

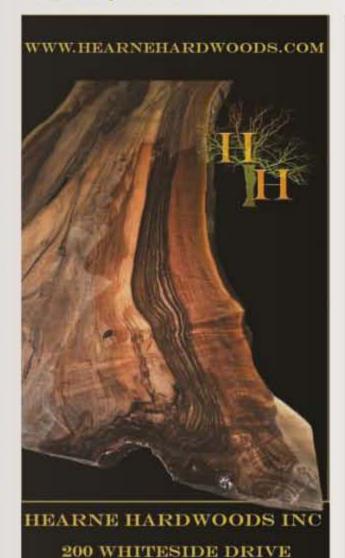
WODCRAFT®

For A Free Catalog Or To Find Your Local Woodcraft Store, Visit woodcraft.com Or Call 800-225-1153.

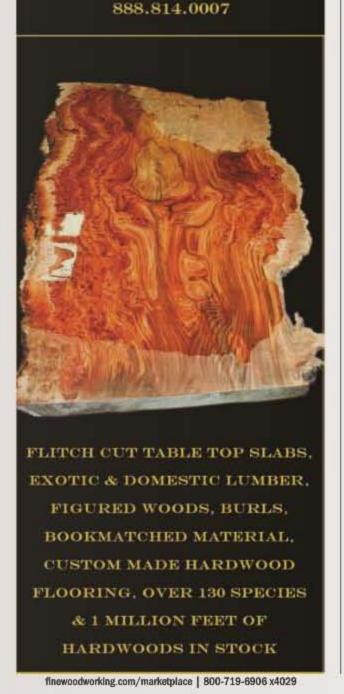
FESTOOL Domino XL DF 700 Joiner Set

Bigger and stronger than the original, there is no job too big for the Domino XL. With an expanded range of thicker, longer tenons, you can quickly and precisely join massive slabs, doors, and gates or construct the most durable of tables and just about any larger scale project you can imagine. This tool can create mortises up to 9/16" (14mm) thick and 55/16" (140mm) long. Available June 1.

1.855.923.7326 www.woodcraftfranchise.com


Watch the video and find out more about owning a Woodcraft Franchise. Download a QR app to scan this QR code with your Smartphone.

Set Includes:


- Domino XL DF 700
- · 12mm Cutter
- Support Bracket
- . Trim Stop
- · Cross Stop
- · Plug-It Power Cord
- An Assortment Of 12mm Domino Tenons
- . T-LOC Systainer, #5

12WW08P

QUALITY WOODWORKING TOOLS • SUPPLIES • ADVICE®

OXFORD, PA 19363

www.finewoodworking.com

marc adams school of woodworking

is committed to fine woodworking excellence through hands-on learning experiences with the best woodworkers of modern time.

- Over 150 workshops that last from one day to two weeks
- More than 80 internationally recognized instructors
- Classes are hands-on in a facility that is unrivaled

Check out our new interactive brochure online at

www.marcadams.com 317-535-4013

finewoodworking.com/marketplace | 800-719-6906 x4047

finewoodworking.com/marketplace | 800-719-6906 x4057

finewoodworking.com/marketplace | 800-719-6906 x4001

finewoodworking.com/marketplace | 800-719-6906 x4037

Fine Wood Working

contents

up front

- 6 On the Web
- 8 Contributors
- 10 Letters

14 Methods of Work

- Align a jointer's outfeed table in seconds
- Simple saw guide for accurate dovetails

18 Tools & Materials

- Low-vibration sander is easy on the hands
- New approach to handsaws
- Best doweling jigs for the money

22 Handwork

The right way to sharpen your scraper

26 Fundamentals

Make your cutlist a "parts list" instead

30

Got Rust?

New protectants thrashed old favorites in our tests

BY THOMAS MCKENNA

35 Shaker-Inspired Hall Table

Arched aprons and splayed legs add balance and grace

BY CHRISTIAN BECKSVOORT

Foolproof Crosscut Sleds

Innovative approach guarantees perfect results

BY ALAN TURNER

48 Seal First for a Better Finish

Choose wisely for best results

BY PETER GEDRYS

52 Fine Furniture with Biscuit Joints

For surprising precision, anchor the tool, not the workpiece

BY MICHAEL C. FORTUNE

58 Why You Need a Compass Plane

Create smooth curves that are fair to the eye and hand

BY PAUL SCHÜRCH

64 A Revolution in Chairmaking

When you separate the seat and back from the structure, it gets easier

BY MICHAEL C. FORTUNE

74 Curved Moldings on the Router Table

Over-arm jig lets you form complex profiles with standard bits

BY W. MICKEY CALLAHAN

in the back

80 Readers Gallery

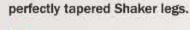
84 Q & A

- Designing dovetails for strength and style
- Advice for spraying finish outdoors

88 Master Class Super-strong 3-way miter

96 How They Did It
The back cover explained

Back Cover Irregular perfection



THIS MONTH ON FineWoodworking.com/extras

Visit our website to access free web tie-ins, available May 31. While you're there, don't miss our collection of free content, including tool reviews, an extensive project gallery, and must-read blogs.

VIDEO: Cure for Card-Scraper IIIs

Christian Becksvoort (pp. 35-41) puts a bit of Yankee ingenuity

to work, with a great series of tips and tricks for super-smooth,

Learn how to avoid the top two mistakes most woodworkers make when sharpening a card scraper (pp. 22-25).

Fine Woodworking: Now with Video Built In

Bring magazine content to life with one click. Beginning with this issue, FWW is expanding its print content with built-in video clips. Use the "See it in Motion" QR codes to access a variety of short video clips that will help you better understand the Jigs, tips, and techniques our authors use in every issue. Just download a QR reader app on your smart phone and use it to scan the "See it in Motion" icons.

Become an online member

Access 1,000 exclusive project and technique videos by subscribing to FineWoodworking.com. You'll also get more than 30 years of magazine archives at your fingertips, including 1,400-plus articles and project plans.

VIDEO WORKSHOP

East Meets West

Build a graceful hall table chock-full of Asian flair. Timothy Rousseau takes you through every step, including:

- how to produce accurate patterns from drawings,
- pattern-cutting sled techniques for the router table, and
- how to create curved, tapered legs with a thickness planer.

Editor Asa Christiana

Art Director Michael Pekovich

Managing Editor Mark Schofield

Senior Editors Thomas McKenna

Matthew Kenney Jonathan Binzen

Associate Editors Steve Scott

Ken St. Onge

Senior Copy/ Production Editor Elizabeth Healy

Associate Art Directors Kelly J. Dunton

John Tetreault

Administrative Assistant Betsy Engel

Shop Manager William Peck

Contributing Editors Christian Becksvoort

Garrett Hack Roland Johnson Steve Latta Michael Fortune

Methods of Work Jim Richey

FineWoodworking.com

Senior Web Producer Ed Pirnik

Web Producer Lisa Morgan

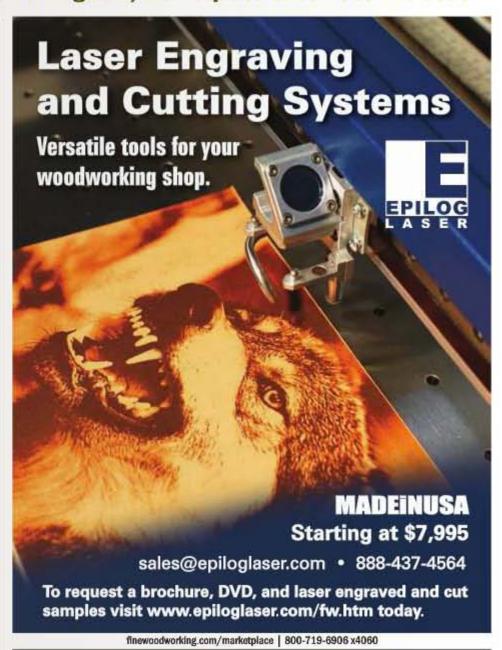
Fine Woodworking: (ISSN: 0361-3453) is published bimonthly, with a special seventh issue in the winter, by The Taunton Press, Inc., Newtown, CT 06470-5506. Telephone 203-426-8171. Periodicals postage paid at Newtown, CT 06470 and at additional mailing offices. GST paid registration #123210981.

Subscription Rates: U.S., \$34.95 for one year, \$59.95 for two years, \$83.95 for three years. Canada, \$36.95 for one year, \$63.95 for two years, \$89.95 for three years (GST Included, payable in U.S. funds). Outside the U.S./Canada: \$41.95 for one year, \$73.95 for two years, \$104.95 for three years (payable in U.S. funds). Single copy U.S., \$7.99. Single copy Canada, \$8.99.

Postmaster: Send address changes to *Fine Woodworking*, The Tauriton Press, Inc., 63 S. Main St., PO Box 5506, Newtown, CT 06470-5506.

Canada Post: Return undeliverable Canadian addresses to Fine Woodworking, c/o Worldwide Mailers, Inc., 2835 Kew Drive, Windsor, ON N8T 3B7, or email to mnfa@taunton.com.

Printed in the USA



finewoodworking.com/marketplace | 800-719-6906 x4003

finewoodworking.com/marketplace | 800-719-6906 x4046

Breaking New Ground Pathfinder Simplicity and Speed without compromising quality Tenons? Certainly - twin, double, squared or rounded and very quick to set up and cut: perfect for Arts and Crafts style work Through Dovetails? No head-scratching here, just a foolproof way to make perfect boxes Half-blind dovetails? Ideal for high quality classic drawers from a busy workshop. There's even a neat route to secret dovetails The way it works is simplicity itself. The drop pin follows the path in the template

www.woodrat.com

animals? That's up to you... the possibilities are unlimited.

as the bit cuts the same path in the wood. We make standard templates for the

usual things but the unusual things like cams for toys or star shaped boxes or

contributors

One of the things Andrew Hunter (Master Class: "Super-Strong 3-Way Miter") appreciates most about making a living as a furniture maker is that it has allowed him to apply his fundamental values to a lifelong career, something not every job offers. In his Accord, N.Y., studio he builds custom furniture with a small but much-loved collection of Asian hand tools. Since he discovered traditional Chinese furniture making, Hunter has been eager to share what he has learned, and he says the three-way miter is just the tip of the

Iceberg. He and his wife, Kate, have taken most of the past year to refurbish an 1800s farmhouse. Hunter has approached this project in the same way he builds his furniture, with an emphasis on a well-thought-out and precise layout.

What do you like about your shop? "Its simplicity."

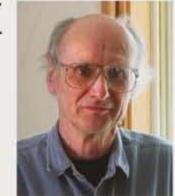
Tool you can't live without? "My Japanese smoothing plane."

Favorite style of furniture? "Currently, Shaker and early American country furniture."

W. Mickey Callahan ("Curved Moldings on the Router Table") has been a professional woodworker and furniture maker for more than 25 years. He received his formal training in furniture and cabinet making from North Bennet Street School in Boston. In addition to making furniture, he has taught at NBSS and at numerous other locations. He is also co-founder and past president of the Society of American Period Furniture Makers (SAPFM).

Favorite tool? "My Stanley-Bailey No. 7 jointer handplane. It's over 100 years old and just feels right. It has never let me down."

Peter Gedrys ("Seal First for a Better Finish") does most of his work in a converted barn next to his house. But he also finishes interiors, which gives him a chance to see how the other half lives. He has done restoration work on the Morgan Library and Museum in New York City; his last job was in a Park Avenue penthouse. If I weren't a finisher, I'd be ... When we asked Peter this question, his wife Kathy quickly interjected "rich!"


Instead of the usual biography, we asked longtime contributing editor Christian Becksvoort ("Shaker-Inspired Hall Table") a few questions. Describe the view from your shop window: "A lawn with apple, ash, maple, and pine trees, a stone wall, and the woods."

What is the oldest tool in your shop? "I still have my father's old, handmade, wooden router plane."

Length of your commute? "Ten seconds."

Number of moose sightings in the family garden, annually? (Becksvoort lives in Maine.) "On average, about one a year. One year we had a young bull that came out of the woods every evening, all summer long."

Advice to an aspiring professional furniture maker? "Keep your day job."

For more information on our contributors, go to FineWoodworking.com/authors.

We are a reader-written magazine. To learn how to propose an article, go to FineWoodworking.com/submissions.

Advertising Senior Vice President

Stephen Giannetti sgiannetti@taunton.com

Advertising Director

Peter Badeau 203-304-3572 pbadeau@taunton.com

Senior National Account Manager

Linda Abbett 203-304-3538 labbett@taunton.com

Associate Account Manager

Jesse Rosenschein 203-304-3590

Jrosenschein@taunton.com

Advertising Sales Assistant

Diana Mackey

Director, Corporate Marketing

Kristen Lacey

Senior Advertising Marketing and Operations Manager

Karen Lutjen

Assistant Advertising Marketing Manager

Kandace Doyle

Member Audit Bureau of Circulation

Audit

Digital Marketing Director

Sara Ezrin Larsen

Senior Consumer Marketing Manager

Melissa Robinson

Director, eCommerce

Michael Stoltz

The Taunton Press

Inspiration for hands-on living* Independent publishers since 1975 Founders, Paul & Jan Roman

President EVP & CFO

Suzanne Roman Timothy Rahr

SVP, Creative SVP, Advertising

Susan Edelman Stephen Giannetti

SVP, Operations SVP Taunton Interactive Thomas Luxeder Jason Revzon

VP Editorial Director VP, Editorial Director

Anatole Burkin Maria Taylor Jay Annis

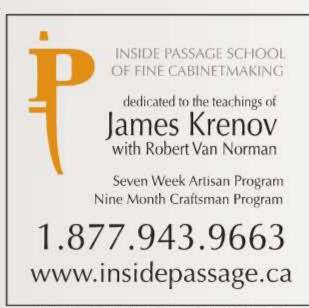
VP Single Copy Sales VP Consumer Marketing

Nancy Hallberg

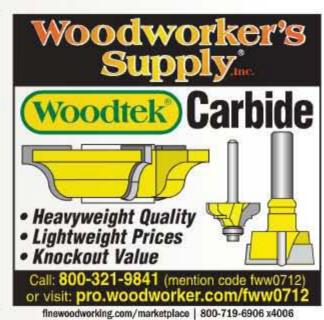
VP & Controller VP, Finance


Wayne Reynolds Kathy Worth

VP, Human Resources Carol Marotti


VP, Fulfillment Patricia Williamson

Publishers of magazines, books, videos, and online Fine Woodworking . Fine Homebuilding Threads . Fine Gardening . Fine Cooking www.taunton.com



finewoodworking.com/marketplace | 800-719-6906 x4009

nail indicator and more, it's the right balance of features for a fine finish.

to drive into dense wood, yet won't dimple the softest wood. Touting a powerful oil-free design, dry-fire lock out, low

To learn more about the Porter Cable Pin Nailer, visit portercable.com or stop by a retailer near you.

www.PorterCable.com
© 2012 Porter-Cable

PIN138

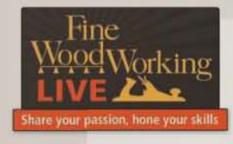
PORTER T CABLE.

From the Editor

GET INSPIRED AT FINE WOODWORKING LIVE!

Woodworking is a solitary pursuit. That's a good thing and a bad one. On one hand, it is deeply satisfying to carve out your own retreat, one that is always waiting for you just the way you left it, a place where you can be at peace and simply create.

On the other hand, we are social creatures. It is one of the important ways we make meaning of our lives. I feel great when I finish a piece of furniture and it looks the way I imagined it would, but I feel even better when someone else sees and appreciates it. Also, working by myself at home, I can run out of steam. Have you experienced the woodworking doldrums, where you just don't feel like making anything?



The cure is simple: Get together, and get inspired. I've seen this phenomenon work again and again. It has happened to me at furniture shows, or just about any exhibit of work made by my fellow artisans. And it happens at conferences, too. In each case, I encounter beautiful work, and experiencing it in person is so different from seeing it in a magazine. I can touch the finish, see the tool marks, and get a much better idea of how it was made. The technical demos are inspiring, too, letting me look over someone's

shoulder, ask questions, and interact with everyone around me.

So, to take you beyond the magazine and website, we created Fine Woodworking Live, our first-ever conference, this August in New York's beautiful Hudson Valley. It is long overdue and promises to be one of many, bringing together passionate readers like you and our most power-packed authors (and editors, too) for a weekend of skill-building demos and overall camaraderie. I guarantee you will leave inspired and itching to get back into the shop and create.

-Asa Christiana

- Aug. 2-5, 2012
- On the campus of SUNY New Paltz, N.Y.
- Conference pass: \$449 (early-bird special of \$399 ends July 16)
- Info at: Finewoodworkinglive.com
- Special banquet speaker: Nick Offerman

Goodwill table

Thank you to Garry Bennett for sharing your table with us ("Garry Bennett's Un-Trestle Table," FWW #219 and in video on FineWoodworking.com). A close friend wanted a table for her laundry room, but gave me only dimensions to work with. So I used your design. I used old-growth fir, as hard as oak, reclaimed from a foundation of a 50-year-old water tank here in Hawaii. After pulling all the nails out, the boards planed out nice. You made my friend happy. No sooner did we have that table assembled than she sat her grandchildren on it and fed them lunch. I don't think it's going to make it to the laundry room. Goodwill Table is an appropriate name for this piece. You are a gift to many of us who appreciate what can be done with one's hands and vision. Keep building pieces, Garry. And I thank you again for sharing.

-STEWART MIYAMOTO, Kailua Kona, Hawaii

Inspired by Bennett. This version of Garry Bennett's Un-Trestie Table was built for a laundry room, but it's proven too popular on the patio.

Power-tool safety

In the past 90 days, two very experienced woodworker friends have endured serious injuries to their fingers. Both are angry (and embarrassed) that they succumbed to what they describe

To contact us:

Fine Woodworking The Taunton Press 63 South Main Street PO Box 5506

Newtown, CT 06470-5506 Tel: 203-426-8171

Send an email:

fw@taunton.com

Visit:

www.finewoodworking.com

To submit an article proposal:

Write to Fine Woodworking at the address

above or

Call: 800-309-8955 Fax: 203-270-6753 Email: fw@taunton.com

To subscribe or place an order:

Visit www.finewoodworking.com/fworder

or call: 800-888-8286 9am-9pm ET Mon-Fri; 9am-5pm ET Sat

To find out about Fine Woodworking products:

Visit www.finewoodworking.com/products

To get help with online member services:

Visit www.finewoodworking.com/customerservice

To find answers to frequently asked questions: Visit www.finewoodworking.com/FAQs

To contact Fine Woodworking customer service: Email us at support@customerservice.taunton.com

To speak directly to a customer service professional: Call 800-477-8727 9am-5pm ET Mon-Fri

To sell Fine Woodworking in your store: Call us toll-free at 866-452-5179, or

email us at tradecs@taunton.com

To advertise in Fine Woodworking: Call 800-309-8954, or

email us at fwads@taunton.com Malling list:

We make a portion of our mailing list available to reputable firms. If you would prefer that we not include your name, please visit: www.finewoodworking.com/privacy or call: 800-477-8727 9am-5pm ET Mon-Fri

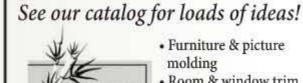
For employment information:

Visit careers.taunton.com

The Taunton guarantee:

If at any time you're not completely satisfied with Fine Woodworking, you can cancel your subscription and receive a full and immediate refund of the entire subscription price. No questions asked.

Copyright 2012 by The Taunton Press, Inc. No. reproduction without permission of The Taunton Press, Inc.

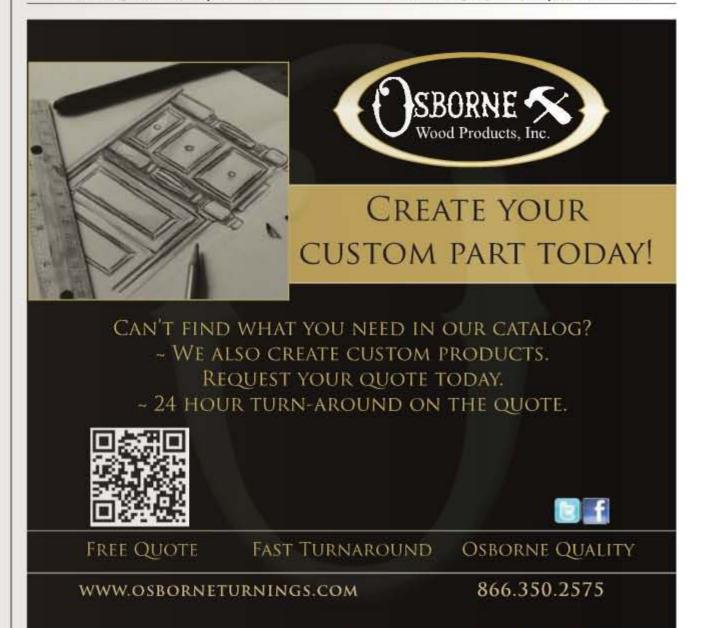


207-594-5611

Rockport, Maine

finewoodworking.com/marketplace | 800-719-6906 x4031

SAMBOO


RATTAN

WORKS

- · Room & window trim
- Wainscoting & wall coverings
- Chair caning supplies
- · Fencing, screens, roof thatching
- Even Tiki bar-building materials!

Bamboo & Rattan Works, Inc. Phone: 800-4-Bamboo or 732-370-0220 www.BambooAndRattan.com

finewoodworking.com/marketplace | 800-719-6906 x4040

letters continued

as rookie mistakes. Both accidents were at the end of a long day against a real or imagined deadline.

When most of us make the first cut to create a product, we start out with all the proper precautions, using our guards and push sticks with respect and a little fear. But we get complacent as we succeed with our task. Then something doesn't fit just right, so we back up a step and trim it up in a hurry to get it right and move on. It is late. We are tired, and a little frustrated.

Stop and think! The most dangerous cut of the day is the last one. This is a letter to myself, and I hope it may help someone else, too.

-PETER ALLSOPP, Homewood, Ala.

Inspired by StartWoodworking.com

I was inspired to make these tables after watching the free series of videos on how to build a Shaker table. I changed up the all-walnut design, going with a

and walnut. This
is my first piece of
furniture. In order
to complete it, I also
built a workbench
so that I would
have a surface to
work on, and found
many great deals on
tools online through
Craigslist and eBay.

-ROBERT FEREBAUER, Richland, Wash.

Sweet retirement!

Fine Woodworking has long been my husband's bible. He has been taking it for years, many times when we thought we could ill-afford it. He drove a semi for 32 years. He was gone a lot and always looked forward to his retirement years in his woodworking shop. After reclaiming his shop from the barn cats who had taken over, he began poring over those

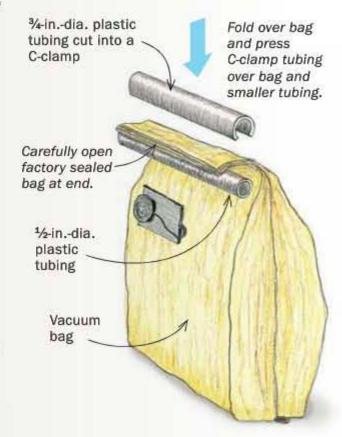
Insulated glass in front doors

In a sidebar in Josh Finn's article "Build Your Own Front Door," FWW #226, there is a recommendation to bed insulated glass in clear silicone. My company builds custom doors, and our glass suppliers have warned against this practice because it can damage the rubber sealant used in insulated glass fabrication, possibly allowing fogging. So we use Infinity urethane caulk to bed door glass. It works great and has the extra advantage of accepting paint and varnish.

-DAN OLIVIER, Charleston, S.C.

Try urethane instead. Used to bed glass in a door, silicone may cause fogging.

issues he didn't have time to fully explore. His first project was the Windsor rocker you featured in April 2011 (FWW #218). He made himself a steam box to bend the wood, attached to a wallpaper steamer. When he carried the rocker into the house, just before Thanksgiving, I realized I was the one who really benefited from all his hours in the shop.


-KATHLEEN MILLER, Pleasant Hill, Ohio

How to make vac bags re-usable

I've got to weigh in on the editorial reply to the question of bag or no bag in issue #225. The question was why you downgraded vacuums with pre-filter bags that would keep their HEPA filters from clogging, preferring instead the vacs with a self-cleaning feature. In the response to the reader you explain that bags are not reusable. You know as well as I that woodworkers are resourceful. I've had a Festool CT33 for many years, and I'm still on my first bag. I figured out a simple way to make the bag reclosable. I got some plastic tubing of two sizes, ½ in. and ¾ in. outside diameter, and I cut them to the width of the bag

end. Then I slotted the length of the larger tube, making it a "C." I carefully opened the factory-glued seal on the end of the bag; it's double-folded. Now I just fold the end of the bag over the smaller tube and snap the larger one over it! I've never had this fixture blow out, and it works like a champ!

-BRIAN WELCH, Burlington, N.J.

About your safety

Working wood is inherently dangerous. Using hand or power tools improperly or ignoring standard safety practices can lead to permanent injury or even death. Don't perform operations you learn about here (or elsewhere) until you're certain they are safe for you. If something about an operation doesn't feel right, find another way. We want you to enjoy the craft, so please keep safety foremost in your mind.

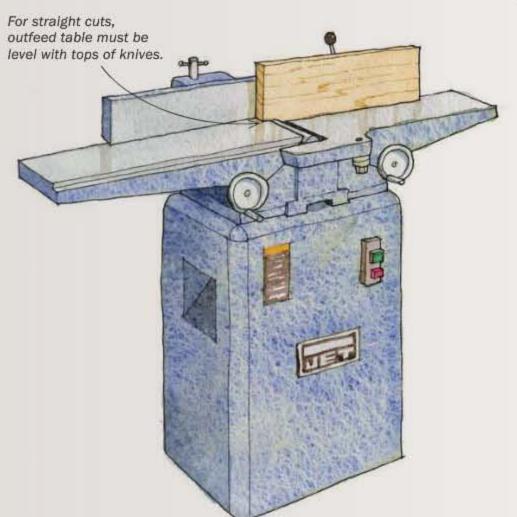
PASSION. QUALITY. POWER.

14 SUV BANDSAW

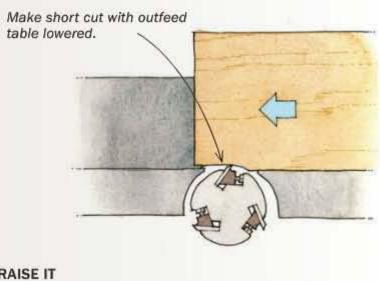
- Worm Gear Rack & Pinion
- Leveling Feet, Bigger Footprint
- Foot Brake Design w/Micro Switch
- 3HP Leeson Motor 220 Volt 1 Phase

COMPACT SHAPER

- Precision Fence with Micro Adjust
- 4 Speeds with Quick Release
- Wheels Built In, Polygroove Belt
- 3HP 220 Volt 1 Phase


800.234.1976

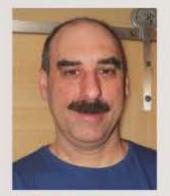
finessedworking.com/marketplace | 800-719-8906 x4062


LAGUVA

methods of work


EDITED AND DRAWN BY JIM RICHEY

STEP 1: LOWER THE TABLE



STEP 2: RAISE IT

Best Tip

Adjust a jointer's outfeed table perfectly in seconds

Daniel Kay has
always loved building
things: using Lego
and Meccano sets as
a child, erecting a log
cabin in his teens,
and then designing
and building a
home with his wife.
Over the years,
that passion has
refocused on building
furniture and other
household items.

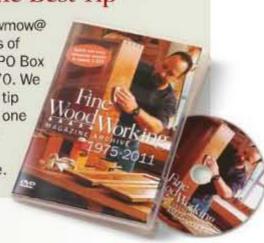
Changing jointer knives is a tedious task made even more so by what often comes next: resetting your outfeed table to match the cut of the new blades.

If the table isn't perfectly level with the knives at their highest point of revolution, you'll wind up with cuts that are tapered, convex, or concave. Getting the adjustment right can be fussy and frustrating.

I came up with an accurate approach that also happens to be dirt simple. All it takes is a piece of solid-wood scrap with a straight, flat edge.

Before starting, make sure that the infeed and outfeed tables are parallel and the knives are properly adjusted in the cutterhead. Lower the infeed table for a cut of about 3/16 in. and lower the outfeed table so it will be out of the way.

Start the jointer and, while firmly holding down the board on the infeed table, slowly feed the stock into the jointer. Stop the cut when the leading edge is about ½ in. over the outfeed table. Stop and unplug the jointer, clamp the guard out of the way, and roll the cutterhead so the knives are out of the way.

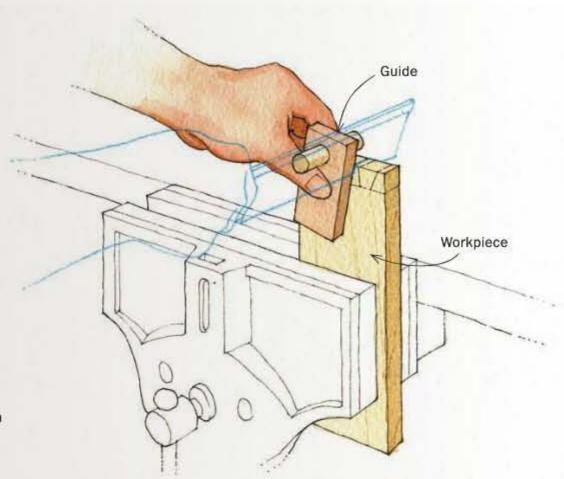

Now push the board forward until the toe of the snipe is over the outfeed table. Adjusting the table to the right height is simply a matter of raising it until it is level with the bottom of the snipe. That's it!

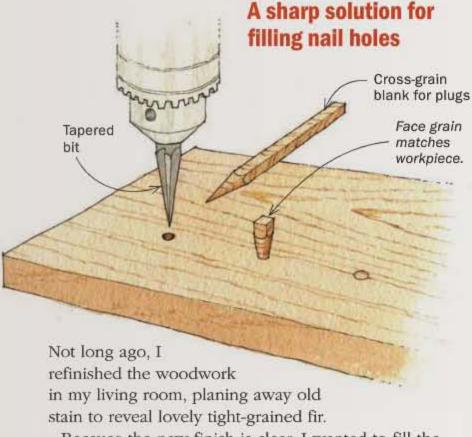
After making this adjustment, I run a few pieces of wood over my jointer to be sure the faces are perfect.

-DANIEL KAY, Levack, Ont., Canada

A Reward for the Best Tip

Send your original tips to fwmow@ taunton.com or to Methods of Work, Fine Woodworking, PO Box 5506, Newtown, CT 06470. We pay \$100 for a published tip with illustrations; \$50 for one without. The prize for this issue's best tip is a Fine Woodworking DVD archive.

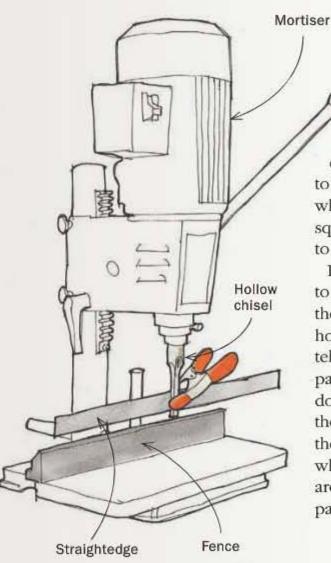

Simple saw guide for accurate dovetails


I cut my dovetails pins first and then scribe the tails from the pins. In this sequence, it's important to be accurate when cutting the tails, so they mate well with the pins.

Following the scribe lines with the saw can be challenging, though, in part because the tail cuts aren't perpendicular to the end of the board. To avoid cutting at an awkward angle, you can tilt the board in the vise, but this is no guarantee of great results.

This simple little guide—a rectangular block with a dowel through it—is the solution. To use it, first make a shallow starting cut, then bring the guide close to the saw and align it with your planned cut. Rest the saw against the guide and proceed. After a few strokes, you can remove the guide and let the kerf guide the saw the rest of the way.

-ALEJANDRO BALBIS, Longueuil, Que.,Canada

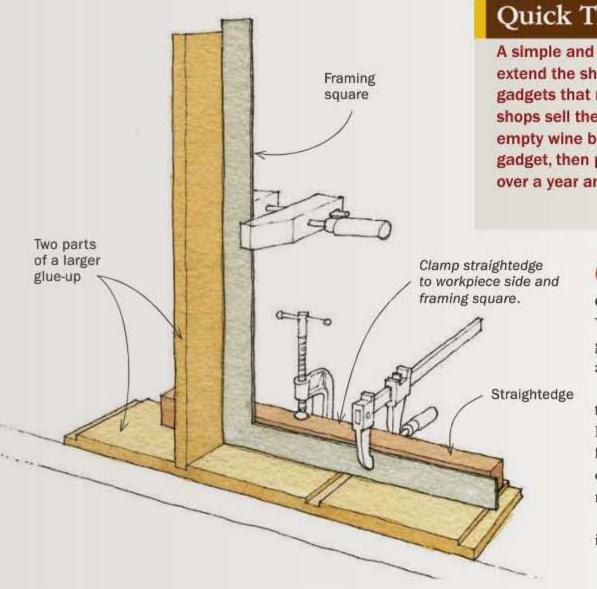


Because the new finish is clear, I wanted to fill the nail holes with something nicer than sawdust and glue. I have a Plugger drill bit (available at leevalley.com) that reams tapered holes for plugging with sharpened dowels. This worked, but the finish soaked into the end grain of the plugs and darkened them too much.

So I decided to try cutting cross-grain dowels with ends that matched the surrounding face grain. These can be fragile, but I found I could sharpen them in an old schoolroom-style pencil sharpener and tap them gently into place with a hammer. When the glue cured I planed the plugs level, sanded, and finished. The results look great.

-EDDIE FROTHINGHAM, Corvallis, Ore.

Square a hollow chisel by eye


The hollow chisels used on mortisers are difficult to square to the fence, even when using an engineer's square. Here's an easier way to get the job done.

First, use a spring clamp to secure a straightedge to the chisel. Second, rotate the hollow chisel until your eyes tell you the straightedge is parallel with the fence. If you don't trust your eyes, measure the distance from each end of the straightedge to the fence; when the two measurements are equal, the chisel is parallel.

-SERGE DUCLOS, Delson, Que., Canada

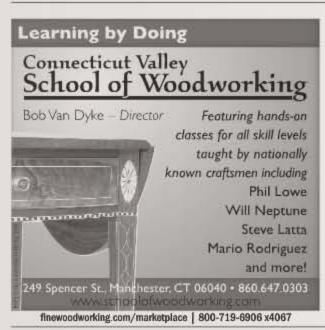
15

methods of work continued

Quick Tip

A simple and relatively inexpensive way to get rid of the air and extend the shelf life of finishing products is to use one of those gadgets that remove air from an opened bottle of wine. Most wine shops sell them for about \$10 to \$20. Just pour finish into a clean, empty wine bottle, insert the rubber stopper that comes with the gadget, then pump out the air. I've had urethane in a wine bottle for over a year and It's fresh as new. Extra stoppers sell for \$1 or \$2 each.

-GEORGE COVEL, Shushan, N.Y.


Glue up in stages for a square case

Gluing up a case piece of any kind can be a workout. You're racing to get glue applied to all of the joinery, to get the assembly under clamps, and then to check and adjust for square before the glue sets.

For glue-ups like this, I've found it helps a great deal if two of the pieces are already set and firm at right angles. It's easier to get a single joint glued up squarely, using a framing square as shown, and afterward, this sub-assembly can act as a square reference for the rest of the piece. This makes the larger glue-up much more manageable.

The technique will work with most types of joinery, including dadoes, biscuits, and many others.

-KURT MEYERS, Flagstaff, Ariz.

Quality, Made-In-America Dust Collection.

Oneida Air Systems[™] has always stood for uncompromising quality, innovation and performance for 20 years.

GE HEPA (Certified H-12) Filter Media. See specs on website.

Most Systems.

Filter Flame-Guard Protection

Most Systems - Pat. Pend.

- Built to last a lifetime. Proudly made in the USA.
- Complete line of 1.5
 20hp systems and components.

Free shipping on ductwork orders of \$200+ / 48 states / Some restrictions apply.

\$39.00 Cyclone Only. Turn your single stage collector or shop vacuum into a super cyclonic collector.

Dust Deputy

High efficiency cyclone collects 99% of the dust. No more clogged filters.

Vacuums not included. Pat. # 7,282,074

Made By Craftsmen for Craftsmen.

Call Today for FREE Catalog!
1.800.732.4065
www.oneida-air.com

finewoodworking.com/marketplace | 800-719-6906 x4054

You're Invited!

See what's new at titebond.com

- More valuable content
- Easier navigation
- Application tips
- Product Selector feature
- · New product and application videos
- · Wood glues, caulks, sealants, adhesives and more!

finewoodworking.com/marketplace | 800-719-6906 x4065

Operate 3-phase woodworking machines from single-phase!

- · Immediate delivery
- Two year warranty
- True 3-phase output
- Whisper quiet operation
 No-charge tech support, 24-7
- Regulated output for CNC Machines
- . The most capacity at the least cost, guaranteed!
- Protect your investment Insist on Phasemaster®
- · Visit us today at www.kayind.com

General Offices 604 N. Hill St. South Bend, IN 46617 800-348-5257 574-289-5932 (fax) Western Region 4127 Bay St. #6 Fremont, CA 94538 510-656-8766 510-657-7283 (fax)

The World Leader in Single to Three-Phase Power Conversion

finewoodworking.com/marketplace | 800-719-6906 x4010

finewoodworking.com/marketplace | 800-719-6906 x4064

tools & materials

M POWER TOOLS

Low-vibration sander is easy on the hands

HIS PAST NOVEMBER I
HAD CARPAL-TUNNEL
SURGERY on my left
hand, after having the
right one done several years ago.
Doctors said my problems were a direct
result of 36 years using tools that shook and
vibrated. I wish I'd owned the new Bosch
low-vibration sander all of that time. It has
significantly less vibration than any electric
sander I've used, taking much of the drudgery out of the
job while maintaining peak performance.

The sander is heavy, coming in at a touch more than 6 lb. with the dust canister installed. That weight makes the tool awkward to use with one hand, but a removable handle on the front makes it a comfortable two-hand sander. It's great for sanding panels, tabletops, or any large surface where the added

Drive with both hands. The sander is a bit heavy and tall, so for maximum control use two hands. But no worrles, the lack of vibration means your hands won't be numb afterward.

Random-Orbit
Sander Kit with
Vibration Control
from Bosch
Model ROS65VCL
\$300 (kit)
\$230 (5- or 6-in.)
homedepot.com

weight becomes a benefit. Variable
speed and an easy-to-set trigger lock
combine with comfortable grips to
make big sanding chores as pleasant as
sanding gets.
The sander is exemplary at containing dust.

The sander is exemplary at containing dust. In fact, the built-in system proved as effective as having the sander hooked up to a shop vacuum. I ran the same test with this sander that we used in our *Tools & Shops* survey in 2009 (FWW #202), and the results were a 91% collection rate with the onboard system and a 92% rate with the vacuum attached ... impressive. The machine is reasonably quiet, too. At ear level I measured 91 decibels using P100-grit paper on a cherry board clamped tight to my workbench top. All in all, this sander is comparable in performance to the Best Overall in FWW #202 (Festool ETS 150/3 EQ).

You can buy the Bosch sander with either a 5- or 6-in. pad, or in a kit that has both sizes. If you're buying one, I'd recommend the larger pad (shown here) because it feels better balanced.

-Roland Johnson is a contributing editor.

Dust eater. The Bosch sander has a filtered dust canister that works as well at collecting dust as a vacuum.

HAND TOOLS

New approach to handsaws

IN RECENT YEARS, SEVERAL SMALL COMPANIES have introduced high-end gent's or dovetail saws with designs gleaned from antique examples. That quality is also reflected in their price, with some costing as much as \$250. But by defying tradition, Veritas has managed to produce a pair of high-quality gent's saws at the very reasonable price of \$49 each.

The saws, produced as both a rip and a crosscut, have 20 and 22 tpl, respectively. They're small (8-in. blade, 13½ in. overall) and easy to control for delicate cuts.

The crosscut version is effective as a general cut-off saw for small parts. It cuts a clean, thin kerf and "drives" nicely, keeping to the line and leaving minimal tearout. I was equally impressed with the ripsaw. Before putting the saw to wood, I followed Lee Valley's advice and lightly stoned the teeth on both sides to reduce the set slightly. Once tuned, it is a great dovetail saw. It's easy to control and cuts a clean, thin kerf.

This effort by Lee Valley is worth applauding: Great tools at a great price.

> —Mario Rodriguez runs the Philadelphia Furniture Workshop, a woodworking school.

Gent's Saws from Veritas \$49 each (\$89 for the pair) leevalley.com

Low-cost saws are high on quality. In designing its new gent's saws, Veritas abandoned the traditional brass back for a polymer composite spine that is just as rigid and strong. The thin blades leave a clean, narrow kerf, making the saws ideal for cutting fine joinery.

ROCKLER

M ACCESSORIES

Best doweling jigs for the money

IF YOU'VE SEEN MY LATEST VIDEO PROJECT

("Getting Started in Woodworking, Season 3," free at StartWoodworking.com) or my recent article on doweling (Fundamentals, FWW #222), you know I'm a fan of the little \$14 doweling jig from Rockler. My only complaint was that it came in just one size: 3/8 in.

Rockler fixed that by offering the same jig in ¼-in, and ½-in, sizes, meaning you can build a much wider range of furniture and furniture parts, from thin frames and boxes to big leg-to-apron joints. The ¼-in, jig will center a dowel in ½-in,-thick pieces, the ¾-in, model works perfectly in ¾-in, stock, and the ½-in, jig is designed for 1-in,-thick workpieces. Of course, as I demonstrated in the

\$14 each rockler.com

videos, you can easily add a shim to change that distance, offsetting a leg and apron, for example.

I love the simplicity of these jigs. You can either use the lines on the jig to align it with layout marks, as when lining up dowels for a panel glue-up,

or line up the edge of the jig with the end of your stock. The jig only does two holes at once, but for a row of dowels you just drop a dowel into the last hole you drilled, which spaces the next one perfectly. These jigs are very solid and accurate, and you could build a houseful of furniture with just a couple of them and a cordless drill.

I can't think of a cheaper, easier method.

-Asa Christiana is editor of FWW.

tools & materials continued

Hybrid Tablesaw from Shop Fox Model No. 1824 \$1,350

woodstockint.com

M MACHINES

High-end hybrid saw

THE NEW HYBRID TABLESAW FROM SHOP FOX is an impressive saw for the money, with features rivaling those on some high-end cabinet saws.

The fence, for instance, is well designed. It has slick nylon faces, slides very easily, and locks down securely. The cast-iron top and wings are nicely ground and very flat. The extension table is a flat laminate-covered board that could easily support an undermounted router. Both blade height and angle adjustments are very smooth and easy. The riving knife and blade guard are both easy to remove and adjust. The dust collection works well.

Though the 2-hp motor won't keep pace with a 3-hp cabinet saw, it has plenty of power for most home shops. I was able to rip 5/4 hickory and cut ¾-in.-wide by ¾-in.-deep dadoes in spruce, though at a slow pace. The saw isn't without flaws. It had a bit more arbor runout than I'd like; fortunately, performance wasn't compromised. The included miter gauge is flimsy (just buy a better one), and it has a short power cord

SPECS:

Motor: 2 hp, 8 amps at 220v (can be rewired for 110v)

Arbor runout: 0.002 in.

Table size: 27 in. deep by 55 in. wide

Table flatness: center and left extension were flat; right extension had a 0.016-in. warp.

Trunnion: cast iron, mounted to the underside of the table

Rip capacity: 30 in. to the right of the blade

(6 ft.). The insert plate, though stiff, is thin, making it difficult to make your own zero-clearance plates. However, you can buy blanks to fit this saw (grizzly.com, model No. T23279, \$25). But these shortcomings are small potatoes. If you're a hobbyist in the market for a serious tablesaw, this one packs in the value.

—Peter Breu, a woodworker in Manchester, N.H., is the unofficial tool reviewer for the Guild of New Hampshire Woodworkers.

finewoodworking.com/marketplace | 800-719-6906 x4051

finewoodworking.com/marketplace | 800-719-6906 x4042

If you are in a woodworking business... this could be the most valuable tool in your office".

Please call 1-800-321-9841 for your 756 page catalog.

Mention code fww12 FREE to woodworking businesses.

visit us at pro.woodworker.com/fww12

finewoodworking.com/marketplace | 800-719-6906 x4005

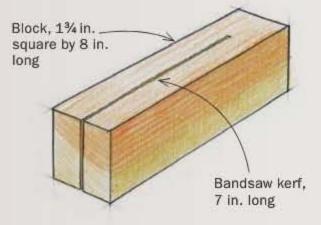
Keep your Fine Woodworking back issues looking brand new.

Store your treasured copies of Fine Woodworking in slipcases for easy reference again and again! Bound in dark blue and embossed in gold, each case holds more than a year's worth of Fine Woodworking. Only \$8.95 (\$24.95 for 3, \$49.95 for 6).

Plus shipping and handling, Payable in U.S. funds. Product #011050.

To place an order, call 1-800-888-8286 Mon.-Pri. 9AM - 9PM EST and Sat. 9AM - 5PM EST International customers, call 203-702-2204

finewoodworking.com/marketplace | 800-719-6906 x4022



hen you think of
working with hand tools,
the humble card scraper
is probably not the first
tool to come to mind.
But what it lacks in sex
appeal it makes up for in ease of setup
and use with no risk of tearout. Whether
or not you use a handplane, the scraper
is still a must-have for dealing with any
tearout from the planer or jointer and for
tricky grain that a handplane can't handle.

What transforms this piece of steel into a tool is the hook on its edge, often mistakenly referred to as a "burr." Creating the hook is the key to good performance. But a few common missteps

THE LITTLE BLOCK THAT DOES IT ALL

The invention of chairmaker Brian Boggs, this simple block makes it easy to file, polish, and hone the scraper for great results.

when burnishing the hook prevent most woodworkers from getting the best out of their scrapers. I'll show you the best way.

A great hook starts with a polished edge

Just like a plane blade and chisel, a scraper has a cutting edge. And just like the edges on those tools, it needs to be polished and scratch-free to work its best. So, before you burnish the scraper, you need to polish the faces and edges. I use a DMT fine/extrafine combination diamond plate (\$90, woodcraft.com), because it's more durable than waterstones and the polish it provides is good enough for a scraper. A less-expensive alternative is wet-or-dry sandpaper on glass. Start with 320 grit and work up through 600 grit.

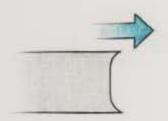
A simple wood block helps with this task (and it comes in handy when you're burnishing, too). A bandsawn kerf runs most of its length and holds the scraper square for filing, polishing, and honing. For

Hone the surfaces first

You won't get a clean, sharp hook unless you start with perfectly flat, smooth, 90° angles on all four corners.

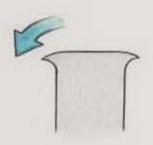
Polish the faces. Apply pressure with the honing block. Hold the scraper with your other hand (left). Force is distributed over the length of the scraper, polishing the edge evenly and completely (right).

File the edges. Put the scraper in the kerf (left). That makes it easier to clamp in a vise and because the edge barely sticks above the block, it's impossible to file it out of square to the faces (right). Take long, smooth strokes with a single-cut mill file to expose fresh steel.

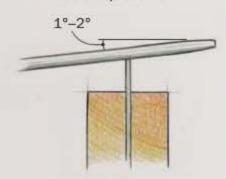


Photos: Matt Kenney JULY/AUGUST 2012 23

handwork continued


Turn the hook in two steps

A light touch is better than a heavy hand. You don't want a big hook with a heavy angle—that makes the scraper harder to use.



1. Draw the edge. Keep the burnisher flat, so that the edge extends straight out from the scraper, making it easier to turn it into a hook. Take two light passes on each edge.

2. Turn the hook. The goal is a small hook with a shallow angle. So, keep the burnisher nearly perpendicular and take a couple of passes using moderate pressure.

now, we'll just lay the block on top of the scraper to polish the faces. This distributes the pressure evenly along the flexible scraper and ensures a nice polish along the entire edge. Using your fingers would leave shiny spots where your fingers were.

After the faces are scratch-free and polished, move on to the edges. The first step is to file them square. On a scraper that's been used, this is especially important. Turning the hook multiple times causes the steel to become brittle, much like bending a paper clip back and forth until it breaks. Filing cuts through

this work-hardened edge to softer steel, which makes turning a hook easier.

It's important to maintain a 90° angle when filing, so insert the scraper into the block with the edge just barely proud of the surface (no more than 1/64 in.) and clamp it in a vise. This will force you to keep the file square as you work. As long as you're not hitting wood, you should be within a fraction of a degree of square. On a work-hardened edge, the file skips and skates across the steel. Keep filing until you take a consistent cut. You'll feel the difference once you

hit the softer steel. Also, use a single long stroke to get from end to end. Short ones can create an uneven surface.

Filing leaves a burr along the corners. It's easy to mistake this burr for the hook you'll burnish later. Although the burr could take a shaving, it would leave a rough surface and the ragged steel would break down and dull quickly. So, it's important to remove the burr and polish the edge. To do this, leave the scraper in the block and place it on the diamond plate. Use a folded paper towel as a cushion for your hand and press down on the block and scraper together as you polish the edge. The block keeps the scraper square.

At this point, there probably is a slight burr along the corner. To remove it, alternate between polishing the face and edge on the extrafine diamond plate. The result should be a smooth, sharp corner, the foundation for a great-performing scraper. This sharp edge yields a single continuous hook—one that leaves a smooth surface and lasts a long time.

Keep the pressure and angle low

Burnishing properly is easy, but doing it wrong is easy, too. It's at this stage where common mistakes are made that limit the performance of the tool. The first mistake is using too much pressure. During demonstrations, people are always amazed at how little pressure I use when turning the hook. The area of contact between the burnisher and scraper edge is so small that just a little pressure equals a lot of psi. Using too much pressure creates an unnecessarily large hook, which is difficult to re-hone when dull. It can also crimp the steel, which ruins the edge and requires refiling. To get an idea of the pressure necessary, extend your index fingers and run one along the other. Use moderate pressure, but not enough to deflect your finger, and you've got it.

Creating the hook involves first drawing the steel with a burnisher to create a razor-thin edge that extends out from the scraper, and then turning over that edge to create the hook.

To draw the steel, lay the scraper flat on the bench and rest the burnisher

Two ways to use it

Honing at a low angle allows you to remove stock quickly or tilt forward for a smooth finish.

For an aggressive cut, keep the scraper nearly vertical and don't flex it. Bending it just reduces how much of the hook engages the wood (right). Keeping your thumbs apart spreads the pressure over the entire edge and makes for a better shaving (above).

flat on the scraper. As you push the burnisher along the edge, keep it flat, but apply pressure to the edge. Also, angle the burnisher so that the tip is forward of the handle. Two light passes will yield a very slight hook along the edge.

Now it's finally time to turn the hook and here's where mistake number two comes in: using too much angle. The angle you burnish at is important because it determines how much you need to tilt the scraper forward before it starts cutting. If you burnish at 10°, you'll need to tilt it that far in use. If you burnish at 1° or 2°, it will dramatically alter the performance of the tool, allowing you to scrape at an almost vertical angle. With the scraper in this position your thumbs-the driving force-are behind the cutting edge. You can get your mass behind the tool and push for a really aggressive cut. On the other hand, scraping with more forward tilt puts your thumbs ahead of the cutting edge and the scraper wants to pivot back and out of the cut. More downward pressure and flexing is necessary to keep it engaged. You are pulling the tool through the cut instead of pushing it.

The great thing about honing at a shallow angle is that while you can take a really aggressive cut, you can also tilt the scraper farther forward when you

Go low for light shavings. The hook is less engaged and there's less force on it. Save this technique for final smoothing.

want a light, smoothing cut. Hone at a shallow angle and get two tools in one.

To turn the hook, place the scraper back in the block with 1/8 in. protruding. Rest the burnisher flat on the edge and angle it just enough to be sure that you are in contact with the corner you are honing. You shouldn't come close to contacting the block. Again, angle the burnisher front to back so that you draw the steel out as you move forward. Two swipes on each corner are all you need. The resulting hook is small and can just be felt by running your finger up

TIP DUST MEANS DULL

When the shavings stop coming, you can just repeat the drawing and turning steps for a fresh hook. But after you've done that a few times, you'll need to file the edge again.

from the edge. When I pass a burnished scraper around to an audience, I'm invariably met with "wow, that's all?" They're equally surprised when I take a big old shaving with it.

When the edge dulls, just draw the edge back up and turn the hook again. It lasts longer the second and third time you turn it, because the steel gets progressively harder. But eventually the steel becomes brittle and it's necessary to file off the edge and start again.

Michael Pekovich is FWW's art director.

fundamentals

Make your cutlist a 'parts list' instead

LUMBER-BUYING STRATEGY WILL GIVE YOUR PROJECT A SMARTER START

BY ASA CHRISTIANA

magine for a moment that you had the run of a furniture factory: all the tools you needed at your disposal and a bottomless stack of roughsawn cherry, maple, and walnut to pick from.

It's a nice daydream, isn't it? Not exactly.

On a rushed assembly line, the worker doesn't get to choose boards individually or map out furniture parts for the best appearance of the grain. You, on the other hand, have a huge advantage: the time to choose just the right lumber-just like the time you'll spend making sure every joint comes together strong and true.

Choosing lumber is a process, maybe the most important one of all. Here's how to do it so you come home with the right boards to make your project come alive.

Start with a drawing

If you are not working from a detailed, dimensioned drawing like one of the exploded illustrations in FWW,

A smart buyer makes a smart list

The most basic parts list includes the type and number of each part, along with dimensions. Make your list more helpful by including notes about the type of grain you want in each part and the rough thickness.

take the time to make one. It will help clarify your ideas about how the piece will go together and how it will look-the joinery you will use, the lumber species and thicknesses you need, the correct grain patterns for each part, and so forth.

Done thoroughly, the drawing is the most direct way to fully document your project, to literally have a clear picture of every part that goes into it. And you'll need that knowledge when you head to the lumberyard.

Make a woodworker's shopping list

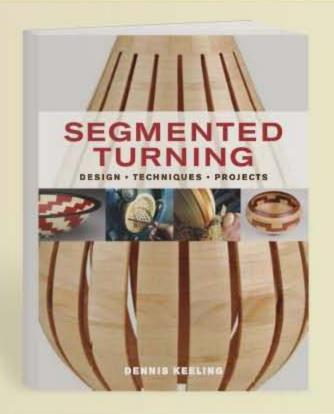
Every new woodworker eventually hears about the advantages of buying lumber from a "cutlist," an organized inventory of all the wood needed to complete a project.

Recently, though, I decided I like the term

"parts list," much better than "cutlist." Where a cutlist might encourage you to think in simple terms of sizes and saw cuts, a "parts list" tells you to think of the components as distinct parts, each having a different role in the finished piece and in many cases coming from different types of boards, even though they might be the same

April - 312 - 112 - 3/1 (1/4 - Deman)

(4) Legs - 15/4" 47 x 291/- 18/4 or 6/4 (-4)

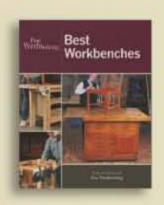

Top - 64 17- 3/0 (4/4 Clateaum)

Fine Wood Working

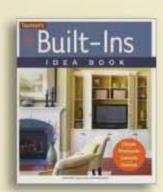
Shop Our Online Store

BOOKS, DVDs, PLANS & MORE

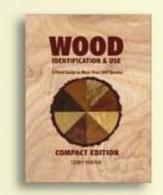
Explore the intricate art of segmented turning


"Segmenters are only limited by their imagination, and when they get together to compare ideas, the atmosphere is electric," writes Dennis Keeling, award-winning turner, in Segmented Turning.

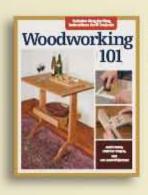
That's your first clue that the intricate designs in this book are anything but ordinary, opening up a whole new world of artful possibilities for turners. This highly visual guide also provides a solid introduction to the tools, techniques, and materials needed to do this specialized form of turning.


Segmented Turning will capture the imagination of all woodworkers and with ten complete projects, it will inspire you to create your own original designs.

Segmented Turning


Paperback Product #071374 \$24.95

Best Workbenches Paperback Product #071344 \$21.95


All New Built-Ins Idea Book Paperback Product #071345 \$19.95

Wood Identification & Use Flexibound Product #071373 \$24.95

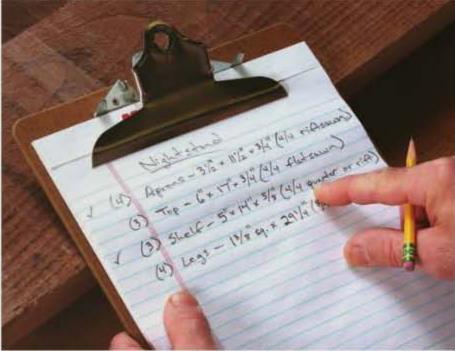
Fine Woodworking's Google SketchUp Guide for Woodworkers DVD Product #061112 \$16.95

Woodworking 101 Paperback Product #071347 \$24.95

Shaker Chimney Cupboard DVD Product #061107 \$19.95

FineWoodworking.com/ShopNow

Your destination for trusted woodworking resources


Simply search by product number or call 800-888-8286, use code M1800155

Call Monday-Friday 9AM - 9PM EST and Saturday 9AM - 5PM EST • International customers, call 203-702-2204

fundamentals continued

Step one-bring the list. Attach it to a clipboard (right) or leave it in the tablet so it's easier to make notes as you work. Also bring a tape measure, a block plane, and a lumber crayon (and a friend?). Lumberyards stack boards of each species by thickness, so it makes sense to choose all of your 4/4 boards at the same time, for Instance. Sort by eye at first, looking for the grain and width you want. Use the tape measure to gauge the amount of clear stock between defects.

Mark out parts. Once you're home, it's easy to get mixed up about which boards you intended for which part. To keep things straight, it can help to mark the parts directly on the stock with a lumber crayon before you leave the lumberyard.

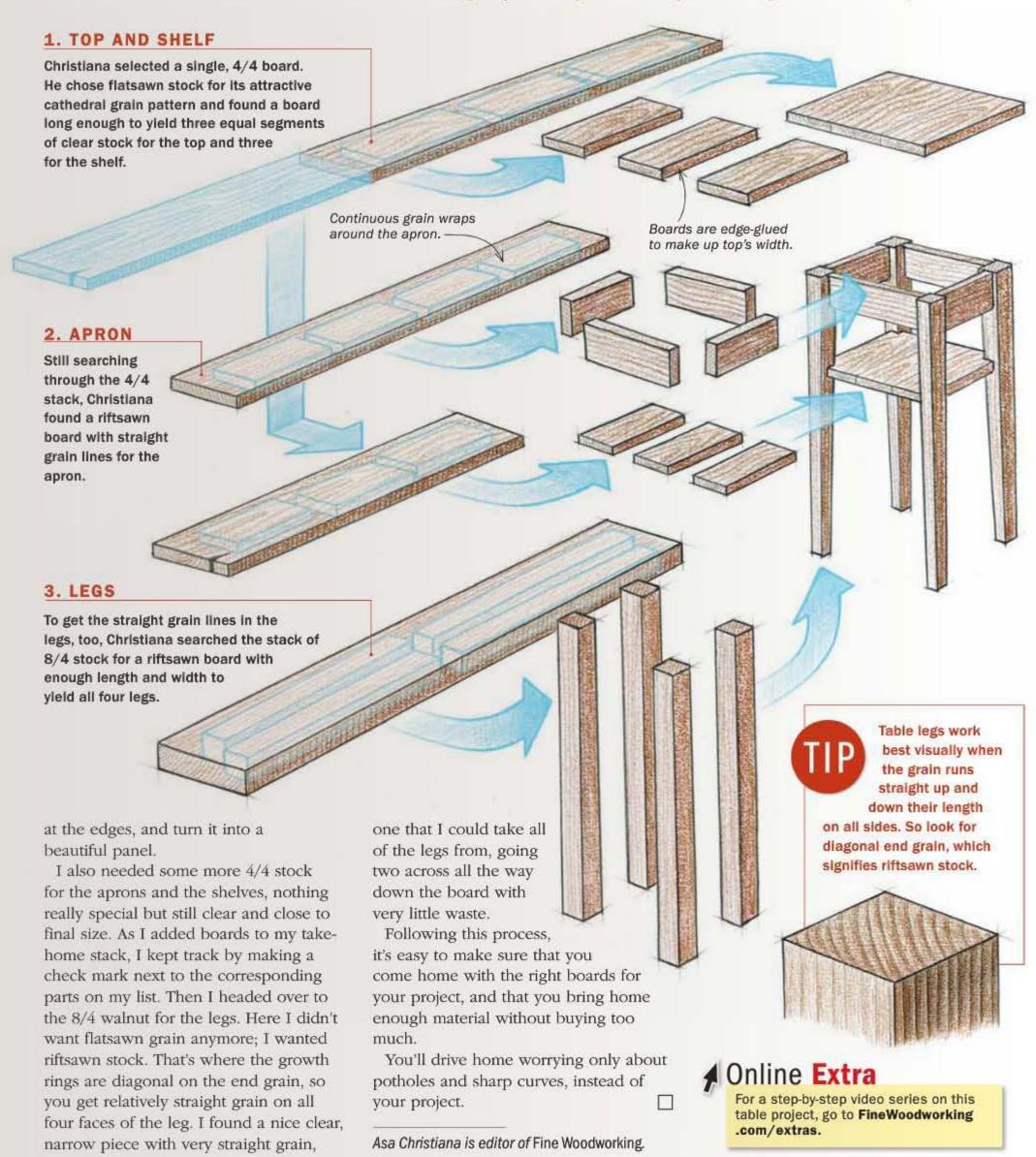
species. Regardless of what you decide to call your list, compile it this way: Spread the drawing out in front of you and refer to it as you make a list on a separate sheet. Write down the name of every part in the project—one to a line. On each line, note how many of that piece the project requires ("4 legs," for instance), and the part's finished thickness, width, and length, including joinery.

If you buy your lumber from a lumberyard that sells roughsawn stock, be sure to also list the thickness of the rough stock you want for each part. To get a ¾-in. finished thickness, for example, you'll want 4/4 roughsawn boards. For good measure, add roughly ½ in. to the width and an inch or two to the length of each piece.

Make note, too, of instances where you'll want to take parts from the same board for good grain and color match. And, just to be safe, you might also want to mark down types of grain: flatsawn, riftsawn, quartersawn.

Because you'll almost never find boards that fit your needs exactly, you're likely to wind up with a bit more stock than you strictly need. That's fine. You'll want the extra for test cuts or repairs. In fact, if you think you may have cut it too close, throw in one nice extra board to be sure.

How to pull diamonds from the rough


All of this work leads to the lumberyard, where you will find those beautiful finished parts in the piles of rough lumber.

Remember: The decisions you make here are ones that you will live with for years to come. So take your parts list, and take your time. Start by spending a few minutes to make friends with your lumber guy. Explain that you are a furniture maker and need some extra time to pick through the piles.

For the two walnut end tables I made recently for our free video series, Getting Started in Woodworking, I needed a couple of 4/4 flatsawn boards for the tabletops, each with a very nice grain pattern, so I could cut it into three pieces, match the grain

One table from three boards

For this table, Christiana used a single board for each of the three major components, greatly enhancing the consistency of color and grain in each finished piece.

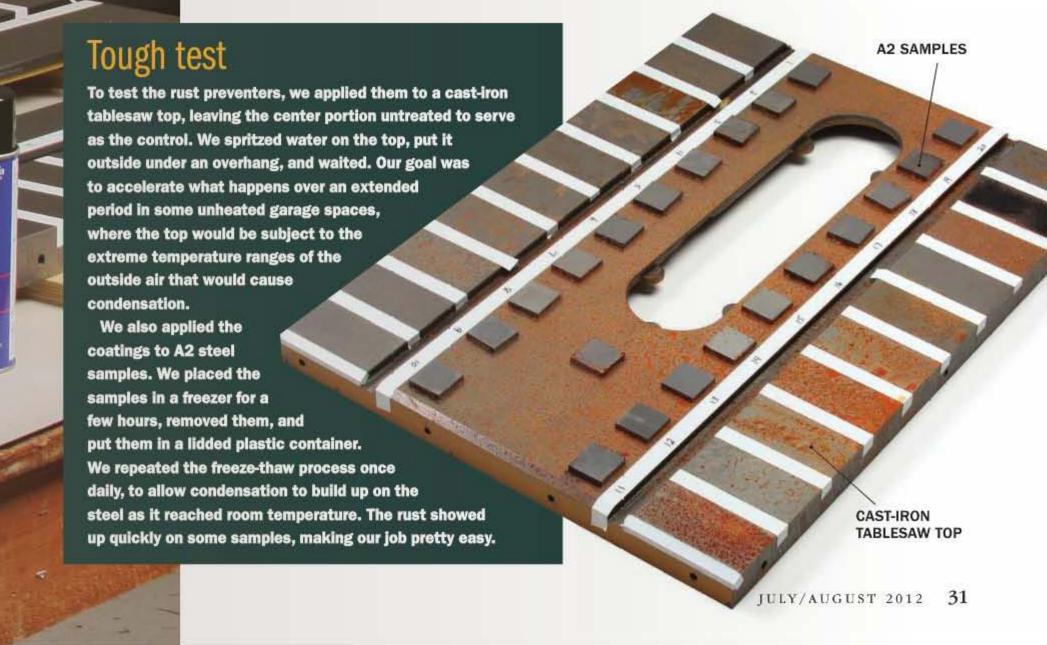
If you live in a humid area of the country, you are more than likely familiar with the menacing presence of rust, especially if you work in an unheated basement or garage shop. Left untreated, rust will eat away iron and steel relentlessly, like a hoard of hungry termites on dead wood, causing extensive damage. To help protect your expensive woodworking tools, you need to take steps to prevent rust. One way is to coat iron and steel surfaces with a rust inhibitor. But which one?

Look on any woodworking forum or website, and you'll see a lot of "expert" recommendations about which products to use. To end the debate, Fine Woodworking put 20 of these commonly available preventers—from waxes to natural oils to petroleum-based products—through a torture test to see which ones really do work best.

The test results aren't the only answer to stopping rust. In the end we'll give you some sound strategies for fighting rust in your shop. Before you can go to battle, however, it's important to understand how rust forms.

Water is the instigator

Put simply, rust (iron oxide) is a form of corrosion that occurs when both iron and oxygen are exposed to moisture, whether in the air or on the surface. That moisture is the medium through which the players that chemically cause corro-


sion travel. Rust formation can be accelerated with the addition of a stronger oxide or acid—the salt in sea air, for instance, or the moisture from your fingertips (ever see prints on your hand tools?). The process also speeds up with temperature variations that cause condensation. In an unheated garage shop, as a cold night turns to a warm day, condensation settles on the tops of tablesaws, jointers, and bandsaws, as well as on hand tools left on a bench.

The corrosion starts on the surface and spreads like a rash. As corroded metal flakes away, fresh iron surfaces are exposed to the oxygen and water, and the process begins anew until the metal disintegrates. The key to stopping the degradation is to prevent water from mixing with iron and oxygen. And that's what these various coatings are meant to do.

10 days of hell

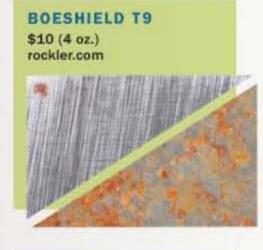
We tried the rust preventers on a cast-iron tablesaw top and some samples of A2 tool steel (an iron alloy). All of the samples were subjected to extreme environments (see "A recipe for rust," below). The rust came on strong. We started seeing it on the tablesaw top after only one night, and on the tool steel within 48 hours. After 10 days, it was clear which products were working and which were failing.

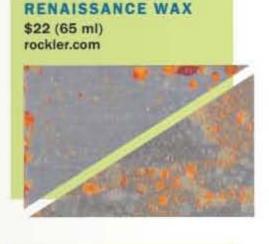
The top seven performers were CRC Industrial 3-36, LPS 3, Moovit, Rust Block, WD-40,

THE BEST OF THE BEST

We picked CRC Industrial 3-36 from the top seven performers as the Best Overall because it worked well on both cast iron and tool steel and did not leave an objectionable sticky or slick residue on the chisel. However, it does have a petroleum odor. Though the smell dissipates, some may find the spray offensive to use on hand tools. For those people, we recommend using the CRC for machines and Moovit for hand tools.

WD-40 Long-Term Corrosion Inhibitor, and 3M Rust Fighter 1. However, a rust preventer is useless if it interferes with your woodworking. So we did further tests so see if any of the top picks would discolor wood, or interfere with finishes or glue adhesion. We took the extreme path again, applying the products directly to wood samples, letting them dry, and then applying both a water-based urethane and an oil-based polyurethane. We also put a dab of yellow glue on the treated boards to see if the products affected adhesion. All of the products discolored wood when applied directly to it, but none of them interfered with the topcoats. The only product that resisted glue adhesion was LPS 3. On that sample the glue popped off pretty easily with a chisel.


Next, for a more realistic contamination test, we applied the top six products to A2 steel samples, rubbed them across some sample boards, and applied the oil- and water-based finishes on top of the boards. None of the samples showed



PROGOLD PG2000

TOPSAVER

FAMILIAR PRODUCTS FADED FAST

Waxes and natural oil-based products have often been touted as rust preventers on machines and hand tools. But they didn't fare well in our testing.

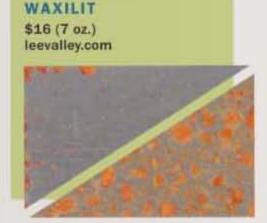
Waxes work well as lubricants, especially on the bottoms of planes and on machine tops, but they don't offer much protection against rust.

OILS SLIPPED UP

Camellia and Jojoba oils are natural products (made from vegetable oil), so they have a pleasant odor. That quality is partially why they are used often by hand-tool aficionados as a protectant.

But in our tests, the products were marginal performers.

MOOVIT



RUSTERIZER ARMOR

WD-40

any discoloration of the wood, and there were no problems with finish adhesion.

Last, to find out if any products left an objectionable residue on hand tools, we applied them to some chisels and then basically felt them, comparing an untreated chisel with the treated ones. The CRC Industrial 3-36 and Moovit were the favorites here. Each of these products were very close in feel to the untreated chisel.

We also applied the products to a jointer table and gave them a feel for any objectionable residue. Most of the products left a slick surface on the cast iron, a plus for machine tables. The only two that left a visible and tactile residue were 3M Rust Fighter 1 and LPS 3.

The best defense

Making a choice among the products was tough. 3M Rust Fighter 1 and LPS 3 performed perfectly in both torture tests, but we didn't like the sticky feel of the coating that both left on the tool steel and cast iron. Other products did well on one steel but showed kinks in the other. In the end we picked CRC Industrial 3-36 as Best Overall. If you prefer a non-petroleum product for your hand tools, we recommend Moovit.

But the best defense against rust has multiple prongs. Aside from weatherproofing and heating the shop, we also recommend using a dehumidifier to help control moisture. And because none of the products we tested can be applied to the inside of power tools (rust can degrade motor components), we recommend keeping desiccants or corrosion inhibitors in tool cases (above right).

Thomas McKenna, senior editor, fights rust daily in his basement shop.

Solutions for enclosed spaces. Volatile corrosion inhibitors (VCIs) and desiccants help prevent rust in drawers, tool cases, and cabinets. VCIs form a protective coating on tools while desiccants draw moisture from the air.

moisture with a dehumidifier—just remember to empty it regularly. For basement shops, a masonry waterproofing paint keeps moisture from migrating through the porous concrete walls. Garage floors should be sealed as well.

Other ways to manage moisture

The wipe-on or spray products we tested aren't the only weapons available in the battle against rust. Aside from heating the shop or using a dehumidifier, two other options are desiccants and volatile corrosion inhibitors (VCIs). These products prevent corrosion of critical components in contained spaces, such as boxes, drawers, and cabinets. Each does the job differently.

Desiccants are made from a number of porous minerals, including calcium and silica, as well as manmade

compounds. They help
prevent rust by removing
moisture from the air via
the process of adsorption
(vs. absorption). When a
substance is adsorbed, it
remains separate from its
host, which essentially works
as a storage drum. And that
storage area is limited. A
desiccant compound can
become saturated, or full.
Some desiccants, such as
silica and a few calcium-

based products, can be recharged, or reactivated, with heat to remove the stored moisture and used again.

VCIs emit molecules that settle on metal surfaces, forming a protective layer that repels moisture. VCIs are made by a number of manufacturers from proprietary chemicals and often are infused into a porous carrier material, such as foam. They are disposable and cannot be recharged—some last six months, others work for up to five years.

Desiccants and VCIs both are designed to work in enclosed spaces, and you purchase them based on the square footage of that space. To get the most protection from both products, the storage space needs to be as airtight as possible. If a drawer is left open, the protective tool coating emitted by a VCI will dissipate, while a desiccant will become saturated quickly.

Shaker-Inspired Hall Table BY CHRISTIAN BECKSYOOR

Arched aprons and splayed legs add balance and grace

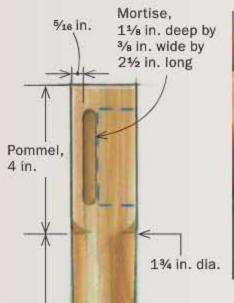
are all small and easy to cut, and the turning won't overwhelm you. I'll show you a no-nonsense way to get a nice straight taper on those legs, a deceptively difficult turning task.

A straight approach to round legs

These legs are square at the top where they join the aprons, with the turned portion beginning 4 in. from the top. The most difficult part of the turning is cleanly cutting this transition from square to round.

With the blank centered in the lathe and the transition point marked on the stock, set the lathe at approximately 2,200 rpm and use a ½-in. spindle gouge to turn away from the mark until you have a few inches of true round. Next, cut the transition using a diamond-point tool held on edge, carefully entering the cut at about a 45° angle. It takes a steady hand to make this cut without knocking off the square

corners; I suggest practicing on cheap stock until you master the technique.

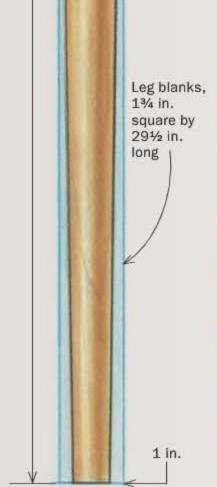

Once this is done, use a roughing gouge to start cutting the taper at the bottom of the leg, checking your progress with a pair of calipers until you've reached the 1-in. bottom diameter. Then use the gouge to connect the top and bottom diameters. I'm a furniture maker, not a turner, so I don't bother trying to get a perfect taper and smooth finished surface with the gouge

36 FINE WOODWORKING

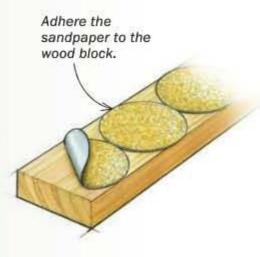
Drawings: Bob La Pointe

TURNING FOR NON-TURNERS

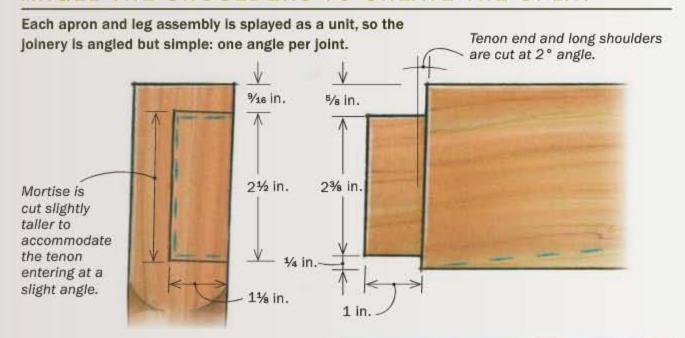
You don't need to be a full-time turner to make perfect tapers. Becksvoort marks the high spots with one long block and sands them smooth and straight with another.

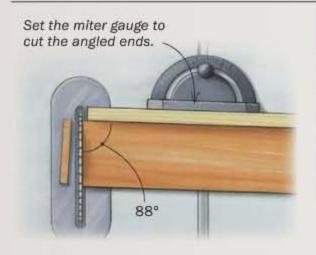

From square to round. After turning the first few inches of the round section with a spindle gouge, use a diamond-point tool (inset) to cut a clean bevel at the transition (above left). Lay out the beginning of the cut and then plunge in at 45°. A 45° mark on the tool rest is a good visual guide. Afterward, use a roughing gouge to rough in the taper (right).

Magic marker. To identify high spots on the turning, start by covering one edge of a hardwood block with pencil lead.


Pressed into action. Held against the spinning workpiece, the block leaves graphite on the high points. Use the spindle gouge to take down these areas, then repeat until the taper is as straight as possible.

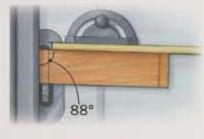
25½ in.

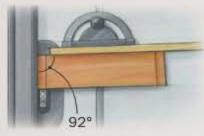

Super sanding block. Use a straight piece of stock, one face covered with 80- to 100-grit sandpaper, to straighten the taper. Then hand-sand through 400-grit and burnish with 0000 steel wool.


Photos, except where noted: Steve Scott

JULY/AUGUST 2012 37

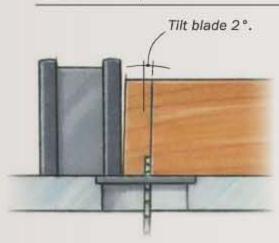
ANGLE THE SHOULDERS TO CREATE THE SPLAY


CUT THE TENON ENDS



Where the splay comes from. Angle the ends of the pieces, which become the reference for angling the shoulders (below).

CUT THE LONG SHOULDERS


1. Leave the gauge at 88° to cut the first shoulder and cheek. Flip the workpiece end for end to cut the second.

2. Set the gauge to 92° and cut the opposite shoulders and cheeks in the same way.

the fence.

ANGLE THE TOP AND BOTTOM SHOULDERS, TOO

Why dado? A dado set cuts the cheeks and

shoulders at the same time. Angle the miter gauge

until the end of the workpiece rests flush against

Final cuts. Tilt the blade 2° to match the angle of the existing shoulder (above). You can cut two pieces at once. Then sever the waste at the bandsaw.

or a skew chisel. Instead, I get the results I'm looking for from a 2-ft.-long piece of hardwood. I color one edge with pencil graphite and hold it against the turning while it's spinning. The graphite marks the high points, which I then take down with a gouge or skew chisel. After three or four tries, the taper should be fairly straight, but not perfect.

The other side of the hardwood piece (or use a separate piece, if you prefer) is covered with 80- or 100-grit sandpaper. Holding that edge against the spinning taper assures flatness. I then hand-sand the spinning leg with 150-, 220- and 400-grit sandpaper, stopping the lathe between grits to sand with the grain. Last, I use 0000 steel wool for a smooth, glossy surface that is ready for a finish.

Before moving on to the aprons, go ahead and cut the mortises on two adjacent sides of the square sections of the legs. The mortises are cut at the usual 90°. Putting the splay in the table's legs is a matter of cutting some fairly simple angled joinery on the aprons. That's next.

Easy way to splay

The ends of the tenons, and the tenon shoulders, are cut at a 2° angle, making each apron longer at the bottom than it is at the top. When the resulting joints come together, the tops of the legs lean inward and the feet splay out. You might think you need compound-angled shoulders, but because the aprons tilt with the legs, you don't.

With the apron stock milled to final thickness and width, trim each workpiece to length with a 2° angled crosscut on the tablesaw. Pay attention to the orientation of the piece for each cut—make sure that each end is angled in the right direction.

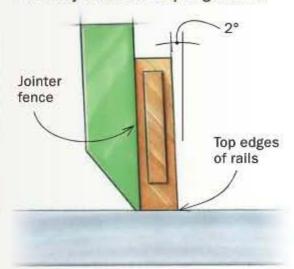
When all the ends are cut, switch to a stacked dado set, which will let you cut the tenon cheeks and shoulders simultaneously. You'll once again guide the cuts with the angled miter gauge, this time using the tablesaw's fence to stop the cut at the tenon shoulder. Note: You'll only be able to cut one cheek and shoulder on each tenon with your initial miter-gauge setup. To cut the opposite sides at the correct angle, you'll need to reset the gauge to 2° in the other direction. I find it easier to make all of the cuts at one setting first, before resetting the gauge.

Last, I cut the top and bottom shoulders, standing the workpieces on edge against the miter gauge and angling the blade to make the cut. I finish the work at the bandsaw, running the workpiece against the fence to sever the waste and complete the tenons. To make sure that this straight tenon has room to fit when the mortise is angled, I plan for a little topto-bottom slop in the fit, and I use a knife to make wedge-shaped trims as needed for clearance.

Angled cuts create a flat surface

At this point, you can dry-fit the legs and aprons, holding the assembly together with a band clamp to see how the joints fit.

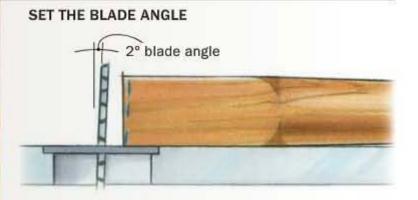
With the base together, you'll see that the top edges of the aprons—and the top inside corner of each leg—all tilt inward. So the next step is to make all of these surfaces flat and in the same plane to accommodate the top. To do this, disassemble the base and run the tops of the aprons over the jointer with the fence tilted 2°. Mark the pieces carefully and make sure you orient them on the jointer so that the correct portion of the top edge (the outside corner) is removed.


Trimming the tops of the legs at the proper angle requires a compound cut. The cut itself is easy to execute, but you'll need to pay attention to the layout and the setup on your tablesaw. To make it as foolproof as possible, I use a pencil or colored marker to darken the inside corner on the top of each leg. That corner should remain after the cut is made. Next, use a

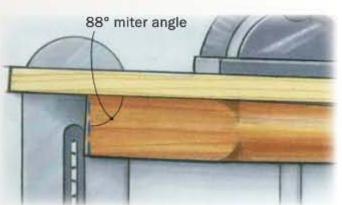
Flatten the apron tops. With the jointer fence at a 2° angle, trim the apron tops so they'll be flush against the tabletop.

BEVEL THE TOP OF THE BASE TO MATCH

When the base is dry-fit, the top of each component will be canted inward. So it's necessary to trim the top edges level.



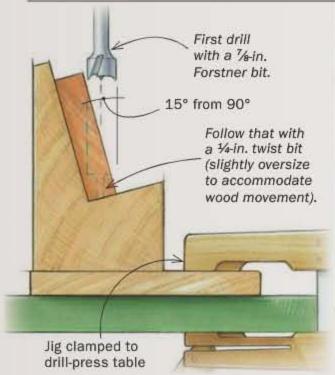
Same for the legs. To mark the top of the leg for trimming, start by marking the inside corner (red dot). Begin the layout at this corner. Use a bevel gauge set at a 2° angle to carry the lines around the corners.



Two degrees of separation. With the highlighted corner at the bottom rear, a compound cut on the tablesaw removes a thin wedge of material.

TOPS OF LEGS GET A COMPOUND CUT

SET THE MITER ANGLE



FINISH UP THE BASE

Lay out the apron arches. A flexible straightedge and a bar clamp create an easily varied, regular arc for tracing. Bandsaw the curves and sand them smooth.

DRILL POCKET HOLES IN THE APRONS

Pocket-hole jig for the drill press. A shop-built fence holds the inverted aprons at an angle to drill for the screws that will anchor the top to the base.

bevel gauge set at 2° to strike pencil lines marking the cuts on the two inside faces.

On a saw with a left-tilting blade, orient the workpiece with the marked corner riding the table at the rear of the cut. Tilt the blade 2° and angle the miter-gauge fence clockwise the same amount. Position the stock so the blade just removes the layout line on the leading edge of the workpiece.

A short length of 3/8-in. stock under the narrow end of the leg will give you greater control during the cut. You may also find it helpful to practice on a piece of 13/4-in.-square scrap first.

With these cuts made and the joinery fitted, the re-assembled base should now have a flat top with all eight parts flush and in the same plane. The table's feet will not sit flat on the floor at this point, but I don't flatten them until the top is attached, in case the slightest warp or stress in the top causes the base to skew.

Arches make the piece look light— Before glue-up, cut the arches into the lower edges of the aprons. To lay out the curves, I clamp a flexible straightedge between the jaws of a bar clamp, tightening until I reach the desired amount of bow.

For visual harmony, it's important to vary the amount of bow between the long side aprons and the short ends—a shallower bow will appear more pronounced on the shorter pieces. On the long aprons, I put the top of the bow at 23/8 in. from the top of the apron. On the ends, the apex should

PEG THE APRONS TO THE LEGS

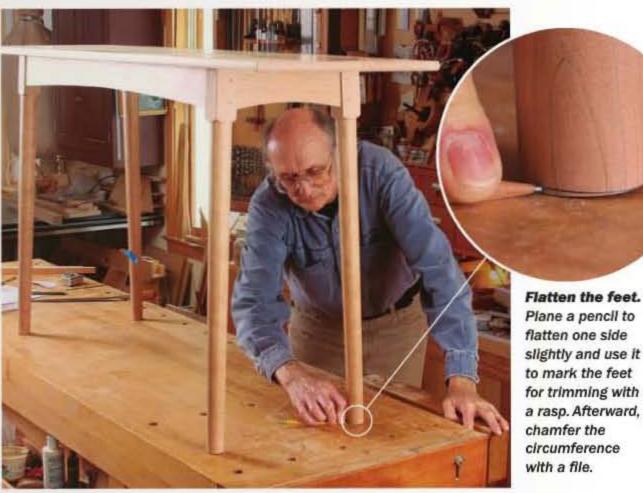
Pin the tenons. After gluing up each joint, Becksvoort drills through the leg and through the tenon for a walnut peg (above). The pin adds interest and offers a bit more joint strength. With the side assemblies glued up, join them with the end aprons (right). Use bar clamps with rubber pads on the jaws to accommodate the angled legs.

FINISHING UP

Shape and attach the top. After cutting and smoothing a shallow arc in each end of the top, Becksvoort uses a block plane and sandpaper to shape a slight bullnose profile on all four edges. Do the end grain first (above). To attach the top, Becksvoort centers the base, then uses a scratch awl to transfer the hole locations, predrills the tabletop, and drives the screws (right).

be 25% in. from the top. Cut the arch on the bandsaw and smooth the curve with a spokeshave or sand by hand.


All four rails and the square portions of the legs should now be sanded to 400-grit, glued, and pinned. I usually glue up the two long sides first, pin them, and then glue in the short rails and pin them.

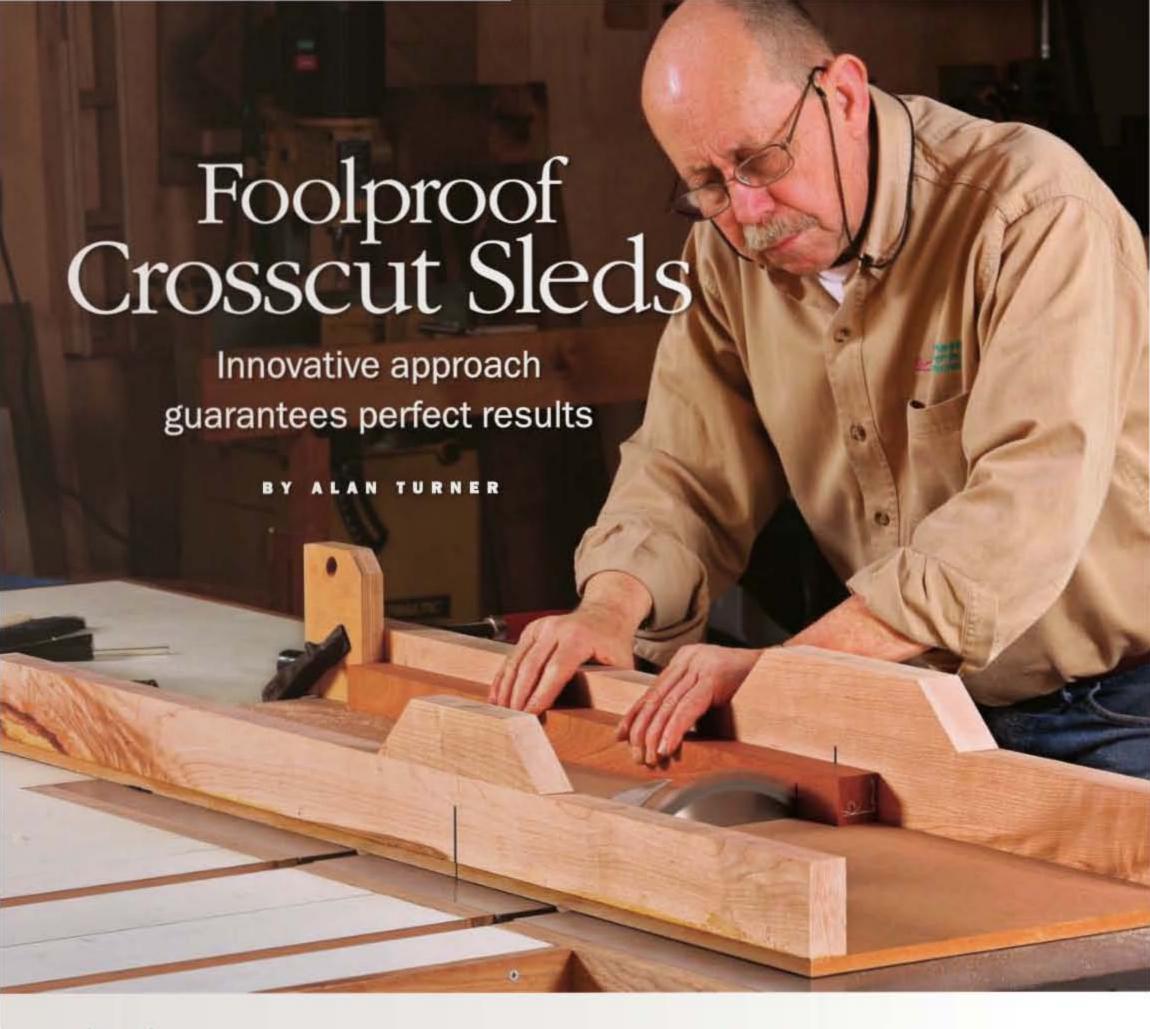

Subtle curves accent the top

The top of this table is 16 in. wide. Ideally a single board would look the most attractive, but stock that wide is not always available. So sometimes I use an 8-in. or 9-in. board, 9 ft. to 10 ft. long, cut in half, matched as well as possible, and glued side-to-side. After the glue is dry, I cut the top to exact width and length.

Bandsaw a convex ¾-in, curve on the ends, again using a straightedge and clamp to lay out the curve. All four edges are then given a slight bullnose radius. This can be done either with a router or with a block plane and sandpaper. Finally, smooth the top with a handplane or by sanding to at least 400 grit and polishing with 0000 steel wool.

To attach the top, center the base upside down on the underside of the top. I anchor the two end holes with drill bits (or 16d nails) and use an awl to transfer the positions of the side holes to the underside of the top. I drill slightly oversize holes along the sides, to accommodate seasonal

movement in the top. Now screw the base to the top.


Good trick for leveling legs

The last step before finishing is to flatten the bottoms of the legs. Turn the table right side up and set it on your tablesaw, benchtop, or another reliably flat surface.

I position a pencil flat on this surface to trace around each leg, turn the table upside down, and use a rasp and file to trim to the lines. I rasp each foot flat, so there is no wobble, then use a file to add a small chamfer all the way around.

To finish the table, I remove the top and oil the table with a 50/50 mix of Tried & True Varnish Oil and spar varnish. After letting it dry for 24 hours, I rub everything down with 0000 steel wool, then add two or three more coats.

Christian Becksvoort is a contributing editor.

he tablesaw may be your shop's most valuable cutting tool, but for precise, repeatable crosscuts it needs a little help from a sled. The sled holds the work securely with its long edge at a precise right angle to the blade, so you get perfectly square ends when cutting pieces to length, the key to gap-free joinery. With a zero-clearance slot cut through it, the sled even prevents chipout at the edges.

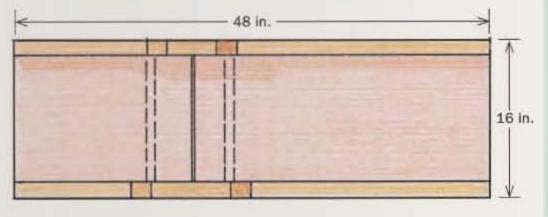
The trick to building an accurate sled has always been to get the runners to fit the miter slots snugly without any wiggle room, and to attach the rear fence perfectly square to the blade—neither is easy to pull off. The technique I use at the Philadelphia Furniture Workshop simplifies both tasks and ensures dead-accurate results.

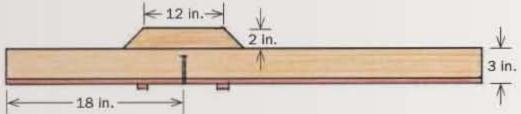
For starters, I assemble the base in two pieces, first attaching the

runners at the bench. Then, with the runner in the miter slot, I trim each individual base piece with a sawcut that creates a zero-clearance edge that is perfectly parallel to the blade.

To help ensure that the runners don't wiggle in the miter slots and yield inaccurate cuts, I lightly clamp them snug against the inside edge of the slots when gluing on the front fence.

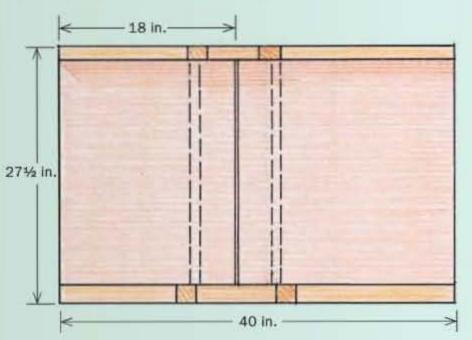
And, at the critical step of attaching the rear fence, I found a way to easily fine-tune the angle during glue-up so that it is perfectly square to the blade and stays that way. Armed with these simple techniques, you can crank out a number of sleds suited to specific tasks, instead of struggling to make just one. Instead of the typical medium-size sled, which is undersized for plywood cuts but too bulky for narrow crosscuts in solid stock, you really want the

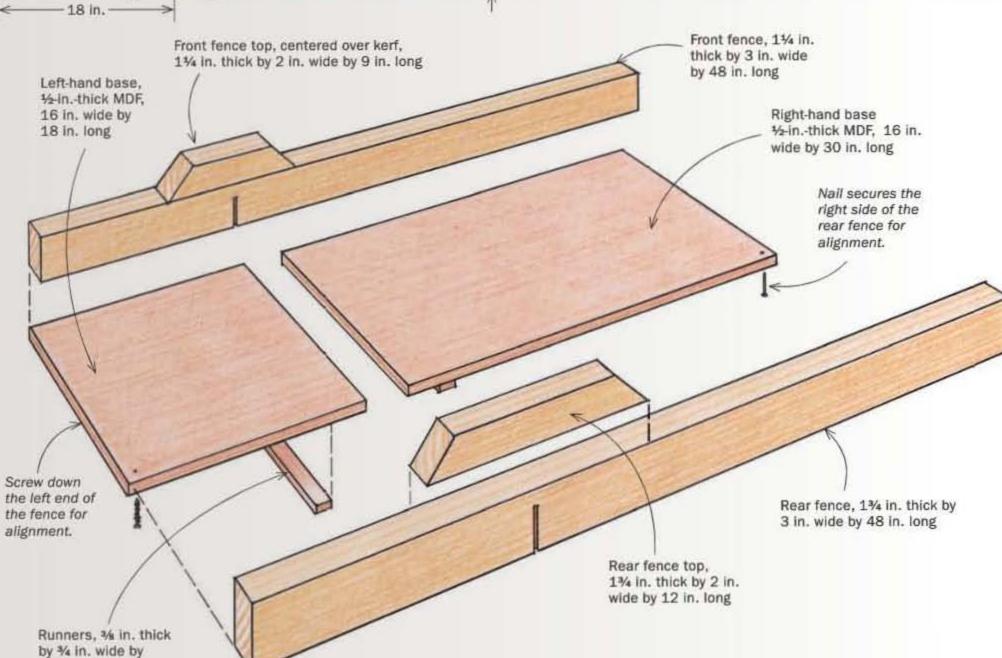

So simple, you'll want to make two

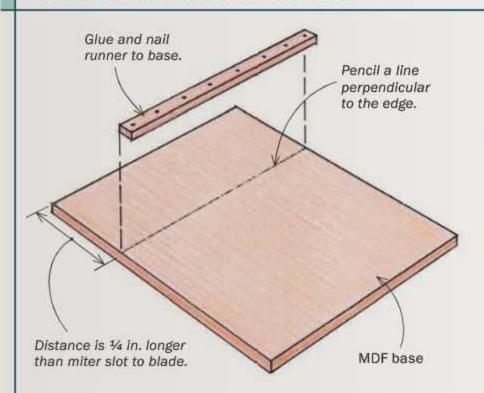

The truth is you really need at least two different tablesaw sleds, and this method Is so straightforward that now you can have them.

NARROW SLED HANDLES MOST TASKS

15 In. long


The advantage of this sled is its compact size. At 13 in. between the front and rear fences and 48 in. wide, it is light and convenient for everyday use. The space between the fences is narrow to minimize bulk and weight while still offering enough room for most solid stock. There is extra length on the right to support longer pieces like table legs and shelves.




FOR SHEET GOODS, A DEEPER VERSION

To handle sheet goods for cabinet projects, you need a sled that will handle a 24-in.-wide piece of plywood. Most home woodworkers will use this sled far less than the one shown at right, but they'll need one eventually.

Make the base in halves

Mill the runners. Start by cutting the pieces oversize to relieve internal stresses that might cause the wood to move. Then trim them to final dimension. Orient the grain as shown so that most of the swelling or shrinking will be vertical and will not affect the runner's fit in the slot.

Glue the runner in place. Turner uses an MDF template clamped to the sled's base (above) to help locate the runner and ensure it is straight. While pulling the runner against the MDF template, Turner secures it with 18-gauge nails (right).

Trim each base for a perfect fit. With the runner in the miter slot, cut away the excess MDF. The resulting edge is a perfect zero-clearance fit against the saw's blade.

If you want to save the time spent on milling hardwood runners for a precise fit, you can buy a set of longer-lasting aluminum ones from Kreg. They are pre-drilled and come with nylon adjustment screws for a perfect fit in the miter slots. A 30-in. bar that can be halved to make the smaller sled is \$24 at amazon.com. Attach the bars using the procedure for the hardwood runners, but substitute cyanoacrylate glue with accelerator for the yellow glue, and use

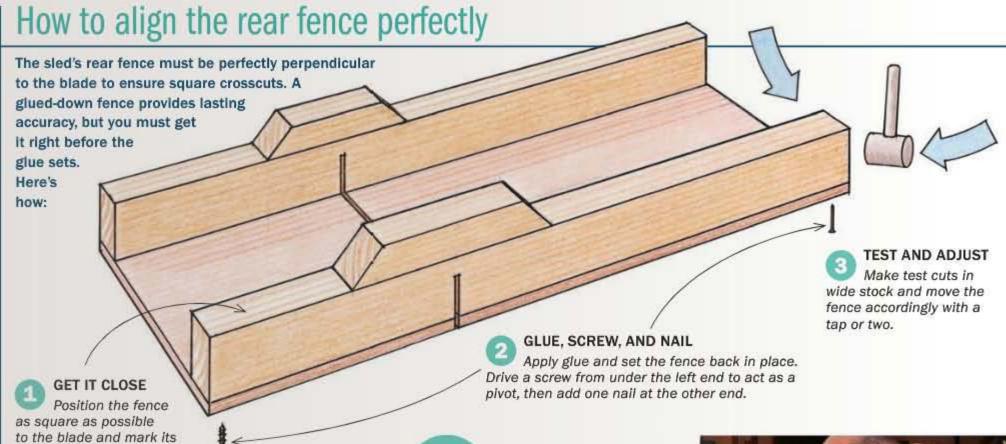
screws with a centering bit instead of nails.

two shown on p. 43. You might even add one with a wider slot for dadoes and bevel cuts. I'll build the smaller sled here, the one you'll use 90% of the time. Let's get started.

Build the base from two pieces

For the sled's two-part base, I favor 1/2-in. MDF for its flat surfaces and consistent thickness. MDF also takes a finish well, which lets wax work effectively as a lubricant on the sled's bottom.

For the runners, I suggest either maple or white oak, milled with the end grain running vertically to minimize the effect of seasonal swelling and shrinking. Mill the pieces slightly oversize, wait 24 hours, and then trim them to final dimension. Their final thickness should be less than the depth of the miter slots to leave room for debris in the bottom of the slots. Trim each runner to precise width for its slot and then mark them for right and left—the slots may vary slightly in width.


Attach the runners-With the runners prepared, it is easy to attach and align them.

Measure the distance from the slot to the blade on each side of the blade, and then mount each runner with yellow glue so that each half of the base overhangs the sawblade path by at least 1/4 in. I use a piece of MDF as a template to help locate the runner and to brace against to keep the runner straight. While the glue is still wet, secure the runners with a nail gun, or clamps.

When the glue dries, it's time to trim each sled half for a precise fit around the blade. For each piece, place the runner in the slot and use the saw to cut away the excess 1/4 in. The inside edge of each panel now

Screws hold the fence. With the front fence glued down, Turner drives a series of screws into pre-drilled holes to lock it in place. Its squareness is not critical.

matches the exact path of the sawblade, one on the right and one on the left.

Attach the front fence and square the rear one

location.

Use an accurate combination square to mark lines perpendicular to the sawcut edge for the front fence. Some 8/4 hard maple, carefully milled, is a good choice for the front and rear fences because it is hard and stable, and its light color reflects light well, making knife lines and other marks easier to see. To reduce weight but add stiffness, add a piece about 8 in. long to the center of the front fence where the blade comes through. The main section of the fence is about 3 in. tall; the added piece is 2 in. tall. To attach the fence, apply glue, pop in some nails to hold it in place, and then add screws for a better glue joint. It's only there to hold the halves together, so it doesn't matter if it is not exactly square to the blade.

Carefully prepare the stock for the rear fence. It has a built-up section similar to the front fence, but its surfaces must be flat, square, and parallel to one another. Milling in stages will relieve any internal stresses, so glue on the extra piece and then mill the fence oversize, letting it rest a few days before taking it down to final dimension. The front and rear fences don't have to be the same thickness; I used what I had on hand. Just be sure the front fence is at least 1 in. thick and the rear fence at least 1½ in. thick.

With the partially assembled sled on the saw, place the head of a combination square against the sawblade and use the rule to mark a line square to the blade where you will position the rear fence. Place the fence on this mark and pencil a line along the fence's entire length.

Now comes the most important part: attaching the rear fence dead-square to the sawblade path so that

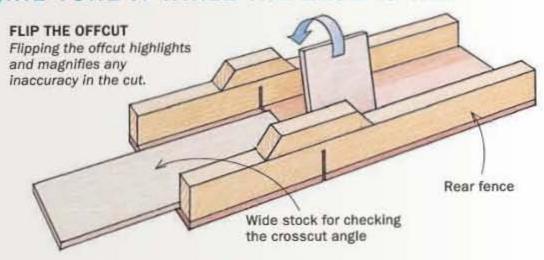
Square it. Hold the combination square against a front and rear tooth and align the fence with the square's blade (above). Pencil a line on the base along the edge of the fence so you can keep track of its location (right).

Apply glue and one screw. The fence will pivot on this screw while you adjust it to its final position.

Nail the other end. The nail will flex just enough to allow subtle adjustments to the fence's position, but will otherwise hold the fence in place.

Make a test cut. Right away, make a crosscut in wide stock to test whether the rear fence is square.

you will be able to crosscut at exactly 90° for years to come. Here's how you do it.

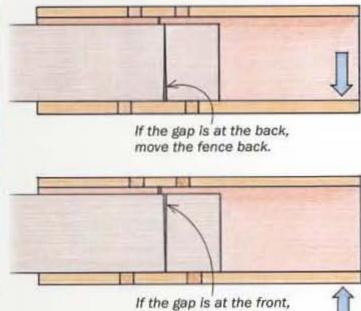

Get everything ready. Rip a piece of MDF about 12 in. wide and 3 ft. long with straight, parallel edges. This will be used to test the accuracy of the rear fence. Now drill from the bottom for a screw on one end of the sled base, and be ready to shoot a single 18-ga. nail from the bottom on the opposite end. Apply the glue, set the fence on the line carefully, then drive the screw and nail. Now crosscut the MDF test piece.

Pull the sled back and slide the two freshly cut edges together, keeping them snug against the fence. If the rear fence is straight, the edges should meet tightly, with no gap. Now, flip over one of the test pieces, keeping the same just-cut edges together, and put the two halves together against the rear fence. If there still is no gap, the cut is perfectly square. If there is a gap, this gap is double the amount the fence is out of square. With a steel hammer, tap the nailed end of the fence to correct, and test cut again, using the same procedure. Assuming that you've screwed down the left side of the fence and nailed the right, if the gap is at the fence, tap the right-hand end of the fence back. If the gap is away from the fence, tap the right side forward. With ordinary yellow woodworking glue, you should have about 3 to 5 minutes of open time to test and adjust, so work quickly.

When you have it dialed in just right, put clamps on to secure the rear fence to the sled base until the glue dries. Then go back and install screws from the bottom to be sure. You now have a sled that will cut dead square, every time, for many years to come.

Alan Turner is an attorney, woodworker, and owner of Philadelphia Furniture Workshop, a woodworking school.

FINE-TUNE IT WHILE THE GLUE IS WET



THE GAP DIRECTS THE ADJUSTMENT

Work quickly before the glue tacks up and tap the fence to adjust for square.

Butt the pieces together. A gap indicates that the fence is slightly out of square.

move the fence forward.

A tap closes the gap. First mark the base with a pencil line to help show the fence's movement. A new test cut shows no space between the workpiece and offcut (right).

Put the glue-up in clamps. Then, after the glue dries, drive a series of screws from underneath to complete the assembly.

Seal First for a Better

Choose wisely for best results

BY PETER GEDRYS

ne aspect of finishing that causes great confusion is sealers and their use. Part of the problem stems from thinking that sealers are to clear coats what primer is to paint and that all bare wood should be sealed first. In fact, the first coat of *any* finish acts as a sealer.

But using the first coat as a sealer isn't always the best choice—if that were the case, this would be a very short article! Clear finishes vary greatly in how effective they are

as sealers, and there are many times when you should go with something else. However, a product sold as a "sanding sealer" may or

ZINSSER

PAST DRY CLEAR FINESH AND SEALES

may not be the solution. Now that I've got you confused, let's delve into the world of sealers. I'll make the choice for your next project easy, and your final finish will be better than ever.

When to seal bare wood

The first coat of any finish on any wood penetrates the fibers and leaves the surface feeling rough and uneven after it dries.

Shellac is the wonder-product

There are many types of sealer, but if you could use only one it would be dewaxed shellac, either from a can (left) or flakes. It is readily available, cheap, has no strong fumes, goes on easily, and sands well. It is compatible with any finish and wood. Use it on all interior projects except those that will be subject to substantial heat or humidity.

Finish

This coat needs to be sanded

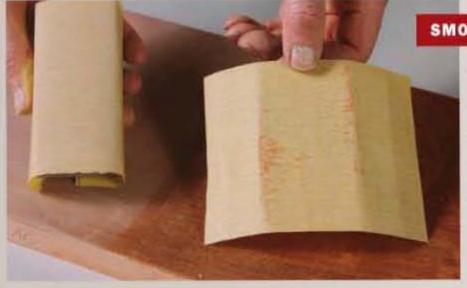
smooth, to provide a good foundation for subsequent coats to build on.

Varnish doesn't sand well, so seal first-Not all types of finish sand easily, especially when applied to bare wood. Varnish tends to gum up the sandpaper and takes a long time to dry. You can overcome these problems by sealing with a coat of dewaxed shellac. However, I never use shellac

with exterior varnishes. Because of shellac's brittle nature, temperature fluctuations can weaken its bond to the substrate and cause the finish to fail. In this case you have a couple of options. You can thin the varnish by 50% with mineral spirits and apply it to the bare wood. It takes longer to dry and is harder to sand than shellac, but you get a durable exterior finish. A more expensive option is a marine-grade sealer that is stearate-free, such as Interlux's Interprime Wood Sealer (jamestowndistributors.com), suitable for interior or exterior work. (For more on stearates, see "Why to avoid some sealers," p. 51.)

For oil-based finishes, seal to avoid blotching-With oil or oil-and-varnish finishes, the problem is not poor sanding, but rather excessive or uneven penetration. Porous woods such as butternut seem to drink this type of finish and never create an even sheen. Others such as pine and cherry can end up blotchy. And on almost all woods, the end grain turns darker than the other surfaces. Thinning the first coat

What can a sealer do for you?


A sealer can save you time and money, help you avoid disasters, and result in a better-looking finish.

After three coats of wipe-on poly, the side of this butternut board sealed with a 2-lb, cut of dewaxed shellac has good build and an even sheen. The unsealed side absorbed the poly unevenly.

Many cherry boards will absorb an oll-based finish unevenly, leaving a blotchy appearance. A 1-lb. cut of dewaxed shellac limits absorption in the more porous areas for an even look.

SMOOTH SANDING

The advantage to applying a 2-lb. cut of shellac rather than a thin coat of varnish as a sealer coat is that shellac powders when sanded (left) but varnish gums up the sandpaper (right).

TAME OILY WOODS

The oils in some tropical woods can delay or even prevent an oll-based finish from curing. leaving it sticky. The right side of the board was sealed with shellac, which prevents this problem.

Why seal? (continued)

Waterborne finishes can leave some woods, such as cherry, looking gray. The right-hand side of the sample was sealed with dewaxed garnet shellac for a warmer look.

SEAL BETWEEN OIL AND WATER

Applying a waterborne topcoat over an oil-based pigment stain is asking for trouble. Dewaxed shellac seals in the stain and gives a good base for the topcoat.

PROTECT DYE

After the board was colored with a waterbased dye, the near side was sealed with dewaxed shellac. When a waterborne topcoat was brushed on, it removed some of the dye on the far side, but not in the sealed area.

Special products for special situations

Vinyl sealer for kitchens and bathrooms

The pros spray this for most of their sealing. It has all the advantages of shellac but also stands up to high heat and humidity, making it a good choice for kitchen cabinets, tabletops, and bathrooms. You can apply it by hand but only to small areas because it dries very fast.

Pad on small surfaces or spray like a pro. Although vinyl sealer is designed to be sprayed (left), you can pad it on if you work quickly and in small areas (above). Vinyl sealer is ideal under solvent lacquer and two-part catalyzed finishes. The main drawback is the fumes, so wear a respirator when spraying or working with poor ventilation.

only makes these problems worse. Again, shellac comes to the rescue. Instead of sealing, the aim is to let absorbent areas of the wood soak up the washcoat while the rest of the surface is minimally changed. To do this, apply only a thin, 1-lb. cut of dewaxed shellac and when dry, lightly sand it with 220-grit paper. You will see slightly less shimmer from figured woods but the overall tone will be more even.

Sealers minimize raised grain—Some waterborne finishes are quite alkaline, which promotes grain raising when they are applied to bare wood. Manufacturers sell neutral-pH sealers, labeled sanding sealers, but you sacrifice some durability (see opposite page), so the better choice is once again shellac. As well as providing a smooth

base for the waterborne finish, shellac can enhance and warm the overall tone of a finish, particularly if you use darker grades such as dewaxed garnet. This is beneficial with waterborne finishes, which can have a cold and somewhat lifeless appearance.

Use vinyl sealer in hot or moist areas—Vinyl-based sealer may be considered the modern shellac. It dries quickly, forms an excellent barrier, and bonds so well that vinyl resin is the base for many adhesives. Like shellac, it will also lock in contaminants and seal oily woods. Use it for interior projects only. However, it has far better heat and moisture resistance than shellac, so it is a good sealer for kitchens and bathrooms. Although sold to be used under solvent lacquers or two-part coat-

Marine-grade sealer for the great outdoors

Only the toughest finishes survive the sun, salt, and water experienced on a boat. You can either thin a high-quality marine varnish and use that as a sealer coat, or look for a marine sealer that doesn't contain stearates.

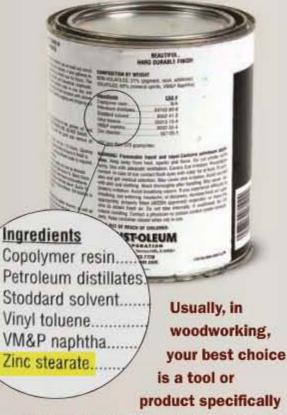
Avoid shellac. Shellac is too brittle to use as an exterior sealer and will fall with severe wood movement, so you can either thin the varnish topcoat by 50% with mineral spirits, or use a marine-grade sealer that doesn't contain stearates.

ings to which it is chemically related, it can be used under any type of finish.

The downside is that vinyl sealer is formulated to be sprayed, and is not the friendliest stuff. But you can pad it on after thinning it (with lacquer thinner), and protect yourself with gloves, a respirator, and good ventilation. If applying it by hand, it works best on small projects because it dries rapidly. It doesn't sand as well as shellac, so some sealers include stearates, but better ones use a modified nitrocellulose resin to help with sanding. Examples include Sherwin-Williams' High Solid Vinyl Sealer No. T67F5 and M.L. Campbell's C100 25. Both come in a minimum size of 1 gal., but Behlen's Vinyl Sealer comes in quarts (woodcraft.com).

Seal in the oils in problem woods— The oils in some tropical woods such as rosewood and cocobolo can prevent oilbased finishes from curing, leaving them sticky. The same is true of the chemicals in aromatic red cedar and the resin in pine. In all cases, applying a coat of dewaxed shellac to the bare wood isolates the oilbased finish and allows it to cure normally.

Finally, if you are refinishing an old piece of furniture, surface contamination, particularly silicone oil from furniture polish, can cause fisheye, where contamination repels the finish and leaves little craters. Again, an initial coat of shellac is the answer.

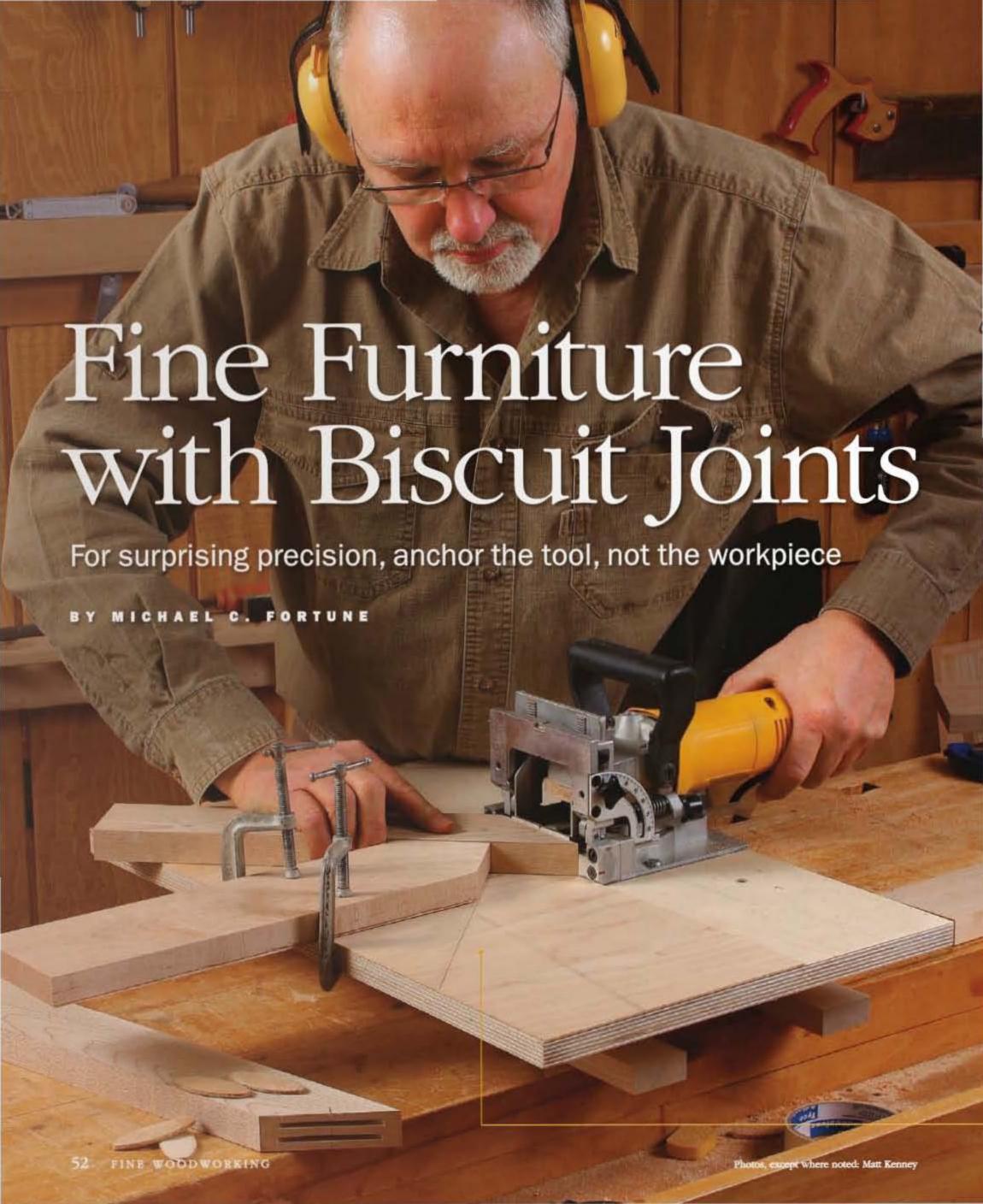

Sealers between finishes

When doing a multi-step finish, product compatibility is a big issue. We all know that oil and water don't mix, so it is good practice to apply shellac or a vinyl sealer between an oil-based stain, grain filler or glaze, and a waterborne clear coat. Otherwise you run the risk of poor adhesion.

Sometimes two similar products must be kept apart to avoid a fatal attraction. A water-based dye can bleed into a water-borne topcoat and leave a muddy, blurry appearance. A thin coat of sealer will lock in the dye or stain and allow you to topcoat with ease. If you plan to use an alcohol-based non-grain-raising dye, brushing shellac as a topcoat can be problematic because the alcohol in the shellac will reactivate the dye. Overcome this by spraying a very thin first coat of shellac. Trust me: Making the right choices will save headaches down the road. Guess how I know that!

Peter Gedrys is the owner of Architectural Finishes in East Haddam, Conn.

Why to avoid some sealers


designed for the job. That's not the case with many products sold as "sanding sealers," whether waterborne or oil-based. The latter consist of a vinyl-alkyd resin that seals, a fast-drying solvent such as toluene that allows you to recoat in under an hour, and zinc stearates or metallic soaps to make sanding easier. These last components are the sealers' Achilles heel. They make the sealer soft and tend to produce a weak bond with the substrate and subsequent coatings.

Closely examine the description of the can's contents: Like the example shown above, if you see either stearates or soaps mentioned, then go with another type of sealer.

-P.G.

A flaky finish. On this window seat, a waterborne topcoat was applied over a stearated sealer. The weak bond between the two types of finish caused the topcoat to delaminate after it was scratched.

If you ask a furniture maker about joinery for fine furniture, you're sure to hear about dovetails, mortises, tenons, dadoes, and even rabbets. But I'd be surprised if biscuits were mentioned, unless only to explain how they have no place in high-end work. That's a shame, because there are some joints where a biscuit is the best solution. They're great for joining the rails and stiles of a face frame, attach-

ing a solid-wood frame around a veneered panel, tabletop, or door, or joining a leg to a veneered panel. Biscuits also let me build more adventurous furniture that would be difficult with traditional joinery.

Perhaps the biggest reason why biscuits have been dismissed by many furniture makers is that biscuit joiners seem incapable of accuracy. The cutter's rotation has a tendency to jerk the machine sideways when you start the cut. Also, biscuit joiners can be difficult to hold and they have small fences, so they jump around and lift off the work. However, I've found a great solution to all of these problems: Turn your biscuit joiner into a stationary tool by attaching it to a shopmade table.

Attached to the table, the biscuit joiner really does have a place in fine furniture. I'll show

place in fine furniture. I'll show ter's rotation has a tendency stiles of a face frame, attach-JIG CURES THE JITTERS The biggest problem with a biscult joiner is how much it wants to move around when you use it handheld. To stop it cold, bolt it to this table. Biscult Joiner Drill clearance holes if necessary. Bolt It down. Attached to a table, a biscult joiner is easier to control and produces spot-on joinery. Table is attached to feet with drywall screws. Plywood table, 3/4 in. thick by 16 in. wide by 24 in. long Back foot is inset 11/s in. from back edge of table. Feet, 134 in. thick by 22 in. long by 21/2 in. tall 21/a in. T-nuts inserted from underside 74 In. of table are used to capture the bolt for the biscult joiner. Use flat top of the foot Feet are spaced as a clamping surface. 43/4 In. apart.

Break through to new designs

When designing, Fortune doesn't worry about construction. He figures it out later. Keeping his mind open, he's found the biscuit joint to be reliable and, more importantly, versatile, allowing him to build furniture that would be impossible with traditional joints like the mortise-and-tenon.

Make a pyramid. Biscuits join four triangles to make this plywood door and the drawer fronts.

Join a side to legs. Biscults make a solid connection between wide veneered panels and solid wood.

Wrap a veneered top in solid wood. Biscuits join the wood to the panel and reinforce the miter joints.

Mortise-and-tenon joinery is overkill for a face frame, because after it's attached, the cabinet gives the frame more than enough strength to stay together over the long haul. Replace the mortises and tenons with biscuits, a far easier joint to make. But don't try this with doors and table aprons: They need the strength of a full mortise and tenon.

Stop block does double duty. It aligns the rail and stile with the cutter. And because the cutter's rotation forces them into the stop, it prevents them from shifting during the cut.

Slot the stile. Because of the table and the stop block, you need worry about only two things: holding the stile firmly against the joiner and pushing the cutter into the stile.

Repeat for the rail. The stop block hasn't moved, so just put down the rail and cut the slot. You'll need to flip the parts to do the joint at the opposite end of the rail, so you won't be referencing off the same face. But don't worry: The biscuits will still line up.

you where it's smart to use one and how to get the best results.

When and where to use biscuits

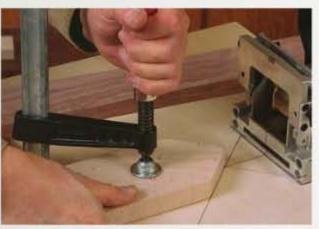
Biscuits can be used to join two solid-wood parts, two veneered panels, and solid wood to a veneered panel. But they can't be used everywhere. Don't use them for heavily stressed joints, like those in a chair, or for joints that hold a lot of weight, like those attaching shelves to a bookcase.

OK, that covers where to use them, but not how. A strong biscuit joint is a balancing act. You need enough biscuits to create adequate glue surface,

but not so many that their slots significantly weaken the two parts you're joining. I follow these guidelines to determine how many biscuits a joint can handle and where to put them: First, biscuits should be at least 3/16 in. from the top surface and 1/8 in. above the bottom

one. Second, slots should be at least ¼ in. away from any edge—any closer and the remaining material is too weak. Likewise, the minimum spacing between slots is ¼ in., but I typically space them 2 in. to 3 in. apart.

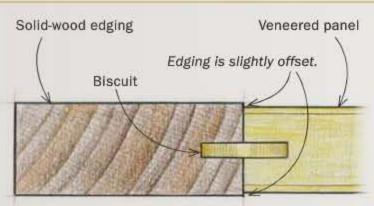
Finally, go easy on the glue and apply it only to the slots (spreading it around) and, of course, the mating edges of the parts. Then wait at least 24 hours after glue-up before you sand or plane the parts. Biscuits are compressed during manufacture, and water in the glue causes them to expand and push out on the material surrounding the slot. That creates a slight bump on the surface. If you sand or plane too soon, that bump becomes


Tabletops made from veneered panels can be quite attractive. They also are more stable than a solid-wood panel and so, less likely to cup. But their edges are unattractive and prone to chipping. The best approach is to glue a broad, solid-wood frame around the panel, reinforcing the joints with biscuits.

START WITH THE MITER JOINT

Use a pointed stop block for this joint. Be sure the point forms a perfect 90° angle.

Locate the stop block. Align the joint's centerline with the joiner and trace the part's edge on the table. Repeat for the second part.


Clamp the stop in place. Its point is at the intersection of the two lines, located so that the parts fit snugly between it and the joiner.

Two jobs again. The stop both aligns the parts and provides some resistance against the cutter. Still, hold the part firmly against it.

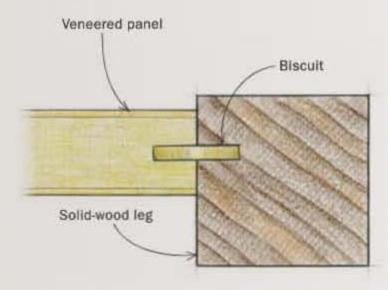
SLOT THE EDGE-JOINTS NEXT

Continuous splines remove too much wood and weaken the joint. Biscuits are a better choice.

OFFSET THE FRAME, AND PLANE IT FLUSH Tape under the panel centers it on the thicker edging. Plane the offset flush after assembly.

Cut slots for the frame's edge. A fence clamped to the table keeps the workpiece firmly against the joiner, but lets you quickly slide it from one slot to the next.

Raise the panel with a strip of tape. This creates the offset between the frame and panel. Make sure to slot the panel with the face down. Lean into the panel to keep it against the joiner during the cut. A short support stand (bottom right) comes in handy.


www.finewoodworking.com JULY/AUGUST 2012 55

Splines, dowels, and tenons are more hassle than they're worth here. A biscuit joint can be cut much more quickly and provides plenty of strength.

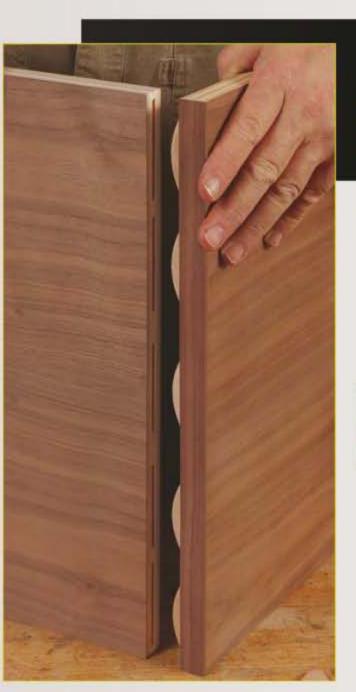
SHIM THE JOINER

Panels are typically set back from the edge of a leg. To create that offset, put a shim under the joiner. The thickness of the shim determines the amount of offset.

Put a spacer under the joiner. The spacer raises the cutter to offset the slots in the leg. Vary its thickness to vary the offset and remove it for slotting the panel.

an indentation after the biscuit dries out and shrinks.

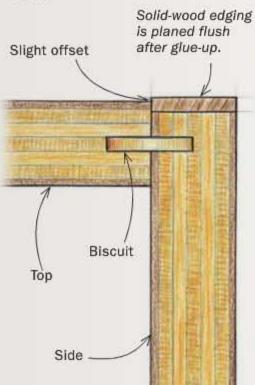
Lock it down


After a lot of frustration and sloppy joints, and just as I was ready to give up on the biscuit joiner for furniture, I decided to try something new. I designed a benchtop table and bolted my joiner to it (see p. 53). Attached to the table, it can't jump because of the cutter's rotation or lift off the workpiece. Now it lives on the table and I almost never need to take it off.

The table is nothing more than a plywood base attached to two sled feet. The feet have flats that allow me to clamp the table to my workbench, putting the biscuit joiner at a comfortable height. The joiner is bolted to one edge of the plywood, leaving a large open workspace where I can temporarily attach stop blocks and toggle clamps as needed.

The stop blocks (and an occasional fence) do two jobs. First, I set them up so that they align workpieces to the cutter. Second, when possible I locate them so that they help the workpiece resist the force of the cutter, and that makes for

Hold the leg with a clamp. Fortune's Da-Sta-Co-style plunge clamp lives on a square of plywood so that he can put it wherever it's needed on a variety of biscuiting setups.

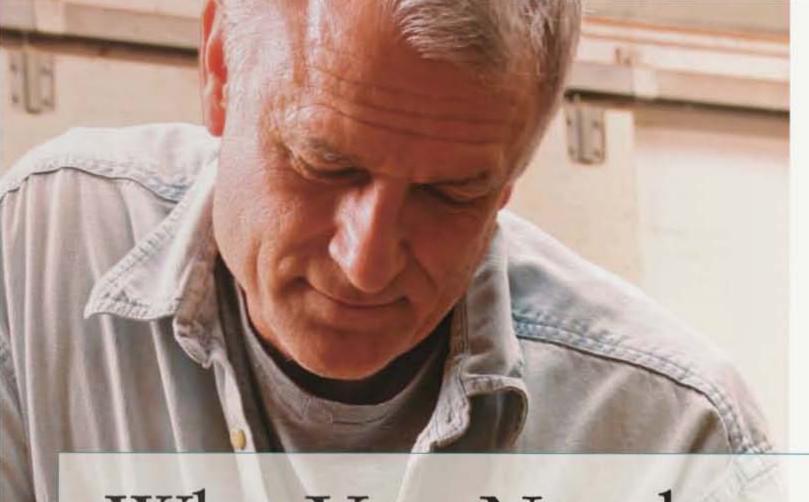


Perfect case joints every time

In theory it's no problem to join two case panels with biscuits, but in practice it can be difficult. Murphy's Law always seems to kick in and the top ends up proud of the side. Here's how to head off the problem.

CONTROL THE OFFSET

Adding tape to the table ensures that the panels align the way you want.


Tape creates an offset. The top is raised slightly and, after assembly, it ends up just beneath the top end of the side.

a cleaner and more accurate slot. As for the toggle clamps, I put them on their own bases, which are then clamped down, making my work much more efficient because it's quicker to clamp down a block and unclamp it when you're done using it than it is to screw down a clamp and unscrew it when you're done. Also, it keeps the table free of screw holes.

I glue 100-grit sandpaper to the faces of all of my stop blocks so they grip better. I also rabbet the bottom edge, because biscuit joiners eject dust from the front of the machine. Without the rabbet, dust builds up on the front of the stop block, pushing the workpiece out of alignment.

Michael C. Fortune is a contributing editor.

ompass planes, also called circular planes, have a rich history but are strangely overlooked by modern woodworkers. In the past, they were used by shipwrights, carriage builders, and furniture makers. Today, for sweeping curves, the plane is still unchallenged. It beats a spokeshave on wide stock because it has more mass and momentum, with a long, adjustable sole that creates smoother curves, free of flat spots and kinks. And it's faster

Why You Need a Compass Plane

Create smooth curves that are fair to the eye and hand

FINE WOODWORKING

BY PAUL SCHÜRCH

than the contoured and flexible sanding blocks that I've used in the past. I use this plane for all sorts of furniture parts, as well as for router templates.

I grab my old Stanley compass plane for both regular curves with a uniform arc and organic curves with an everchanging radius, called "fair curves," using the adjustment knob to alter the curve of the sole on the fly. Since almost all of my furniture has curved components, almost every project is touched by a compass plane.

I use the tool on solid wood, plywood, and MDF. I use it to smooth the bandsawn curves on router templates, and then I use it again on actual workpieces, to remove the machine

Good options new and used

Pain in the knuckle. To get good results with a compass plane, you need to push harder on the front. Unfortunately, the Record has a little locking knob near the front that digs into your hand.

marks. Although the tool handles concave and convex curves with equal aplomb, there is a limit to how tight a curve it can handle. However, my favorite curves are long and graceful, and the compass plane handles them beautifully. For tips on designing and using fair, organic curves, see my

article, "Drawing Big Curves," in FWW #175.

Where to get one, and which one to get

The first adjustable-sole compass plane was designed by Leonard Bailey in 1871. This Stanley No. 13 was a crude affair and went through many design changes, reaching its pinnacle as the Stanley No. 113 Circular Plane. The adjustment of the front and rear sole occurs in unison with a single adjustment knob, bending the spring-steel sole into a convex or concave curve. I find myself constantly micro-adjusting the curve when using a compass

plane, and the front-knob adjustment on the No. 113 style works better for me than other systems.

Although Stanley stopped making the No. 113 in 1942, there are plenty on the usedtool market. You can get a good one on eBay for between \$50 and \$200. If you buy an older

NEW MODELS

KUNZ: GOOD
AFTER A TUNE-UP
With some elbow grease,
you can get the Kunz 113
Circular Plane (\$300;
highlandwoodworking
.com) working well. It is
based on the Stanley
No. 113, and is a

close second in

quality.

You can get a good grip on Stanleystyle compass planes, and the adjustment knob is easy to reach on the fly.

All compass planes need a tune-up

To cut precisely and adjust easily, all of these planes, both old and new, need a flat sole

and a bit of TLC.

Comfort first.
Start by taking
the plane apart,
especially if it's a
new one, and using
a file to knock off
the burrs and sharp
edges that would
dig into your hands.

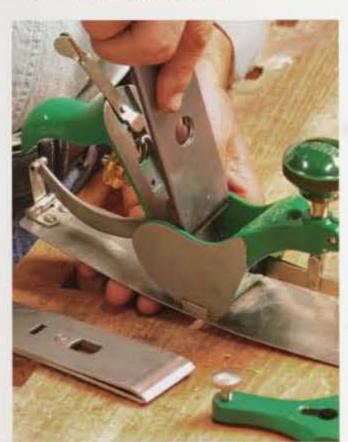
plane, make sure that both sole plates are riveted cleanly and securely to the plane body, and that neither is bent or twisted from the plane being dropped. Also, there should be little-tono play in the adjustment gears or the arms that connect the sole to the plane body, and no missing or cracked parts.

Your other main compassplane option on the vintagetool market is the Record No. 20. But I find these uncomfortable to hold, with a small locking knob that digs into the back of my front hand.

As for new tools, there are two circular planes being manufactured today, both based on the Stanley No. 113: the German-made Kunz, and the Anant, which is made in India.

HOW TO FLATTEN THE SOLE

Seal the mouth. First, put painter's caulk into the mouth to keep water and abrasive grit from getting under the riveted sole, where it will be hard to remove.


Stone the bottom. Adjust the sole flat, lock down the plane using a vise and blocks as shown, and sand the area around the mouth flat, finishing with honing stones.

Flat where it matters. You might not be able to reach the shallow depressions just ahead of and behind the mouth, but the narrow areas on each side are critical reference surfaces.

Lube job. Use a light oil like camellia to lubricate the moving parts, and to protect all of the exposed steel in general.

Thicker chipbreaker is a good upgrade.

An aftermarket chipbreaker will stabilize the stock blade for smoother cuts.

Compass planing 101

The setup is slightly different for inside and outside curves, and the planing direction is, too.

Leave a gap. Pressing the plane forward, adjust the sole for a \(\frac{1}{32} \) in. gap between the back of the sole and the work.

No gap. On outside curves, set the gap close to zero, but always feel free to adjust on the fly to improve the action.

Outside in. With all curves, always plane from high to low to work with the grain and avoid tearout. On concave curves, this means planing from the ends toward the center.

Inside out. Work from the center outward, and whether concave or convex, try reversing direction if you are getting tearout.

I took a very close look at both planes and found that the Kunz is fairly well-machined, and works well after a tune-up. The Anant has rougher castings and a sloppier fit between critical parts.

I was happy to discover that Lie-Nielsen Toolworks is also working on a compass plane, and is planning a late-2012 release.

Start with a tune-up

All of the available planes, new or old, need a tune-up to do their best work. Some require more and some less.

Start by taking the plane completely apart and filing all the sharp edges down to make handling more comfortable. Next, you might need to level the sole. But first, squirt some caulk down into the throat to keep the water and wet grit from getting under the riveted sole, where it will be difficult to impossible to remove. Then flip the plane over, adjust the sole as flat as possible, and clamp it in a vise as shown on the opposite page. If the sole is especially bumpy, start flattening it with 220-grit wetor-dry sandpaper on a block. I've even used a belt sander, clamped upside down on my bench, moving the plane lightly over the belt to do the initial flattening. A diamond plate makes a good intermediate step, but I always finish by polishing the sole with my waterstones.

In the end, there might be a depressed area in front of or behind the blade opening that you can't quite remove, but as

Compass planing 101 continued



Quicker, shorter strokes. Plane more quickly than you would with a normal bench plane, with shorter strokes of 6 in. to 12 in. And focus the pressure on the front of the sole (above). On the return stroke, tip the plane upward (right) to avoid dulling the exposed blade.

As the curve changes and the plane stops making shavings, the Stanley design makes it easy to fine-tune the sole between strokes.

Work in sections.
On long pieces with changing curves, work one section at a time, adjusting the sole as you go.

long as the narrow sides of the opening are polished, you'll have a good continuous surface to plane on.

Last, blow out all the moisture, and lubricate all the metal parts with camellia oil or another silicon-free lubricant to keep them running smoothly.

The full monte—Although I'd never tried these upgrades before, I also tested both a better aftermarket blade and thicker chipbreaker to see if I could improve the performance even further.

The chipbreaker had a significant effect, stabilizing the standard blade for less chatter and a smoother cut. Be aware that the chipbreaker for a compass plane must have a slightly different hole pattern than one for a bench plane. Ron Hock made a custom model for my testing, and has agreed to make more for \$30 each (No. BK113; HockTools .com). As for the thicker blade, I wouldn't bother unless you buy a vintage plane that has a rusted or pitted one. In that case, most 13/4-in.-wide benchplane blades will work, with thicker ones requiring you to file the mouth a bit.

Successful planing

The plane is easy to use, but a few tips will help a lot. For a start, always press down harder on the front of a compass plane. That keeps the blade engaged in the wood, and also happens to create a slight gap between the back of the sole and the surface. For good planing action, the size of that gap should be different for inner and outer curves. For inside (concave) curves, set the curve of the sole a hair (1/32 in. or so) short of the desired shape. For outside curves, the back of the sole should be close to zero, barely touching the wood as you set the curve. If you are having a difficult time getting a good shaving, make slight adjustments to the sole and blade as you plane. You'll get there.

The other key is to take quick 6- to 12-in. strokes, shorter and faster than you would with a bench plane. Also, since the blade is exposed, lift up the back slightly on the return stroke to avoid dulling it without breaking your rhythm.

For long, changing curves, tackle the job in sections, turning the screw-adjustment knob to dial in the proper arc as you work the plane along the length of the curve. If the grain begins tearing in the direction of travel, change your direction, the same way you would with a regular bench plane.

This plane has strongly influenced my design work and furniture making, giving each piece an organic feel and grace unobtainable in any other way. Try it. It might become one of the most cherished hand tools in your collection, too.

Paul Schürch builds furniture in Santa Barbara, Calif., and teaches widely. Go to Schurchwoodwork .com for info.

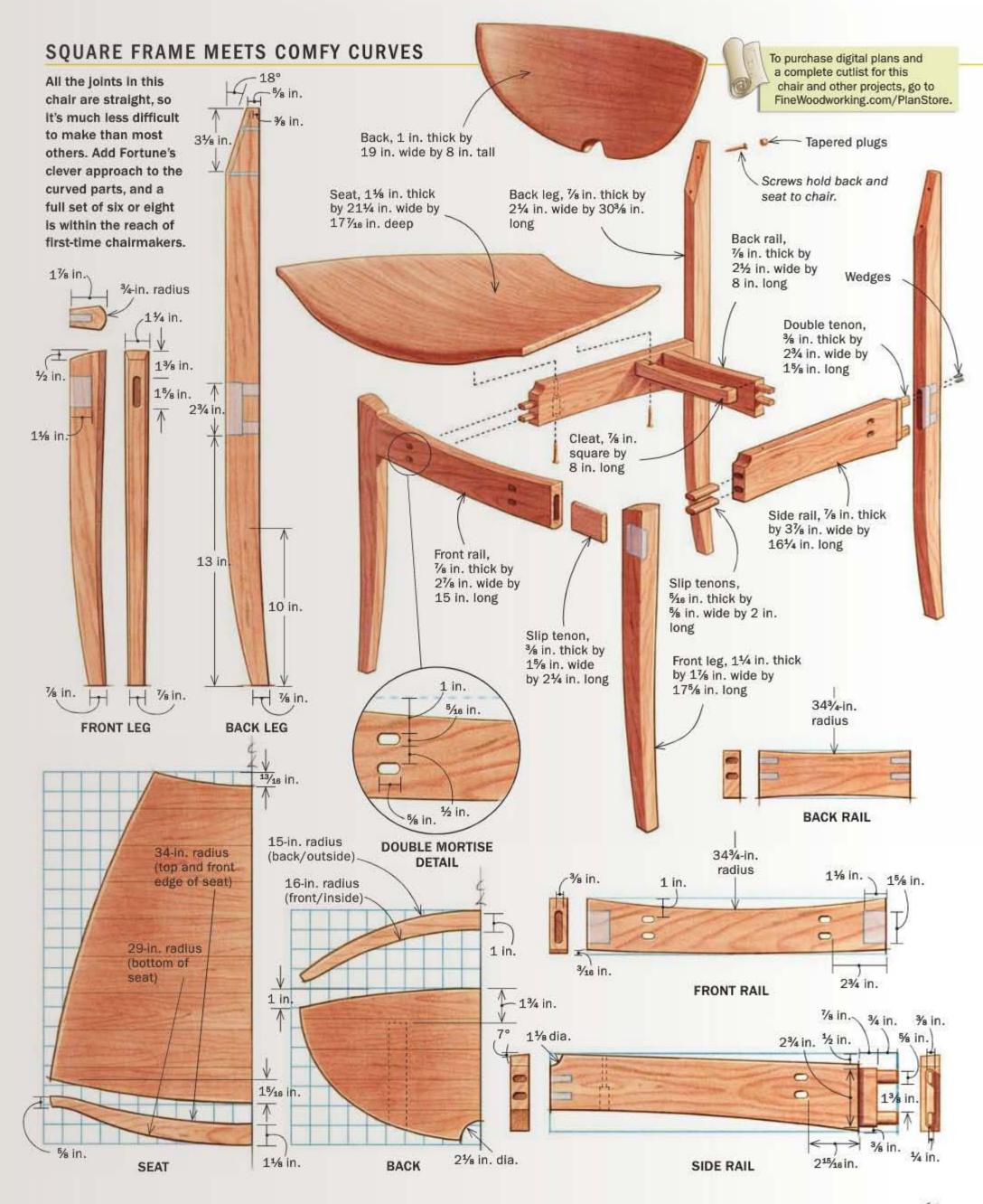
From perfect pattern to finished piece

Making templates. After laying out his curves on paper, he glues that to template stock and planes to the line. Where a sander would leave a bumpy surface, the compass plane creates smooth, flowing curves.

Roughing out. Template routing doesn't work well on thicker workpleces, so Schürch lays these out with the template (left) and then bandsaws close to the line (right).

Perfect curves.
Schürch then uses
his compass plane
to quickly remove
the bandsaw
marks and leave a
smooth surface for
final sanding and
finishing.

www.finewoodworking.com JULY/AUGUST 2012 63


have designed dozens of chairs during my career, and made several hundred. Whenever I design one, I strive to make it beautiful, comfortable, and strong. Meeting those goals often means the chairs are difficult to build, with parts meeting at compound angles. And then all those parts must be hand-shaped so they join seamlessly.

So, I began looking for a less complex way to make chairs, while remaining true to my design goals of beauty, comfort, and strength. In traditional chairmaking the legs, rails, seat, and back are part of a single unit, which complicates construction quickly. With this design, I borrowed from techniques developed in Scandinavia during the mid-20th century. By separating the seat and back from the legs and rails, you build the chair's base first and then

add the seat and back to it. As a result, the legs and rails can be square to one another, which simplifies the joinery. But the seat and back can be highly contoured for comfort, and then attached to the base with screws (I have a great technique for the shaping).

A chair like this is for a dining table, so you'll be planning to make at least four, but more likely six or eight. Since you're basically taking your woodworking into production mode, I'll show you some nifty jigs that will make the process go more smoothly and quickly.

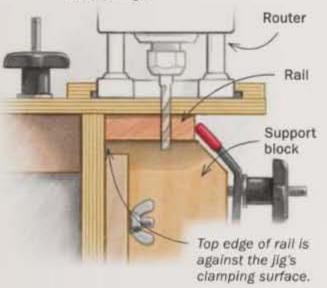
I've now made a lot chairs this way, and I couldn't be happier with the results. The basic structure and technique is flexible enough to accommodate a variety of designs. Best of all, even a



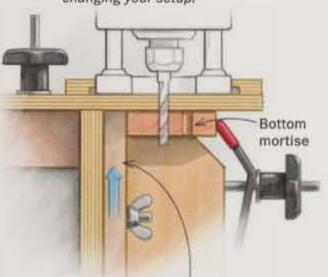
Ultimate jig for slip tenons

This jig's usefulness goes far beyond this article. We first presented it in FWW #197, but we've Included it here for those of you without access to that Issue.

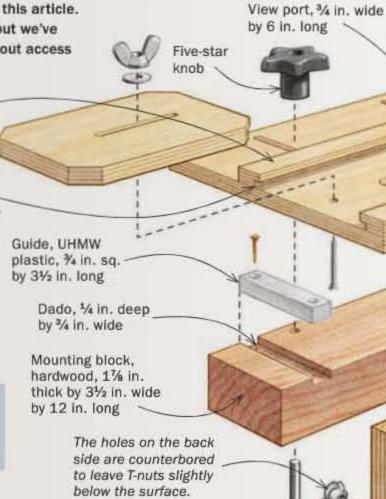
> Guide ralls, 1/2 in. thick by 1 in. wide by 12 in. long


Guide rails and stops are rabbeted to avoid trapping sawdust while routing.

ROUT THE DOUBLE MORTISES


BOTTOM ONE FIRST

Set the Jig for the mortise farthest from the top edge.



NOW ADD A SPACER

This lets you cut the top mortise without changing your setup.

Add a 13/16-in.-thick spacer between the jig and top edge of the rail.

Carriage

bolt, 910 in.

Vertical clamping surface, birch

by 81/2 in. wide by

plywood, 3/4 in. thick

Lock the top of the jig. Then clamp the workpiece in place and rout the bottom mortise.

Space out for the second mortise. The spacer lets you keep the overall setup locked in and ready for the next workpiece.

1/2 in. thick by 6 in. long, same width as router base

Stop, plywood,

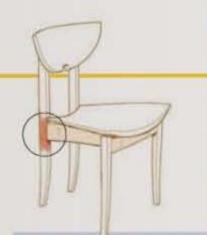
Slot, 1/4 in. wide

by 2 in. long

Top, plywood, 1/2 in. thick by 10 in. wide by 12 in. long

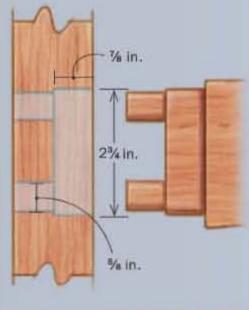
> holes, spaced 11/2 in. apart

18-in.


Hold-down clamp

Support block, hardwood, varies by job. This one is sized to hold the rails against the top of the jig.

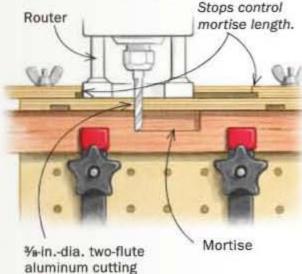
13/16 in. thick in this case


END GRAIN MORTISES MOUNT VERTICALLY

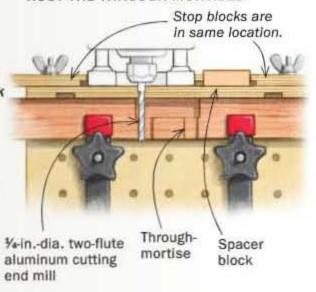
Rout the ends of the rails with the workpiece clamped against the support block, which stays exactly where it was when you were routing the facegrain mortises.

CUT THE STEPPED MORTISE AND TENON

Had Fortune used a slip tenon here, the mortise in the end grain of the rail would be too close to the double mortises for the back rail, weakening the side rail.



Mortise the back legs. Fortune adds a long plece of plywood behind the vertical clamping surface and notched to fit around the Jig's mounting block, so he can use a stop block to quickly locate all of the legs (and that's a lot when you're making six or eight chairs).


Another spacer
to the rescue.
When routing
the two throughmortises in the
back leg, Fortune
puts a small block
in the jig to lock
in their length.
Switch it to the
other end of the
jig for the second
mortise.

STEP 1: ROUT THE LONG MORTISE

STEP 2: ROUT THE THROUGH-MORTISES

end mill

novice chairmaker can use the technique and make great chairs right away.

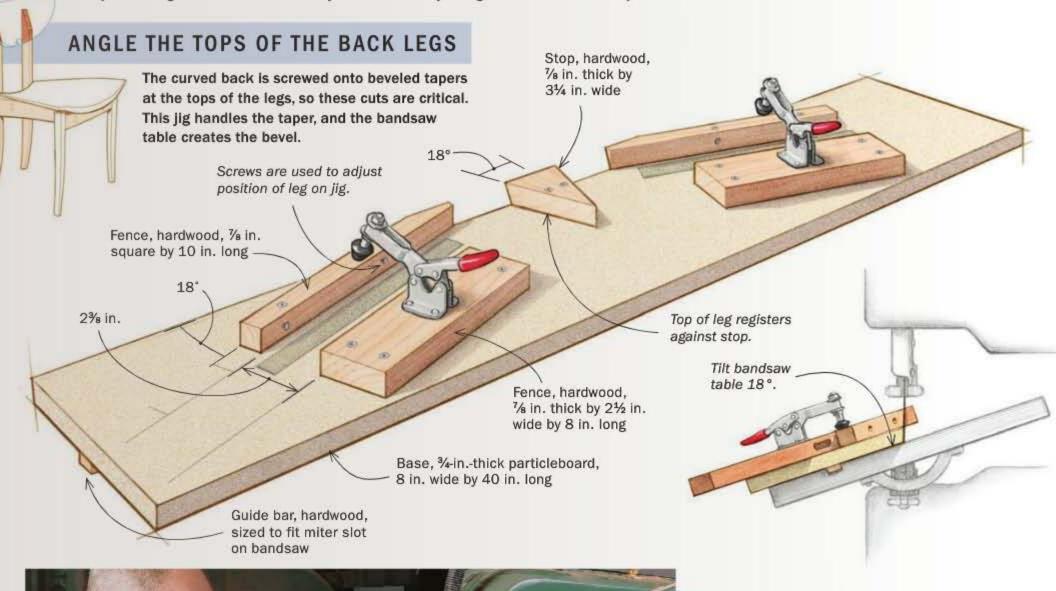
One jig handles many mortises

The curved legs give the chair an air of complexity. But that's an illusion. The rails and legs meet at right angles and slip tenons hold them together, except for an integral tenon where the side rail joins the back leg. Making the joinery comes down to routing a bunch of straight mortises. The slip tenons are basically straight sticks planed to fit. As for the curves in the legs, don't sweat them. Use the drawings to get you close and trust your eyes when making templates.

While the legs and rails are still straight and square, but before routing the mortises, drill holes in the back legs and side rails for attaching the back and seat.

I rout all the mortises with the help of one shopmade jig, starting with the double mortises that join the side rails to the front rail. These are oriented horizontally, because vertical mortises cut across too much grain and weaken the rails. The double

CUT THE STEPPED TENON


Two-part cheeks. After cutting thinner cheeks at the end of the board, lower the dado set, adjust the rip fence, and cut the thicker base section of the tenon.

Form the double tenon.
Fortune makes all of the
cuts at the bandsaw, using diagonal cuts to clean
out the waste between the
tenons.

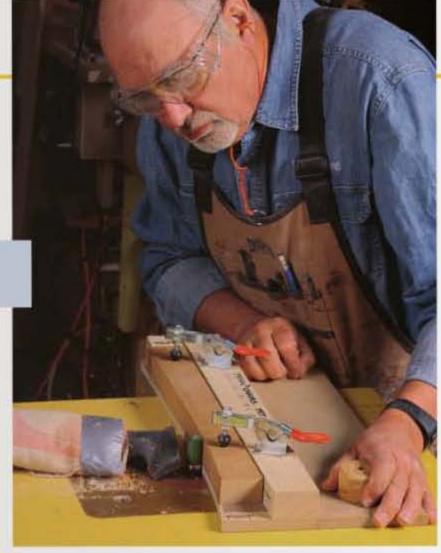
Jigs dial in the leg shapes, too

When you're making a set of chairs, it pays to make Jigs for the repetitive tasks, especially shaping.

Your parts are guaranteed to be exactly the same and you'll get them done much quicker.

One jig, two legs, two angles. The angled table (18°) and jig combine to cut a compound angle on both legs in one shot. A wooden guide bar on the bottom rides in the table's miter slot.

mortises are laid out so that the ones in the face grain and the ones in the end grain can be routed with a single setup on the jig (and a 5/16-in.-dia., two-flute aluminum-cutting end mill). The secret is a spacer.


Rout the bottom mortises on the front rail. Then put the spacer between the rail and vertical clamping surface on the jig. This moves the rail out so you can rout the top mortises. I rout the entire through-mortise from one side of the rail, taking shallow cuts (about ½ in.). I don't use a backer block, because I've never experienced tearout with this type of end mill (it is an upcutting bit). Just don't take too big of a cut.

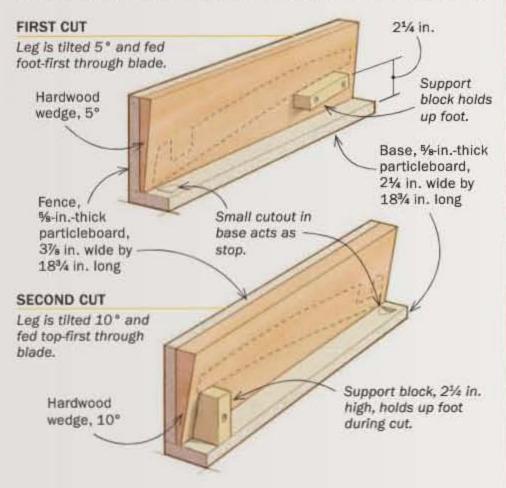
Now rout the mortises in the side rail's end grain, adjust the jig's stop block, and rout the double mortises that join the back rail to the side rails. Then set up to rout the vertical mortises in the front legs. Put a 3/8-in.-dia., two-flute aluminum-cutting end mill in the router and adjust the jig to center the mortises on 11/4-in.-thick material. Once that's done, adjust the jig to center the bit on 1/8-in.-thick material and rout the matching

Fortune bandsaws all the curves on these chairs, cleaning up with hand tools where possible. For concave surfaces, he uses router templates.

> Clean up with a router. A flushtrimming bit leaves a clean, fair surface.

Roundovers on the router table, too. Fortune uses part of a %-in. radius roundover bit to put a softer edge on these front legs. The pin at rear helps him enter the cut safely.

mortises in the end grain of the front rail.


Finally, rout the mortise in the back leg for the integral tenon on the side rail. The tenon is stepped, with a large base section that carries the weight, and a pair of smaller wedged through-tenons that lock the joint. Rout the mortise for the tenon's base first and then the two through-mortises.

Time for tenons

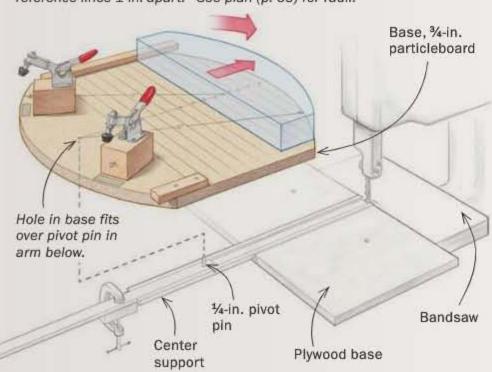
To make the slip tenons, start with two blanks milled to the final thickness and width. Rip a groove down both faces of one blank. The grooves give the glue a place to go. Next, round over the edges of both blanks to match the ends of the mortises. Finally, cut individual slip tenons from the blanks. For the tenons that fit a stopped mortise on one end only, use a handsaw to cut a small kerf (with the grain) on that end. Now cut the integral tenon into the side rail. Start at the tablesaw, cutting the cheeks with a dado set. Then head to the bandsaw and cut the two small through-tenons. Finally, cut slots

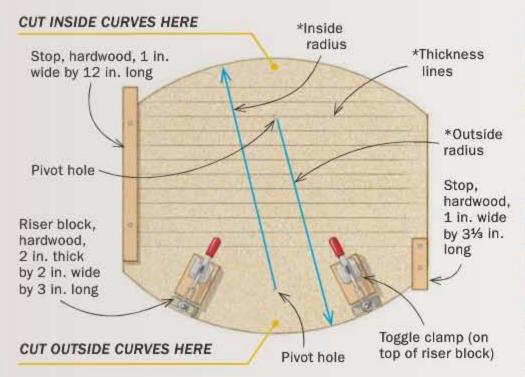
NOW TAPER THEM

With their curves cut, Fortune bevels and tapers the legs with sleds. He holds them in place by hand, reaching past the blade when necessary.

Wedge-shaped
fence is the
key. Tilting the
leg into the blade
creates an angle
on the side and
raising the foot
(pushing it farther out than the
leg's top) cuts a
taper along the
leg's length.

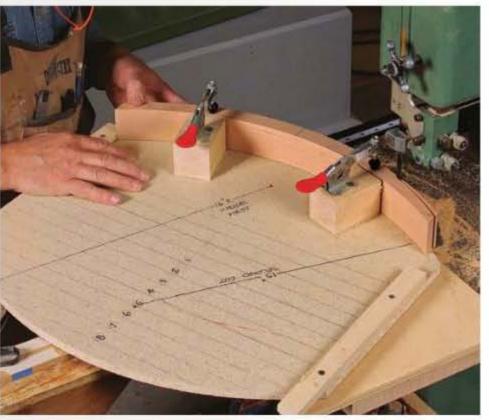
Second jig for the second side. The wedge's angle is double that on the first jig, and the leg is fed through the blade top-first, so it's raised on the trailing end.


Curved seat and back: Stack and conquer


Rather than cooper the curved seat and back or sculpt them from solid slabs, both tedious techniques, Fortune cuts curved sections on the bandsaw and then simply stacks them. Little cleanup is required.

CUT THE SECTIONS

ANOTHER INGENIOUS JIG


You'll need two of these, one to form the curved sections for the seat, and the other to handle the slightly different curve of the back. Both jigs work the same. The seat jig is 24 in. wide by 36 in. deep with reference lines 1½ in. apart. The one for the back is 21 in. wide by 19 in. deep, with reference lines 1 in. apart. *See plan (p. 65) for radii.

Cut the inside curve first. No clamps are needed, because the force of the cut pushes the blank against the stop. But as the blank gets narrower, use a bit of hot-melt glue on the leading end.

Other side now. The other side of the Jig has a smaller radius, so the blank ends up thinner at the edges than in the center, eliminating the need to taper it by hand.

in the tenons for the wedges and make the wedges.

Shape the parts and assemble the base

Now shape the legs and rails. Start with the side rails, which have a beveled taper on their top edges to accommodate the curved seat. (The beveled edge sits higher than the front legs and rail so that the seat clears

them.) Then cut the compound taper at the top of the back legs to fit the curved back. Clean it up with a block plane.

Next, cut the curves on the legs. Trace the profile from a full-size template, rough out the shape at the bandsaw, and then clean up the curves. Convex curves are easily smoothed with a handplane, but concave curves are trickier. For those, I use a template and rout the parts flush to it at the router table—making sure to always rout down the curve and with the grain.

The front legs are also tapered along their length and across their width. Both tapers can be done at once at the bandsaw. I use an L-shaped jig that has a tapered shim added to its vertical side.

The rails are much easier to shape. Just

Clamp it up in sections. Fortune starts by gluing up pairs of ribs and then glues those together into a single blank. Cauls across the blank's width keep the ribs aligned, which makes it much easier to smooth it.

Cut it out at the bandsaw. Use hot-melt glue to hold the blank in place. Fortune puts the blank in the cradle first and then adds a few drops of glue along the seams.

USE A CRADLE FOR CONTROLLED CUTS Again, you need one for the seat and one for the back. Support, 1/2-in. particleboard, 4 in. wide by 19 in. long, curve on top edge matches outside radius of back Base, 1/2-in. particleboard, 9 in. wide by 19 in. long 5 in. 11/2 in.

trace the curve onto the bottom edge, cut it out at the bandsaw, and rout it flush to a template at the router table.

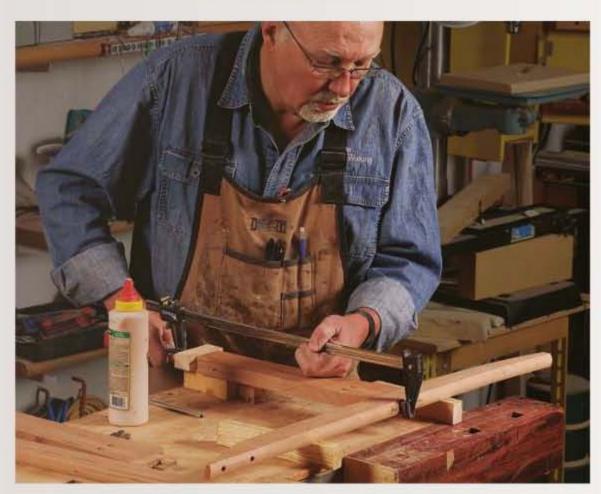
After shaping the legs and rails, assemble the base. Glue the front rail to the front legs. Next, glue the side rails to the back legs. Wedge the tenons. Then glue the back rail between the two side rails and wedge those tenons. This creates an assembly made up of the back legs, back rail, and side rails. Let the glue dry. Finally, glue and wedge the side rails into the front rail. After the glue has dried, trim all of the wedges and tenons, cutting them close with a handsaw and handplaning them flush.

The secret to a comfortable seat

A chair is either made or broken by how comfortable it is. With traditional methods,

Soften the edges. Fortune hogs off most of the waste with a Shinto saw rasp and then follows up with files (left) and sandpaper. To smooth the curves, use a sanding block that's been shaped to match the radius (right). Wrap the sandpaper around the ends of the block and staple it in place.

Assemble in stages

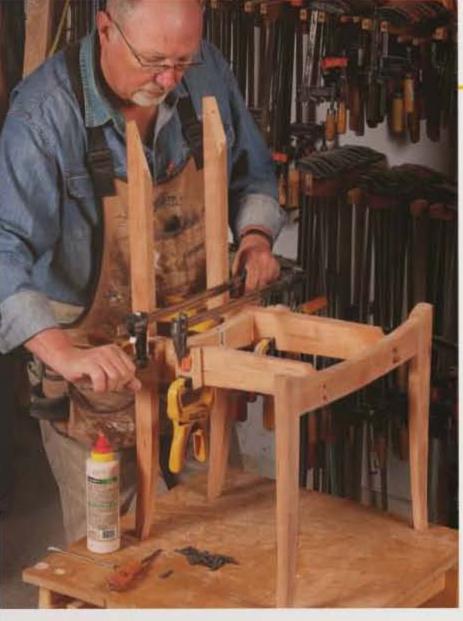

To avoid making an unintentional rocking chair, glue up a single joint or subassembly at a time. Then add subassemblies together for a square, solid chair.

Slope the walls. Use a rat-tail file with a diameter that matches the bit used to rout the mortise-5/16 in. for all but those mortises on the back legs (use a 1/4-in.dia. file there). An angled guide block ensures that the shape is correct.

Put glue in the mortises. Spread some on the area around the joint, too, but not on the tenons. They'll swell and the joint will be much harder to get together. Assemble the front legs first. Fortune elevates the parts and uses shaped cauls to create a flat surface for clamping and protect the legs from the clamp heads.

Then glue the side rails to the back legs. Don't use a caul over the through-tenons. They need to stick out a bit for the joint to be pulled tight. Hammer in the wedges right away. After the glue is dry, the tenon won't spread for them. Also, sink them all the same amount so that after being flushed to the leg they are same thickness (looks better than wedges that vary in thickness).

shaping the seat and back for comfort is difficult, but the technique I use on this chair makes it easy.


Both the back and seat are made by cutting curved ribs from large blanks and then stacking them on edge and gluing them together to create a curved blank. The concave side becomes the scoop that your back and backside rest against.

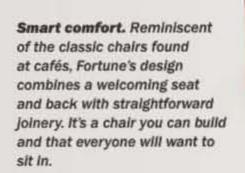
Because both the back and seat are made in the same way, I'll show you how to make only the back. Start with a flatsawn board. The grain exposed by the bandsaw cuts will complement the curve. Also, the board should be wide enough to

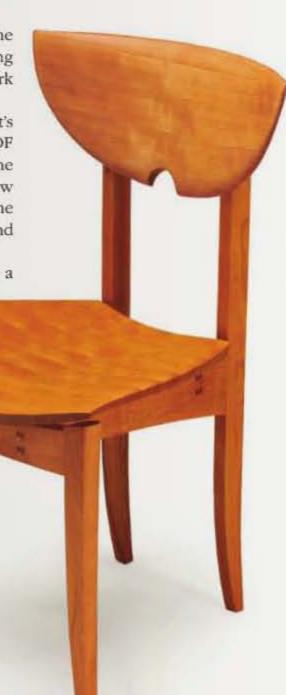
make all of the ribs (use a second board for the seat).

To cut the curves, I use my bandsaw and a modified circlecutting jig. It has a large base that pivots on a center point. The blank sits on top of the base as I feed it through the blade. I then advance the blank 1 in. closer to the blade and make a second cut to free another rib. Repeat until you've cut out all of the ribs. The outside curve is cut from the other end of the base, so rotate it, adjust the centerpoint, and cut the curve on all of the ribs.

Next, edge-glue the ribs together to make the curved back blank. I do this in steps, first gluing up the ribs in pairs. Then glue all

Finish the base and attach the back. When gluing the back rail between the side rails, Fortune dry-fits the front leg assembly to keep things square (left). Then, when gluing on the front legs, he clamps a board to the back rail (center), providing a large, flat clamping surface so that he can get a clamp on both sides of the two joints. Finally, the back gets pilot holes for the screws, making it easier to get the screw in (right) and preventing splits along the grain.


the pairs together. After the glue is dry, I smooth the inside and outside curves using shopmade sanding blocks. I start with P120-grit sandpaper and work up to P220-grit.


Now shape the perimeter of the back. Because it's curved, you need a cradle to hold it: a piece of MDF for the base and two supports, both curved on the top edge to match the curve of the seat back. Draw the perimeter shape on the back and cut it at the bandsaw, with the table square to the blade. Sand the cuts smooth.

Finish the base, the seat, and the back. For a

chair like this, I use Watco Danish Oil. Then screw the seat and back in place.

Michael C. Fortune is a contributing editor.

EASY TO CHANGE THE LOOK

A café-style chair isn't right for every dining table, but by adding 1% in. to the height of the back legs and adjusting the back's dimensions, you get a more traditional dining chair.

Curved Moldings on the Router Table

Over-arm jig lets you form complex profiles with standard bits

BY W. MICKEY

hether it's a gooseneck molding for the top of a tall clock or handsome trim for an arched opening between two rooms, curved molding has long been a challenge to cabinet makers and trim carpenters alike.

If time is no constraint, you can make molding the traditional way: by hand with carving gouges. If money is no

object, you can have shaper bits custom-ground to your desired profile. For everyone else, a simple over-arm guide on the router table is the way to go. A small tube acts as an adjustable bearing surface suspended over the cutter. In turn, you guide a template, which you attach to the workpiece, against the tube. It's basically an upside-down, shopmade version of a commercial pin router. Us-

ing off-the-shelf router bits with this jig, you can create almost any curved molding profile.

Decide on the design, then make a template

Your first task is to create the molding's profile or cross section. If you're making an exact replica, look for router bits that match each section of the profile as closely as possible to

One jig, many uses

Gooseneck molding is but one use for this over-arm router jig. You can add style to a room with arched doorways and entrances outlined with elaborate molding. Subtle curved profiles also work well on some contemporary pieces. Whether you are starting from scratch or replacing missing moldings, you can use this jig.

ACCURATE TEMPLATES ARE THE KEY

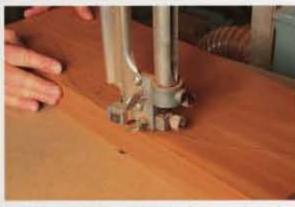
One master template can lay out many pieces with the same front profile, but you need to make a separate router template for each piece of curved molding. That said, the back edge of the template can be used to rout straight return moldings.

Online Extra To see how to make a master template with parallel curved edges, go to FineWoodworking.com/extras.

Routing template, - ½-in.-thick plywood Master template, 1/4-in.-

thick plywood or MDF

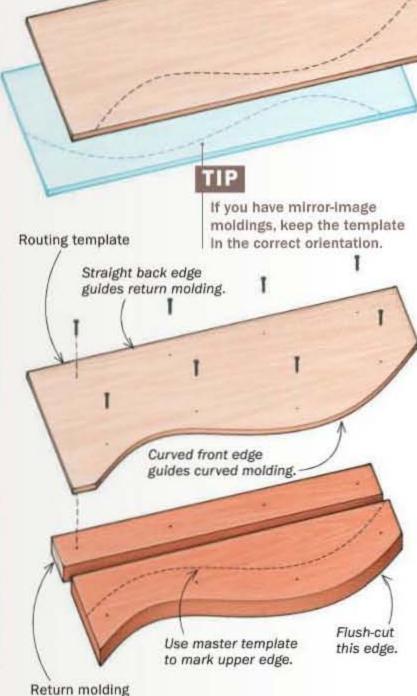
MAKE THE ROUTING TEMPLATE



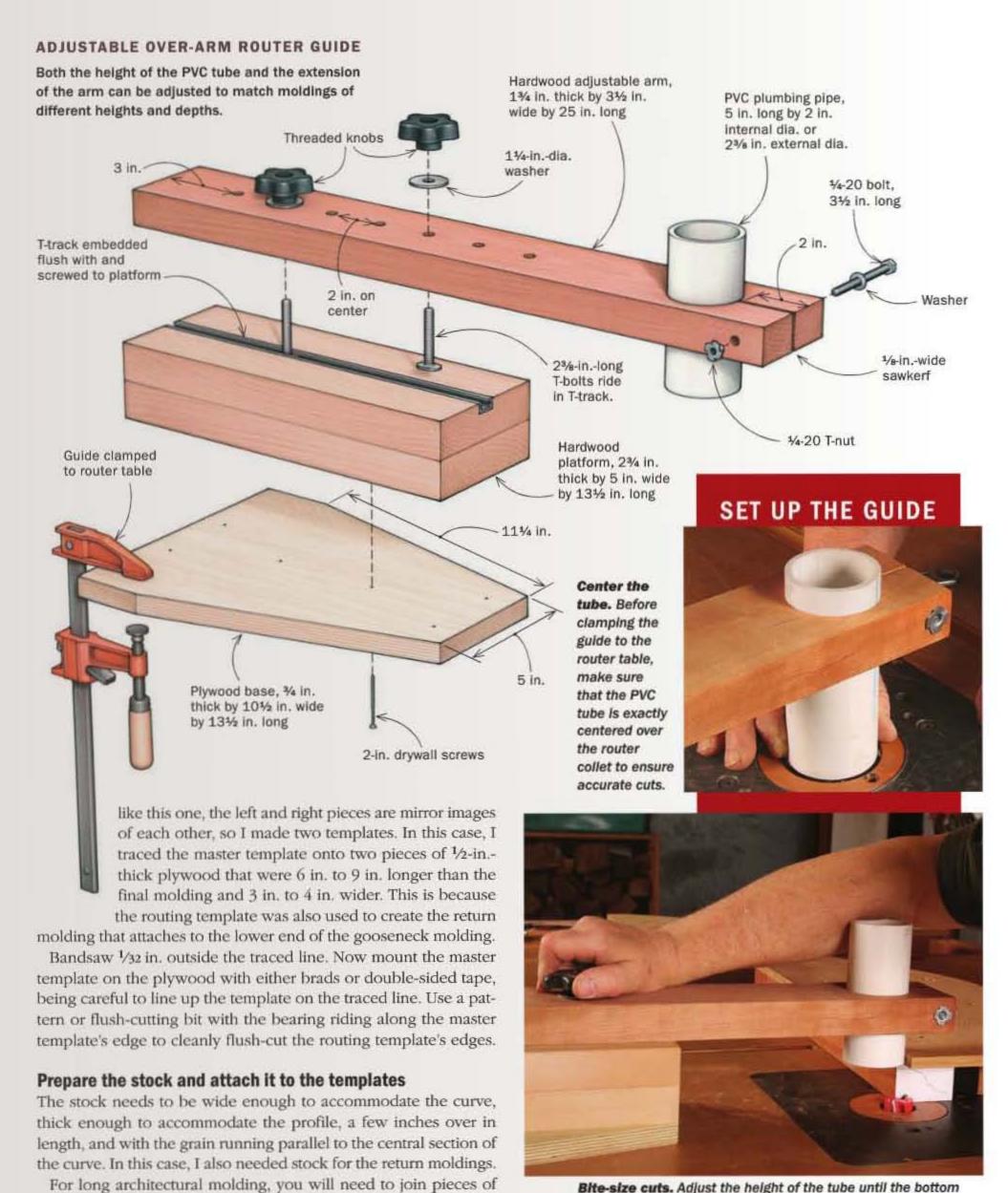
One template creates two others. Use the completed master template to create the pair of templates that actually guide the blanks that will form the left- and right-side moldings.

ATTACH THE MOLDINGS

Rough out the curved stock. Before attaching the templates to the blanks, use them to draw the outline of the curved molding (left), and then bandsaw just outside the line (right).

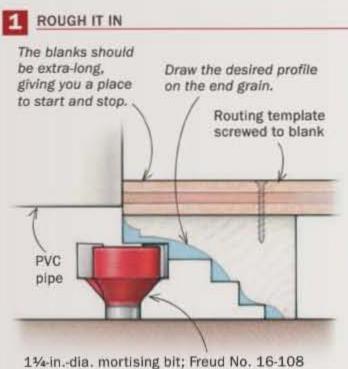


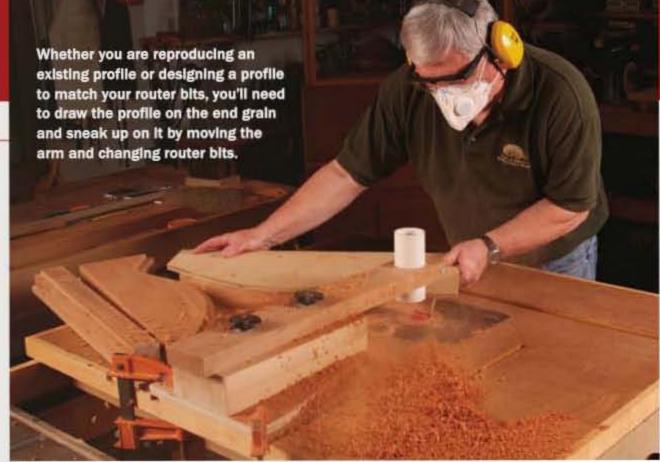
Flush-cut the curve. Screw the template to the blanks (left), then use a flush-trimming bit to bring the blank even with the template (right). The over-arm jig won't work accurately unless this is done.


minimize cleanup scraping. If you create your own design, feel free to adjust it closer to bits you already own. For the gooseneck molding on my Philadelphia-style secretary, I chose a commonly used crown profile: a large cove flanked by an ogee at the top and a thumbnail at the base.

With the cross-section profile drawn, you need to determine the molding's front profile—its length and the radii of its curves. Create a full-size master template out of ¹/₄-in.-thick plywood or MDF. Extend the template a few inches at each end and ensure that the edges are smooth, square, and parallel over its entire length.

You now need to create the routing templates that will attach to the workpieces and guide them. For a gooseneck

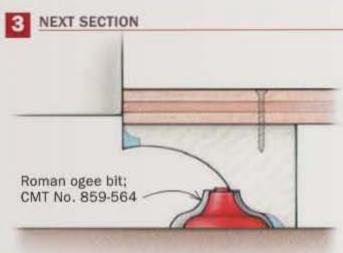



Bite-size cuts. Adjust the height of the tube until the bottom is just above the lower edge of the template. Then slide in the adjustable arm as shown to set up a manageable cut.

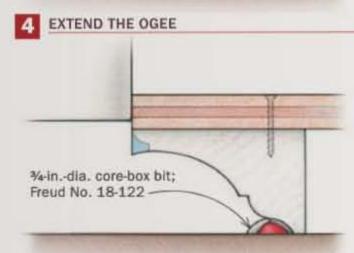
wood together end-to-end. You can do this before the shaping

using splines or bricklaying the piece, or you can simply shape

SNEAK UP ON THE PROFILE WITH A VARIETY OF BITS



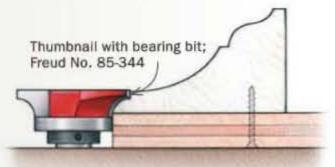
Rough out the waste in steps. Don't try to remove too much at once. Make a series of passes to rough in the profile.



Big and fast. A large core-box bit is fast and clean. A small bit will take more passes and leave more irregularities to be scraped.



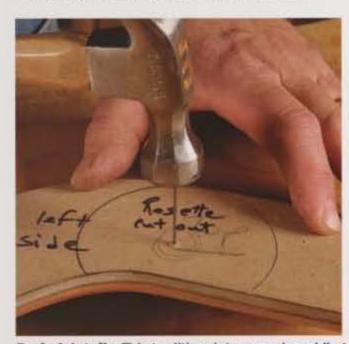
Modify the bit. Callahan used a Roman ogee bit with the bearing and stem removed.



Refine the shape. You can use a %-in.-dia. core-box bit to extend the ogee profile.

Complete the profile. Callahan flipped the workpiece over so that the template was riding the bearing of the bit when cutting the thumbnail profile.

CREATE THE PROFILE CONTINUED


Blend and smooth with a scraper. A gooseneck scraper is ideal for cleaning up the different parts of the profile.

smaller, more manageable pieces and splice them together later. Curved stair railings are a good example. Either way, avoid any short-grain or cross-grain stock that can weaken the structure.

Keeping in mind that there would be right and left moldings, I traced the curved outline of each routing template onto the stock, making sure to label the templates and stock accordingly. Once you've done this, bandsaw the stock to within ½2 in. of the traced lines, and screw them to the routing templates with their bandsawn edges slightly overhanging the templates' edges. Make sure the screws are placed to avoid being hit later by a router bit.

Before you screw on the return stock, paint the end that will enter the router bit white, and when dry, trace the outline of the molding's profile onto it. This outline allows you to position the guide arm and the router bit very accurately for each cut.

The return pieces stabilize the template on the router table. If you don't need return pieces, attach support blocks the same height as the curved stock.

Period details. This traditional gooseneck molding gets a few more touches. Use the master template and a nail (above) to mark the location of the rosette at the top, and bore the hole using a Forstner bit whose diameter matches the rosette (right).

With a flush-trimming bit, trim the curved edges of the stock flush. On the back side of the gooseneck pieces, align and trace the outside or upper edge of the master template. This determines the finished width of the molding.

Set up the guide and cut

Clamp the over-arm guide jig to the router table, and extend the arm until the PVC tube is centered over the collet. The face of the tube acts as a bearing surface for the template. It is imperative that you keep the same contact spot on the tube throughout the cut and not pivot the jig around that

Cut out the molding. Bandsaw just outside the line that you drew before cutting the profile (see p. 75).

Trim the top edge. Attach the master template to the top edge of the molding and use it to guide a flush-trimming bit to clean up the top edge. Raise the bit to finish the job.

spot. Ideally, this spot should be at the point of the tube farthest from the back of the router table.

Using a 1-in.-dia. mortising or straight bit, I removed stock inside the molding's cove profile, as shown on p. 77. You can create a series of step-cuts by adjusting the height of the bit and the in/out position of the arm guide. Make sure all four blanks are cut before changing the height of the bit or the arm guide's position. You can also establish the fillet between the cove and ogee using this bit. Next, I installed a cove or core-box bit. Ideally the bit should have a cutting radius close to the curvature of the cove, but you can use a smaller bit and make several overlapping cuts. You can come back later and fine-tune the coved surface with a curved cabinet scraper or sandpaper.

I created the ogee profile in the same manner. Again, you can use smaller radius bits if you can't locate a single bit that matches the desired shape.

Final shaping and assembly

With the pieces still attached to the templates for stability, use a gooseneck scraper to refine the curves. If you use sandpaper, be careful not to round over the profile.

Remove all the sections from the templates, and set aside the return pieces. If your gooseneck molding terminates in a rosette, (see Master Class: "Carve a rosette," FWW #194), cut away the tip of the molding on the drill press with a bit whose diameter matches that of the rosette.

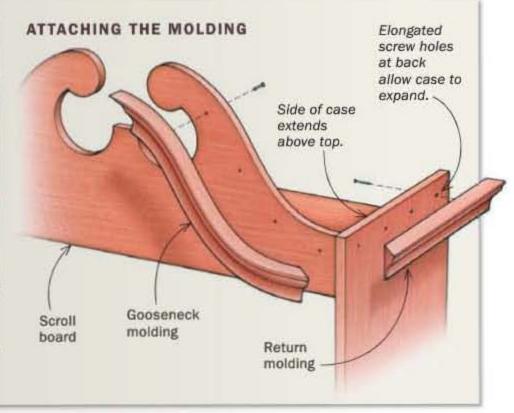
To create the top edge of the molding, bandsaw close to the traced line you drew earlier, and then attach the master template

and use it to guide a flushtrimming bit. By making the moldings overlong as recommended, you now have plenty of excess stock on which to practice cutting the miters. While the bottom miter is usually close to 45°, the upper miter (if there is no rosette) is usually a compound angle that requires some trial and error.

Now that curved moldings hold no fear, go ahead with that highboy, build that classical entryway, and trim that arched built-in.

W. Mickey Callahan is a periodfurniture maker in Massachusetts.

Mitering a curved molding


Mark the corner. With the curved part of the molding clamped in place, mark a 45° line from the cabinet corner.

Cut the miter. Clamp both ends of the moiding to the chopsaw's fence and then cut the miter. The left clamp is behind the author's hand.

A fussy fit. Sometimes the miter joint fits right the first time. If not, you may need to trim the cuts or modify the profile until the corner comes together.

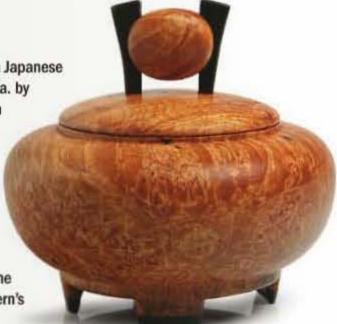
readers gallery

LARRY GREWE AND JOSEPH CORSON Meeting, Pa.

Neighbors Grewe and Corson talked about making this Pennsylvania secretary together for about four years before Corson, 90, convinced Grewe, in his early 70s, to go for it. Being the less-experienced furniture maker, Grewe was a bit reluctant to take on the challenge. "Then I realized that to work on it with a friend and neighbor would be a true learning experience and stretch my abilities," he said. They chose cherry, because it is a bit less formal than the walnut used in the Lonnie Bird piece that inspired it (FWW #154, 155, 156). The piece is 21 in. deep by 38½ in. wide by 85 in. tall; it is finished with tung oil.

PHOTO: AARON AND MATTHEW GREWE

KYLEE SEBREE Escondido, Calif.


This Krenov-inspired cabinet on stand (10½ in. deep by 23 in. wide by 45½ in. tall) was Sebree's final project at the Inside Passage School of Fine Woodworking in British Columbia. Sebree says he enjoyed making the veneered carcase appear as one piece. "I looked at that plank of European cherry for months, noticing the slight inward bend in the grain, so when I finally decided on the wood I knew it was going to be a curved piece," he says. The outside of the cabinet and the doors are cherry; other woods are Port Orford cedar, Afromosia, Italian olive, and sycamore. The finish is shellac and wax. PHOTO: INGEBORG SUZANNE

DAN SOUTHERN

Huntington Beach, Calif.

A stone lantern encountered on a trip to a Japanese garden inspired this turned box (5½ in. dia. by 7½ in. tall). But the handle was born from another source: a photo of a pendant in a jewelry-making book. This is typical of Southern, who often blends contemporary lines with primitive art styles in his pieces, which include intricate carved insect sculptures, tikis, masks, and other sculptures. This box is made of big-leaf maple burl and ebony. The finish is linseed oil. To see more of Southern's work, go to woodenaddictions.com.

PETER MARCUCCI

Woodbridge, Ont., Canada

A Charles Rohlfs 1898 desk chair inspired Marcucci to make these mahogany chairs. As he made each one, he changed the design of the back and other details. The first (center) shares the same back shape and cutout design as the original Rohlfs, although it is not as elaborate. The second (left) has a simpler back, with a walnut center and trim. The third is based on a flatware pattern Marcucci admired. The chairs are 16 in. deep by 151/2 in. wide by 47 to 51 in. tall; they are finished with oil-based stain and urethane.

GEREMY COY Washington, D.C.

Modeled after a Shaker sewing chest, this cabinet was made to hold a Japanese teapot and cups. The top is a cherry slab, sliced from the log where two branches flowed together; the dark crack along the center shows that meeting place. The structure of the carcase is cherry, the drawer fronts and side and back panels are fir, and the drawer pulls are wenge. Coy made the piece by hand-including the milling and resawing. He allows that the lumberyard used electricity on the wood before he got it, but "once it entered my studio, I only touched it with hand tools." The cabinet is 18 in. deep by 37 in. wide by 36 in. tall; the finish is an oil/varnish blend and wax.

GREG BROWN Deerfield, N.H.

This carved urn stand (111/2 in. dia. by 30 in. tall) was built to sit beside a Samuel McIntire parlor chair that Brown made a few years ago with a simple function: to hold a drink, and it, too, is based on a McIntire piece. The stand has a number of challenging turned and carved elements. The column and base feature five different types of foliage, with a grape-leaf motif descending the shaft. The base was coopered to avoid end-grain carving and, Brown says, "to provide an efficient use of my precious mahogany." The finish is shellac and wax. PHOTO: MARK SCHOFIELD

www.finewoodworking.com

readers gallery continued

JOEL SHEPARD

Seattle, Wash.

This tansu entertainment cabinet (26 in. deep by 72 in. wide by 96 in. tall) offered Seattle designer and builder Shepard the perfect way to indulge his "fascination with all-things Japanese and explore my curiosities even further." The piece conceals a wide-screen television and stereo components, with plenty of room for storage.

The wood is elm, the traditional hardware was imported from Japan, and the finish is aniline dye, walnut stain, and lacquer. The piece was commissioned by a longtime-"and very patient!" Shepard adds-client. It took him approximately 1,200 hours to build! PHOTO: RAIN GRIMES

NICK BOYNTON

Missoula, Mont.

Boynton has made several variations of this hall table (16 in. deep by 30 in. wide by 29 in. tall), including dining tables and coffee tables, based on a Japanese Torii arch. This one is curly walnut veneer and solid wood, finished with oil and lacquer. Boynton says people often ask how he mortised the curved stretchers through the curved legs. He bandsawed the parts, laid the stretcher over the legs, and recorded the mortise angle with a bevel gauge. Then he marked how far the leg needed to slide onto the stretcher, and tapered the stretcher slightly so it would slide in tightly with no glue needed. The top is attached with a dowel at each leg.

Submissions

Readers Gallery provides design inspiration by showcasing the work of our readers. For submission instructions and an entry form, go to FineWoodworking.com/RG.

DESIGN SPOTLIGHT

F

RAYMOND FINAN

Arlington, Vt.

When Finan set out to design a triangular table (19% in. deep by 21% in. wide by 26% in. tall), his first thought was to give it straight sides and square, tapered legs. Then he decided to soften the triangle with slightly bowed sides. The quick sketch reminded Finn of something

Inspiring engine. The curve-sided triangle on Finan's table is also at the heart of the Wankel rotary engine.

in his car-racing background:
the rotor in a Wankel rotary
engine. Searching online,
Finan discovered that the
sweet shape he'd stumbled
upon for his tabletop was a
Reuleaux triangle, a form well
known among mathematicians
and gearheads if not among
woodworkers (you can see
some of its unusual properties
demonstrated at: http://
whistleralley.com/reuleaux/
reuleaux.htm). In addition to

making Finan's table more distinctive, the Reuleaux shape made it more functional by adding to its surface area. The shape is easy to lay out using trammel points (right). To make the legs more compatible with the curves of the tabletop, he decided to turn and taper them. Finan made the tabletop from an old board of curly ash and the legs from white oak stained to simulate the look of fumed oak.

ZACH MALCOLM

Portland, Ore.

Malcolm says this mahogany sideboard (24 in. deep by 72 in. wide by 36 in. tall) was the most involved furniture project he has tackled. He set out to use simple curves in the top, rails, and stiles, and balance them with the symmetrical drawer array. It took him about 300 hours to make the piece, which is finished with oil and shellac. The drawer pulls are ebony. PHOTO: GARY ROGOWSKI

www.finewoodworking.com JULY/AUGUST 2012 83

Designing dovetails for strength and style

Q: Do I really need to use higher angles when I'm cutting dovetalls in softwoods like pine? Does the dovetall angle affect the strength of the joint?

-BILL FONTANA, Worcester, Mass.

A: No. ALTHOUGH SOFTWOODS ARE MORE compressible than hardwoods, you needn't change the dovetail angle to add strength to the joint. Any angle between 7° and 15° will work, regardless of the wood. But stay within that range. If you go below 7°, you'll start to lose the mechanical strength of the dovetail. Go above 15°, and you'll leave too much short grain at the tips of the tails, which weakens the joinery.

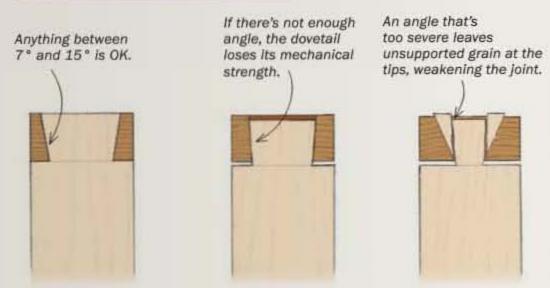
Thin stock is perhaps the one exception. If you're dovetailing stock less than ¼ in. thick, go with at least a 10° angle. It increases the glue surface and strengthens the joint—but only slightly.

When it comes to making a strong dovetail joint, the spacing and size of the dovetails is far more important than the angle. The trick is to balance that strength with aesthetics, which means finding the sweet spot between two extremes.

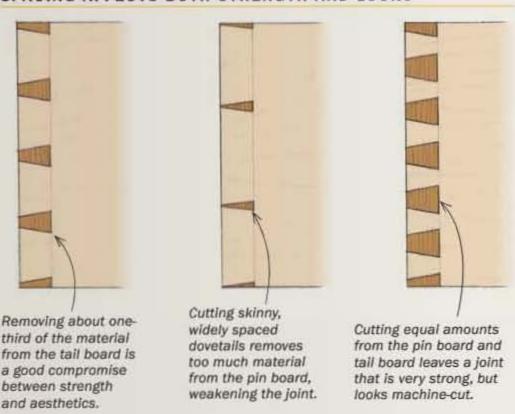
At one extreme are skinny, widely spaced dovetails. They look hand-cut, but the joint is weak because most of the material has been removed from the pin board while nearly none has been removed from the tail board. The other extreme is removing roughly equal amounts from the pin and tail boards. Doing so produces a mechanically strong joint, but one that looks machine-cut, and to my eye, unappealing.

The art of dovetailing is to aim somewhere between those extremes. The ultimate goal is a strong joint that looks handmade.

-Christian Becksvoort is a contributing editor.


Ask a question

Do you have a question you'd like us to consider for the column? Send it to Q&A, Fine Woodworking, 63 S. Main St., Newtown, CT 06470, or email fwqa@taunton.com.



Keep the ratios right. For a strong, handsome dovetall joint, spacing is more important than the angles of the pins and tails.

A RANGE OF ANGLES WILL WORK

SPACING AFFECTS BOTH STRENGTH AND LOOKS

Advice for spraying finish outdoors

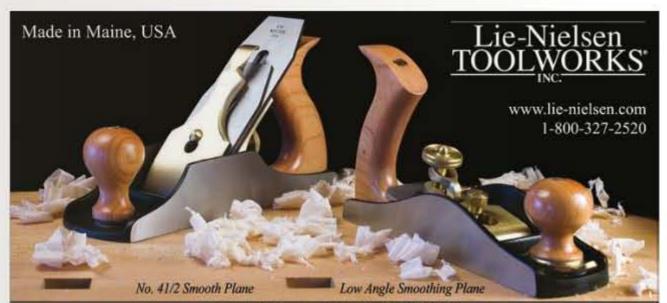
Q: I'd like to spray shellac for a finish, but I don't have an explosion-proof spray booth. Can I do it outside?

> -ERNIE RUXTON, Twin Falls, Idaho

A: YOU CAN SPRAY SHELLAC or any flammable finish outside, but pick a day with moderate temperature (55° to 75° F) and humidity (under 70%), and find a shaded spot with no direct sunlight. You should avoid strong winds, but some air movement—whether from a light breeze or a box fan—will prevent overspray from landing on the piece.

Even if you do have a suitable environment for spraying, there are a few potential problems to guard against. When sprayed, shellac's solvent, denatured alcohol, dries so quickly that it can prevent the shellac from "flowing out" correctly. It also can lead to a rough or grainy finish because the shellac partially dries by the time it hits the surface. Avoid both problems by using denatured alcohol with a low methanol content, such as Behlen Behkol.

—Jeff Jewitt is a finishing expert and regular contributor to FWW.



finewoodworking.com/marketplace | 800-719-6906 x4028

finewoodworking.com/marketplace | 800-719-6906 x4058

Clean routing: It's feed, not speed

Q: I get a lot of burn marks when I rout cherry. Will changing the router's motor speed stop it?

-KEITH MUNRO, Carleton Place, Ont., Canada A: CHANGING THE MOTOR SPEED WON'T stop burn marks, but you can minimize them by moving the router faster.

Burn marks come from the heat released by the friction of a spinning bit. The longer the bit stays in the wood, the more cuts it takes and the more heat it creates. Feeding the router over the wood faster means fewer cuts per inch, less heat, and less burning.

Reducing the router speed won't really help. A slower-spinning bit needs to remain in the wood longer, which leads to more heat, and more burning. Check your bit, too. A dull or dirty bit will struggle to cut wood, generate a lot of heat, and cause burn marks. Cleaning or replacing the bit should help.

—Gregory Paolini is a frequent contributor to FWW.

Correct a wobbly chair

Q: I miscut the length of my chair's legs, and now it wobbles. What's the best way to fix it?

-JOHN WASSERMAN, Austin, Texas A: I RECUT WOBBLY LEGS with a flushcut saw and a guide that rests on a flat surface like a tablesaw. Balance the chair on the saw and add a blob of hot glue to a side of all four legs—even the one that is raised slightly—to freeze the chair in position. Then build a guide using a piece of scrap barely thicker than the largest gap under the legs and notch it to fit around the leg. Saw around each leg, then move the chair and finish the cuts. Chamfer the ends with a rasp when you're done.

-Michael Fortune is a contributing editor.

Start with a flat surface. Use a splotch of hot-melt glue to lock the chair in position on the tablesaw.

Use the guide. Cut lightly around all four legs with a flush-cut saw, and then clamp the chair elsewhere to finish the cuts.

F

Sode

Forrest Blades

Experienced woodworkers know that Forrest blades are ideal for remodeling high-end kitchens and baths.

Forrest blades deliver smooth, quiet cuts without splintering, scratching, or tearouts. Our proprietary manufacturing process, hand straightening, and unique grade of C-4 micrograin carbide are perfect for cabinets, countertops, and flooring. In fact, independent tests rate us #1 for rip cuts and crosscuts.

"Your blades are without question the best by miles, and I have tried them all." Bob Jensen, Fridley, MN

Forrest Quality Shows

Duraline Hi-AT—Great for cutting two-sided veneers and low pressure laminates.

Woodworker II — Best rated, allpurpose blade for rips and crosscuts.

Woodworker II Fine Woodworking

Chop Master Woodshop News

Duraline Hi-AT Woodshop News

1-800-733-7111

Order from any Forrest dealer or

retailer, online, or by calling directly.

Our blades are manufactured in the

U.S.A. and backed by our 30-day,

The First Choice of Serious

Woodworkers Since 1946

www.ForrestBlades.com

(In NJ, call 973-473-5236)

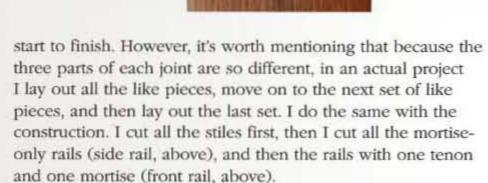
money-back guarantee.

Dado King Wood Magazine

finewoodworking.com/marketplace | 800-719-6906 x4034

master class

Super-strong 3-way miter

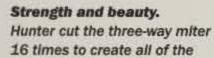

COMBINATION OF HAND AND POWER TOOLS
MAKES IT SURPRISINGLY STRAIGHTFORWARD

BY ANDREW HUNTER

t first glance, this double-tenoned lapping miter joint might seem as complicated as its name. I am sure some of the Chinese craftsmen using the joint more than 500 years ago puzzled over it, too. But once you have taken the time to create an accurate layout, this intricate joint can be made quickly and precisely.

In China it is known as the rice dumpling joint, after the three-way mitered fold of a dumpling, and has been in use since the Ming dynasty (1368–1644). Since its early history, Chinese furniture has been constructed predominantly with miter joints. In addition to its strength, mitered joinery lets shaped profiles meet seamlessly. Curves can flow into curves without the need for a more difficult cope.

This oak cabinet has 16 separate corners all with this mitered joint. For this article, I'm demonstrating one joint made from



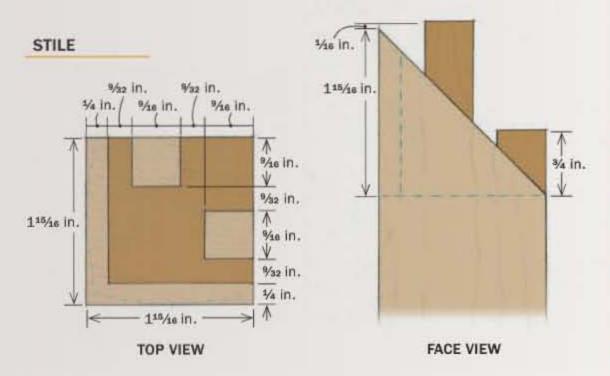
Whether the tenons are through- or concealed is a matter of personal preference. I use through-tenons. Also, because there is so much mechanical strength to this joint, I am able to leave it unglued, which allows for any repairs in years to come. But feel free to lock your joints with glue.

The key to a successful three-way miter joint is an accurate layout. It is important to begin with straight, square stock and to really take the time to draw out every line accurately. Once you are confident your layout is perfect, you can breathe easy. Carefully excavating to these lines should leave you with little or no fitting.

SIDE RAIL

Andrew Hunter designs and builds custom furniture in his studio in Accord, N.Y.

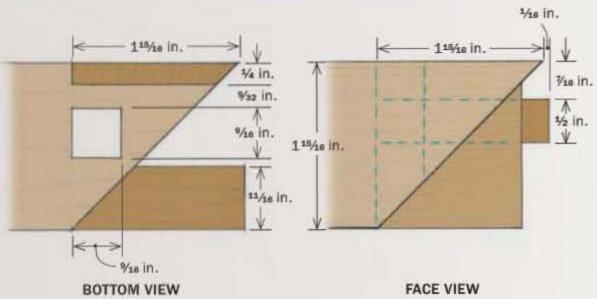
corners in his oak dressing cabinet (right). The joint lends great rigidity to the piece, which consists of two stacked cases.


FRONT RAIL

STILE

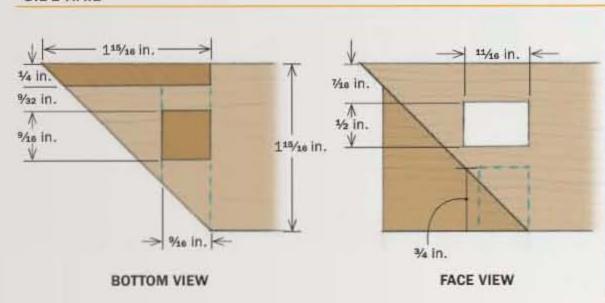
Precise layout is key

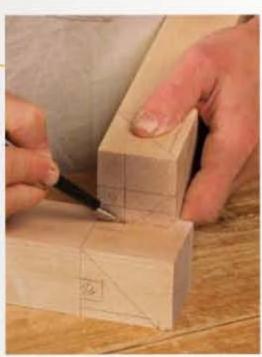
Begin by labeling the outside faces of each piece and using them exclusively as reference surfaces for locating the layout lines. Hunter lays out the stile first, then uses an adjustable square to transfer most of the layout lines to the two rails.



Mark the bottom shoulders and 45° miters first. Start the miters about ½ in. from the end of the workpiece to let the tenons protrude.

Two tenons top the stile. On the end, lay out four pairs of perpendicular lines at equal distances from each reference face. Two of the resulting squares will become tenons. Mark the waste tenons as shown and carry the lines down to the baseline on each inside face.


FRONT RAIL



Front rail is next. This piece has a vertical throughmortise that accepts the long tenon from the stile. A beefier horizontal tenon goes through the second rall. Transfer most of the layout from the stile using a square, but mark directly from the stile to locate the mortise wall opposite the baseline.

SIDE RAIL

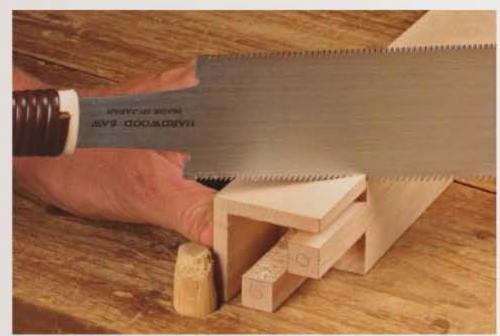
Side rail gets mortises only. A stopped mortise underneath accepts the short tenon from the stile, while a rectangular through-mortise accommodates the long tenon from the front rail.

master class continued

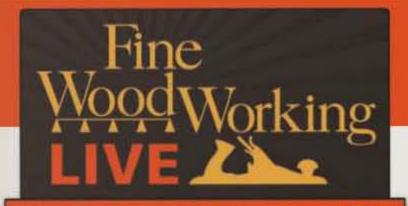
Make the stile

Some slick hand-tool and machine tips will get rid of the unwanted material and leave you with two perfect miters and two tenons.

Magic at the router table. Using a ¼-in. spiral bit, work slowly (about one-third-depth intervals) to clean out between the layout lines. Mark the bit's location on the fence so you can eyeball when to stop the cut before the bottom shoulder line. After an initial rough pass, go back and clean up right to the pencil line. This step will leave you with four perfect tenons, though you only need two of them.


Remove the front tenon. Use a Forstner bit in the drill press to remove the section of the tenon that you wouldn't be able to reach with a handsaw.

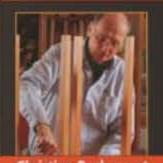
Follow up with a handsaw. Carefully cut off what remains of the front tenon.


Get rid of the back tenon. With the front tenon gone, you have access to the back one. Drill between the two side tenons to remove it. Clean up the bottom of the joint with a chisel.

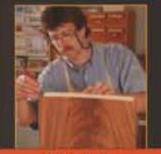
Outside miters are easy now. Cut the two mitered shoulders with a handsaw, then shave right to the line with a shoulder plane.

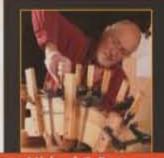
Cut one tenon short. Finish by cutting one of the tenons short to accommodate the tenon that will come in from the rail.

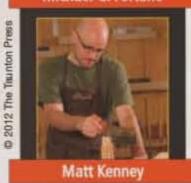
Share your passion, hone your skills



Join us at our first-ever event: Fine Woodworking LIVE


PRESENTERS:


Garrett Hack


Christian Becksvoort

Steve Latta

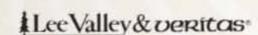
Michael C. Fortune

See the pages of Fine Woodworking magazine brought to life before your eyes.

- Meet the experts behind the magazine.
- Enjoy three days of workshops with Fine Woodworking's expert craftsmen.
- Attend live demonstrations and workshops on a range of topics.
- Spend time with fellow woodworkers sharing experience and knowledge.
- PLUS: Nick Offerman, star of NBC's Parks and Recreation and a die-hard woodworker, is the featured guest speaker at our Saturday night banquet.

ONLY 300 TICKETS AVAILABLE

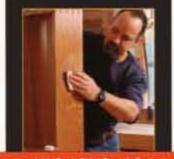
Register now for this limited-attendance event

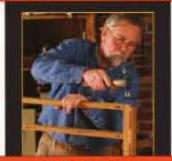

SAVE \$50 with our early-bird discount.

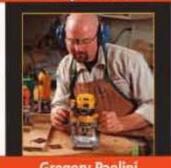
Go to fwwlive.com/info or call 877-787-5407

use code M1800175 International customers, call 203-304-3047

Sponsored in part by:






Roland Johnson

Michael Pekovich

Philip C. Lowe

Gregory Paolini

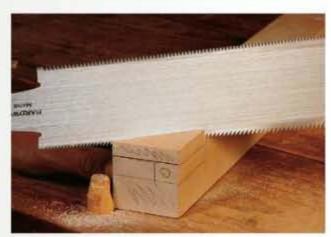
Nick Offerman

master class continued

Tackle the rail without tenons

Of the two ralls, the side one has no tenons, and Hunter likes to tackle that next. This piece is the most straightforward of the three.

Two mortises and a miter. Use a drill press to remove the bulk of the mortises, and then chop to the lines with a chisel. Then use a chopsaw to cut the miter. Hunter cuts just outside the layout lines and then shaves right to the line with a handplane or chisel.



Cut the mitered shelf. Use a handsaw to cut the ¼-in.-deep shelf that will accommodate the mitered laps of the stile. Clean it up with a shoulder plane.

Final rail combines all the elements

This piece combines elements of the other two. It has one long tenon, one through-mortise, a mitered face, and a mitered shelf. As with the other two parts of the joint, Hunter makes the front rail easy to cut, and you've already done all of these moves on the first two pieces.

Mortise first, then the tenon. Drill the mortise and square it with a chisel, then saw away the sides to reveal the tenon's cheeks. Use a shoulder plane to clean those faces to the line.

Finish up the tenon. Again with a handsaw followed by a chisel, cut away the remaining waste to leave the tenon.

Add the shelf. Like the other rail, this one gets a mitered shelf that holds the mitered laps of the stile.

SHAPING IS THE FINAL TOUCH

With the joinery complete, you can shape the outside faces of the joint. This is where the genius of this joint becomes so apparent. Superior strength aside, you can seamlessly transition any profiling you do from one face of this joint into the next.

Creating a profile. Cut the desired profile on a piece of scrap, then transfer the shape to the stile. Mitering the ends of the scrap makes the transfer easy.

Rough the shape at the tablesaw. Rip the facets first, then fine-tune the shape with a handplane. Reassemble the joint and trace the profile from the stile onto the rails.

CLASSIFIED

The Classified rate is \$9.50 per word, 15 word min. Orders must be accompanied by payment, ads are non-commissionable. The WOOD & TOOL EXCHANGE is for private use by individuals only; the rate is \$15/line, minimum 3 lines. Send to: Fine Woodworking Classified Ad Dept., PO Box 5506, Newtown, CT 06470-5506. FAX 203-426-3434, Ph. (866) 505-4687. For more information on advertising go to www.finewoodworking.com/classified Deadline for the Sept./Oct. issue is June 7, 2012.

Hand Tools

PETE NIEDERBERGER- Used and Antique tools and parts. Special on vintage tuned Stanley planes. (415) 924-8403 or pniederber@aol.com Always buying!

HIGHLANDWOODWORKING.COM, the world's largest selection of hand planes, plus thousands more fine hand tools.

BOB KAUNE-ANTIQUE & USED TOOLS. Since 1982. Hundreds of quality handtools. Stanley planes and parts. Visa/MC. www.antique-used-tools.com (360) 452-2292.

DIEFENBACHER TOOLS- Fine imported and domestic hand tools for woodworkers, www.diefenbacher.com Free catalog 1-800-326-5316.

Instruction

PENLAND SCHOOL OF CRAFTS, in the spectacular North Carolina mountains, offers one-, two-, and eightweek workshops in woodworking and other media. (828) 765-2359; www.penland.org

THE SCHOOL AT ANNAPOLIS WOODWORKS, Davidsonville, MD. Turning, Carving, Furniture Making, etc. Weeklong and weekend classes for all skill levels. www.annapoliswoodworks.com (301) 922-0649.

PRIVATE CLASSES with woodworking author in the Great Smoky Mountains. All skill levels. www.GregoryPaolini.com (828) 627-3948.

WM PERRY STUDIO, TORONTO. Fine woodworking private instruction in working shop. (416) 429-2323; www.wmperry.ca

Miscellaneous / Accessories

FULL EXTENSION DRAWER SLIDES for small boxes. 3/8-in. thick and 6-in. through 10-in. lengths. www.lairdproducts.com

WOODSLICER.COM, resawing blade rated best-performing 1/2-in. bandsaw blade by *Fine Woodworking*. 800-241-6748.

AUSTRALIAN WOOD REVIEW is now on iPad. Search Apple iTunes for Wood Review for a free sample issue.

Plans & Kits

FULL SIZE FURNITURE LAYOUTS Drawn by: Philip C. Lowe. Catalog \$3. (978) 922-0615. 116 Water Street, Beverly, MA 01915. www.furnituremakingclasses.com

Wood

NORTH/CENTRAL VIRGINIA: Complete line of premium, kiln-dried hardwoods. Culpeper/Warrenton area. (540) 825-1006, cpjohnsonlumber.com

BIRD'S-EYE AND CURLY MAPLE, 4/4 to 12/4 lumber, flitches, turning squares and blocks. Black walnut, cherry/quartersawn, and curly oak lumber. Dunlap Woodcrafts, Chantilly, VA. (703) 631-5147.

QUALITY NORTHERN APPALACHIAN hardwood. Custom milling. Free delivery. Bundled, surfaced. Satisfaction guarantee. Niagara Lumber. 800-274-0397. www.niagaralumber.com

EISENBRAND EXOTIC Hardwoods. Over 100 species. Highest quality. Volume discounts. Brochure. 800-258-2587. eisenbrandhardwoods.com

FIGURED CLARO WALNUT slabs and planks, in dimensions suitable for small to large projects. CWD: 800-660-0203. www.woodnut.com

LARGE CLARO WALNUT book-matched slabs, turning stock, raw and paper-backed veneer of burl and crotches. www.walnutwoods.net online store. Newton Woods. (559) 277-8456. Fresno, CA.

SAWMILL DIRECT 100 species of exotics, turning, lumber, logs, slabs, musical instruments TROPICAL EXOTIC HARDWOODS OF LATIN AMERICA, LLC: Toll Free (888) 434-3031. www.anexotichardwood.com

LONGLEAF HEART PINE (antique). Flooring-lumbermillwork. Red cedar lumber & paneling. Lee Yelton: (706) 541-1039.

TIGER MAPLE, MAHOGANY, cherry, walnut, butternut, curly birch; plain and figured. Wide boards, matched sets, 4/4 to 24/4. 150-ft, minimum. (570) 724-1895. www.irionlumber.com

WOOD AND TOOL EXCHANGE

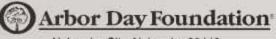
Limited to use by individuals only.

For Sale

ULMIA 1710Se 10-in. table saw. 500x320mm sliding table, mortising attachment. 30mm arbor. 3-phase motor 50HZ 220 Volts 3 HP. Excellent condition. Only 100 hours in use. \$3,000 or best offer. mcnathanson@hotmail.com

Fine Woodworking issues 1 thru 208. Excellent condition, \$500 plus shipping. From (IL) (630) 969-2748.

eason after season, year after year, generation after generation, our National Forests that give us beauty to behold and places to play also provide clean water to drink, clean air to breathe, wood for our homes, and a place to live.


But millions of acres of our National Forests have been lost to insects, disease, and devastating fires. Many areas need to be replanted. And soon.

Now the Arbor Day Foundation asks for your help in replanting our National Forests. So that seasons from now, and generations from now, we will still have forests to enjoy...

...and a place to live.

Visit arborday.org. See what we're doing. See how you can help.

Nebraska City, Nebraska 68410

WOODWORKERS MART

See advertiser index on page 97 for more information.

New England's Largest Selection of Unique Lumber and Burls

1000's of Natural Edge Kiln-Dried Slabs in Stock up to 7' wide

www.BerkshireProducts.com 413-229-7919

- ☑ Hand selected orders 100 woods in stock
- ☑ Expert knowledge
- ☑ 100% satisfaction

800-423-2450

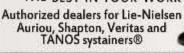
No one has a better website for ordering wood: www.101woods.com

CNC Machine Cut Dovetails That Look

- **Hand Cut!**
- * Call for Sample & Prices
- * Thru & Blind * Drawers & Pullouts
- * Prefinishing
- * Adjustable Tail Spacing
- * Undermount Prep
- * Prompt & Reliable
- * 1-2 Week Turnaround

Stratton Creek Wood Works Est. 2005

kmarie@strattoncreek.com 330-876-0005 Shop 330-876-0032 Fax www.strattoncreek.com


IMPORTING FINE QUALITY HAND TOOLS

SHOP ONLINE AT WWW.PECKTOOL.COM

CraftsmanStudio.com

Tools to bring out THE BEST IN YOUR WORK

FREE SHIPPING ON ONLINE ORDERS - SEE WEBSITE FOR DETAILS 888-500-9093

CARVING DUPLICATOR Gemini "The Professional's Woodworking Secret" FAST RUGGED Now Collins ACCURATE VISIT OUR WEBSITE ALLRed' www.wood-carver.com 315.252.2559

0000

Make bowls from boards with a Ring Master. Easy, safe and fun to use. The secret of segmented bowl turners for over 30 years.

www.ringmasterlathe.com

Keep your Fine Woodworking back issues looking brand new.

Store your treasured copies of Fine Woodworking in slipcases for easy reference again and again! Bound in dark blue and embossed in gold, each case holds more than a year's worth of Fine Woodworking. Only \$8.95 (\$24.95 for 3, \$49.95 for 6).

Plus shipping and handling. Payable in U.S. funds. Product #011050.

To place an order, call 1-800-888-8286 Mon.-Fri. 9AM - 9PM EST and Sat. 9AM - 5PM EST International customers, call 203-702-2204

SMALL ADS YIELD BIG RETURNS

for advertisers featured in the Woodworkers Mart and Classified sections of Fine Woodworking. For more information call 800-309-8954

MOVING?

Don't miss an issue of Fine Woodworking.

Go to: www.taunton.com/customerservice or email

support@customerservice.taunton.com

Give us your new information and we will take it from there!

DOVETAILS

No wasted wood. Order your Keller Dovetail System now! (800) 995-2456

Made in the USA since 1976 • DVD/Video \$8.95 + \$2 p/h

www.accuratedovetails.com

1-800-342-0001 • 717-284-0001 • Fax 717-284-2400

National & International Shipping

Need Product Information?

Let Reader Service work for you. Receive information from your choice of advertisers! See our Advertiser Index near the inside back cover to learn more!

THE FURNITURE INSTITUTE of MASSACHUSETTS

Study with Fine Woodworking author Philip C. Lowe • Classes range from 1 day to 1 week to 2 and 3 year mastery programs.

· See new class schedule on:

(978) 922-0615 www.furnituremakingclasses.com

OF FIGURE

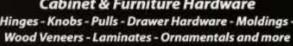
Muterspaw Lumber 937-572-WOOD www.crlumber.com

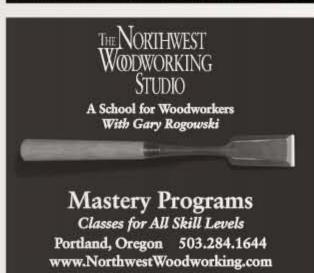
for the fewest figures

Oregon Black Walnut

Wide lumber - 4/4 through 16/4 WALHUT PRODUCTS

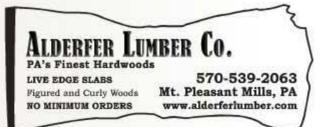
Portland, OR 97120

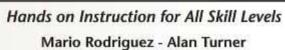

Turning - Carving Stock Gunstocks - Veneer 5315 NW St. Helens Rd. Instrument Grade Lumber No Minimum Order


www.DavissonRockers.com

(503)-477-6744

Web Site: www.gobywalnut.com





For more info on Courses: 215.849.5174

PhiladelphiaFurnitureWorkshop.com

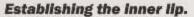
Philadelphia Furniture Workshop

20219 240th St., Elbow Lake, MN 56531 3M Authorized Distributor e-mail: airware@runestone.ne

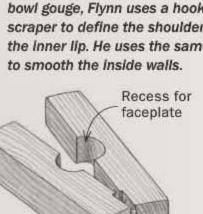
www.airwareamerica.com Free 1-800-328-1792

Ideal for wood dust

how they did it

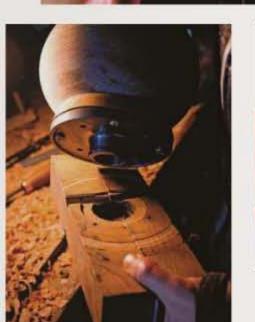

Go beyond the lathe for beautiful vessels

BY JONATHAN BINZEN


he beautiful overall shapes Liam Flynn creates on his lathe immediately draw the eye. Yet much of what makes his vessels so memorable happens afterward. The signature double lip found on many of his pieces is made on the lathe but modified at the workbench. And all the fluting is done with the vessel off the lathe. A lathe by nature generates perfectly symmetrical forms, but Flynn has found a way to produce turned vessels that are equal parts symmetry and asymmetry, perfection and imperfection. He may be aiming to find "the perfect line," but while he's pursuing it he lets the irregularities of work done by hand and by eye become part of the composition. Flynn turns and carves his pieces while the

THE DOUBLE LIP

Many of Flynn's vessels feature a distinctive double lip with an asymmetrical profile. He creates the lip partly on the lathe and partly at the bench.



After hollowing the vessel with a bowl gouge, Flynn uses a hooked scraper to define the shoulder of the inner lip. He uses the same tool

Faceplate leaves the lathe. Flynn turns all but the bottom inch of the vessel, then takes It to the bench for carving. He uses a shopmade Jig (above) to hold it solidly in the vise.



Last lathe step. Using a round-nosed scraper that's been ground back at an acute angle, Flynn shapes the recess between the inner and outer lips.

Slanting the lip. Flynn makes a sawkerf to provide a depth gauge as well as a relief cut (above left) before carving down the outer lip. Working toward the kerf, Flynn uses a shallow gouge to cut an incline (right). Having reached the bottom, he does the same thing from the opposite direction.

Hinge

INDEX TO ADVERTISERS

For quick access to advertisers, go to www.finewoodworking.com/marketplace or call 800-719-6906

ADVERTISER	Extension	page #	ADVERTISER	Extension	page #	ADVERTISER	Extension	page #
Adria Toolworks, Inc.	4015	p. 95	Fine Woodworking Online Store		p. 27	Oneida Air Systems	4053	p. 87
Airware America	4027	p. 95	Forrest Manufacturing	4034	p. 87	Osborne Wood Products	4043	p. 11
Alderfer Lumber Co.		p. 95	The Furniture Institute of Massachusetts	4068	p. 95	Peck Tool Company	4008	p. 94
Allred & Associates, Inc.	4055	p. 94	Goby Walnut Products	4013	p. 95	Phase-A-Matic, Inc.	4004	p. 9
American Fabric Filter Co.	4031	p. 11	Gorilla Wood Glue	4037	p. 3	Philadelphia Furniture Workshop	4050	p. 95
Arrowmont School of Arts and Crafts	4028	p. 85	Groff & Groff Lumber	4007	p. 95	Porter Cable	4066	p. 9
Bamboo & Rattan Works	4040	p. 11	Guhdo	4033	p. 21	Powermatic	4044	p. 99
Berkshire Products	4059	p. 94	Guillemot Kayaks	4012	p. 94	Quality Vakuum Products		p. 9
C.R. Muterspaw Lumber	4039	p. 95	Hearne Hardwoods, Inc.	4029	p. 3	RadarCarve.net	4001	p. 3
Cabinetparts.com	4016	p. 95	Highland Woodworking	4045	p. 16	Ringmaster	4017	p. 94
Center for Furniture Craftsmanship		p. 11	Inside Passage School			Rosewood Studio	4030	p. 21
Certainly Wood	4014	p. 95	of Fine Cabinetmaking	4009	p. 9	Sawtooth Shelf System	4036	p. 85
Clear Vue Cyclones	4003	p. 7	JDS Company	4022	p. 21	Sorbothane	4041	p. 95
Colonial Saw Company	4048	p. 95	The Japan Woodworker	4056	p. 7	States Industries	4051	p. 20
Connecticut Valley School		100	Kay Industries	4010	p. 17	Stratton Creek Wood Works	4002	p. 94
of Woodworking	4067	p. 16	Keller & Company	4026	p. 95	Titebond	4065	p. 17
Contempo Living	4025	p. 95	Kreg Tool	4064	p. 17	Trend Routing Technology, Inc.	4032	p. 85
Craftsman Studio	4018	p. 94	Laguna Tools	4062	p. 13	Vacuum Pressing Systems	4057	p. 3
DR Power		p. 21	Lake Erie Toolworks	4063	p. 95	Woodcraft Supply	4049	p. 2
Davisson Rockers	4023	p. 95	Lie-Nielsen Toolworks	4058	p. 85	Woodfinder		p. 95
Delmhorst Instrument Co.	4042	p. 20	Lignomat	4020	p. 9	WoodRat	4061	p. 7
Epilog Laser	4060	p. 7	Marc Adams School of Woodworking	4047	p. 3	Woodworkers Source	4035	p. 94
Felder USA	4046	p. 7	Northwest Woodworking Studio	4024	p. 95	Woodworker's Supply	4006	p. 9
Fine Woodworking Live		p. 91	Oneida Air Systems	4054	p. 17	Woodworker's Supply	4005	p. 21

Want more information from our advertisers? Choose your weapon.

Our new and improved reader service program makes receiving information from advertisers faster and easier than ever.

No cards. No stamps.

Just fast, free information at your fingertips.

*Be sure to have the advertiser's extension handy when you call. You can find it under each advertiser's ad or in the index above.

finewoodworking.com/marketplace

how they did it continued

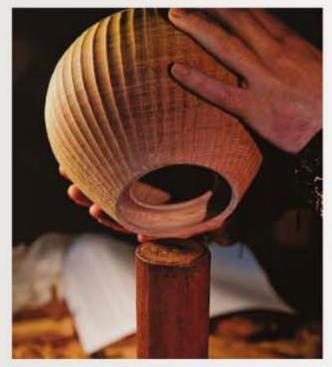
FLUTE MUSIC

Flynn stays at the bench to carve the flutes. When most of the carving is done, he returns to the lathe to turn the foot, then completes the flutes.

Freehand fluting. Flynn cuts the flutes without layout lines (far left), preferring the slightly irregular effect it creates. When only a small space is left unfluted, dividers help him assess the width of the final flutes (above).

wood is still green—he chainsaws
the blanks from sawlogs—so there is
always some distortion of the overall
shape as the piece dries. To minimize
distortion, he cuts out the blank so
that the vessel's height is oriented
perpendicular to the length of the
log. He often turns the vessels from
English oak (American oaks would be
suitable, too), and he uses the prominent
medullary rays as a guide while he's
roughing out the turning: If he has it
oriented properly, the rays should form
vertical lines on two sides of the vessel.

Flynn begins a piece by screwing his blank to a faceplate and turning the outside form down to within an inch or so of the foot. Then he hollows the inside and creates the double lip.


Now comes the carving. Flynn takes the vessel off the lathe but leaves it screwed to the faceplate—which he uses to help hold the vessel for carving. With most of the carving

the faceplate and mounts the vessel between centers to finish turning the foot. Then he completes the carving off the lathe.

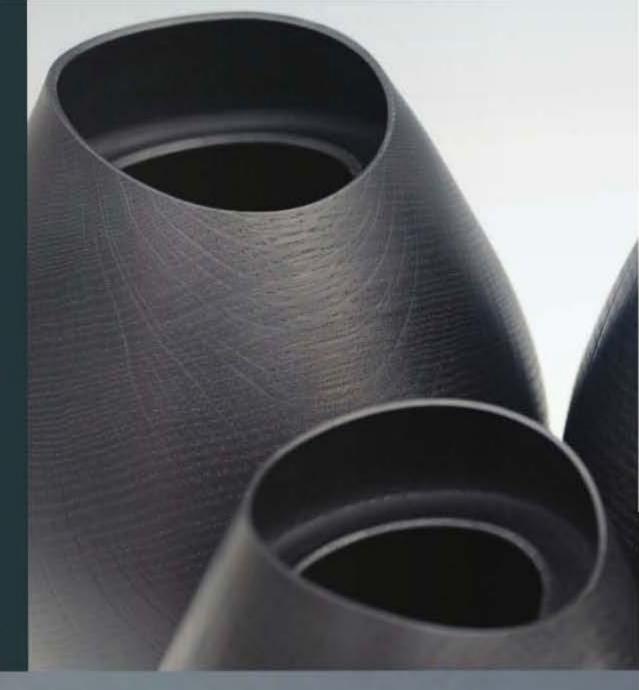
Back on the lathe. After unscrewing the faceplate, Flynn puts the vessel between centers on the lathe to turn the foot. The vessel is held between a cup center in the tall stock and a cylinder chucked into the headstock (left). He leaves a small spigot (right), which he removes later with a chisel.

Post production. To do the last bit of fluting,
Flynn inverts the vessel on a cylindrical post
clamped in a vise. Perfection is not his aim,
Flynn says. "They're imperfect; that's the way it is.
They're not machine-made." Certainly not.

THE GOLD STANDARD OVERNOE 1921

SOMETHING BIG IS COMING

JUNE 2012


finewoodworlding.com/markstplace | 800-719-8906 x4044

02012 Watter Meier (Manufacturing) Inc.

Irregular Perfection

iam Flynn, born into a family of woodworkers in the small town of Abbeyfeale, Ireland, was "banging around" in his father's shop by the time he was 8. His father didn't use a lathe, and it wasn't until a few years later that Flynn tried turning at a friend's house. "Straight after that," he says, "I had to have my own machine." And before long, "I decided I didn't want to do anything but this." With no access to a teacher, Flynn learned by turning and reading. Thirty years on, working in the same shop his father and grandfather used, Flynn makes his living by turning vessels. He chainsaws his blanks from straightgrained sawlogs and turns them green. As the vessels dry they distort slightly. Flynn carries that irregularity into the textured surfaces he carves, working without layout lines. Flynn says the overall shapes he turns haven't changed radically over the years. Essentially, he says, "I'm still trying to do the same thing. I'm trying to find the perfect line, the perfect form."

—Jonathan Binzen

