Drilling depth: 0-38mm
Drilling centres: 32mm spacing
Fence adjustment: 0-90°
Weight: 2.99kg
Accessories: Hex key, dust port
adaptor
RRP £165
Visit: www.tritontools.com/en-GB

NEWS & EVENTS

All the latest events and news from the world of woodworking

Let's go outside

By Anthony Bailey

he Land Trust is delighted to launch a new education strategy, as the green space management charity looks to inspire people of all ages to spend more time outside and enjoy all the benefits that well-managed green space has to offer. Working in partnerships with local schools and nurseries and providing volunteering opportunities, through projects such as our Green Angels programme, the Land Trust is aiming to increase the amount of time spent by young people outdoors, and give them the opportunity to learn new skills, enhance their future prospects and make a difference in their community.

The time currently spent outdoors by children is worrying low. In fact, it is reported that three-quarters of UK children spend less time outside than prison inmates, while a fifth of children do not play outside at all on an average day. It was these statistics, combined with a crisis in childhood obesity and mental health, that encouraged the Land Trust to act. Director of portfolio management Alan Carter says: "The UK government wishes to use and develop the natural environment to improve the education and lives of all children, with a particular focus on those from

deprived communities. With more than 60 sites across the country we recognise that we are in a unique position to make a real difference and our refreshed education strategy is the first step in that process.

"Over the next three years the Land Trust will have a strategic focus on developing relationships with schools and nurseries within walking distance of our spaces."

The charity is investing in six new outdoor learning areas across its sites at Wellesley Woodlands, Bewsey, Kiverton, Old Hall, Silverdale and Hassall Green, while also training rangers and teachers as forest school practitioners, to enhance the variety of activity on our sites.

The Land Trust is also working with an external body, Nature-Nurture, to produce an education pack for use by local schools near our site at Davey Down.

There are already a huge number of educational activities going on at Land Trust sites across the country, with the number of school visits rising from 3,500 to 7,500 over the past five years.

Elba Park in Sunderland is a site playing a lead role in this work and was awarded Land Trust Educational Site of the Year after delivering activities to nearly 1,000 schoolchildren over the past 12 months involving local schools and has seen children enjoying activities such as geocaching, pond dipping, meadow sweeps, crafts, surveys and identification, bulb and tree planting, and heritage activities.

"If we can replicate the success of Elba Park across a number of our sites then we can make a huge impact and effect real change in so many people's lives," says Alan.

Visit: www.thelandtrust.org.uk

There be dragons...

Head of Historic Carving at City & Guilds of London Art School, Tim Crawley, has been at the centre of a major renovation project on the Great Pagoda at Kew Gardens which is now complete and open to the public.

Originally built in 1763, each corner of the eaves of this octagonal structure was adorned with highly polychromed dragons varying in length from around 5ft at the top of the tapering tower, to around 8ft at the bottom. In the 1780s the dragons were removed.

Tim was selected to design a new set of dragons to be reinstated on the building. The original colour scheme of the building has been used, with the dragons painted in iridescent glazes and gilded highlights.

A host of carvers are working on the project, which requires 80 new dragons to be crafted, and a number of carving tutors and alumni from City & Guilds of London Art School have been commissioned to carve the sculptures. Seventy-two of the dragons will be 3D printed and eight carved from African red cedarwood.

Tim researched the original dragon designs with reference to engravings and paintings from the time of the construction and analysed similar works from the period. He then modelled prototypes in clay that were translated into full-size carvings by Art School alumnus Paul Jewby in his workshop in Suffolk. These carvings were then 3D scanned. Art School alumni John Shield, assisted by David White,

City & Guilds of London Art School alumnus John Shield in the process of carving one of the dragons

and Robert Randall, assisted by Ashley Sands and David Mendieta, were part of the team involved in carving the dragons.

Tim says "It was a wonderful opportunity for a large group of woodcarvers to work on this unusually grand architectural scale."

Visit: www.hrp.org.uk/kew-palace/explore/the-great pagoda/#gs.FqWw=GA

www.cityandguildsartschool.ac.uk

COURSES

Multi-Skills Workshop

Based in Polegate, East Sussex, this workshop offers a variety of craft courses in woodworking – beginners and advanced, jewellery making, glass, metalwork and welding. All courses are done in a safe, professional workshop under the guidance of experienced workshop practitioners. New courses start on 17 September, although you can join at any time. To find out more visit: www.multiskillsworkshop.co.uk/practical-courses

EVENTS

Handmade at Kew – The International Contemporary Craft Event 4–7 October 2018, 10am-6pm Royal Botanic Gardens, Kew, Richmond, TW9 3AB www.handmadeinbritain.co.uk

Autumn Countryside Show 6-7 October 2018, Weald & Downland Museum, Singleton, West Sussex, PO18 0EU www.wealddown.co.uk

Surrey Hills Wood Fair 6-7 October, Fish Pond Copse, Cranleigh, Surrey, GU6 7DW www.surreyhills.org

Multi-Skills Workshop, Polegate

Tweed Valley Forest Festival 20-27 October, 2018, Peebles Community Centre (The Drill Hall), Walker's Haugh, Peebles, EH45 8AU, www.forest-festival.com

Festival of Wood & Country Crafts 21 October 2018, Bakewell Agricultural Business Centre, Bakewell, Derbyshire, DE45 1AH. Featuring 2018 World Stickmaking Championship final round. British Stickmakers Guild www.thebsg.org.uk

Woodworking & Powertool Show 26-27 October 2018, Westpoint, Exeter, EX5 1DJ www.wptwest.co.uk

Web links for you

YouTube

Strandbeest

Nothing to do with wood but everything to do with mechanisms, lightweight construction and using the power of the wind. These creations of a fertile mind come alive as they creak their way across the sandy beach.

Instagram

@james_son_of_james Some nice hand tooly stuff plus cute dog etc. Just lovin' all things wood really.

Twitter

@SAW_Originals Steve Asprey – bespoke furniture, workbenches and board games, some nice well executed stuff.

S 45 n

A small Band Saw with great capabilities that is perfect for either the joinery workshop, schools, furniture restoration or renovation

T 55 W elite s
A Spindle Moulder with great versatility for many tasks

ECO 300 D
An efficient low cost dust extractor

Koi carp Duane Cartwright shows you how to carve this koi carp

Tools:

PHOTOGRAPHS BY DUANE CARTWRIGHT

- Bandsaw/coping saw
- Carving vice
- Sweep gouges:
- No.11, 3mm
- No.11, 2mm
- No.9, 14mm
- No.9, 8mm
- No.8, 25mmNo.6, 6mm
- No.3, 10mm
- No.2, 20mm
- No.7, 9mm eye
- No.5, 8mm eye
- No.3, 6mm fishtail sweep
- Hooked skew
- Left and right No.4 sweep skew gouge inside mouth
- Abrasive: 150, 240, 320 & 400 grit

Wood:

- Basswood (*Tilia americana*)- 300 × 145 × 50mm
- Finishing oil or any other finish you prefer

got inspiration for this carving when sitting by my pond watching the fish catching insects on the surface, with dragonflies flying around. I've stylised this koi carp to make the project easer to carve. I've also carved the fins quite thick for strength, as the grain direction goes across the fins, thus making them weaker. You could carve the fins separately and add them, in which case you could carve with the wood grain direction making them thinner and stronger – this could possibly make carving the sides of the fish easier as well.

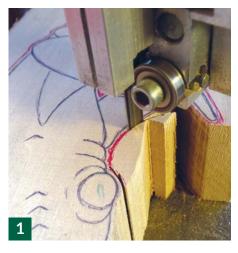
I've also carved the anal fins sticking out the side so they can be seen, where they would normally be further underneath the fish. The side profile of this carving is squashed, as this piece is a pierced relief and is to be looked at from above. I've not carved any scales on this fish as gaining access under and around the lily pads could be difficult, especially when trying to keep the scales of a uniform size.

You could carve the scales or stab an impression with a stop cut of various sweeps, or even use pyrography to give the impressions of scales. Try these various techniques on a piece of scrap wood before committing it to the carving itself.

Begin by printing out the design at 1 Begin by printing on the required size for the piece of timber you wish to use, then transfer the design on to the piece of wood. For this, use a carbon stick and rub it all over the back of the printout, then trace the design on to the wood. You could use carbon paper or even glue the printout in place. With the design on the wood, use a red pen and draw around the edge of the design. This will aid visibility while you are cutting it out on the bandsaw. Once you're happy with the placement of the design, begin cutting out on the bandsaw if you have one, but if not, then a coping saw will do just as well.

2 You are now ready to mount the project on your carving vice/clamp. Glue a piece of scrap wood to the front half of the underside of the carving, then fix the vice to the scrap block. With the carving mounted on the vice, draw some guidelines around the edge of the lily pads. This is for the rough thickness of the dragonfly, which is level with the top of the large lily pad and the thickness. Remember the middle pad goes under the other two.

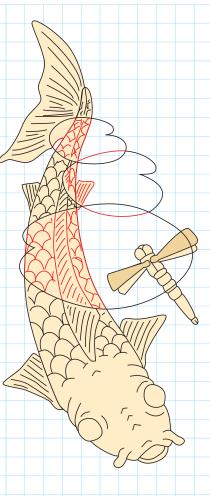
Bolstering in

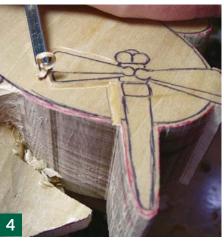

Using the No.8 and No.9 sweep gouges, start bolstering in the fish. Start with the No.9 sweep and mark out around the lily pad, then roughly shape the front half of the fish, leaving the dorsal for now, and roughly carve the tail, just enough to separate from the lily at this stage.

Lily pads and dragonfly

4 Using the No.11 sweep, mark out around the dragonfly. Then, using a shallow gouge, take down the lily pad to just above the guidelines drawn on the side.

5 Where the lily goes over the dorsal fin, there is a bend just above it, which is also on the dorsal fin. Draw a line on the lily pad where the dorsal should be. Then, using a No.9 sweep, begin to carve a groove to create the bend/ridge in the lily pad, then continue shaping the pad.


With the first lily pad now roughly shaped, cut in and carve down the other two lily pads. The middle pad goes under the other two. Then, using a hooked skew, finish lowering the lily pad and cut in around the dragonfly.



With the pads roughly carved to depth and using the red areas on the design pattern as a guide, draw the rough profile of the fish on the underside of the carving, making it a bit larger than actually required. Then, using a No.9 sweep gouge, carve away the waste to the underside of the lily pads. Remember to keep these pads thicker than required for now.

Continue carving in the side of the fish, shaping and blending the rest of the fish as you go. While carving the side of the koi carp under the pads, beware of the changing wood grain direction – a rolling slicing cut is required here. With the side of the fish bolstered in, draw the shape of the middle lily pad as it overlaps the outer two from the underside, then cut in and take down the largest pad to its rough thickness. The lily will be carved to its finished thickness later.

The dorsal fin bends over as it goes under the pads, adding strength to the project. Using a deep gouge, clean up where the dorsal fin and the side of the fish meet the pads. This will add the inside curve to the dorsal fin. Remember that most of what is carved under the pads will not be seen when the carving is finished.

10 Using a shallow No.3 sweep, move round to the other side and undercut the lily pads so they are an even thickness all round, then, reversing the gouge, continue shaping the fish's body.

Dragonfly

1 1 I've stylised my dragonfly but you could carve a particular species. The choice is up to you. Use a veiner to separate the wings and a shallow fishtail gouge to take down the lower wings. Using the same gouge reversed, round over the body.

12 Now to draw on the detail. Once happy with the placement, use a veiner to carve in the detail of the head and body, then using the fishtail reversed, round over the eyes, etc. With the head and body carved, use a medium sweep gouge to cut in around where the wings join the body, then round over and use a shallow gouge to slope the wings back. With the top of the dragonfly carved and undercut, round over and carve in the detail of the overhanging parts of the dragonfly.

13 With the dragonfly and the top of the lily pad carved, you can now continue with the other lily pads. Draw a line about 4-5mm from the top of the lily around the edge. This will be the finished thickness of the lily, then, undercut the lily to this line.

14 When undercutting the lily keep checking the placement of the dorsal fin. Using a coping saw, cut out a wedge from under the small lily pad above the tail. This will make shaping the tail area easier and create more shadow.

Carving the tail

15 Use a deep gouge, starting where the body meets the tail. Create a hollow curl to the tail, keeping aware of the thickness and strength as the grain can be weaker near the end. Once you're happy with the shape of the inside curl of the tail, carve back the other side of the tail, following the curvature and keeping an even thickness along the tail.

Anal fins

Draw a rough centreline on the underside, then use dividing callipers to measure and make sure the fins are of an equal size and equally apart. Using a deep gouge, carve down between the anal fins and around the bottom of the tail to create shadow at the back of the fish. This also gives you somewhere to place a picture hook later. Slope the anal fins from the outside edge of the fin into the body of the fish.

Head and eyes

7Draw the eyes roughly in place using the pattern as a guide. Once you're happy with the placement, use a medium sweep gouge that best fits the eye and cut in so you curve the gouge round to create a circle, then carve away around the eye until it's a couple of millimetres in height. The next step is to draw some guidelines from the carved eye over to the other side, which will help to make sure both eyes are equally placed. With the eyeballs now cut in, draw another circle around the outside of the eyeballs and, as before, cut in and carve around. While carving the outer circles of the eyes, cut in and carve two gills on each side behind the eyes, but in front of the two pectoral fins, then round over and shape the fins.

Mouth and barbels

18 Using the pattern as a guide, draw the open mouth in place. The top lip curls up and the bottom lip will protrude. Using a deep gouge, hollow out the mouth. Once the first part is hollowed, you start cutting into end grain. Using skew gouges with slicing cuts, carve the inside of the mouth. Only carve in deep enough to make the mouth look hollow, keeping the inside of the mouth as clean as possible.

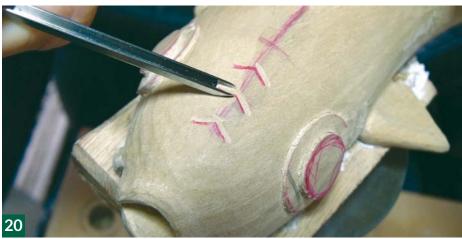
19 Using a No.3 sweep fishtail, cut in the corners of the mouth up to the barbels. Use a deep gouge to carve a groove over the top lip from the sides of the barbels and blend in, then round over the bottom lip.

20Using a hooked skew, cut in both sides of each barbel and round over. Be careful not to undercut the barbels as they will otherwise be too weak and eventually break. Finish carving in the rest of the head detail and round over the eyes.

2 1 Using a filler knife or spatula, gently prise the carving away from the fixing block. Use a hooked skew to round over the body and behind the fins, generally cleaning up the bottom of the carving.

Finishing off

22 I chose to sand this carving, but you could leave it tooled with facets that could resemble scales. I started with 150 grit. Going with the grain direction, remove all the tool marks until smooth, then brush down before moving on to the next grit size. I finished with a 320 grit and brushed again. Once the sanding is done, use a V-tool and carve some detail lines into the fins and tail.


23^{Here's} the final carving. ■

Top tips

- 1. Take a scrap piece of wood/offcut and, using the medium sweeps of your gouges, create some circles. Pick the two circles that best match the sizes of the inner and outer parts of the eyes.
- 2. When attaching to a fixing block or carving vice, leave the back half of the fish and the mouth area so they can be carved.

Superior Woodworking with the Sjöbergs **Elite Workbench**

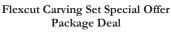
Designed and built by Swedish craftsmen, this is European bench making at its highest level.

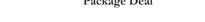
- Built from European beech
- Treated with a premium quality finishing oil
- Vices provide enormous clamping power
- Double row of dog holes working from each
- 4 steel bench dogs which can also be used
- Quick action holdfast for horizontal clamping or in the trestle legs for clamping large boards

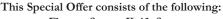
"...a joy to own and to use. It's rocksolid, easy to put together, just the right size, and looks more like a piece of furniture than a workbench - the quality is that good."

Available from **BriMarc Tools & Machinery** at brimarc.com or call 03332 406967

Creative Welsh Woodturning Ltd


Turners Tool Box WOODTURNING - WOODWORKING - WOODCARVING **Tools & Accessories**





Log on To

- Flexcut Starter Knife Set
- Flexcut Knife Strop, with the Flexcut sharpening compound

We have also included – Free of Charge the Ambidextrous - Beber Kevlar Carvers Glove

Next day delivery service (UK)

We deliver worldwide

For more information or to place your order visit www.turnerstoolbox.com Order online Open 24hrs

T: 01873 831 589 - M: 07931 405 131 - E: david.martin70@outlook.com

Wooden wheel

Michael T Collins doesn't try to reinvent the wheel, but he isn't averse to making one...

History of the wheel

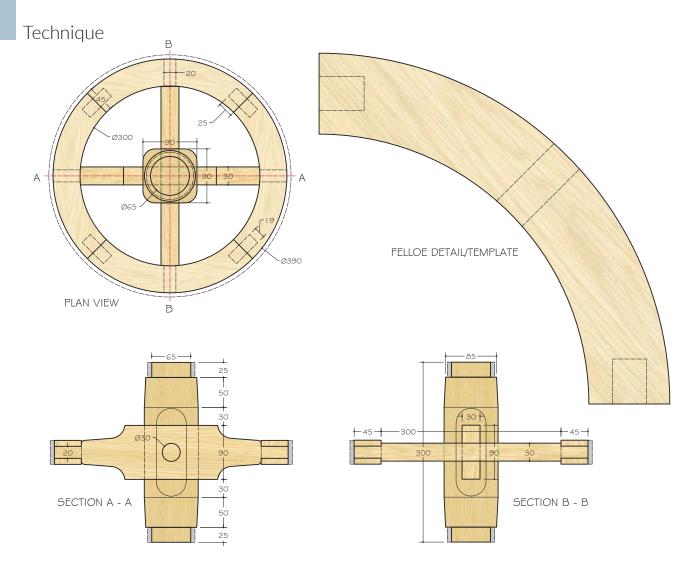
Many years ago I acquired a set of 1920 Barnard Jones *The Practical Woodworker Vol I-IV* and spent many hours poring over the text and diagrams, intrigued by the skills and techniques that these books contained, I just loved the language. Over the years, I have made everything from cabinets to boxes, tables to chairs, clocks and other more intricate items, but I have never made a wheel. In *Vol* 2, p440 Jones describes the steps to create a wooden wheel.

In my opinion, the wheel is undoubtedly the most significant invention in human history. It is hard to think of any mechanised system that does not employ wheels. From

watch gears to cars and jet engines, to computer hard drives, the principle is the same. According to the Merriam-Webster dictionary, a wheel is: 'A circular frame of hard material that may be solid, partly solid, or spoked that is capable of turning on an axle.'

Solid wheels first appeared probably around 3500BC in Mesopotamia and then, around 2000BC, the Egyptians introduced spokes, enabling lighter and faster transportation.

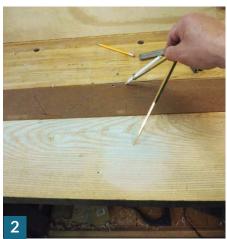
Traditional wooden wheels have hubs made of elm, with its tight convoluted grain structure. Ash, with its flexibility, is used for the spokes and oak, with its hard-wearing properties, best suits the rim of the wheel, known as felloes.


Wheel construction

1 I have a few 40mm-thick oak boards and some old black locust (*Robinia pseudoacacia*) posts that are as hard as nails and would be perfect for the wheel's parts.

Start with the felloes (note all measurements are approximate).

The felloes, which form the outer >


rim of the wheel, can be made from any number of pieces and in theory could be made from a single bent wood piece, but in my example, I will be making four felloes from hard white oak, with a spoke positioned at the centre of each.

2 The wheel has felloes that are 45mm wide by 40mm thick and has a diameter of 39cm. The first step is to create a quarter-round template from a piece of 3mm hardboard. Here I have nailed it to a board, and, with a compass set to a radius of 19.5cm, drawn an arc for the outer circumference of the felloe (this will give an outer circumference of approx. 122cm, circumference = diameter x π)

Now set the compass to 15cm, and draw the inner circumference of the wheel.

Next, from the same centre point, draw two lines, at right angles, perpendicular to the outer circumference. You should now have a template for making a quarter-circle fellog.

Cut out the template and clean up all the edges with a spokeshave.

5 Transfer the template to the wood so that the grain runs as long as possible through the felloe that has previously been brought down to final dimension. (See issue 42 p49 on how to dimension wood using hand tools).

Note: This is one of the reasons wheels are constructed using many pieces. Unless the grain runs in a curve, fewer pieces would at some point in the felloe have grain running from the inner to the outer and have very little shearing strength.

Cut out the felloes using either a bandsaw or bowsaw. It is critical that the end where the felloes meet is at 90° to the circumference. Check again with the carpenter's square.

Clean up the edges using a spokeshave, paying particular attention to the grain direction – you always want to be planing with the grain running downhill.

Once the pieces are cleaned mark the mating ends.

Lastly, we need a mechanism to hold the four felloes together. To do this, mark the centre of each end...

10...and drill a 19mm hole about 25mm deep in each end. This will hold a 19mm x 45mm dowel. The purpose of this is to stop any lateral movement that may occur.

Making the hub

The hub is made from a piece of black locust. This is an amazingly hard species, about two times the hardness and crushability of elm. It is listed as the strongest and stiffest hard wood in North America.

1 1 Measure the inside diameter of the wheel, which should be about 30cm and cut a piece to this length. The hub is 9cm x 9cm.

12 Turn the hub so that the ends are 65mm in diameter and about 25mm deep, then taper the central section down to this cylinder, leaving a shoulder of about 1cm and the centre section flat.

Chopping the mortise

The four spokes are, in fact, created using just two pieces of wood. The first passes at right angles through a mortise in the hub and the other pair of spokes pass through the other side of the hub, intersecting the first pair of spokes.

13Start by marking out a 9cm x 3cm mortise using a marking gauge and then remove most of the waste with a drill – do this from both sides of the piece. By drilling from both sides you are more likely to have a mortise meet at the right location on the opposite side of the hub.

14 Clean out the remaining mortise waste with a mortise chisel – when working with locust your tools need to be razor sharp, and expect to hone them more frequently.

15 Position the felloe's spoke holes and, once again, mark the location and drill the spoke holes from both sides of the felloe.

Cut the final spoke piece to a length of 42cm – this will allow for a little extra to fine-tune the fit. Before turning the 'tenon' spoke cut away most of the waste.

17 Turn the spokes down at the ends to 20mm again, making the central area fit within the felloes.

Safety Note: be very careful when turning non-cylindrical shapes – look at the 'ghost' that the turning block of wood makes so that you are aware of where the wood is – remember steel is harder than wood and wood is harder than skin.

Test fit the tenons into the hub – adjust if necessary.

19 Once the parts fit snugly, centre the two parts and drill a 3cm hole all the way through.

20Cut a 64mm threaded coupler in half, and secure it to the ends of the hub. This will prevent the ends splitting with the downward forces on the axle.

2 1 Using a drill press for accuracy, drill a 12mm hole in each end of the hub.

22 Saw a slot in the four spokes that is at 90° to the wheel. A wedge will be inserted into this.

Assemble all the parts. This is a little tricky, so ease each spoke, felloe and dowel into place a little at a time.

24 Wedge the spokes and then cut off the excess – I just used wedges made from pieces of the black locust.

The tyre

Traditionally the tyre is made of a steel hoop, heated in a fire and then placed on to the wheel. It is immediately cooled with water, shrinking the tyre on to the wheel. I do not have the facilities for doing more than just basic steel work and certainly cannot do forge work, so in order to bend a steel wheel I opted to use malleable steel that is easily bent and use rivets (aka nails) to secure the tyre to the wheel. Not your traditional method, but for a lightly used wheel perfectly good.

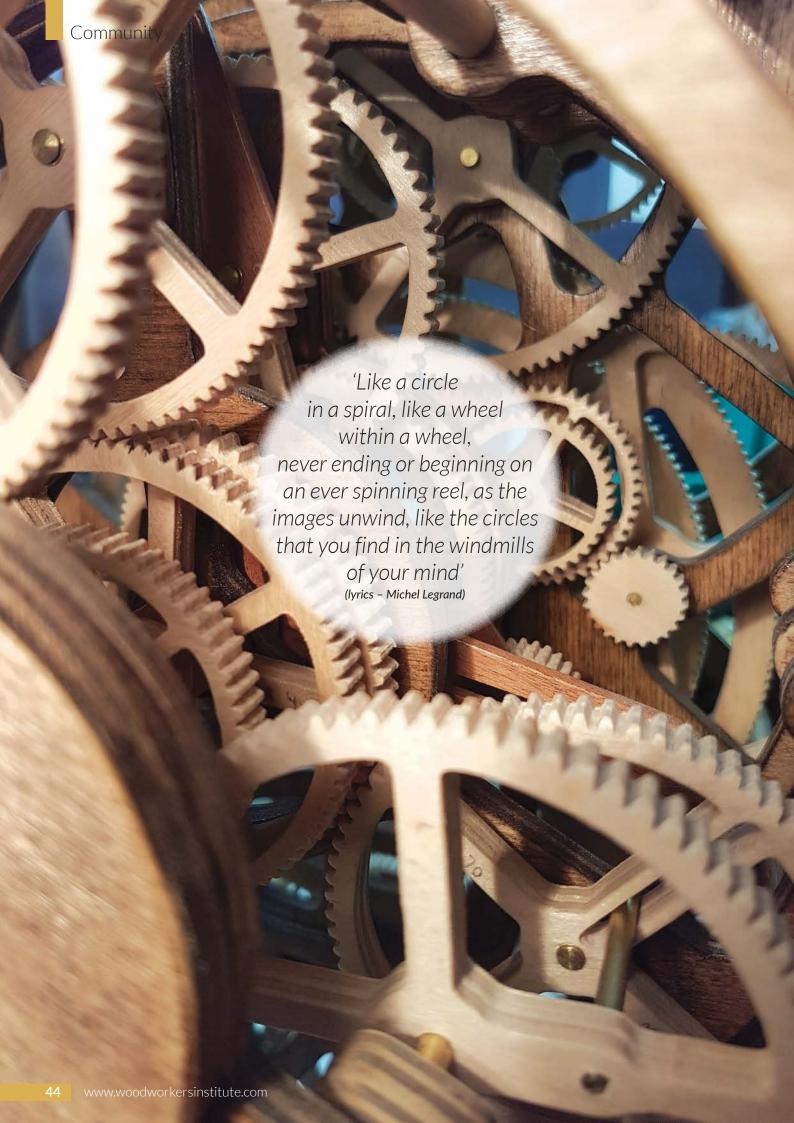
Accurately measure the circumference of the wheel and cut the steel to about 5mm longer (once the tyre is installed the excess can be sawn to perfectly fit the circumference).

25 Using the edge of a vice and a hammer, start hammering the steel into the round. It will take a lot of working, but apply even hits and move the steel bar after each successive hit. Allow the steel to overlap itself – this will give a tighter fit.

26 Fit the tyre and nail into place. These are wrought iron nails and will resist rust longer.

27And there you have it – a simple wooden wheel. The axles fit into a 12mm ball bearing pillow blocks that will eventually be secured to the wheelbarrow.

So excuse me while I get back to Bernard Jones for advice on making a wheelbarrow: 'Garden Barrows and farm or stable barrows are alike, except that the former have removable top boards for carrying leaves etc., large bodies fairly wide at the front being required for both purposes.'



BUILDING AN

ANTIKYTHERA MECHANISM

By Dave Goodchild

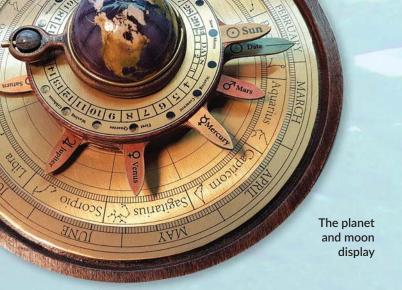
Childhood imagination

Many years ago, when I was around 11 or 12 years old, I remember reading a book by Arthur C Clarke entitled *Mysterious World*. For small boys with big imaginations this book was a work of genius as its various chapters discussed colossal subjects such as the Loch Ness Monster, Bigfoot, crystal skulls and, of course, aliens from Space. However, tucked in among the weird and far-fetched was a chapter concerning a small and very ancient device of such complexity that, at the time of its discovery, it simply couldn't be explained.

A Roman shipwreck

The chapter recounted the tale of a group of sponge divers who, in 1901, ran into a violent storm and were forced to take shelter just off the Greek Island of Antikythera. Once the storm had subsided the captain took the decision to make a short dive in the area, just in case there were sponges to be found and profit to be made. This speculative dive would change their lives as, at a depth of 100m, they accidentally discovered not sponges, but the most important Roman shipwreck to have ever been found, dating from 2100 years in the past.

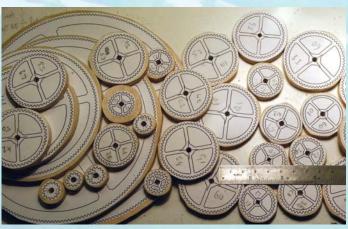
Wheels within wheels


In the weeks and months that followed, a huge number of statues and artefacts were recovered by the crew and handed over to the Museum of Athens for inspection, cataloguing and cleaning. In among the much more impressive finds was a small shoe box-sized lump of corroded bronze, which seemed to be nothing very special and not worthy of immediate attention. So it sat for almost a year, unnoticed and drying out on a shelf in the basement of the museum. Its anonymous status suddenly changed when the fragment suddenly split into several parts while being moved by a staff member, and inside were seen to be gear wheels – lots of tiny gear wheels...

The appliance of science

After an initial buzz of excitement, and a general understanding that the mechanism was probably an astronomical tool, most of the major research work has only really been carried out in the past 50 years due to scientific advancements. The original machine has now been subjected to countless x-rays, scans, advanced photographic techniques, TV documentaries and books, one of which even supported the idea that it was left here by, yes, you guessed it, space aliens. There has also had to be a small amount of very educated guess work to fill in the gaps in the gearing as some of it is unfortunately missing. Scientists have only now in the past decade or so finally worked out the machine's full complexity and inner workings.

The first analogue computer


It is, in a nutshell, the world's first analogue computer. It was made of bronze, was hand cranked, had around 11 dial outputs spread over both the front and back faces of the machine and was capable of charting the position and movement in the sky of the sun and the moon as well as all five naked-eye visible planets known to the Ancient Greeks. It could also successfully predict the date and time of both solar and lunar eclipses, as well as the phase of the moon. Subtleties in the gearing even allowed for the apparent slowing down and speeding up of the moon's orbit (the lunar anomaly), and also the sun's variable speed across the sky (the solar anomaly). The planet's pointers on the machine even track backwards and forwards to recreate the retrograde motion that all the planets seem to follow across the night sky over a period of months. It is a stunning piece of engineering for something so old, and it had almost as much impact on the scientific community as would discovering that the Mona Lisa was actually holding an iPhone.

Automata and orreries

So where do I fit into all this? Well I'd always built things – Airfix kits as a child, then big radio-controlled gliders in my teenage years, and then, more recently, I discovered that I had a bit of a skill for designing and building automata (mechanical toys for grown-ups). After a brief dabble with building and selling these stupid and amazing machines, I finally realised my first love in woodwork was in building the mechanisms – all the lovely twisty turny bits – but not, alas, in carving the figures generally required for automata. At around the time my enthusiasm for the art

Cutting out one of the frames on the scrollsaw

Gears waiting to be cut

was beginning to wane I discovered orreries - solar system models - and it turns out that they are 90% mechanism and gear wheels - perfect. So I thought to myself: 'How hard can designing and building a wooden one of these possibly be...?' Extremely hard, as it turned out. However, after a year or so of experimenting, designing and getting reasonably proficient in the art of hand cutting gears on a scrollsaw, I came up with a reasonably unusual design. After releasing it to the world via the medium of YouTube, really just to gauge reaction, I was more than a little surprised that people really liked what I'd done, and I rather quickly found myself in the strange position of being the first and only person in the world offering wooden geared orreries for sale. Over a four year period running up until 2013, I had built almost 20 of various sizes and complexities. Unfortunately my success was almost my undoing. I simply couldn't keep up with demand, and I was too unsure of continued success to rely on it alone to pay the mortgage, so I simply finished the machines I was building and stopped to concentrate on an automata commission that I'd picked up along the way and never finished.

How hard can it be?

At around this time the Antikythera Mechanism re-entered my life in the form of a TV documentary following an American team's efforts to build a giant-size version for a museum exhibit. This programme got me thinking that, although the mechanism was relatively complicated with around 57 gear wheels, it was, when you broke it down, just gears driving gears, and that was something I understood. After a bit of digging I found out that, despite the attention

Tiny gears

A rare breakage

A moon drive bevel

Planet unit detail

that the machine had received, there was only basic schematic information available, and certainly no plans of any kind. So the poor automata was slowly eased on to the back burner again while I started tinkering with thoughts of mechanical computers. The little voice in my head was once again asking: 'How hard can it possibly be...?'

Mapping the gear trains

My first hurdle was one of size. The original machine was really small - imagine a shoe box filled with gears, with the biggest gear having 223 teeth and being only 14cm in diameter. So my first task was to map the machine's gear train out to try to work out how big, or small, the components were going to be relative to one another, and at the same time ensure that the end of each gear train was at the correct position so the output pointers were in the right places. This was all done with pencil and paper, and lots of trial and error. I knew what the ratios were - these were well published and freely available - I just had no clue as to what sizes or tooth pitches they had to be, so it all took time. Once I eventually had a fair idea of what went where I set myself a skill test to decide exactly how small I was going to be able to produce this contraption – and at this stage, if I'm being totally honest, I still didn't really think that I'd succeed.

Skill test

My skill test was to see how small a tooth pitch I could cut into a gear. The original had gears with tooth pitches of, in some cases, around 1mm. My previous orreries generally had tooth pitches of around 4mm or bigger – quite a large difference – so I needed to see how close I could get. I wasn't too worried about getting my machine as small as the original since, in my view at least, it was possibly too small and probably very difficult to read and interpret – it was only 34cm x 18cm x 9cm – so I reckoned that making my version a little bigger would be no bad thing. In the end, and with the help of a pair of magnifying glasses that I'd inherited from somewhere, I managed a workable tooth

pitch of just 1.4mm, and the pair I cut ran beautifully right off the scrollsaw. These were the pair which had to have the smallest tooth pitch of the entire machine – every other gear would be slightly larger at just over 2mm. These two eventually worked out to be 30% bigger than the originals, which seemed about perfect to me.

Now I knew the exact size of my first two gears I could work back out from there and scale everything else to suit. Simple. In the end, and on paper at least, my finished machine would work out to be around 40 cm tall, so not much bigger than the original. So now I had a plan, kind of...

A marathon build

The first part of the actual build was the marathon of setting up and printing all 57 gear wheel patterns off the computer, sticking them to the wood, and cutting them out. To put that into some kind of perspective, that works out to be 3277 individual teeth, cut by hand, one side at a time.

My method for gear cutting has evolved a bit over the years. When I started building the orreries the gear teeth were, as I mentioned previously, relatively big, and as such would tolerate a fair bit of inaccuracy - and believe me when I say that, although my first efforts worked rather well, they weren't exactly perfect. My method then was to cut out a slightly oversized blank disc of wood, stick the pattern to the wood, cut out the gear from the disc using the tips of the teeth as a cut guide, cut down the right side of each tooth, and then down the left side of each tooth along with the bottom between the teeth to release the little wedge of waste. Finally, the centre hole is drilled and, hey presto, one finished gear in need of very little sanding and finishing. Over the years I have cut literally thousands of gears, and with all this practise my cutting has become ever more accurate and automatic. However, my Achilles heel has always been cutting the centre hole. It is soul destroying to cut a perfect gear, only to get the centre hole in the wrong place, and when your teeth are tiny a small error means that the gears wobble on their spindles and simply don't mesh properly. So for the Antikythera I had a good think

(something I don't do very often) and suddenly realised that if I cut the hole first and centred the pattern on the hole I'd have no more problems, and it's worked a treat – perfectly centred, accurate gears every time. Quite why I didn't realise this three years earlier is anybody's guess...

The first prototype

Once the gears were cut (around three months' work), I could finally start accurately setting out the frames and deciding on a look for the finished machine. I am not a fan of boxes, or straight lines, and I know nothing of dovetail joints, so creating a replica that actually looked like the shoe box design of the original was thrown out very early. Instead I wanted to go for a design similar in look and feel to the open oval design I'd used for my orreries which had worked well and had seemed to be popular. It was open and airy and enabled people to see into the all important gearing – why hide the most important part of the machine? So, after carefully setting out on to a piece of blank wood all the pivot points for the gear trains, I set about creating the frame shapes around these fixed and immovable points. The first prototype had three main frames – a central master frame which carries all the pivot positions, and then a front and back frame which were cut and set out from this central frame. The frames themselves are simply mounted on to, and separated by, wooden dowels. These form a big part of the look and feel of the finished machine. The gearing finally got fitted almost two years after I started the project - and it worked. My only problem at this point was a lack of vision at the start of the project and a basic lack of belief that I would ever really get anywhere close to pulling it off successfully, and because I hadn't thought things through to the end I hadn't allowed enough room to fit the great big spiral dials which are a main feature of the machine, I also realised too late that half the gearing was fitted backwards... However, I had built in my humble workshop the first working version of the Antikythera Mechanism anywhere in the world to incorporate all of the latest thinking on the machine's workings, and I had proved to myself that it could be done.

The second prototype

So next up was prototype number two. This incorporated a few changes over my first effort, fitting the gearing the right way around for instance. But also this machine was designed from the start to be 100% finished at the end, so

Feeling frazzled

The first prototype

The second prototype

all the frames were redesigned along the way, dials were designed and created, and actually translated into English from the ancient Greek of the original machine, which again, was a job which had never been done before. The second machine took a little under a year to design and produce, but the finished result was more than worth the effort. I still find it quite mesmerising to crank the handle and watch the multiple dials, pointers, planets and moon slowly dance their way around my tiny wooden cosmos.

The humble scrollsaw

I now find myself in a very similar situation as I did when I was first building the orreries. I am in the lucky position of having taken on five commissions, but they are taking a very long time to build as everything is still being hand cut. I've been at this first batch for almost a year now, and I still have a month or three left to go before I send them off to their new homes. For my own sanity I think that I might have to consider laser cutting for the next batch. Please don't judge me too harshly – 270 gear wheels cut on a scrollsaw is just way too many... If nothing else though, this project has shown that the humble scrollsaw is capable of cutting out more than just decorative coasters and plaques.

And finally, I'm looking forward to finishing this first batch of orders just so that I can spend some time with my poor long suffering wife! Without her eternal patience I wouldn't have ever got even the first one finished, thank you Helen.

Pig benches are simple, low benches with a single slab top and four legs. These were used, as the name suggests, for butchering pigs but they were obviously used for a multitude of domestic tasks as well. Today, these benches seldom get used for butchery but they remain very practical as seating or a side table.

Old pig benches usually range from 1200mm-1800mm long, 250-400mm wide and 350-400mm tall, but can be made at any size. The tops were often sycamore as butchers' blocks are, with either oak or ash legs. I tend to use oak or ash for the whole piece.

Pig benches can be made using green or seasoned wood, or indeed both. In practice, the piece of wood used for the top will determine the method of construction. As timber dries, it shrinks. If the legs of the bench have more shrinking to do than the top when they are put together, then they will become loose. If the top has more shrinking to do than the legs then the top will tighten its grip on the

legs and the joints will remain tight. If the board used for the top is of dry wood then the legs must also be dry. Because the boards I use for bench tops are usually dry or semi-dry, I tend to make the legs from green timber, then allow them to dry before finally shaping the tenons.

The legs

◀ When selecting materials for this project the golden rule is that a strong mortise and tenon joint must be longer than it is wide. I like to make the leg joints 32mm wide, therefore my bench tops are 32mm thick or more when finished. When selecting material for the legs, it must also be remembered that the 32mm tenon needs a tight tapering fit at the shoulder, so material of a greater size is needed. I like to make legs that taper from about 50mm down to their 32mm tenons. This means logs of about 500mm long and 200mm diameter, split into quarters, make an ideal starting point.

2 Starting with the legs as these potentially need time to dry, take the quartered 200mm dia. log and notice the cross section of these quarters is roughly triangle. Using a trimming axe, trim down the sharp corners to reveal the hexagonal form. Each facet of this hexagonal leg can

now be trimmed to form a taper, using a drawknife at the shaving horse or a plane at the bench.

Allow these four legs to dry thoroughly before either turning the tenons or forming them with a drawknife and spokeshave. Here a tenon has been formed on the pole lathe.

4 My preferred method for this is to roughly shape the legs, leave them somewhere warm for three or four weeks, then refine the shape and make the tenons. The tenons should be about 65mm long.

The bench top

The top of the bench can now be made with anything from a cleft, half log to a perfectly flat, clean board. A flattish board might be easier if a planed finish is required and in either case I'd say it's not imperative to remove all the twist. I then like to auger the leg holes before working the surfaces. This way, any slight tear-out that might arise from angled augering can be planed off, leaving a crisp edge to the holes.

5 In this example I used a hand plane with a cambered blade to give a rippled effect, which looks good and has a tactile feel to it.

Setting leg angles

The angles that the legs are set at are not critical but a decent angle both in splay (side to side) and rake (end to end) will make for a stable bench and eliminate the 'racking' – movement, associated with vertical legs.

Choose the surface that will be the top face and mark where the leg centres will be. I would come in 75-100mm from the side edges and 230-250mm from the ends measured on the bench top face. Now we can drill 6mm pilot holes for the augur. Using two adjustable bevels, set bevel (a) to about 77° and bevel (b) to about 67°. Tape down bevel (a) facing along the bench and bevel (b) facing across, both pointed towards one of the marked spots. Sighting the drill through both bevels 'a' and 'b' will show the compound leg angle.

Once all four pilot holes have been drilled right through, take a 32mm auger and follow the pilot hole through from one side, stopping

halfway through. Turn the board over and bore until the hole is through (always auger from both sides to ensure no breakout).

The bench top surfaces can now be worked to the required finish, my personal taste being to leave tool marks visible.

The last pieces to make are four dry oak wedges that are about 65mm long, the width of the augured hole and which taper from 6mm to nothing.

Fitting the legs

Offer the finished, dried legs into the mortised top and give them a gentle tap in. Mark a line around the legs where they both enter and exit the bench top. Number each mortise and tenon and draw a line across the top of the protruding tenon at 90° to the bench top.

Knock the legs back out and, using a tenon saw, cut a slot down the centre line of the tenon that goes to halfway between the two lines drawn round the leg.

10 To finally assemble the bench, offer the legs back into their respective mortises, ensuring the slots in the tenon tops are at 90° to the bench top (this is to stop the top splitting when the wedges are driven in) and knock them in hard with a mallet. Ensure each leg is on a solid floor and tap a wedge into the slot on the top of each leg tenon until they will go no further. If the tenons fit well and

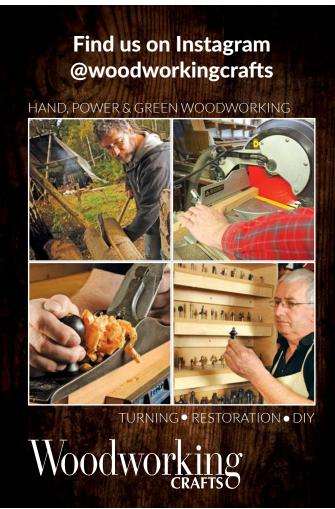
are well dried, glue isn't necessary but use it if you like.

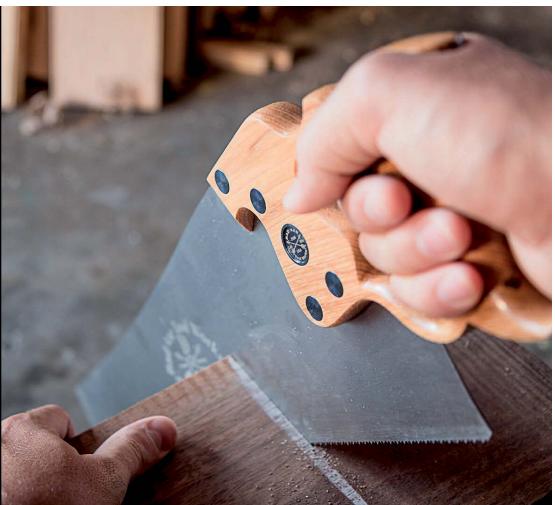
1 1 All that remains is to trim off the tenon tops.

12 like to leave them 3mm proud and dome them with a chisel, and finally level the legs.

Levelling the bench

Place the bench on a flat surface and pack under whichever legs bring all the corners of the top to a roughly even measurement from the flat surface. Let's say the measurement at each corner is 480mm. If we want the bench to be 400mm high we need to take off 75mm, so tape a pencil to a 75mm wide offcut and scribe a line around each leg, 75mm off the flat surface. Cut the legs off at these lines and chamfer the ends to avoid chipping. Your very desirable pig bench is now complete.





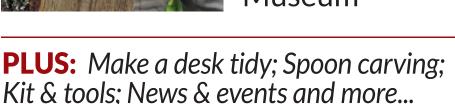
STRENGTH.

CRAFT.

ENDURANCE.

www.badaxetoolworks.com

Coming next month in Woodworking


Community **ISSUE 46** ON SALE 25 OCT

Nest of tables

- Make an axe handle
- Children's utility furniture
- Organise your workshop

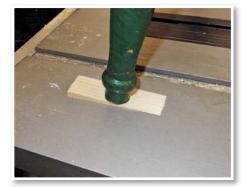
Bread and board - A visit to The Antique **Breadboard** Museum

Ask the experts

ANTHONY BAILEY Editor, Woodworking Crafts magazine

Another selection of awkward questions for our experts to answer

ROCK STEADY


I have a set of pine bar stools which I want to shorten as I'm not over-tall, and then paint to make them to look more up to date. I've tried cutting the legs off one of them but it rocks and the feet aren't sitting level on the floor. Any advice would be welcome.

Jenna Reeves

Anthony replies: Anyone making chairs also has the same issue if the legs aren't made to a template and, in any case, even if the feet sit flat on the floor nicely, there is bound to be a slight rocking movement which needs sorting out. Recently I was asked to turn a Windsor rocker into a standard chair prior to repainting. The procedure is basically the same.

The rocker strips were cut off as close to them as possible to keep the turned bead detail on each leg. The far front leg is off the ground

After sighting across the chair I decided it was the back leg opposite that needed to be lifted with a wedge so the chair was level across before trimming

5 Cutting the second leg. The one with the wedge is cut in the same way while trying to avoid disturbing the wedge

A thin piece of softwood was pressed against the legs and a pullsaw lying dead flat on it is used to trim off the bottom of the first leg

The wobble test. All four legs sit flat on the reference surface, in this case a tablesaw, but any flat surface will do. The wobble has gone and the legs lie flat

The board was slid under the trimmed leg ready for the next one to be cut. All four legs will end up sitting on these boards so the chair remains level

The final touch is to file a chamfer on the leg ends so they don't drag or catch


A GOOD BACKGROUND

I make various things – some are turnings but I do a lot of general woodworking projects which I really enjoy. I like to show friends and family, some of whom live around the other side of the globe, what I've been up to. I take photos which aren't bad but I'm have problems sorting out a decent background, it always seems messy in the workshop or even on the dining room table. I'd quite like to use Instagram to show what I get up to but it's the background that's bugging me. Any bright ideas?

Jez Richards

Anthony replies: This is general advice to any readers, as well as to yourself. Always have clean, clear backgrounds of any projects you send to us – this is what stops a lot of photographs being used in the magazine even though the photos are otherwise OK.

Specifically what you are looking for,

Jez, is a suitable background to show finished projects. I would suggest you investigate vinyl photographic background material online, which is what I have been using for some time. You can get combination white/black or white/mid-grey, which is the one I would choose personally. It has a matt

finish to absorb reflection, washable

and comes on a cardboard tube to hang it in a scoop shape, a 1m x 2m roll should do for most purposes. There are colour alternatives but I would avoid these as they will give a colour cast to your subject matter and can make it look rather gauche. White or grey 'sets off' warm wood colours very well.

NOT SO RUSTY

Hi, I've found that storing tools in a closed toolbox in the summer hasn't stopped them getting a film of rust, which is a bit upsetting as some of them are quite new. I've been investigating different kinds of rust protection, from oiling steel blades to anti-rust vapour compounds which seem a bit expensive. Any suggestions please?

Nick Englemann

Anthony replies: Just because we have had a hot summer doesn't preclude humidity in the place where

your tools have been stored. I have various paint tins stored in an insulated roof area of my workshop and they have been known to be damp on the outside due to condensation, even though the weather is very warm. The first thing is to try to remove the rust on your tools. Hopefully it isn't too serious so a careful rub over with very fine wirewool or a household web scourer and some WD40 or light mineral oil might be enough to remove and retard the oxidation. However, once it occurs, rather like fungus, it doesn't ever really disappear unless you use a rust-removal compound. For the future, take the very effective, cheap and cheerful route like I have with my new toolbox (see page 71) and pop a few camphor blocks into your toolbox. It will make your eyes water a bit and clear your nasal passages when you open up your toolbox, but boy – does it stop rust.

Camphor blocks stop rusting and clear a blocked nose

The Tool Marketing Company, or TOMACO, as it is known, which sells a variety of tool brands, including COLT, Sharp Edge and Narex Tools, is pleased to be sponsoring the Ask the Experts section in collaboration with GMC Publications. Each issue's Star Question

prize-winner will receive a Narex six-piece chisel set worth £79.95 and all other published questions will receive a 20mm half-round fine cut Narex rasp worth £20.95. For more

N.B. If you do need help or advice you can email me: anthonyb@thegmcgroup.com or visit:

information see www.tomaco.co.uk

www.woodworkersinstitute.com where there are lots of useful articles, either way the service is free!

By submitting your questions and photos, you agree that GMC Publications may publish your Work in our magazines, websites, electronic or any other mediums known now or invented in the future.

In addition GMC may sell or distribute the Work, on its own, or with other related material. This material must not have been submitted for publication elsewhere

Some people use them, most people don't and yet they are incredible tools. So why not? I'm talking about Japanese pull saws

ost people, when they see me holding a Kataba crosscut saw, think it is some kind of offensive weapon – that's how it looks to the untrained eye. In fact, wielded with care, it is a precision tool capable of doing fantastic work. That is the problem really. It's a foreign-looking saw who's function, method of use or purpose isn't immediately apparent – so why would you need one? A very good question I'll try to answer for you.

Typical 'western' saws are push-cut – apply forward pressure and the blade digs into the wood. Often the start of the cut, especially with a tenon saw, is a bit jarring as it catches, so you have to draw the saw back to get the cut to start. A Japanese saw with its pull

action is one step ahead, since it only cuts on the pull stroke and does so smoothly from the start. It doesn't have a heavy brass back to stiffen the blade and, where a saw is meant for joint cutting, the folded back is quite light. In all cases the blades are thinner than western blades since the metal isn't in compression and, used correctly, won't bend out of shape. That, of course, is the issue - getting used to only cutting on the pull stroke, never pushing and hopefully not binding in the wood, which can cause the blade to try to fold up resulting in terminal damage to the much lighter blade. These blades are therefore used under tension, where our saws work under compression.

Japanese saws are called nokogiri

and come in a variety of flavours for different purposes. I, along with other western craftsmen, am not engaged in Japanese joinery sitting cross-legged on the floor using special low work supports in front of me – no, instead I use these beautifully turned-out tools for things such as accurate cross cutting and mitre cutting at the workbench, restoration work, flush trimming and taking minute cuts down to size, all things these saws do very well.

I reserve standard western hardpoint saws for heavy-duty rip cutting and rough crosscutting, which they do very well. It's horses for courses, you might say.

Here is a list of the most typical nokogiri and their functions.

The Editor's own set of Japanese saws. From L-R: rip, kataba, dozuki, dozuki-me, flush trim

A dozuki blade being used to cut away previous filling work prior to rebuilding with a wedge of walnut

GENERAL USE

Ryoba

Ryoba means double-edged, a saw with cutting teeth on both edges of the blade. The teeth on one edge of the blade are filed for crosscutting, on the other edge they are for rip cutting. Alternatively, ryoba saws may have teeth on one edge for cutting softwoods and teeth for cutting hardwoods on the other. To prevent a ryoba saw from 'binding', the blade is ground thinner towards the middle, but careful examination of the teeth reveals similar size and set of teeth on each edge. The actual size and number of teeth will vary depending upon the length of the blade.

Kataba

Kataba is backless with teeth on one edge only. A great general purpose

saw, it has a thicker blade, reducing the need for a back, and teeth that are filed for either ripping or crosscutting. The ripping kataba may have smaller teeth to the rear of the blade for starting the cut and larger teeth near the front for faster cutting.

Dozuki

Dozuki means tenon. It is a kataba-style saw but with a stiff back spine. The spine ensures a straight blade for fine, precision joinery cuts but does limit the depth of cut. There is a deeper blade version for large tenon cuts.

The dozuki is the most widely recognised, most used Japanese saw for both hardwood and softwood. The blade of the dozuki is the same thickness over its entire width and, similar to a crosscut saw, the teeth will have the same size and minimal set along the length of the blade. >

A small, 150mm dozuki-me blade with a hook tip for starting mid-panel cuts

A genuine mid-panel start thanks to the hook tip

This larger toothed, slightly longer kataba blade was bought to replace the damaged blade at the top

Very fine trimming cuts are possible thanks to the fine teeth and the pull action

You can choose between modern-style rubberised grips or traditional bamboo wrapping

OTHER TYPES

Azebiki

Azebiki are mostly in the ryoba style and have a short, curved blade with teeth on each side. This saw is used for centre panel cut starts, something that western saws, apart from a floorboard saw, are incapable of. The short blade permits easy access to tight spots.

Kugihiki

Kugihiki means 'to cut nails', and has a blade with teeth with no set to avoid surface damage. It is designed for flush-cutting wooden nails or dowels. The blade is thinner at the tip for ease of bending and less danger of surface damage. It is thicker at the rear end for better stability when cutting more aggressively.

Sokomawashibiki

Sokomawashibiki means bottom and is a curved cutting saw originally used

The fine, heat-treated teeth do become damaged with use but can be replaced easily

for cutting the bottom for wooden buckets. The curvature of the blade allows cutting of curved profiles and it can be used in hardwood or softwood.

Anahiki

A log or beam-cutting saw for cutting green and seasoned woods. This saw is used for general construction or timber framing, but can be used in the workshop for rough cutting of rough-sawn hardwood or softwood.

Mawashibiki

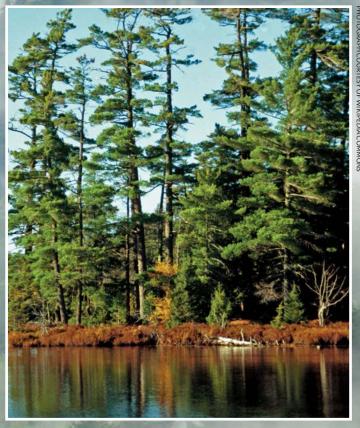
If you are replacing a blade, most blades have a legible size number but, if not, study the characters to match with a replacement

Removing an old, damaged blade. Hand protection is essential

Fitting a blade by tapping home, with the vicious teeth covered for safety

Suppliers

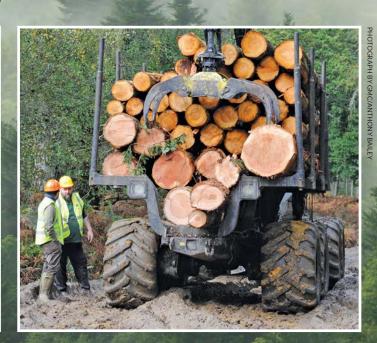
For a list of suppliers online use search term: Japanese tools UK


Trees for life Sources of softwood

The growing, felling, conversion and correct use of softwood is not well understood by end users. Expert woodworker **Walter Hall** explains the many differences

If you want to ensure that the wood you buy for your project is of an appropriate type and quality, then it is important to understand what the different species of softwood are, how they are described and graded and to what use each type and grade is best suited. For the newcomer or inexperienced woodworker, visiting a timber merchant can be confusing and I remember from my early DIY days feeling quite intimidated by the terminology, which was completely alien to me. Terms such as 'unsorted' and 'sawfalling' left me baffled and the codes that were stamped on to some of the boards might as well have been written in hieroglyphics for all they meant to me.

Sources of softwood


About 75%–80% of the world's timber production is of softwood. Most of the world's softwood grows in the northern hemisphere, in a broad band across North America, Central and Northern Europe and the Russian Federation.

The redwood pine is tougher than spruce and considered to be better quality. Selected examples were used to build and line the Victorian Gothic interior of the Houses of Parliament

Softwood timber being felled using extensive wire roping, working on a precariously steep French hillside

These logs are ready for the very first step in conversion once they get to the sawmill. Note the very muddy working conditions

Species and their common uses

There are a great many species of softwood but those most readily available commercially in the UK are spruce (Picea abies) and pine (Pinus sylvestris), often referred to as whitewood and redwood respectively. The timber sold in the large DIY stores is usually spruce, which is lighter in both weight and colour than the joinery-quality pine available from builders' merchants and timber merchants.

Spruce is really only suitable for carcassing, building shelves in the shed or garage for storage or boxing in etc., while redwood is suitable for better-quality joinery work. At a push, the better grades of redwood could be used for simple furniture projects, but for this sort of work it is better to choose one of the more stable timbers, such as Quebec yellow pine (Pinus strobus). Here is a list of some of the more important species and their principal uses.

ı	COMMON NAME	SPECIES	COLOUR	DURABILITY	WEIGHT (kg/m²)	USES			
	Pitch pine	Pinus palustris	Orange/brown	Moderately durable	660-690	Heavy construction, decking, cladding, flooring			
	Quebec yellow pine	Pinus strobus	Light yellow/ pink	Non-durable	390	Patternmaking, furniture, interior joinery			
	Southern yellow pine	Pinus palustris	Orange/brown	Moderately durable	660	Stair parts, joinery, pallets			
F	Spruce - whitewood	Picea abies	Light cream	Non-durable	500	Carcassing, framing, studwork			
	Pine – redwood	Pinus sylvestris	Light yellow/ brown	Non-durable	500	General joinery, furniture			
	Douglas fir	Pseudotsuga menziesii	Light reddish brown	Moderately durable	530	Exterior joinery, doors, windows			
	Hemlock	Tsuga heterophylla	Pale brown	Non-durable	390	Interior joinery			
		The same of the sa	Selection						

The non-deciduous spruce is perfectly suited to harsh winter conditions thanks to the thin, weather-resistant 'needles' which cover it

Grade descriptions and other terminology used by timber merchants

The following table shows the standards on which the terminology used to describe softwood is based. Most often you will find that the terms used are 'unsorted', which will consist of all of the better grades and 'fifths', which is what you will normally get if you don't specify anything else. Sixths and sevenths are seldom encountered. 'Sawfalling' and 'fifths and better' are also terms you might come across. 'Sawfalling' is usually used in relation to whitewood and means it has not been graded - not to be confused with unsorted - but in reality is usually what is left after the local joiners have taken all the good stuff, so is best avoided. 'Fifths' and better means much the same, but is generally used to refer to redwood.

You will, of course, also need to decide between sawn or planed timber, the latter being described as

Nordio	Nordic Timber Grading Rules (1994) (The Blue Book)							
А				В	С	D		
A1	A2	A3	A4					
	Guiding principles for grading of Swedish sawn timber (1960) (The Green Book)							
U/S (Unsorted)				Fifth	Sixth	Seventh		
I	Ш	Ш	IV	V	VI	VII		

PSE – planed square edged – or PAR – planed all round. Remember that with PSE/PAR timber the dimensions given are those of the sawn stock before planing, so wood described as 50mm square may be up to 5mm less than the nominal dimension.

Softwood comes in standard lengths ranging from 1.8m to over 6m. A good timber merchant will cut longer lengths down for you.

Examples of grading, from left to right:

- 1. Treated, eased edges graded C16
- 2. The same but graded to higher standard C24
- 3. Untreated, eased edges graded C16
- 4. PAR prepared all round. This latter, nicely finished piece looks and feels good, but is approximately twice the price of all the other pieces

Grading for strength

If you are doing structural building work that will be subject to inspection by the local building inspector, you will need to use timber that has been strength graded.

A grade mark looking something like this should be stamped on all structural timber.

'LOGO' is the logo of the regulatory body to whose standards the company grading the wood is operating: 0000/0000 is the grader and/or company reference: WPPA is the species or group of species: BS 4978 and EN 14081 are the British and European standards applied: DRY GRADED is the timber moisture content condition: SS is

the visual grading standard and C24 is the strength class.

Softwood is assessed and graded for strength by reference to a 'grading standard' using visual inspection. Characteristics such as knot-size, distortion and other abnormalities that can affect strength are taken into account.

The standard used for grading in the UK is EN 14081-1. Timber can also be graded by a machine which measures the stiffness of the timber.

LOGO	0000/0000	WPPA	
BS 4978		SS	
EN 14081	DRY GRADED	C24	

The eastern white pine is a member of a family of trees that produce very tough, even-grown timber, which is suited to furniture-making, among other things

Common defects to look out for

The main defects to look out for when buying softwood are knots, shakes, cupping and bowing, waney edge, encased bark and resin pockets. Knots occur where branches join the tree. Live knots are firmly attached to the wood and unlikely to fall out, dead knots, however, usually occur where a branch has died and the tree has grown around the bark of the branch, which may cause the knot to loosen or fall out. Shakes are cracks or splits in the timber which can occur either while the tree is growing, during felling or as the timber dries. Cupping and bowing are changes in the shape of the board as it dries due to variations in the stresses within the timber. Cupping is where the cross section is no longer a true rectangle while bowing refers to bending or twisting in the length of the timber. Waney edge is where the edge of the log, either with or without the bark still attached, forms part of the edge of the board. Encased bark is where damage to the tree has occurred and the tree has continued to grow around the bark. Resin pockets consist of an opening in the grain that contains sticky resin.

A dead knot such as this isn't 'connected' to the rest of the board, thus rendering the whole piece liable to breakage. Knots that are clearly part of the board and not loose are stronger than this one

Check for shakes as they not only look bad they can also split even more during assembly. Allow extra material when creating a cutting list so you can get rid of defects and still have enough good material

A common sight on 'whitewood' sold in DIY stores. You can dig out resin pockets if the resultant cavities aren't going to be visible or strength compromised

Quentin Smith draws together geometric marquetry and sand-shading to produce an intricate lattice-work pattern

Before starting

This design is intended to look like a delicate open weave, so the background veneer needs to give the impression of the dark inner void of the closed box. For this reason dark burrs such as walnut or madrona tend to work better than straight-grained veneers.

Choose a piece of veneer large enough for the required panel. If the piece is at all fragile it can be useful to tape the sides as it will be handled quite a lot during construction. It can be tricky to make the design to precise dimensions, so I usually make a panel oversize and trim down to a sensible place in the pattern, taking up any

procedure is the same.

slack in the panel borders.

There are two ways of making a

design fit a rectangular panel. Either

prepare a right-angled weave and trim

appropriately, or make the weave at a

suitable angle such that it runs corner-

to-corner across the panel. Whichever

method you choose, the marking out

Marking out

Choose the face side of the lighter veneer and mark one end with pencil or a strip of tape, then trim the longgrain edge. Tape one straightedge to the cutting mat to act as a fence and push the trimmed veneer edge up to it. Position the smaller spacers


The background panel with the first set of score marks made...

- Soldering iron or pan of hot sand
- Cutting mat, scalpel, masking tape, veneer tape, PVA glue

against the fence and bring the second straightedge up to the spacers. Cut off the thin strip, which will form our lattice. Repeat until you have prepared plenty of strips. This design always seems to need more than you think.

Cut the dark veneer a good centimetre wider all round than the final panel size required. Lightly sand the surface so that the score marks will be easier to see. Visualise the long axis of the panel and select a suitable angle for the first direction of lattice strips -45° to the long axis is appropriate for a 90° lattice.

Hold one straightedge firmly on the veneer at the chosen angle and lightly score the veneer. Do not cut all the

...and with the design fully marked out

Taping the edges of your background veneer will help to protect against damage during handling

way through whatever you do. Without moving the straightedge, position the large spacers against it and carefully bring up the second straightedge to the spacers. A third hand would be helpful here. Hold the second straightedge firm and release the first. Remove the spacers and bring the first straightedge up to the second. Hold the first one firm, remove the second and make

another score. Repeat these operations using the spacers alternately, gradually walking the straightedges across the veneer until you reach the edge of the panel.

Turn the panel round and carefully align one straightedge with the first score mark made. Repeat the process to the other side of the panel, ensuring that you use the correct spacers for the first movement so that the pattern is continuous.

Holding everything firm during marking out is hard on the fingers, so have a break before tackling the second direction. Measure the correct angle to the first score lines (90° in our case) and repeat the scoring process across the sheet, using the same spacers.

The length of each lattice segment is twice the width of the large spacer plus the width of the lattice strip

Constructing the lattice

At this stage you'll think you've done a lot and achieved little, but the groundwork is there for you to make good progress.

Starting at one end of the background panel, cut out a small section of narrow strip. It should not be necessary to use a straightedge – simply follow the scored line carefully. The removed piece should be two-big-squares-and-one-small-square long. Trim the end of one of the lattice strips square and push it into the hole. It should fit snugly as the same spacers were used to cut the strips and to mark

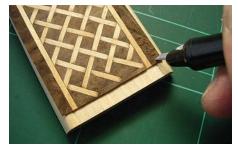
The lattice elements for each row are taped at one end, and the next row, at 90° to the previous one, is started

the background. Ensure each strip is inserted the same way up (using the reference marks we made earlier) and snip through neatly at the end. Each piece can be shaded and inserted individually, but I prefer to cut in a row of pieces at a time. I then push those through on to the board (keeping them the right way up) and shade them one after another, which I find gives more consistency to the shading.

Gently shade both ends of each piece and carefully push them back in place. I sometimes glue at this point if the background veneer is at all wavy, but otherwise I just hold the pieces in

When removing masking tape peel it right back on itself to avoid lifting fibres

place with masking tape on the face side. I only tape halfway up the pieces so that I have not obstructed the next row.


Repeat the process for the second row, which runs in the opposite direction to the first. Continue across the panel, taping each row as you go. If you haven't glued each row as you worked, glue the back after every five or so rows by rubbing in some PVA adhesive and scraping off the excess. The back can then be taped and the multiple layers of tape removed from the front before continuing construction.

I like to use the position where the lattice strips have just crossed

Trimming and gluing

Measure the size required for the final panel. You may find it useful to cut an opening this size in a piece of paper or card to help choose how to trim the lattice. It is unlikely that the lattice can be trimmed exactly to size while maintaining consistent edges, so it is easier to trim to the next tidy size down and then add a suitable size

Positioning the insert panel, with oversize edging strips, in the box recess

border to take up the slack. If the marking up was accurate, and the panel has not come apart during construction, the lattice should be nicely square. Trim to size.

Except on small panels it is advisable to protect the face of the panel with veneer tape before removing the masking tape from the back ready to glue down.

The oversize panel complete and ready for trimming

Once the glue has cured, remove the veneer tape with a little water. Scrape or sand and finish using your preferred method. I use several coats of Morrells pre-catalysed basecoat applied by brush and sanded lightly between coats, finishing with a medium sponge sanding pad which gives a satin finish similar to the rest of the box.

Thomas Flinn & Co.

Saw & Hand Tool Manufacturer Sheffield, England

The UK's last remaining traditional saw manufacturers.

Now also manufacturing Clifton Planes

www.flinn-garlick-saws.co.uk orderonline@flinn-garlick-saws.co.uk Tel: 0114 2725387

BOOK REVIEWS

They say you can't teach an old dog new tricks but we caught *Woodworking Crafts*' very own Mr Fixit having a sneaky read of these two DIY tomes...

Popular Mechanics 'How to Fix Anything' – 200 home repair solutions that anyone can do

I wish I had a book like this many years ago. It could have saved me at least a decade of aggravation trying to fix things about which I knew absolutely nothing, instead I had to learn the hard way. Although not every bit of information contained within is pertinent to UK readership, most of it is and the very act of reading and understanding helps inform decisions such as: Should I try to save

my computer hard drive or just bin it? Should I really be doing plumbing work and can I avoid flooding the house? Or, my car disc brakes squeal, can I fix it? These questions and many more have their answers residing in this handy and non-threatening paperbound fund of knowledge. If you feel you are a DIY-numpty, a ham-fisted fixer or simply not clued-up rather than clueless – then this book could be just what you want to embolden your desire to get

crucial stuff sorted - and take the credit too.

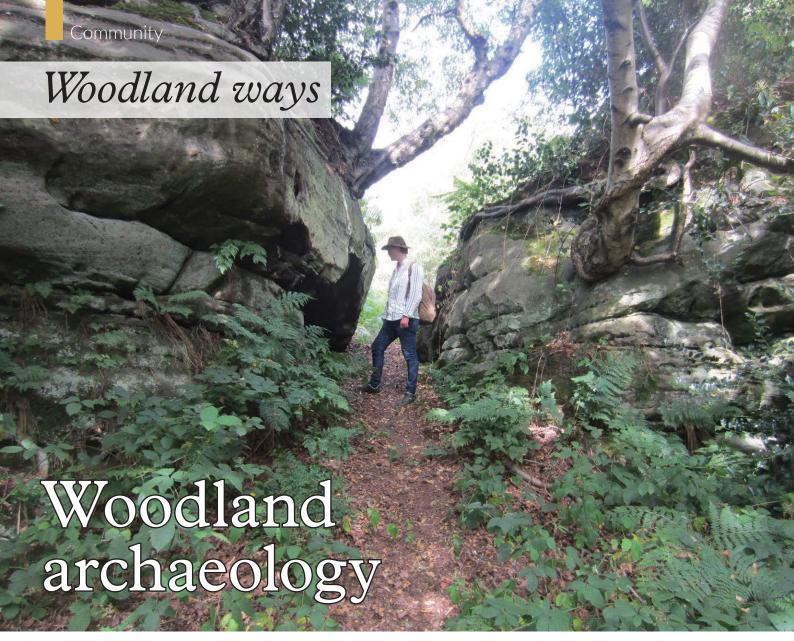
ISBN: 978-1-61837-260-4 PRICE: £17.99 Published by Hearst Books

Tiling Complete 2nd edition – expert advice from start to finish

by Robin Nicholas & Michael Schweit

Tiling. Hmm, tiling – not my favourite activity. There is a skill to it and mine extends about as far as a run of white tiles above a sink to stop splashes on the wall. So this fulsome publication comes as both a skill builder and a bit of a revelation – there is so much more to tiling than you might think possible. The book is split into 10 main sections – Selecting Tile; Tools & Techniques; Installation Materials; Preparation, Planning & Layout; Tiling Floors; Tiling Countertops; Walls & Back-Splashes; Grouting; Caulking & Sealing and Maintenance & Repair. Each of these sections is broken down further into numerous pages devoted to different kinds of tile, décor, patterns, cutting, trimming and fitting tiles, grouting and cleaning

tiles and various speciality tiles,


grouts and tools plus tile and grout repair. It includes tricky stuff such as achieving neat mastic caulking and tiling around service pipes. There isn't anything missing from this very comprehensive book which is bound to have all the answers to your tiling needs.

ISBN: 978-1-63186-880-1 PRICE: £21.99 Published by Taunton Books

Both books are available from: www.gmcbooks.com 01273 488005

Site of mesolithic rock shelters

If you go for a walk in the woods it may be holding many secrets, as **Gary Marshall** explains...

o quote Matt Pitts, erstwhile woodland adviser to the High Weald AONB: 'Woodland archaeology can be divided into two broad categories – evidence from past woodland management and evidence from other activities that happened, often before an area became wooded. This latter is very wide and includes the remains of industrial activity, boundaries and settlement sites.'

The difficulty with woodland as opposed to any other kind of archaeology is that woodlands are secret, canopy-covered, dynamic, changing, growing, rooty things.

Roots, falling trees and branches, leaf litter, burrowing animals, woodland fungi and erosion (complex in woodlands) all help to break down and heavily disguise any remains of the past. Human activity, in a woodland setting or in a setting being reclaimed by woodland, will also be subjected to the laws of nature – in a remarkably short time.

Currently increasing use is being made of LiDAR (Light Detection and Ranging) modelling. This has enabled archaeologists to 3D map areas – even under woodland canopy. For instance, in 2008 Forest Research carried out LiDAR surveys in Somerset over wooded areas in the Black Down Hills AONB on the Somerset/Devon border. Not only did the modelling reveal greater detail of known existing woodcovered hill forts but also showed up more subtle features, such as saw pits or prospection pits.

Dry weather in years such as 1976 and 2018 led to the aerial discovery of

many archaeological sites in open areas where variations in aridity pointed to hidden foundations beneath – but not so in woodlands. Here, prior to LiDAR, archaeologists have had to look for well-hidden clues. These are just some of which I'm aware – and including those I sometimes draw attention to in historic interest bullet points in woodland management plans:

Prehistoric: Tree trunks preserved in bogs

Mesolithic: Knapped flints and midden pits near to rock shelters and caves.

Pre-Roman: Remains of trackways – sometimes surfaced with coppiced materials.

Roman: Remains of Roman roads – embankments – 'aggers'.

Roman and medieval: Bloomeries for roasting then smelting iron ore. Dark ages and medieval: Hollow lanes often pre-dating settlements, pointing to 'transhumance' - the seasonal herding of stock to clearings, fields and wood pastures, often from downland areas.

Norman: Park pales – the boundaries around the old royal hunting forests and other deer parks

Medieval: Shards of pottery, slag and clinker remains in deeply cut stream valleys (gills).

Henry VII's time: First English blast furnace.

From Roman times onwards - particularly pre-industrial revolution: charcoal plats, bell pits, ponds.

All times: Quarries, marlpits, adits and shafts, wood banks, evidence of clearance, hedgelaying, pollarding Post-industrial revolution (mainly): Enclosure, plantations, forestry - (I once found a pre-industrial billhook now restored, as well as dozens of old bottles).

First World War to 1970s: Large-scale

Pre-industrial revolution hammer pond

coniferous planting, fencing, access ways.

Second World War: Pill boxes, fortifications, anti-aircraft gun emplacements, underground HQs, concrete and hard surfaced roads and storage areas beneath woodland canopies.

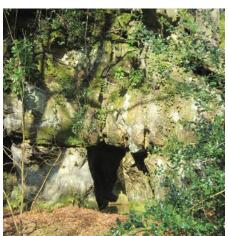
Post-Beeching and post-industrial: Old railways, tramlines, inclined planes, canals, leats, wharfs and associated remains.

Today: Witches' knickers (that is poly bags caught in branches), other plastic remains and the odd fridge.

When old industries moved away, became outdated and were abandoned or quarries and mines were worked out, first grass and weed seeds sprang up, then shrub, scrub and finally woodland took over. I've visited many a wood established on old workings now providing a rich habitat for nature but just as interesting is rediscovering the machinery, buildings and detritus of the past.

Happy responsible rooting about, all you prospective archaeologists.

Bog pine


Hollow way

Ancient wooden trackway slats

Defunct dam in woodland

Old adit

Hopper's hut

DESIGNED, MANUFACTURED & PROVEN IN GERMANY

Forsa 3.0

Forsa 4.0 & 4.1

carriage with telescopic arm and table width extension (TWE) as illustrated. (Both included in prices quoted below.)

Forsa 8.0

Model	Product Group Series	Specification Includes (as per quoted price)	Mc HP / Scorer / Volts	Depth of cut & length of stroke	Price Exc VAT - Plus Carriage	Price Inc VAT - Plus Carriage
Forsa 3.0 P1	Workshop	Inc Professional STC + TWE + TLE + Scorer	5.2 / 1.0 / 415v	87 mm x 1.6 m	£2,895.00	£3,474.00
Forsa 4.0 - P1	Workshop	Inc Professional STC + TWE + TLE + Scorer	6.5 / 1.0 / 415v	107 mm x 1.6 m	£3,895.00	£4,674.00
Forsa 4.1 - P1	Workshop	Inc Professional STC + TWE + TLE + Scorer	6.5 / 1.0 / 415v	107 mm x 2.1 m	£3,995.00	£4,794.00
Forsa 8.0 - P3	Professional	As Illustrated above	6.5 / 1.0 / 415v	107 mm x 2.6 m	£5,420.00	£6,504.00
Forsa 9.0 - P3	Professional	As Illustrated above	6.5 / 1.0 / 415v	107 mm x 3.2 m	£5,575.00	£6,690.00

The Editor's toolbox Part III

Finally the **Editor** has completed his goanywhere toolbox

here I started out two issue ago – wanting to create a personalised toolbox that would hold my tools securely and neatly – and where I have ended up are somewhat different. The final result is a helluva thing, not lightweight but tough, and very neatly ordered inside and I've learnt a few lessons along the way...

BASE SECTION

The largest and heaviest objects reside here. The planes, chisels, mallet,

marking gauge and so forth. The planes were easy enough to place but the chisels posed a problem to fit and the mallet and marking gauge were even worse – but ingenuity solved it.

1 I decided the planes would be held in position by accurately cutting pieces of dowel screwed in place through the base of the toolbox. Two pencil marks indicate roughly where to drill so the dowel would fit closely to its respective plane.

2Drilling off-centre was all too easy, but had the advantage that once screwed and glued in place with Titebond glue, there was just enough time to turn the dowel for the best possible fit without trapping the plane.

The corner and mid blocks are 5mm higher than the dowels holding the planes in place and are there to support the mid deck of the toolbox. Unfortunately this one was preventing the largest chisel from lining up with the others.

I used a pullsaw to cut from the outside of the case until it went mostly through the block on the inside. That way I could overcome the problem of cutting away the bottom offending section.

5 Now for a small dozuki pullsaw with a hook tip which could make the final cut without slicing through too much of the toolbox. It was a simple job to chisel out the bottom bit of block and pack the saw kerf with a thick veneer and glue.

6 I opted for five chisels, mostly narrower ones for chopping mortises and a wide one for paring. All the tips are held apart by blocks and a top cover. At the handle end the stepped block has high-strength Velcro hook-and-loop with a cover piece that needs some effort to pull upwards so the chisels cannot fly out.

Originally I chose a lovely ebony marking gauge, but I found I still had this brilliant gauge made by Colin Sullivan for sister magazine *Furniture & Cabinetmaking*. He gave me this one – the twist lock makes it really quick and easy to use. The marking point is an old gramophone needle.

This really was a case of holding disparate objects neatly in place. To

the left, the round mallet and marking gauge are held with a turnbutton, while in the centre my baby squirreltail plane is held under the diagonal Velcro-covered strip, as is a mediumweight Warrington pattern hammer and my wheelbrace.

And that's how it works, a bit of cogitating was needed to fathom this motley collection out but it all fits neatly, including the diamond plate lapping fluid at bottom right, held yet again with Velcro.

10 The completed base section. The tape rule clip slides on to a bent metal bracket and the side knob for the wheelbrace screws into a hole drilled at the bottom right of the case. Things seemed to be going well so far...

MID DECK

The mid deck has all the mid-size lighter objects that don't belong in the lid or the base. Some of them were quite awkward to fit in place and I resorted to old-fashioned tool clips, which worked really well. The deck has two finger holes so it is easy to lift out.

1 On the mid deck certain things, such as the bit set which works with the Stanley Yankee screwdriver via an adaptor – were naturals for being held in place with Velcro. Various other items certainly weren't and I needed some creative thinking.

2 The diamond plate was quite heavy, despite its composition core. It had to fit very securely, I found offcuts of uPVC panel from our bathroom refit. With the tablesaw blade set low I cut some slim H-sections that would hold the plate in position.

3A perfect friction fit, the plate could slide out and be turned over to change grades. The plate could also be used in position it was so firm. Note the corner posts on the mid deck – these press against blocks in the lid so the mid deck cannot move around when the case is closed.

Another piece of uPVC, CA-glued to the deck ,accepts the clip on the knife body. Every space is a place to be filled. I hoped I could get everything in the toolbox that I wanted there.

5 A vintage profile gauge made in Japan, with Velcro to keep it held in place. Likewise the cabinet scrapers and burnisher pouch to the right.

6 Instead of a rather crude pair of pincers, I invested in a Japanese-made restorer's cat's paw. The flared end prises things carefully apart and

the other end can lift out nails – very handy to have.

Instead of a standard drawknife I opted for a Morakniv which does the same thing but takes up less space. A good, sharp blade for shaping tasks.

Parties a substitute of the other tools on this mid deck.

The essential finger holes to lift the deck in and out. They had to go where there were spaces left for them. The underside had round-overs done with a small cutter in a router trimmer for comfort.

10 This was an awkward deck to lay out but it is a success and a slim gap in the middle now takes a carpenter's pencil fixed with Velcro.

INSIDE LID

The lid is dedicated to flat objects such as saws and trysquares, etc. It seemed an easy one but it entailed both shaped blocks to hold some things and magnets for others. The first job was laying everything in the correct place so it all went in neatly.

The handsaw handles would be held on shaped blocks with shaped turnbuttons. The sharp ends of the saws would need securing as well.

2A quick job on the bandsaw and then sanding on the disc sander and wood file. All exposed edges were 'broken' with abrasive paper to make them comfortable.

The Adria dovetail saw turnbutton and, to the right, the flip-out steel rule sits on several round magnets.

The corner block that holds the saw blade and keeps the mid deck from floating needed to be bevelled on the underside so the Adria blade could slide in and out.

5 The large ebony and blued steel trysquare has its own turnbutton. To the right the flushcut saw is held with magnets but this corner block had to be shaped to accommodate the handle.

The Turbo saw for ripping has a turnbutton, of course. To the left the baby boat level is held by a cup hook that is turned to release it.

Inserting 8mm dia. magnets entailed very slow drilling to make shallow holes for the magnets to sit in. CA glue was dribbled into the holes and each magnet quickly placed and

levelled using a flat, plastic block before it, too, got stuck in place.

The flushcut saw is simply plopped in placed and it is held fast by the tiny magnets.

The large pullsaw is also held by rare earth magnets, which are surface mounted with CA glue. Note the use of a shaped ply pad to make up the difference in thickness between the blade and handle.

10 For smaller marking out I always use an accurate engineer's square, but its weight needed four magnets for security.

1 Leverything in place, including a Japanese marking knife completing the lid fitout.

CASEWORK

As my ideas about this toolbox developed it seemed like using flight-case hardware and case-covering material was the way to go. Except instead of the thin, hard, compressed board used for heavy-duty flight cases, mine was made of much thicker wood. That created problems of its own and it was where the learning curve got steep, but it worked out in the end.

1 22mm aluminium case edging extrusion would cover the rough edges of the case. The arrises and corners would need trimming to ensure the aluminium would fit tightly.

2 A block plane was used to bevel all the edges and corners prior to covering the case.

When I bought the flight case hardware I also bought textured vinyl covering. Originally I was going to paint the case, but that didn't make sense – messy, slow and vulnerable to damage, where this stuff is designed for a hard life and quick to apply.

A special contact adhesive comes with the vinyl and is applied evenly all over the wood. This is best done outdoors because of mess and solvent fumes. Clean up is done with white spirit.

5 I should have cut the panels undersize so the edges were bare, then the aluminium angle could be bonded to the wood. Trimming back was quick to do though.

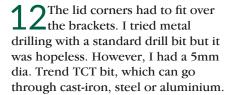
The vinyl came folded and there were several areas where the fold patterns didn't want to lie down, so a heat-gun on medium heat and a small veneer hammer did the trick.

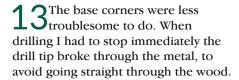
To cut the aluminium angle I used Trend double-sided jig tape to mount a batten with a bevelled edge on the compound mitre saw. The aluminium sat tightly and I checked the fine-tooth blade was in good order. All cuts were at 90° to avoid changing set-up. Safety glasses were worn because of the risk of flying metal fragments.

Where the corners met I used metal shears to trim at 45°. The corners did not have to need to meet as the pressed steel corners with their rounded internal profile had to sit tightly.

As a convert to Gorilla glue, I put my faith in it again, running a bead inside every piece of angle before pressing in place. Longer lengths were lightly clamped to avoid them springing away.

10 I hadn't quite sorted out the lid corners in my clever plan. This was my way of bringing the aluminium angle to a neat meeting on the open face of the lid.




This is how it looked on the Llower part of the case. The gaps look alarming but aren't relevant as the steel corners cover them.

the lid pressed to compress the E-seal before marking the holes for the upper hinge part.

Two sprung, flight-case handles had to be fitted to the front between the three catches known as 'drawbolts'. The handles had to be bolted on because of the weight, which could tear screws out.

Where the nuts were inside the case they had to be hidden below the surface so they would not contact the planes. I did a heinous thing and ground through a 3D bit shank so the cordless drill and bit would fit inside the case to make the nut recesses.

The centre drawbolt is larger than the outer two and rather than using a padlock for security I decided to use a snap hook instead. That way the case can't come open unexpectedly.

The completed case minus hinges and latches. The base and back needed rubber protective feet added so the screws wouldn't scratch surfaces.

I used household rubber E-seal Istrip to seal the lid to the base when closed. It peels into two strips and comes with adhesive backing.

> This toolbox is an unprintable weight, but I found this frame from a shopper trolley which it fits on perfectly and allows it to

The hinges are a lift-off pattern Othat avoids getting strained when the lid is opened. The lower part was drilled and screwed in place, then

Suppliers www.flightcasehardware.co.uk www.flightcasefittings.co.uk

New Products

This new carving drawknife is just one of the many new products from Narex.

The Narex range is regularly increasing to make it one of the worldwide market leaders in carving and woodworking tools.

Professional 'Profi' Range

Profi are handmade tools of the highest quality, designed especially for professional carvers. Blades are made of Chrome-Vanadium tool steel and heat treated to the hardness of 61-62 HRc.

Sold in kits or individually with a wide selection to choose from.

Starting Range

Thinking of getting into carving?

Narex offer a range of styles to help you, such as the pictured set which contains 5 tools, a block of Lime and instructions to get you on your way. A great gift for you or someone else.

Whether you're just starting or an experienced carver, Narex have something in the range for you.

Manufactured in Europe with almost 100 years experience, Narex really know what is needed when making the finest quality hand tools.

FIND YOUR NEAREST NAREX CARVING CENTRE AT

www.tomaco.co.uk

PLANS 4 YOU

A tiny shed

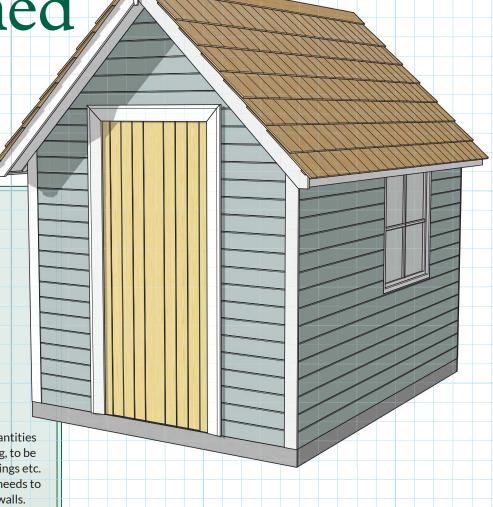
Simon Rodway wanted a special little hideaway at the bottom of his garden

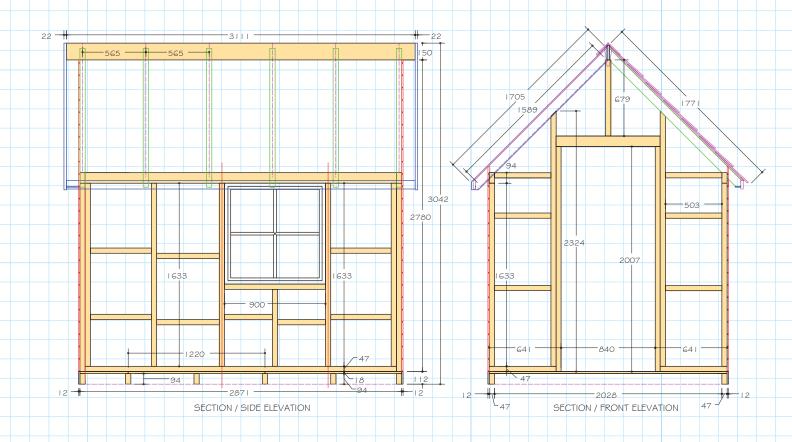
Cutting list

Floor joists 6@2028 x 94 x 47 End joists 2@2871x94x47 Floor 2@1220 x 2122 x 18 Floor 1@431 x 2122 x 18 Rafters 10@1705x75x47 Barge boards 4@1771x94x22 2@3111x75x22 Fascia 1@3111 x 150 x 22 Ridge board Roof sheets (AREA) 2@3111 x 1668 x 9 2@2780 x 2028 x 9 End walls (AREA) Side walls (AREA) 2@2777 x 1680 x 9 Cladding corner strips 4@1896 x 75 x 22

Note: Only major components are shown. Quantities for studwork, roof covering and outer cladding, to be taken from drawings and will depend on openings etc. Wall areas are given as a total and allowance needs to be made for openings and angled area of end walls.

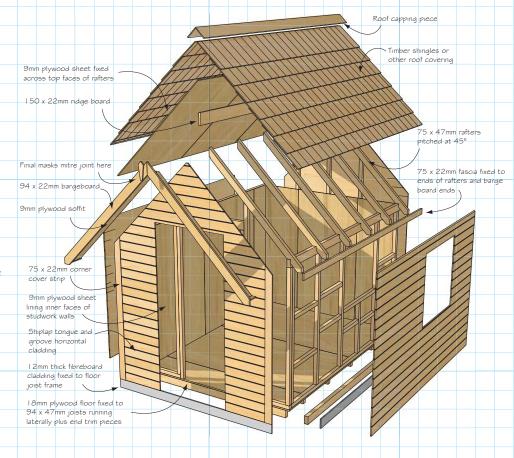
of the Year", and I freely admit to being a huge fan, then you might have had thoughts of building something a bit special yourself at the end of the garden or some other available space; a shed that's a little bit more than just somewhere to put a few garden tools. So, if you don't have a design in mind that you are burning to see built, this month's project might just fill that space and give you a small building that combines practicality with looks that belie its modest size.

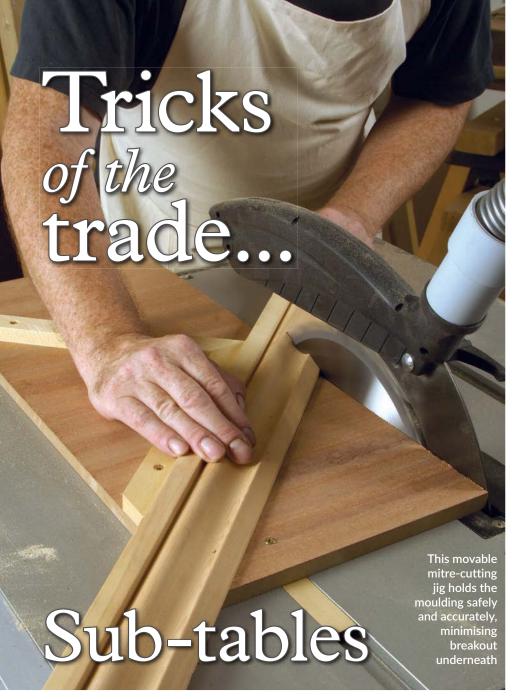

As always, one of the trickiest things with a garden building like this is preventing rot at the bottom. A well drained base will help. A timber bottom frame, with joists running laterally across the shed should have a fibre board cladding all round to form


a plinth. The boards could be fixed with screws to make them removeable so that the timber can periodically be treated with a wood preservative. An 18mm plywood floor is screwed down onto the top of the base frame, then directly onto this a studwork frame of 47mm square section treated timber to form the walls. The larger section of 94 x 47mm pieces are at the head of the side frames, projecting into the end frames to pick up the rafters, which are birds-mouthed over this top piece and fixed to a ridge board at 45 degrees pitch.

On top of the rafters, sheets of 9mm ply are fixed. I have tried to space the floor joists, the vertical studs and the rafters to take account of each and every joint between the plywood sheet, and wherever possible to allow for

a full sheet width of 1220mm to avoid unnecessary cutting, so if you vary the length or width of the shed, you will need to take this into account. The roof covering is your choice: there are many options available and I've shown timber shingles, with a capping piece along the length of the ridge.

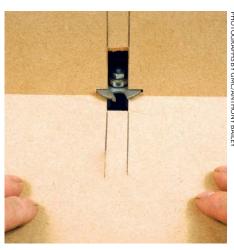

On one side of the shed is a window, which I'm assuming will just be bought in, and you will obviously need to adjust the opening for this in the studwork wall to suit. The same applies to the door, which is also an "off the peg" item, and this has additional framing around the opening carrying a lintel of 94 x 47mm timber. The two end walls which are also made from 47mm studwork are essentially planted onto the ends of the side walls. These end walls have an angled top edge which is finished


by joining to the bottom faces of the end rafters. A central vertical stud is needed to pick up the ends of the ridge board, which is projected about 120mm beyond the end walls to form the apex of an overhang on the gable ends. Barge boards are then fixed at the top to the ridge board and at the feet to a fascia board with runs along the length of the shed and is fixed to the ends of the rafters, a classic but simplified timber roof construction, in other words.

The outer cladding for the walls is horizontal shiplap tongue and groove, nailed to the studwork. In the absence of any kind of soffit to close off the space between the rafters you will have carry this up to the underside of the 9mm ply roof covering, cutting and fitting sections of shiplap between each rafter. An angled soffit between the barge boards and the shiplap will finish off the gable end overhangs and a shaped finial hides the mitred joint of the barge boards. Internally the walls are lined with 9mm plywood up to the head of the side studwork, and full height to the ridge at the ends, with an architrave trimmed around the doorway as the finishing touch.

READ Woodworking CRAFTS ON ANYWHERE!

There are no decreased and the second and the secon DOWNLOAD FROM ONLY £2.15 App Store GETITION Google Play Get it from **Microsoft** pocketmags.com Available at amazon



If you don't support those small workpieces, don't be surprised when they break up and disappear from view

ub-beds, sub-tables, sub-fences, break-through fences... they all perform an important function work support. Smaller sections being fed through the router table, bandsaw or tablesaw will all come to grief if not properly supported. Machine manufacturers supply their saw and router tables with insert plates that are an apparently sloppy fit, so any reasonable-size blade or cutter will fit without contact, and to allow for tilting the blade in the case of a saw. However, we often want continuous support, especially for slimmer or smaller sections that can 'chatter', break up or simply disappear down the

side of the cutter already scarred by unexpected contact.

Sub-beds and sub-fences are easy to make from MDF and can be clamped in place, although adding a glued-on batten can help locate it. A sub-bed doesn't even have to be a fixed item as it can slide in the mitre slot on a saw or router table while giving close support to the workpiece. On a router table you can complete the support process for small sections by creating what is known as a 'tunnel' – which is exactly that. Sized to match the sections being machined, it gives safe all-round, chatter-free support for consistent and reliable results.

A sub-bed and a sub-fence give continuous work support – no catching by the workpiece and shielding most of the cutter, making it safer

To complete the technique a tunnel has been clamped in place, holding the workpiece safely without 'chatter'

This sub-bed is useful because bandsawing often produces small pieces of waste wood that get trapped beside the blade

"We design and build woodturning lathes that become an extension of the turner's creative spirit."

Brent English-Owner of Robust Tools

At Robust Tools we combine skillful engineering and quality materials to produce premier woodturning lathes.

We design from a turner's perspective. Ergonomics and controls let you concentrate on your turning instead of fiddling with your lathe. Our greatest compliment: "It's like the lathe isn't even there."

All Robust lathes are made in Barneveld, Wisconsin where our skilled craftsman earn a living wage. Our work ethic and commitment to quality is reflected in the products you receive. That's why we back our lathes with a complete 7-year warranty.

Better by design. Enjoyed for a lifetime!

Please visit our website to see all our quality products!

Fast and Accurate: Edge to edge and mitre corner joints. Quick and Eonomical: Making carcasses with the DD40 and dowel template.

For Coarse sanding, The EVA is the Ideal Choice. 5mm Stroke and a speed of 12,000 rpm represent the perfect combination for this kind of work

01484 400 488

() @NMA_TOOLS

(6) mafell_uk

SUBSCRIBE TO OUR OTHER TITLES FROM ONLY £11.48

Save up to 30% on any of these magazines +44 (0) 1273 488005 www.thegmcgroup.com/offer/woodwork

DISTRIBUTORS OF QUALITY PRODUCTS

Chisel and plane iron sharpener - take anywhere and sharpen in seconds.

A quality range of professional Drill bits and accessories from Germany.

Range of the toughest tool bags with a 5 year downtime warranty.

Quality range of woodworking hand tools made in Europe.

A quality range of professional tools and accessories.

Quality cutting tool range which includes Router cutters, Spindle Moulding, saw blades, holesaws and many more from Italy.

FOR YOUR NEAREST STOCKIST VISIT www.tomaco.co.uk

SPECIAL
SUBSCRIPTION
OFFER FOR US
READERS

SUBSCRIBE FOR 12 ISSUES

For less than \$75*

CALL 866-699-6779 (toll-free) OR visit: lightningpublications.com

Would you like to advertise your business to a wide network of woodworkers and hobbyists alike?

Contact Russell Higgins 01273 402841 or russellh@thegmcgroup.com

Focus on...

Police boxes

Finding an old police box is so unusual it is quite an arresting sight...

efore mobile communications came into being the police box fulfilled a valuable role, allowing members of the public to call for help using an emergency landline phone. The first police box was introduced in the United States in 1877, while in Great Britain they were to be found all over the country by the 1920s. They came in different types, from cast iron to wood to concrete, and in different shapes. All of them featured an emergency phone behind a small door with instructions on using the phone. The pattern most people of an older generation remember is similar to the Tardis seen on Doctor Who but without the high-tech interior.

It was a place for a policeman to rest, write up notes, contact his local police station or even temporarily detain a prisoner. There would be a stool, an incident book, fire extinguisher and first aid book available. The blue light on top would flash to summon police officers when the alarm was raised, as beat officers only had a whistle to summon assistance from other officers.

The first examples were hexagonal, red-painted cast iron with a gas lamp on top, introduced in Glasgow in 1891. The first wooden shed constructions were built in Sunderland in 1923 on the orders of Chief Constable Frederick I Crawley, who saw them as a miniature police station where the public could seek assistance from all the emergency services. Gradually they spread to many northern cities. The Metropolitan Police introduced them between 1928 and 1937 with the best-known design created by the Met's own surveyor and architect, Gilbert MacKenzie Trench, in 1929. The first batch of 43 had wooden sides and a concrete roof. The later versions were made entirely of concrete for

A decrepit police box in Covent Garden

1920s design with pedimentstyle roof and split panes

BBC Television Centre

durability but they were cold and damp compared to the wooden variety, even with an electric heater.

By 1953 there were 685 police boxes in Greater London, plus 72 smaller police posts. Between 1923 and 1960 police boxes were adopted by most provincial police forces with the design and construction at the discretion of each force, thus there were various different patterns all over the country.

Although the concept of the police box fell out of favour with the advent of modern communications, there are still some to be found, often saved and repurposed (see WWC36 Edinburgh Tool Library).

Places to look include: Glasgow; National Tramway Museum, Derbyshire; Kent Police Museum, Chatham; City of London 'call posts' and next to Earls Court tube station.

Time warp

The concept isn't entirely lost, Glasgow introduced computerised kiosks in 2005, Manchester has help points with a siren, Liverpool also has help points with CCTV and Boscombe in Bournemouth has an old-style police box opened in 2014 with yellow phone, security cameras and defibrillator.

To find out more visit Wikipedia – 'police box'

Classic Hand Tools®

Pfeil Carving Tools

We hold the largest stock of Pfeil wood carving tools & accessories in the UK.

Over 2000 tools in stock

Pfeil catalogue on request.

Chris Pye Carving Tools Kirjes Sanding System Norton Sharpening Stones Gransfors Bruks Carving Axes Ron Hock Carving Knives Flexcut
Arbortech
Abranet Sanding
King Arthur's Tools
Woodcarving Books
Auriou Rasps & Rifflers

NOW IN STOCK - SABURR TOOTH CARBIDE BURRS

1/8" & 1/4" shanks - all shapes • 2" wheels for Arbortech
4" wheels for Angle Grinders

Free catalogue on request.

CLASSIC HAND TOOLS

HILL FARM BUSINESS PARK, WITNESHAM, SUFFOLK IP6 9EW

Email: sales@classichandtools.co.uk

Phone: 01473 784983 Fax: 01473 785724

www.classichandtools.co.uk

Copes with high volumes of dust.

Efficient, simple and reliable. The new CT pre-separator with cyclone technology.

Large sanding areas and large quantities of dust place a great amount of strain on the main filter, which in turn affects the suction power. Mineral sanding dust from renovation sanders or long-reach sanders such as RENOFIX and PLANEX clogs the pores of the filter system and consequently reduces the suction power.

The CT pre-separator separates and collects approx. 80% of the accruing quantity of dust before it reaches the mobile dust extractor. This takes the strain off the main filter and guarantees consistently high suction power throughout the entire work process.

For more information, go to www.festool.com